
File Manager Reference
Carbon > File Management

2007-07-13

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleShare, AppleTalk,
Carbon, Cocoa, Logic, Mac, Mac OS, Macintosh,
ProDOS, and QuickTime are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

File Manager Reference 15

Overview 15
Functions by Task 15

Accessing Information About Files and Directories 15
Accessing the Desktop Database 16
Allocating Storage for Files 18
Closing Files 19
Comparing File System References 19
Controlling Directory Access 19
Controlling Login Access 20
Converting Between Paths and FSRef Structures 20
Copying and Moving Files 20
Copying and Moving Objects Using Asynchronous High-Level File Operations 21
Copying and Moving Objects Using Synchronous High-Level File Operations 21
Creating a File System Reference (FSRef) 22
Creating and Deleting File ID References 22
Creating and Deleting Named Forks 23
Creating Directories 23
Creating File System Specifications 23
Creating Files 24
Creating, Calling, and Deleting Universal Procedure Pointers 24
Deleting Files and Directories 25
Determining the Unicode Names of the Data and Resource Forks 25
Exchanging the Contents of Two Files 25
Getting and Setting Volume Information 26
Getting Volume Attributes 27
Iterating Over Named Forks 27
Locking and Unlocking File Ranges 27
Locking and Unlocking Files and Directories 28
Manipulating File and Fork Size 28
Manipulating File Position 29
Manipulating the Default Volume 29
Mounting and Unmounting Volumes 30
Mounting Remote Volumes 31
Moving and Renaming Files or Directories 31
Obtaining File and Directory Information Using a Catalog Iterator on HFS Plus Volumes 32
Obtaining File Control Block Information 32
Obtaining Fork Control Block Information 32
Opening Files 32
Opening Files While Denying Access 33
Reading and Writing Files 34

3
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resolving File ID References 34
Searching a Volume 34
Searching a Volume Using a Catalog Iterator 35
Updating Files 35
Updating Volumes 35
Using Change Notifications 36
Not Recommended 36

Functions 37
DisposeFNSubscriptionUPP 37
DisposeFSVolumeEjectUPP 38
DisposeFSVolumeMountUPP 38
DisposeFSVolumeUnmountUPP 38
DisposeIOCompletionUPP 39
FNGetDirectoryForSubscription 39
FNNotify 40
FNNotifyAll 40
FNNotifyByPath 41
FNSubscribe 41
FNSubscribeByPath 42
FNUnsubscribe 43
FSAllocateFork 43
FSCancelVolumeOperation 44
FSCatalogSearch 45
FSCloseFork 47
FSCloseIterator 48
FSCompareFSRefs 48
FSCopyDiskIDForVolume 49
FSCopyObjectAsync 49
FSCopyObjectSync 50
FSCopyURLForVolume 51
FSCreateDirectoryUnicode 52
FSCreateFileUnicode 53
FSCreateFork 55
FSCreateVolumeOperation 55
FSDeleteFork 56
FSDeleteObject 56
FSDisposeVolumeOperation 57
FSEjectVolumeAsync 57
FSEjectVolumeSync 58
FSExchangeObjects 59
FSFileOperationCancel 60
FSFileOperationCopyStatus 60
FSFileOperationCreate 61
FSFileOperationGetTypeID 62
FSFileOperationScheduleWithRunLoop 62
FSFileOperationUnscheduleFromRunLoop 62

4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

FSFlushFork 63
FSFlushVolume 64
FSGetAsyncEjectStatus 64
FSGetAsyncMountStatus 65
FSGetAsyncUnmountStatus 65
FSGetCatalogInfo 66
FSGetCatalogInfoBulk 67
FSGetDataForkName 69
FSGetForkCBInfo 69
FSGetForkPosition 71
FSGetForkSize 72
FSGetResourceForkName 72
FSGetVolumeInfo 73
FSGetVolumeMountInfo 74
FSGetVolumeMountInfoSize 74
FSGetVolumeParms 75
FSIterateForks 75
FSLockRange 76
FSMakeFSRefUnicode 76
FSMountLocalVolumeAsync 77
FSMountLocalVolumeSync 78
FSMountServerVolumeAsync 79
FSMountServerVolumeSync 80
FSMoveObject 81
FSMoveObjectAsync 82
FSMoveObjectSync 83
FSMoveObjectToTrashAsync 84
FSMoveObjectToTrashSync 85
FSOpenFork 85
FSOpenIterator 86
FSPathCopyObjectAsync 88
FSPathCopyObjectSync 89
FSPathFileOperationCopyStatus 89
FSPathMakeRef 90
FSPathMakeRefWithOptions 91
FSPathMoveObjectAsync 92
FSPathMoveObjectSync 93
FSPathMoveObjectToTrashAsync 94
FSPathMoveObjectToTrashSync 95
FSReadFork 95
FSRefMakePath 97
FSRenameUnicode 97
FSSetCatalogInfo 98
FSSetForkPosition 99
FSSetForkSize 100
FSSetVolumeInfo 101

5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

FSUnlockRange 102
FSUnmountVolumeAsync 102
FSUnmountVolumeSync 103
FSVolumeMount 104
FSWriteFork 104
InvokeFNSubscriptionUPP 105
InvokeFSVolumeEjectUPP 105
InvokeFSVolumeMountUPP 106
InvokeFSVolumeUnmountUPP 106
InvokeIOCompletionUPP 107
NewFNSubscriptionUPP 107
NewFSVolumeEjectUPP 108
NewFSVolumeMountUPP 108
NewFSVolumeUnmountUPP 108
NewIOCompletionUPP 109
PBAllocateForkAsync 109
PBAllocateForkSync 110
PBCatalogSearchAsync 111
PBCatalogSearchSync 113
PBCloseForkAsync 115
PBCloseForkSync 115
PBCloseIteratorAsync 116
PBCloseIteratorSync 117
PBCompareFSRefsAsync 117
PBCompareFSRefsSync 118
PBCreateDirectoryUnicodeAsync 119
PBCreateDirectoryUnicodeSync 120
PBCreateFileUnicodeAsync 121
PBCreateFileUnicodeSync 123
PBCreateForkAsync 124
PBCreateForkSync 125
PBDeleteForkAsync 126
PBDeleteForkSync 126
PBDeleteObjectAsync 127
PBDeleteObjectSync 128
PBExchangeObjectsAsync 128
PBExchangeObjectsSync 129
PBFlushForkAsync 130
PBFlushForkSync 131
PBFlushVolumeAsync 131
PBFlushVolumeSync 132
PBFSCopyFileAsync 132
PBFSCopyFileSync 133
PBGetCatalogInfoAsync 133
PBGetCatalogInfoBulkAsync 134
PBGetCatalogInfoBulkSync 135

6
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

PBGetCatalogInfoSync 137
PBGetForkCBInfoAsync 138
PBGetForkCBInfoSync 139
PBGetForkPositionAsync 140
PBGetForkPositionSync 141
PBGetForkSizeAsync 142
PBGetForkSizeSync 143
PBGetVolumeInfoAsync 143
PBGetVolumeInfoSync 145
PBIterateForksAsync 146
PBIterateForksSync 147
PBMakeFSRefUnicodeAsync 148
PBMakeFSRefUnicodeSync 149
PBMoveObjectAsync 149
PBMoveObjectSync 150
PBOpenForkAsync 151
PBOpenForkSync 152
PBOpenIteratorAsync 153
PBOpenIteratorSync 154
PBReadForkAsync 155
PBReadForkSync 156
PBRenameUnicodeAsync 158
PBRenameUnicodeSync 159
PBSetCatalogInfoAsync 159
PBSetCatalogInfoSync 161
PBSetForkPositionAsync 162
PBSetForkPositionSync 162
PBSetForkSizeAsync 163
PBSetForkSizeSync 164
PBSetVolumeInfoAsync 165
PBSetVolumeInfoSync 166
PBWriteForkAsync 167
PBWriteForkSync 168
PBXLockRangeAsync 169
PBXLockRangeSync 170
PBXUnlockRangeAsync 170
PBXUnlockRangeSync 170

Callbacks by Task 171
File Operation Callbacks 171
Miscellaneous Callbacks 171

Callbacks 171
FNSubscriptionProcPtr 171
FSFileOperationStatusProcPtr 172
FSPathFileOperationStatusProcPtr 173
FSVolumeEjectProcPtr 174
FSVolumeMountProcPtr 175

7
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

FSVolumeUnmountProcPtr 176
IOCompletionProcPtr 176

Data Types 177
AccessParam 177
AFPAlternateAddress 179
AFPTagData 179
AFPVolMountInfo 180
AFPXVolMountInfo 182
CatPositionRec 184
CInfoPBRec 184
CMovePBRec 185
CntrlParam 186
ConstFSSpecPtr 188
ConstHFSUniStr255Param 188
CopyParam 188
CSParam 190
DirInfo 192
DrvQEl 195
DTPBRec 196
FCBPBRec 199
FIDParam 201
FileParam 202
FNSubscriptionRef 205
FNSubscriptionUPP 205
ForeignPrivParam 205
FSCatalogBulkParam 207
FSCatalogInfo 209
FSCatalogInfoBitmap 211
FSEjectStatus 212
FSFileOperationClientContext 212
FSFileOperationRef 213
FSForkCBInfoParam 213
FSForkInfo 215
FSForkIOParam 216
FSIterator 218
FSMountStatus 218
FSPermissionInfo 219
FSRangeLockParam 219
FSRangeLockParamPtr 219
FSRef 220
FSRefParam 220
FSSearchParams 222
FSSpec 223
FSSpecArrayPtr 224
FSUnmountStatus 225
FSVolumeEjectUPP 225

8
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

FSVolumeInfo 225
FSVolumeInfoBitmap 228
FSVolumeInfoParam 228
FSVolumeMountUPP 229
FSVolumeOperation 230
FSVolumeRefNum 230
FSVolumeUnmountUPP 230
GetVolParmsInfoBuffer 230
HFileInfo 232
HFileParam 235
HFSUniStr255 238
HIOParam 238
HParamBlockRec 240
HVolumeParam 242
IOCompletionUPP 244
IOParam 245
MultiDevParam 246
ObjParam 248
ParamBlockRec 249
SlotDevParam 250
VCB 251
VolMountInfoHeader 255
VolumeMountInfoHeader 256
VolumeParam 256
VolumeType 258
WDParam 259
WDPBRec 260
XCInfoPBRec 262
XIOParam 263
XVolumeParam 265

Constants 268
AFP Tag Length Constants 268
AFP Tag Type Constants 269
Allocation Flags 270
AppleShare Volume Signature 271
Authentication Method Constants 271
Cache Constants 272
Catalog Information Bitmap Constants 274
Catalog Information Node Flags 277
Catalog Information Sharing Flags 279
Catalog Search Bits 279
Catalog Search Constants 282
Catalog Search Masks 283
Extended AFP Volume Mounting Information Flag 286
Extended Volume Attributes 286
FCB Flags 289

9
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

File Access Permission Constants 291
File and Folder Access Privilege Constants 293
File Attribute Constants 297
File Operation Options 300
File Operation Stages 301
File Operation Status Dictionary Keys 302
FNMessage 304
Foreign Privilege Model Constant 304
Group ID Constant 304
Icon Size Constants 304
Icon Type Constants 305
Invalid Volume Reference Constant 307
Iterator Flags 307
kAsyncMountInProgress 308
Notification Subscription Options 308
kHFSCatalogNodeIDsReusedBit 309
Large Volume Constants 309
Mapping Code Constants 309
Path Conversion Options 311
Position Mode Constants 311
Root Directory Constants 312
User ID Constants 312
User Privileges Constants 313
Volume Attribute Constants 314
Volume Control Block Flags 318
Volume Information Attribute Constants 320
Volume Information Bitmap Constants 321
Volume Information Flags 323
Volume Mount Flags 325

Result Codes 326

Appendix A Deprecated File Manager Functions 339

Deprecated in Mac OS X v10.4 339
Allocate 339
AllocContig 340
CatMove 341
DirCreate 343
FSClose 343
FSMakeFSSpec 344
FSpCatMove 345
FSpCreate 346
FSpDelete 348
FSpDirCreate 348
FSpExchangeFiles 349
FSpGetFInfo 351

10
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

FSpOpenDF 352
FSpOpenRF 352
FSpRename 354
FSpRstFLock 354
FSpSetFInfo 355
FSpSetFLock 355
FSRead 356
FSWrite 357
GetEOF 358
GetFPos 359
GetVRefNum 359
HCreate 360
HDelete 361
HGetFInfo 362
HGetVol 362
HOpen 363
HOpenDF 364
HOpenRF 365
HRename 366
HRstFLock 367
HSetFInfo 368
HSetFLock 368
HSetVol 369
PBAllocateAsync 370
PBAllocateSync 372
PBAllocContigAsync 373
PBAllocContigSync 374
PBCatMoveAsync 376
PBCatMoveSync 377
PBCatSearchAsync 378
PBCatSearchSync 380
PBDirCreateAsync 382
PBDirCreateSync 383
PBDTAddAPPLAsync 384
PBDTAddAPPLSync 385
PBDTAddIconAsync 386
PBDTAddIconSync 387
PBDTCloseDown 389
PBDTDeleteAsync 389
PBDTDeleteSync 390
PBDTFlushAsync 391
PBDTFlushSync 392
PBDTGetAPPLAsync 394
PBDTGetAPPLSync 395
PBDTGetCommentAsync 396
PBDTGetCommentSync 397

11
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

PBDTGetIconAsync 398
PBDTGetIconInfoAsync 399
PBDTGetIconInfoSync 400
PBDTGetIconSync 401
PBDTGetInfoAsync 402
PBDTGetInfoSync 404
PBDTGetPath 404
PBDTOpenInform 405
PBDTRemoveAPPLAsync 406
PBDTRemoveAPPLSync 407
PBDTRemoveCommentAsync 408
PBDTRemoveCommentSync 409
PBDTResetAsync 410
PBDTResetSync 411
PBDTSetCommentAsync 412
PBDTSetCommentSync 413
PBExchangeFilesAsync 414
PBExchangeFilesSync 416
PBFlushFileAsync 417
PBFlushFileSync 418
PBGetCatInfoAsync 419
PBGetCatInfoSync 423
PBGetEOFAsync 426
PBGetEOFSync 426
PBGetFCBInfoAsync 427
PBGetFCBInfoSync 429
PBGetForeignPrivsAsync 430
PBGetForeignPrivsSync 431
PBGetFPosAsync 431
PBGetFPosSync 432
PBGetUGEntryAsync 433
PBGetUGEntrySync 433
PBGetXCatInfoAsync 434
PBGetXCatInfoSync 434
PBHCreateAsync 434
PBHCreateSync 436
PBHDeleteAsync 437
PBHDeleteSync 438
PBHGetFInfoAsync 438
PBHGetFInfoSync 440
PBHGetLogInInfoAsync 442
PBHGetLogInInfoSync 443
PBHGetVInfoAsync 443
PBHGetVInfoSync 446
PBHGetVolAsync 449
PBHGetVolSync 450

12
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

PBHMoveRenameAsync 451
PBHMoveRenameSync 452
PBHOpenAsync 453
PBHOpenDFAsync 454
PBHOpenDFSync 456
PBHOpenRFAsync 457
PBHOpenRFSync 458
PBHOpenSync 459
PBHRenameAsync 461
PBHRenameSync 462
PBHRstFLockAsync 463
PBHRstFLockSync 464
PBHSetFInfoAsync 465
PBHSetFInfoSync 466
PBHSetFLockAsync 466
PBHSetFLockSync 467
PBHSetVolAsync 468
PBHSetVolSync 469
PBLockRangeAsync 470
PBLockRangeSync 472
PBMakeFSSpecAsync 473
PBMakeFSSpecSync 474
PBSetCatInfoAsync 476
PBSetCatInfoSync 477
PBSetEOFAsync 479
PBSetEOFSync 480
PBSetForeignPrivsAsync 481
PBSetForeignPrivsSync 481
PBSetFPosAsync 481
PBSetFPosSync 482
PBSetVInfoAsync 483
PBSetVInfoSync 484
PBShareAsync 485
PBShareSync 486
PBUnlockRangeAsync 486
PBUnlockRangeSync 487
PBUnmountVol 488
PBUnshareAsync 489
PBUnshareSync 490
PBXGetVolInfoAsync 490
PBXGetVolInfoSync 493
SetEOF 495
SetFPos 496
UnmountVol 497

Deprecated in Mac OS X v10.5 498
FlushVol 498

13
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

FSpMakeFSRef 498
PBCloseAsync 499
PBCloseSync 500
PBCreateFileIDRefAsync 501
PBCreateFileIDRefSync 502
PBDeleteFileIDRefAsync 502
PBDeleteFileIDRefSync 503
PBFlushVolAsync 504
PBFlushVolSync 505
PBGetVolMountInfo 506
PBGetVolMountInfoSize 507
PBHCopyFileAsync 508
PBHCopyFileSync 509
PBHGetDirAccessAsync 511
PBHGetDirAccessSync 512
PBHGetVolParmsAsync 512
PBHGetVolParmsSync 514
PBHMapIDAsync 514
PBHMapIDSync 516
PBHMapNameAsync 516
PBHMapNameSync 518
PBHOpenDenyAsync 519
PBHOpenDenySync 520
PBHOpenRFDenyAsync 521
PBHOpenRFDenySync 522
PBHSetDirAccessAsync 523
PBHSetDirAccessSync 525
PBMakeFSRefAsync 526
PBMakeFSRefSync 526
PBReadAsync 527
PBReadSync 529
PBResolveFileIDRefAsync 530
PBResolveFileIDRefSync 531
PBVolumeMount 532
PBWaitIOComplete 533
PBWriteAsync 533
PBWriteSync 534

Document Revision History 537

Index 539

14
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: CoreServices/CoreServices.h

Declared in Files.h
HFSVolumes.h

Overview

The File Manager is a core service in Mac OS X that manages the organization, reading, and writing of data
located on physical data storage devices such as disk drives. The File Manager provides an abstraction layer
that hides lower-level implementation details such as different file systems and volume formats. If you want
your application to have the same view of the file system seen in the Mac OS X user interface, the File Manager
is an appropriate tool. For example, the File Manager is often used in application frameworks such as Carbon
and Cocoa to implement file-related operations.

The File Manager API provides a large number of functions for performing various operations on files,
directories, and volumes. The requirements of your application will dictate which of these functions you need
to use. Many applications simply need to open files, read and write the data in those files, and then close the
files. Other applications might provide more capabilities, such as the ability to copy or move a file to another
directory. A few programs, such as the Mac OS X Finder, perform more extensive file operations and hence
need to use some of the advanced functions provided by the File Manager.

A number of deprecated functions in the File Manager were inherited from earlier versions of Mac OS and
have been carried along to facilitate porting legacy applications to Mac OS X. You should avoid using these
deprecated functions. In particular, you should avoid any function or data structure that uses the FSSpec
data type. This reference document clearly marks every deprecated function and, in most cases, provides a
recommended replacement.

Functions by Task

Accessing Information About Files and Directories

FSGetCatalogInfo (page 66)
Returns catalog information about a file or directory. You can use this function to map an FSRef to
an FSSpec.

PBGetCatalogInfoSync (page 137)
Returns catalog information about a file or directory. You can use this function to map from an FSRef
to an FSSpec.

Overview 15
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBGetCatalogInfoAsync (page 133)
Returns catalog information about a file or directory. You can use this function to map from an FSRef
to an FSSpec.

FSSetCatalogInfo (page 98)
Sets catalog information about a file or directory.

PBSetCatalogInfoSync (page 161)
Sets the catalog information about a file or directory.

PBSetCatalogInfoAsync (page 159)
Sets the catalog information about a file or directory.

FSpGetFInfo (page 351) Deprecated in Mac OS X v10.4
Obtains the Finder information for a file. (Deprecated. Use FSGetCatalogInfo (page 66) instead.)

FSpSetFInfo (page 355) Deprecated in Mac OS X v10.4
Sets the Finder information about a file. (Deprecated. Use FSSetCatalogInfo (page 98) instead.)

HGetFInfo (page 362) Deprecated in Mac OS X v10.4
Obtains the Finder information for a file. (Deprecated. Use FSGetCatalogInfo (page 66) instead.)

HSetFInfo (page 368) Deprecated in Mac OS X v10.4
Sets the Finder information for a file. (Deprecated. Use FSSetCatalogInfo (page 98) instead.)

PBGetCatInfoAsync (page 419) Deprecated in Mac OS X v10.4
Returns catalog information about a file or directory. (Deprecated. Use
PBGetCatalogInfoAsync (page 133) instead.)

PBGetCatInfoSync (page 423) Deprecated in Mac OS X v10.4
Returns catalog information about a file or directory. (Deprecated. Use PBGetCatalogInfoSync (page
137) instead.)

PBHGetFInfoAsync (page 438) Deprecated in Mac OS X v10.4
Obtains information about a file. (Deprecated. Use PBGetCatalogInfoAsync (page 133) instead.)

PBHGetFInfoSync (page 440) Deprecated in Mac OS X v10.4
Obtains information about a file. (Deprecated. Use PBGetCatalogInfoSync (page 137) instead.)

PBHSetFInfoAsync (page 465) Deprecated in Mac OS X v10.4
Sets information for a file. (Deprecated. Use PBSetCatalogInfoAsync (page 159) instead.)

PBHSetFInfoSync (page 466) Deprecated in Mac OS X v10.4
Sets information for a file. (Deprecated. Use PBSetCatalogInfoSync (page 161) instead.)

PBSetCatInfoAsync (page 476) Deprecated in Mac OS X v10.4
Modifies catalog information for a file or directory. (Deprecated. Use PBSetCatalogInfoAsync (page
159) instead.)

PBSetCatInfoSync (page 477) Deprecated in Mac OS X v10.4
Modifies catalog information for a file or directory. (Deprecated. Use PBSetCatalogInfoSync (page
161) instead.)

Accessing the Desktop Database

PBDTAddAPPLAsync (page 384) Deprecated in Mac OS X v10.4
Adds an application to the desktop database. (Deprecated. There is no replacement function.)

PBDTAddAPPLSync (page 385) Deprecated in Mac OS X v10.4
Adds an application to the desktop database. (Deprecated. There is no replacement function.)

16 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBDTAddIconAsync (page 386) Deprecated in Mac OS X v10.4
Adds an icon definition to the desktop database. (Deprecated. There is no replacement function.)

PBDTAddIconSync (page 387) Deprecated in Mac OS X v10.4
Adds an icon definition to the desktop database. (Deprecated. There is no replacement function.)

PBDTCloseDown (page 389) Deprecated in Mac OS X v10.4
Closes the desktop database, though your application should never do this itself. (Deprecated. There
is no replacement function.)

PBDTDeleteAsync (page 389) Deprecated in Mac OS X v10.4
Removes the desktop database. Unless you are manipulating the desktop database in the absence
of the Finder, you should never use this function. (Deprecated. There is no replacement function.)

PBDTDeleteSync (page 390) Deprecated in Mac OS X v10.4
Removes the desktop database. Unless you are manipulating the desktop database in the absence
of the Finder, you should never use this function. (Deprecated. There is no replacement function.)

PBDTFlushAsync (page 391) Deprecated in Mac OS X v10.4
Saves your changes to the desktop database. (Deprecated. There is no replacement function.)

PBDTFlushSync (page 392) Deprecated in Mac OS X v10.4
Saves your changes to the desktop database. (Deprecated. There is no replacement function.)

PBDTGetAPPLAsync (page 394) Deprecated in Mac OS X v10.4
Identifies the application that can open a file with a given creator. (Deprecated. There is no replacement
function.)

PBDTGetAPPLSync (page 395) Deprecated in Mac OS X v10.4
Identifies the application that can open a file with a given creator. (Deprecated. There is no replacement
function.)

PBDTGetCommentAsync (page 396) Deprecated in Mac OS X v10.4
Retrieves the user comments for a file or directory. (Deprecated. There is no replacement function.)

PBDTGetCommentSync (page 397) Deprecated in Mac OS X v10.4
Retrieves the user comments for a file or directory. (Deprecated. There is no replacement function.)

PBDTGetIconAsync (page 398) Deprecated in Mac OS X v10.4
Retrieves an icon definition. (Deprecated. There is no replacement function.)

PBDTGetIconInfoAsync (page 399) Deprecated in Mac OS X v10.4
Retrieves an icon type and the associated file type supported by a given creator in the desktop
database. (Deprecated. There is no replacement function.)

PBDTGetIconInfoSync (page 400) Deprecated in Mac OS X v10.4
Retrieves an icon type and the associated file type supported by a given creator in the desktop
database. (Deprecated. There is no replacement function.)

PBDTGetIconSync (page 401) Deprecated in Mac OS X v10.4
Retrieves an icon definition. (Deprecated. There is no replacement function.)

PBDTGetInfoAsync (page 402) Deprecated in Mac OS X v10.4
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated. There is no replacement function.)

PBDTGetInfoSync (page 404) Deprecated in Mac OS X v10.4
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated. There is no replacement function.)

PBDTGetPath (page 404) Deprecated in Mac OS X v10.4
Gets the reference number of the specified desktop database. (Deprecated. There is no replacement
function.)

Functions by Task 17
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBDTOpenInform (page 405) Deprecated in Mac OS X v10.4
Gets the reference number of the specified desktop database, reporting whether the desktop database
was empty when it was opened. (Deprecated. There is no replacement function.)

PBDTRemoveAPPLAsync (page 406) Deprecated in Mac OS X v10.4
Removes an application from the desktop database. (Deprecated. There is no replacement function.)

PBDTRemoveAPPLSync (page 407) Deprecated in Mac OS X v10.4
Removes an application from the desktop database. (Deprecated. There is no replacement function.)

PBDTRemoveCommentAsync (page 408) Deprecated in Mac OS X v10.4
Removes a user comment associated with a file or directory from the desktop database. (Deprecated.
There is no replacement function.)

PBDTRemoveCommentSync (page 409) Deprecated in Mac OS X v10.4
Removes a user comment associated with a file or directory from the desktop database. (Deprecated.
There is no replacement function.)

PBDTResetAsync (page 410) Deprecated in Mac OS X v10.4
Removes information from the desktop database. Unless you are manipulating the desktop database
in the absence of the Finder, you should never use this function. (Deprecated. There is no replacement
function.)

PBDTResetSync (page 411) Deprecated in Mac OS X v10.4
Removes information from the desktop database. Unless you are manipulating the desktop database
in the absence of the Finder, you should never use this function. (Deprecated. There is no replacement
function.)

PBDTSetCommentAsync (page 412) Deprecated in Mac OS X v10.4
Adds a user comment for a file or a directory to the desktop database. (Deprecated. There is no
replacement function.)

PBDTSetCommentSync (page 413) Deprecated in Mac OS X v10.4
Adds a user comment for a file or a directory to the desktop database. (Deprecated. There is no
replacement function.)

Allocating Storage for Files

FSAllocateFork (page 43)
Allocates space on a volume to an open fork.

PBAllocateForkSync (page 110)
Allocates space on a volume to an open fork.

PBAllocateForkAsync (page 109)
Allocates space on a volume to an open fork.

Allocate (page 339) Deprecated in Mac OS X v10.4
Allocates additional space on a volume to an open file. (Deprecated. Use FSAllocateFork (page
43) instead.)

AllocContig (page 340) Deprecated in Mac OS X v10.4
Allocates additional contiguous space on a volume to an open file. (Deprecated. Use
FSAllocateFork (page 43) instead.)

PBAllocateAsync (page 370) Deprecated in Mac OS X v10.4
Allocates additional space on a volume to an open file. (Deprecated. Use PBAllocateForkAsync (page
109) instead.)

18 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBAllocateSync (page 372) Deprecated in Mac OS X v10.4
Allocates additional space on a volume to an open file. (Deprecated. Use PBAllocateForkSync (page
110) instead.)

PBAllocContigAsync (page 373) Deprecated in Mac OS X v10.4
Allocates additional contiguous space on a volume to an open file. (Deprecated. Use
PBAllocateForkAsync (page 109) instead.)

PBAllocContigSync (page 374) Deprecated in Mac OS X v10.4
Allocates additional contiguous space on a volume to an open file. (Deprecated. Use
PBAllocateForkSync (page 110) instead.)

Closing Files

FSCloseFork (page 47)
Closes an open fork.

PBCloseForkSync (page 115)
Closes an open fork.

PBCloseForkAsync (page 115)
Closes an open fork.

PBCloseAsync (page 499) Deprecated in Mac OS X v10.5
Closes an open file. (Deprecated. Use PBCloseForkAsync (page 115) instead.)

PBCloseSync (page 500) Deprecated in Mac OS X v10.5
Closes an open file. (Deprecated. Use PBCloseForkSync (page 115) instead.)

FSClose (page 343) Deprecated in Mac OS X v10.4
Closes an open file. (Deprecated. Use FSCloseFork (page 47) instead.)

Comparing File System References

FSCompareFSRefs (page 48)
Determines whether two FSRef structures refer to the same file or directory.

PBCompareFSRefsSync (page 118)
Determines whether two FSRef structures refer to the same file or directory.

PBCompareFSRefsAsync (page 117)
Determines whether two FSRef structures refer to the same file or directory.

Controlling Directory Access

PBHGetDirAccessAsync (page 511) Deprecated in Mac OS X v10.5
Returns the access control information for a directory or file. (Deprecated. Use
FSGetCatalogInfo (page 66) instead.)

PBHGetDirAccessSync (page 512) Deprecated in Mac OS X v10.5
Returns the access control information for a directory or file. (Deprecated. Use
FSGetCatalogInfo (page 66) instead.)

Functions by Task 19
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBHSetDirAccessAsync (page 523) Deprecated in Mac OS X v10.5
Changes the access control information for a directory. (Deprecated. Use FSSetCatalogInfo (page
98) instead.)

PBHSetDirAccessSync (page 525) Deprecated in Mac OS X v10.5
Changes the access control information for a directory. (Deprecated. Use FSSetCatalogInfo (page
98) instead.)

Controlling Login Access

PBHMapIDAsync (page 514) Deprecated in Mac OS X v10.5
Determines the name of a user or group given the user or group ID. (Deprecated. There is no
replacement function.)

PBHMapIDSync (page 516) Deprecated in Mac OS X v10.5
Determines the name of a user or group given the user or group ID. (Deprecated. There is no
replacement function.)

PBHMapNameAsync (page 516) Deprecated in Mac OS X v10.5
Determines the user ID or group ID from a user or group name. (Deprecated. There is no replacement
function.)

PBHMapNameSync (page 518) Deprecated in Mac OS X v10.5
Determines the user ID or group ID from a user or group name. (Deprecated. There is no replacement
function.)

PBHGetLogInInfoAsync (page 442) Deprecated in Mac OS X v10.4
Determines the login method used to log on to a particular shared volume. (Deprecated. There is no
replacement function.)

Converting Between Paths and FSRef Structures

FSRefMakePath (page 97)
Converts an FSRef structure into a POSIX-style pathname.

FSPathMakeRef (page 90)
Converts a POSIX-style pathname into an FSRef structure.

FSPathMakeRefWithOptions (page 91)
Converts a POSIX-style pathname into an FSRef structure with options.

Copying and Moving Files

PBFSCopyFileSync (page 133)
Duplicates a file and optionally renames it.

PBFSCopyFileAsync (page 132)
Duplicates a file and optionally renames it.

PBHCopyFileAsync (page 508) Deprecated in Mac OS X v10.5
Duplicates a file and optionally renames it. (Deprecated. Use PBFSCopyFileAsync (page 132) instead.)

PBHCopyFileSync (page 509) Deprecated in Mac OS X v10.5
Duplicates a file and optionally renames it. (Deprecated. Use PBFSCopyFileSync (page 133) instead.)

20 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBHMoveRenameAsync (page 451) Deprecated in Mac OS X v10.4
Moves a file or directory and optionally renames it. (Deprecated. Use FSMoveObjectAsync (page
82) instead.)

PBHMoveRenameSync (page 452) Deprecated in Mac OS X v10.4
Moves a file or directory and optionally renames it. (Deprecated. Use FSMoveObjectSync (page 83)
instead.)

Copying and Moving Objects Using Asynchronous High-Level File
Operations

FSFileOperationCreate (page 61)
Creates an object that represents an asynchronous file operation.

FSFileOperationCancel (page 60)
Cancels an asynchronous file operation.

FSFileOperationGetTypeID (page 62)
Returns the Core Foundation type identifier for the FSFileOperation opaque type.

FSFileOperationScheduleWithRunLoop (page 62)
Schedules an asynchronous file operation with the specified run loop and mode.

FSFileOperationUnscheduleFromRunLoop (page 62)
Unschedules an asynchronous file operation from the specified run loop and mode.

FSCopyObjectAsync (page 49)
Starts an asynchronous file operation to copy a source object to a destination directory.

FSMoveObjectAsync (page 82)
Starts an asynchronous file operation to move a source object to a destination directory.

FSMoveObjectToTrashAsync (page 84)
Starts an asynchronous file operation to move a source object to the Trash.

FSPathCopyObjectAsync (page 88)
Starts an asynchronous file operation to copy a source object to a destination directory using
pathnames.

FSPathMoveObjectAsync (page 92)
Starts an asynchronous file operation to move a source object to a destination directory using
pathnames.

FSPathMoveObjectToTrashAsync (page 94)
Starts an asynchronous file operation to move a source object, specified using a pathname, to the
Trash.

FSFileOperationCopyStatus (page 60)
Gets a copy of the current status information for an asynchronous file operation.

FSPathFileOperationCopyStatus (page 89)
Gets a copy of the current status information for an asynchronous file operation that uses pathnames.

Copying and Moving Objects Using Synchronous High-Level File Operations

FSCopyObjectSync (page 50)
Copies a source object to a destination directory.

Functions by Task 21
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSMoveObjectSync (page 83)
Moves a source object to a destination directory.

FSMoveObjectToTrashSync (page 85)
Moves a source object to the Trash.

FSPathCopyObjectSync (page 89)
Copies a source object to a destination directory using pathnames.

FSPathMoveObjectSync (page 93)
Moves a source object to a destination directory using pathnames.

FSPathMoveObjectToTrashSync (page 95)
Moves a source object, specified using a pathname, to the Trash.

Creating a File System Reference (FSRef)

FSMakeFSRefUnicode (page 76)
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

PBMakeFSRefUnicodeSync (page 149)
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

PBMakeFSRefUnicodeAsync (page 148)
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

FSpMakeFSRef (page 498) Deprecated in Mac OS X v10.5
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated. There is no replacement
function.)

PBMakeFSRefAsync (page 526) Deprecated in Mac OS X v10.5
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated. Use
PBMakeFSRefUnicodeAsync (page 148) instead.)

PBMakeFSRefSync (page 526) Deprecated in Mac OS X v10.5
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated. Use
PBMakeFSRefUnicodeSync (page 149) instead.)

Creating and Deleting File ID References

PBCreateFileIDRefAsync (page 501) Deprecated in Mac OS X v10.5
Establishes a file ID reference for a file. (Deprecated. Use FSGetCatalogInfo (page 66) instead.)

PBCreateFileIDRefSync (page 502) Deprecated in Mac OS X v10.5
Establishes a file ID reference for a file. (Deprecated. Use FSGetCatalogInfo (page 66) instead.)

PBDeleteFileIDRefAsync (page 502) Deprecated in Mac OS X v10.5
Deletes a file ID reference. (Deprecated. There is no replacement function.)

PBDeleteFileIDRefSync (page 503) Deprecated in Mac OS X v10.5
Deletes a file ID reference. (Deprecated. There is no replacement function.)

22 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Creating and Deleting Named Forks

FSCreateFork (page 55)
Creates a named fork for a file or directory.

PBCreateForkSync (page 125)
Creates a named fork for a file or directory.

PBCreateForkAsync (page 124)
Creates a named fork for a file or directory.

FSDeleteFork (page 56)
Deletes a named fork from a file or directory.

PBDeleteForkSync (page 126)
Deletes a named fork from a file or directory.

PBDeleteForkAsync (page 126)
Deletes a named fork of a file or directory.

Creating Directories

FSCreateDirectoryUnicode (page 52)
Creates a new directory (folder) with a Unicode name.

PBCreateDirectoryUnicodeSync (page 120)
Creates a new directory (folder) with a Unicode name.

PBCreateDirectoryUnicodeAsync (page 119)
Creates a new directory (folder) with a Unicode name.

DirCreate (page 343) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use FSCreateDirectoryUnicode (page 52) instead.)

FSpDirCreate (page 348) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use FSCreateDirectoryUnicode (page 52) instead.)

PBDirCreateAsync (page 382) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use PBCreateDirectoryUnicodeAsync (page 119) instead.)

PBDirCreateSync (page 383) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use PBCreateDirectoryUnicodeSync (page 120) instead.)

Creating File System Specifications

FSMakeFSSpec (page 344) Deprecated in Mac OS X v10.4
Creates an FSSpec structure describing a file or directory. (Deprecated. Use
FSMakeFSRefUnicode (page 76) instead.)

PBMakeFSSpecAsync (page 473) Deprecated in Mac OS X v10.4
Creates an FSSpec structure for a file or directory. (Deprecated. Use
PBMakeFSRefUnicodeAsync (page 148) instead.)

PBMakeFSSpecSync (page 474) Deprecated in Mac OS X v10.4
Creates an FSSpec structure for a file or directory. (Deprecated. Use PBMakeFSRefUnicodeSync (page
149) instead.)

Functions by Task 23
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Creating Files

FSCreateFileUnicode (page 53)
Creates a new file with a Unicode name.

PBCreateFileUnicodeSync (page 123)
Creates a new file with a Unicode name.

PBCreateFileUnicodeAsync (page 121)
Creates a new file with a Unicode name.

FSpCreate (page 346) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use FSCreateFileUnicode (page 53) instead.)

HCreate (page 360) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use FSCreateFileUnicode (page 53) instead.)

PBHCreateAsync (page 434) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use PBCreateFileUnicodeAsync (page 121) instead.)

PBHCreateSync (page 436) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use PBCreateFileUnicodeSync (page 123) instead.)

Creating, Calling, and Deleting Universal Procedure Pointers

NewIOCompletionUPP (page 109)
Creates a new universal procedure pointer (UPP) to your I/O completion callback function.

NewFNSubscriptionUPP (page 107)
Creates a new universal procedure pointer (UPP) to your directory change callback function.

NewFSVolumeEjectUPP (page 108)
Creates a new universal procedure pointer (UPP) to your volume ejection callback function.

NewFSVolumeMountUPP (page 108)
Creates a new universal procedure pointer (UPP) to your volume mount callback function.

NewFSVolumeUnmountUPP (page 108)
Creates a new universal procedure pointer (UPP) to your volume unmount callback function.

InvokeIOCompletionUPP (page 107)
Calls your I/O completion callback function.

InvokeFNSubscriptionUPP (page 105)
Calls your directory change callback function.

InvokeFSVolumeEjectUPP (page 105)
Calls your volume ejection callback function.

InvokeFSVolumeMountUPP (page 106)
Calls your volume mount callback function.

InvokeFSVolumeUnmountUPP (page 106)
Calls your volume unmount callback function.

DisposeIOCompletionUPP (page 39)
Deletes a universal procedure pointer (UPP) to your I/O completion callback function.

DisposeFNSubscriptionUPP (page 37)
Deletes a universal procedure pointer (UPP) to your directory change callback function.

24 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DisposeFSVolumeEjectUPP (page 38)
Deletes a universal procedure pointer (UPP) to your volume ejection callback function.

DisposeFSVolumeMountUPP (page 38)
Deletes a universal procedure pointer (UPP) to your volume mount callback function.

DisposeFSVolumeUnmountUPP (page 38)
Deletes a universal procedure pointer (UPP) to your volume unmount callback function.

Deleting Files and Directories

FSDeleteObject (page 56)
Deletes a file or an empty directory.

PBDeleteObjectSync (page 128)
Deletes a file or an empty directory.

PBDeleteObjectAsync (page 127)
Deletes a file or an empty directory.

FSpDelete (page 348) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use FSDeleteObject (page 56) instead.)

HDelete (page 361) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use FSDeleteObject (page 56) instead.)

PBHDeleteAsync (page 437) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use PBDeleteObjectAsync (page 127) instead.)

PBHDeleteSync (page 438) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use PBDeleteObjectSync (page 128) instead.)

Determining the Unicode Names of the Data and Resource Forks

FSGetDataForkName (page 69)
Returns a Unicode string constant for the name of the data fork.

FSGetResourceForkName (page 72)
Returns a Unicode string constant for the name of the resource fork.

Exchanging the Contents of Two Files

FSExchangeObjects (page 59)
Swaps the contents of two files.

PBExchangeObjectsSync (page 129)
Swaps the contents of two files.

PBExchangeObjectsAsync (page 128)
Swaps the contents of two files.

FSpExchangeFiles (page 349) Deprecated in Mac OS X v10.4
Exchanges the data stored in two files on the same volume. (Deprecated. Use
FSExchangeObjects (page 59) instead.)

Functions by Task 25
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBExchangeFilesAsync (page 414) Deprecated in Mac OS X v10.4
Exchanges the data stored in two files on the same volume. (Deprecated. Use
PBExchangeObjectsAsync (page 128) instead.)

PBExchangeFilesSync (page 416) Deprecated in Mac OS X v10.4
Exchanges the data stored in two files on the same volume. (Deprecated. Use
PBExchangeObjectsSync (page 129) instead.)

Getting and Setting Volume Information

FSGetVolumeInfo (page 73)
Returns information about a volume.

PBGetVolumeInfoSync (page 145)
Returns information about a volume.

PBGetVolumeInfoAsync (page 143)
Returns information about a volume.

FSSetVolumeInfo (page 101)
Sets information about a volume.

PBSetVolumeInfoSync (page 166)
Sets information about a volume.

PBSetVolumeInfoAsync (page 165)
Sets information about a volume.

FSCopyDiskIDForVolume (page 49)
Returns a copy of the disk ID for a volume.

FSCopyURLForVolume (page 51)
Returns a copy of the URL for a volume.

GetVRefNum (page 359) Deprecated in Mac OS X v10.4
Gets a volume reference number from a file reference number. (Deprecated. Use
FSGetCatalogInfo (page 66) instead.)

PBHGetVInfoAsync (page 443) Deprecated in Mac OS X v10.4
Gets detailed information about a volume. (Deprecated. Use PBGetVolumeInfoAsync (page 143)
instead.)

PBHGetVInfoSync (page 446) Deprecated in Mac OS X v10.4
Gets detailed information about a volume. (Deprecated. Use PBGetVolumeInfoSync (page 145)
instead.)

PBSetVInfoAsync (page 483) Deprecated in Mac OS X v10.4
Changes information about a volume. (Deprecated. Use PBSetVolumeInfoAsync (page 165) instead.)

PBSetVInfoSync (page 484) Deprecated in Mac OS X v10.4
Changes information about a volume. (Deprecated. Use PBSetVolumeInfoSync (page 166) instead.)

PBXGetVolInfoAsync (page 490) Deprecated in Mac OS X v10.4
Returns information about a volume, including size information for volumes up to 2 terabytes.
(Deprecated. Use FSGetVolumeInfo (page 73) instead.)

PBXGetVolInfoSync (page 493) Deprecated in Mac OS X v10.4
Returns information about a volume, including size information for volumes up to 2 terabytes.
(Deprecated. Use FSGetVolumeInfo (page 73) instead.)

26 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Getting Volume Attributes

FSGetVolumeParms (page 75)
Retrieves information about the characteristics of a volume.

PBHGetVolParmsAsync (page 512) Deprecated in Mac OS X v10.5
Returns information about the characteristics of a volume. (Deprecated. Use FSGetVolumeParms (page
75) instead.)

PBHGetVolParmsSync (page 514) Deprecated in Mac OS X v10.5
Returns information about the characteristics of a volume. (Deprecated. Use FSGetVolumeParms (page
75) instead.)

Iterating Over Named Forks

FSIterateForks (page 75)
Determines the name and size of every named fork belonging to a file or directory.

PBIterateForksSync (page 147)
Determines the name and size of every named fork belonging to a file or directory.

PBIterateForksAsync (page 146)
Determines the name and size of every named fork belonging to a file or directory.

Locking and Unlocking File Ranges

FSLockRange (page 76)
Locks a range of bytes of the specified fork.

PBXLockRangeSync (page 170)
Locks a range of bytes of the specified fork.

PBXLockRangeAsync (page 169)
Locks a range of bytes of the specified fork.

FSUnlockRange (page 102)
Unlocks a range of bytes of the specified fork.

PBXUnlockRangeSync (page 170)
Unlocks a range of bytes of the specified fork.

PBXUnlockRangeAsync (page 170)
Unlocks a range of bytes of the specified fork.

PBLockRangeAsync (page 470) Deprecated in Mac OS X v10.4
Locks a portion of a file. (Deprecated. Use PBXLockRangeAsync (page 169) instead.)

PBLockRangeSync (page 472) Deprecated in Mac OS X v10.4
Locks a portion of a file. (Deprecated. Use PBXLockRangeSync (page 170) or FSLockRange (page
76) instead.)

PBUnlockRangeAsync (page 486) Deprecated in Mac OS X v10.4
Unlocks a portion of a file. (Deprecated. Use PBXUnlockRangeAsync (page 170) instead.)

PBUnlockRangeSync (page 487) Deprecated in Mac OS X v10.4
Unlocks a portion of a file. (Deprecated. Use PBXUnlockRangeSync (page 170) or
FSUnlockRange (page 102) instead.)

Functions by Task 27
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Locking and Unlocking Files and Directories

FSpRstFLock (page 354) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 98) instead.)

FSpSetFLock (page 355) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 98) instead.)

HRstFLock (page 367) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 98) instead.)

HSetFLock (page 368) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 98) instead.)

PBHRstFLockAsync (page 463) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use PBSetCatalogInfoAsync (page 159) instead.)

PBHRstFLockSync (page 464) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use PBSetCatalogInfoSync (page 161) instead.)

PBHSetFLockAsync (page 466) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use PBSetCatalogInfoAsync (page 159) instead.)

PBHSetFLockSync (page 467) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use PBSetCatalogInfoSync (page 161) instead.)

Manipulating File and Fork Size

FSGetForkSize (page 72)
Returns the size of an open fork.

PBGetForkSizeSync (page 143)
Returns the size of an open fork.

PBGetForkSizeAsync (page 142)
Returns the size of an open fork.

FSSetForkSize (page 100)
Changes the size of an open fork.

PBSetForkSizeSync (page 164)
Changes the size of an open fork.

PBSetForkSizeAsync (page 163)
Changes the size of an open fork.

GetEOF (page 358) Deprecated in Mac OS X v10.4
Determines the current logical size of an open file. (Deprecated. Use FSGetForkSize (page 72)
instead.)

PBGetEOFAsync (page 426) Deprecated in Mac OS X v10.4
Determines the current logical size of an open file. (Deprecated. Use PBGetForkSizeAsync (page
142) instead.)

PBGetEOFSync (page 426) Deprecated in Mac OS X v10.4
Determines the current logical size of an open file. (Deprecated. Use PBGetForkSizeSync (page 143)
instead.)

PBSetEOFAsync (page 479) Deprecated in Mac OS X v10.4
Sets the logical size of an open file. (Deprecated. Use PBSetForkSizeAsync (page 163) instead.)

28 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBSetEOFSync (page 480) Deprecated in Mac OS X v10.4
Sets the logical size of an open file. (Deprecated. Use PBSetForkSizeSync (page 164) instead.)

SetEOF (page 495) Deprecated in Mac OS X v10.4
Sets the logical size of an open file. (Deprecated. Use FSSetForkSize (page 100) instead.)

Manipulating File Position

FSGetForkPosition (page 71)
Returns the current position of an open fork.

PBGetForkPositionSync (page 141)
Returns the current position of an open fork.

PBGetForkPositionAsync (page 140)
Returns the current position of an open fork.

FSSetForkPosition (page 99)
Sets the current position of an open fork.

PBSetForkPositionSync (page 162)
Sets the current position of an open fork.

PBSetForkPositionAsync (page 162)
Sets the current position of an open fork.

GetFPos (page 359) Deprecated in Mac OS X v10.4
Returns the current position of the file mark. (Deprecated. Use FSGetForkPosition (page 71)
instead.)

PBGetFPosAsync (page 431) Deprecated in Mac OS X v10.4
Returns the current position of the file mark. (Deprecated. Use PBGetForkPositionAsync (page
140) instead.)

PBGetFPosSync (page 432) Deprecated in Mac OS X v10.4
Returns the current position of the file mark. (Deprecated. Use PBGetForkPositionSync (page 141)
instead.)

PBSetFPosAsync (page 481) Deprecated in Mac OS X v10.4
Sets the position of the file mark. (Deprecated. Use PBSetForkPositionAsync (page 162) instead.)

PBSetFPosSync (page 482) Deprecated in Mac OS X v10.4
Sets the position of the file mark. (Deprecated. Use PBSetForkPositionSync (page 162) instead.)

SetFPos (page 496) Deprecated in Mac OS X v10.4
Sets the position of the file mark. (Deprecated. Use FSSetForkPosition (page 99) instead.)

Manipulating the Default Volume

HGetVol (page 362) Deprecated in Mac OS X v10.4
Determines the current default volume and default directory. (Deprecated. There is no replacement
function.)

HSetVol (page 369) Deprecated in Mac OS X v10.4
Sets the default volume and the default directory. (Deprecated. There is no replacement function.)

PBHGetVolAsync (page 449) Deprecated in Mac OS X v10.4
Determines the default volume and default directory. (Deprecated. There is no replacement function.)

Functions by Task 29
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBHGetVolSync (page 450) Deprecated in Mac OS X v10.4
Determines the default volume and default directory. (Deprecated. There is no replacement function.)

PBHSetVolAsync (page 468) Deprecated in Mac OS X v10.4
Sets the default volume and the default directory. (Deprecated. There is no replacement function.)

PBHSetVolSync (page 469) Deprecated in Mac OS X v10.4
Sets the default volume and the default directory. (Deprecated. There is no replacement function.)

Mounting and Unmounting Volumes

FSMountLocalVolumeSync (page 78)
Mounts a volume.

FSMountServerVolumeSync (page 80)
Mounts a server volume.

FSUnmountVolumeSync (page 103)
Unmounts a volume.

FSEjectVolumeSync (page 58)
Ejects a volume.

FSCreateVolumeOperation (page 55)
Returns an FSVolumeOperation which can be used for an asynchronous volume operation.

FSCancelVolumeOperation (page 44)
Cancels an outstanding asynchronous volume mounting operation.

FSDisposeVolumeOperation (page 57)
Releases the memory associated with a volume operation.

FSMountLocalVolumeAsync (page 77)
Mounts a volume asynchronously.

FSMountServerVolumeAsync (page 79)
Mounts a server volume asynchronously.

FSUnmountVolumeAsync (page 102)
Unmounts a volume asynchronously.

FSEjectVolumeAsync (page 57)
Asynchronously ejects a volume.

FSGetAsyncMountStatus (page 65)
Returns the current status of an asynchronous mount operation.

FSGetAsyncUnmountStatus (page 65)
Returns the current status of an asynchronous unmount operation.

FSGetAsyncEjectStatus (page 64)
Returns the current status of an asynchronous eject operation.

PBUnmountVol (page 488) Deprecated in Mac OS X v10.4
Unmounts a volume. (Deprecated. Use FSEjectVolumeSync (page 58) or
FSUnmountVolumeSync (page 103) instead.)

UnmountVol (page 497) Deprecated in Mac OS X v10.4
Unmounts a volume that isn’t currently being used. (Deprecated. Use FSUnmountVolumeSync (page
103) instead.)

30 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Mounting Remote Volumes

FSGetVolumeMountInfoSize (page 74)
Determines the size of the mounting information associated with the specified volume.

FSGetVolumeMountInfo (page 74)
Retrieves the mounting information associated with the specified volume.

FSVolumeMount (page 104)
Mounts a volume using the specified mounting information.

PBGetVolMountInfo (page 506) Deprecated in Mac OS X v10.5
Retrieves a record containing all the information needed to mount a volume, except for passwords.
(Deprecated. Use FSVolumeMount (page 104) instead.)

PBGetVolMountInfoSize (page 507) Deprecated in Mac OS X v10.5
Determines how much space to allocate for a volume mounting information structure. (Deprecated.
Use FSVolumeMount (page 104) instead.)

PBVolumeMount (page 532) Deprecated in Mac OS X v10.5
Mounts a volume. (Deprecated. Use FSVolumeMount (page 104) instead.)

Moving and Renaming Files or Directories

FSMoveObject (page 81)
Moves a file or directory into a different directory.

PBMoveObjectSync (page 150)
Moves a file or directory into a different directory.

PBMoveObjectAsync (page 149)
Moves a file or directory into a different directory.

FSRenameUnicode (page 97)
Renames a file or folder.

PBRenameUnicodeSync (page 159)
Renames a file or folder.

PBRenameUnicodeAsync (page 158)
Renames a file or folder.

CatMove (page 341) Deprecated in Mac OS X v10.4
Moves files or directories from one directory to another on the same volume. (Deprecated. Use
FSMoveObject (page 81) instead.)

FSpCatMove (page 345) Deprecated in Mac OS X v10.4
Moves a file or directory from one location to another on the same volume. (Deprecated. Use
FSMoveObject (page 81) instead.)

FSpRename (page 354) Deprecated in Mac OS X v10.4
Renames a file or directory. (Deprecated. Use FSRenameUnicode (page 97) instead.)

HRename (page 366) Deprecated in Mac OS X v10.4
Renames a file, directory, or volume. (Deprecated. Use FSRenameUnicode (page 97) instead.)

PBCatMoveAsync (page 376) Deprecated in Mac OS X v10.4
Moves files or directories from one directory to another on the same volume. (Deprecated. Use
PBMoveObjectAsync (page 149) instead.)

Functions by Task 31
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBCatMoveSync (page 377) Deprecated in Mac OS X v10.4
Moves files or directories from one directory to another on the same volume. (Deprecated. Use
PBMoveObjectSync (page 150) instead.)

PBHRenameAsync (page 461) Deprecated in Mac OS X v10.4
Renames a file, directory, or volume. (Deprecated. Use PBRenameUnicodeAsync (page 158) instead.)

PBHRenameSync (page 462) Deprecated in Mac OS X v10.4
Renames a file, directory, or volume. (Deprecated. Use PBRenameUnicodeSync (page 159) instead.)

Obtaining File and Directory Information Using a Catalog Iterator on HFS
Plus Volumes

FSGetCatalogInfoBulk (page 67)
Returns information about one or more objects from a catalog iterator. This function can return
information about multiple objects in a single call.

PBGetCatalogInfoBulkSync (page 135)
Returns information about one or more objects from a catalog iterator. This function can return
information about multiple objects in a single call.

PBGetCatalogInfoBulkAsync (page 134)
Returns information about one or more objects from a catalog iterator. This function can return
information about multiple objects in a single call.

Obtaining File Control Block Information

PBGetFCBInfoAsync (page 427) Deprecated in Mac OS X v10.4
Gets information about an open file from the file control block. (Deprecated. Use
PBGetForkCBInfoAsync (page 138) instead.)

PBGetFCBInfoSync (page 429) Deprecated in Mac OS X v10.4
Gets information about an open file from the file control block. (Deprecated. Use
PBGetForkCBInfoSync (page 139) instead.)

Obtaining Fork Control Block Information

FSGetForkCBInfo (page 69)
Returns information about a specified open fork, or about all open forks.

PBGetForkCBInfoSync (page 139)
Returns information about a specified open fork, or about all open forks.

PBGetForkCBInfoAsync (page 138)
Returns information about a specified open fork, or about all open forks.

Opening Files

FSOpenFork (page 85)
Opens any fork of a file or directory for streaming access.

32 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBOpenForkSync (page 152)
Opens any fork of a file or directory for streaming access.

PBOpenForkAsync (page 151)
Opens any fork of a file or directory for streaming access.

FSpOpenDF (page 352) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use FSOpenFork (page 85) instead.)

FSpOpenRF (page 352) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use FSOpenFork (page 85) instead.)

HOpen (page 363) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use FSOpenFork (page 85) instead.)

HOpenDF (page 364) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use FSOpenFork (page 85) instead.)

HOpenRF (page 365) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use FSOpenFork (page 85) instead.)

PBHOpenAsync (page 453) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkAsync (page 151) instead.)

PBHOpenDFAsync (page 454) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkAsync (page 151) instead.)

PBHOpenDFSync (page 456) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkSync (page 152) instead.)

PBHOpenRFAsync (page 457) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use PBOpenForkAsync (page 151) instead.)

PBHOpenRFSync (page 458) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use PBOpenForkSync (page 152) instead.)

PBHOpenSync (page 459) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkSync (page 152) instead.)

Opening Files While Denying Access

PBHOpenDenyAsync (page 519) Deprecated in Mac OS X v10.5
Opens a file’s data fork using the access deny modes. (Deprecated. Use PBOpenForkAsync (page
151) with deny modes in the permissions field.)

PBHOpenDenySync (page 520) Deprecated in Mac OS X v10.5
Opens a file’s data fork using the access deny modes. (Deprecated. Use PBOpenForkSync (page 152)
with deny modes in the permissions field.)

PBHOpenRFDenyAsync (page 521) Deprecated in Mac OS X v10.5
Opens a file’s resource fork using the access deny modes. (Deprecated. Use PBOpenForkAsync (page
151) with deny modes in the permissions field.)

PBHOpenRFDenySync (page 522) Deprecated in Mac OS X v10.5
Opens a file’s resource fork using the access deny modes. (Deprecated. Use PBOpenForkSync (page
152) with deny modes in the permissions field.)

Functions by Task 33
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Reading and Writing Files

FSReadFork (page 95)
Reads data from an open fork.

PBReadForkSync (page 156)
Reads data from an open fork.

PBReadForkAsync (page 155)
Reads data from an open fork.

FSWriteFork (page 104)
Writes data to an open fork.

PBWriteForkSync (page 168)
Writes data to an open fork.

PBWriteForkAsync (page 167)
Writes data to an open fork.

PBReadAsync (page 527) Deprecated in Mac OS X v10.5
Reads any number of bytes from an open file. (Deprecated. Use PBReadForkAsync (page 155) instead.)

PBReadSync (page 529) Deprecated in Mac OS X v10.5
Reads any number of bytes from an open file. (Deprecated. Use PBReadForkSync (page 156) instead.)

PBWriteAsync (page 533) Deprecated in Mac OS X v10.5
Writes any number of bytes to an open file. (Deprecated. Use PBWriteForkAsync (page 167) instead.)

PBWriteSync (page 534) Deprecated in Mac OS X v10.5
Writes any number of bytes to an open file. (Deprecated. Use PBWriteForkSync (page 168) instead.)

FSRead (page 356) Deprecated in Mac OS X v10.4
Reads any number of bytes from an open file. (Deprecated. Use FSReadFork (page 95) instead.)

FSWrite (page 357) Deprecated in Mac OS X v10.4
Writes any number of bytes to an open file. (Deprecated. Use FSWriteFork (page 104) instead.)

Resolving File ID References

PBResolveFileIDRefAsync (page 530) Deprecated in Mac OS X v10.5
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated. Use
FSGetCatalogInfo (page 66) instead.)

PBResolveFileIDRefSync (page 531) Deprecated in Mac OS X v10.5
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated. Use
FSGetCatalogInfo (page 66) instead.)

Searching a Volume

PBCatSearchAsync (page 378) Deprecated in Mac OS X v10.4
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated. Use
PBCatalogSearchAsync (page 111) instead.)

PBCatSearchSync (page 380) Deprecated in Mac OS X v10.4
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated. Use
PBCatalogSearchSync (page 113) instead.)

34 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Searching a Volume Using a Catalog Iterator

FSOpenIterator (page 86)
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

PBOpenIteratorSync (page 154)
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

PBOpenIteratorAsync (page 153)
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

FSCatalogSearch (page 45)
Searches for objects traversed by a catalog iterator that match a given set of criteria.

PBCatalogSearchSync (page 113)
Searches for objects traversed by a catalog iterator that match a given set of criteria.

PBCatalogSearchAsync (page 111)
Searches for objects traversed by a catalog iterator that match a given set of criteria.

FSCloseIterator (page 48)
Closes a catalog iterator.

PBCloseIteratorSync (page 117)
Closes a catalog iterator.

PBCloseIteratorAsync (page 116)
Closes a catalog iterator.

Updating Files

FSFlushFork (page 63)
Causes all data written to an open fork to be written to disk.

PBFlushForkSync (page 131)
Causes all data written to an open fork to be written to disk.

PBFlushForkAsync (page 130)
Causes all data written to an open fork to be written to disk.

PBFlushFileAsync (page 417) Deprecated in Mac OS X v10.4
Writes the contents of a file’s access path buffer to the disk. (Deprecated. Use
PBFlushForkAsync (page 130) instead.)

PBFlushFileSync (page 418) Deprecated in Mac OS X v10.4
Writes the contents of a file’s access path buffer to the disk. (Deprecated. Use PBFlushForkSync (page
131) instead.)

Updating Volumes

FSFlushVolume (page 64)
For the specified volume, writes all open and modified files in the current process to permanent
storage.

PBFlushVolumeSync (page 132)
For the specified volume, writes all open and modified files in the current process to permanent
storage.

Functions by Task 35
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBFlushVolumeAsync (page 131)
For the specified volume, writes all open and modified files in the current process to permanent
storage.

FlushVol (page 498) Deprecated in Mac OS X v10.5
Writes the contents of the volume buffer and updates information about the volume. (Deprecated.
Use FSFlushVolume (page 64) instead.)

PBFlushVolAsync (page 504) Deprecated in Mac OS X v10.5
Writes the contents of the volume buffer and updates information about the volume. (Deprecated.
Use PBFlushVolumeAsync (page 131) instead.)

PBFlushVolSync (page 505) Deprecated in Mac OS X v10.5
Writes the contents of the volume buffer and updates information about the volume. (Deprecated.
Use PBFlushVolumeSync (page 132) instead.)

Using Change Notifications

FNNotify (page 40)
Broadcasts notification of changes to the specified directory.

FNNotifyAll (page 40)
Broadcasts notification of changes to the filesystem.

FNNotifyByPath (page 41)
Broadcasts notification of changes to the specified directory.

FNSubscribe (page 41)
Subscribes to change notifications for the specified directory.

FNSubscribeByPath (page 42)
Subscribes to change notifications for the specified directory.

FNUnsubscribe (page 43)
Releases a subscription which is no longer needed.

FNGetDirectoryForSubscription (page 39)
Fetches the directory for which this subscription was originally entered.

Not Recommended
This section lists functions that are not recommended and you should no longer use.

PBWaitIOComplete (page 533) Deprecated in Mac OS X v10.5
Keeps the system idle until either an interrupt occurs or the specified timeout value is reached.
(Deprecated. There is no replacement function.)

PBGetForeignPrivsAsync (page 430) Deprecated in Mac OS X v10.4
Determines the native access-control information for a file or directory stored on a volume managed
by a foreign file system. (Deprecated. There is no replacement function.)

PBGetForeignPrivsSync (page 431) Deprecated in Mac OS X v10.4
Determines the native access-control information for a file or directory stored on a volume managed
by a foreign file system. (Deprecated. There is no replacement function.)

PBGetUGEntryAsync (page 433) Deprecated in Mac OS X v10.4
Gets a user or group entry from the list of User and Group names and IDs on the local file server.
(Deprecated. There is no replacement function.)

36 Functions by Task
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBGetUGEntrySync (page 433) Deprecated in Mac OS X v10.4
Gets a user or group entry from the list of User and Group names and IDs on a local file server.
(Deprecated. There is no replacement function.)

PBGetXCatInfoAsync (page 434) Deprecated in Mac OS X v10.4
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory.
(Deprecated. There is no replacement function.)

PBGetXCatInfoSync (page 434) Deprecated in Mac OS X v10.4
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory.
(Deprecated. There is no replacement function.)

PBHGetLogInInfoSync (page 443) Deprecated in Mac OS X v10.4
Determines the login method used to log on to a particular shared volume. (Deprecated. There is no
replacement function.)

PBSetForeignPrivsAsync (page 481) Deprecated in Mac OS X v10.4
Changes the native access-control information for a file or directory stored on a volume managed by
a foreign file system. (Deprecated. There is no replacement function.)

PBSetForeignPrivsSync (page 481) Deprecated in Mac OS X v10.4
Changes the native access-control information for a file or directory stored on a volume managed by
a foreign file system. (Deprecated. There is no replacement function.)

PBShareAsync (page 485) Deprecated in Mac OS X v10.4
Establishes a local volume or directory as a share point. (Deprecated. There is no replacement function.)

PBShareSync (page 486) Deprecated in Mac OS X v10.4
Establishes a local volume or directory as a share point. (Deprecated. There is no replacement function.)

PBUnshareAsync (page 489) Deprecated in Mac OS X v10.4
Makes a share point unavailable on the network. (Deprecated. There is no replacement function.)

PBUnshareSync (page 490) Deprecated in Mac OS X v10.4
Makes a share point unavailable on the network. (Deprecated. There is no replacement function.)

Functions

DisposeFNSubscriptionUPP
Deletes a universal procedure pointer (UPP) to your directory change callback function.

void DisposeFNSubscriptionUPP (
 FNSubscriptionUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your directory change
callback function.

Availability
Available in Mac OS X v10.1 and later.

Functions 37
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

DisposeFSVolumeEjectUPP
Deletes a universal procedure pointer (UPP) to your volume ejection callback function.

void DisposeFSVolumeEjectUPP (
 FSVolumeEjectUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your volume ejection
callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

DisposeFSVolumeMountUPP
Deletes a universal procedure pointer (UPP) to your volume mount callback function.

void DisposeFSVolumeMountUPP (
 FSVolumeMountUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your volume mount
callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

DisposeFSVolumeUnmountUPP
Deletes a universal procedure pointer (UPP) to your volume unmount callback function.

38 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void DisposeFSVolumeUnmountUPP (
 FSVolumeUnmountUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your volume unmount
callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

DisposeIOCompletionUPP
Deletes a universal procedure pointer (UPP) to your I/O completion callback function.

void DisposeIOCompletionUPP (
 IOCompletionUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your I/O completion
callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FNGetDirectoryForSubscription
Fetches the directory for which this subscription was originally entered.

OSStatus FNGetDirectoryForSubscription (
 FNSubscriptionRef subscription,
 FSRef *ref
);

Parameters
subscription

The subscription previously returned from the functions FNSubscribe or FNSubscribeByPath.

ref
On return, a file system reference to the directory for which this subscription was created.

Functions 39
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
There is no path variant because paths are fragile, and the path may have changed. If the caller does not
care about this subtlety, she can call FSRefMakePath to get a path from the returned reference.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNNotify
Broadcasts notification of changes to the specified directory.

OSStatus FNNotify (
 const FSRef *ref,
 FNMessage message,
 OptionBits flags
);

Parameters
ref

A file system reference describing the directory for which to broadcast the notification.

message
An indication of what happened to the target directory.

flags
Options regarding the delivery of the notification. Specify kNilOptions for the default behavior.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FNNotifyAll
Broadcasts notification of changes to the filesystem.

OSStatus FNNotifyAll (
 FNMessage message,
 OptionBits flags
);

Parameters
message

An indication of what happened.

40 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

flags
Options regarding the delivery of the notification. Specify kNilOptions for the default behavior.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function should only be used by installers or programs which make lots of changes and only send one
broadcast.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FNNotifyByPath
Broadcasts notification of changes to the specified directory.

OSStatus FNNotifyByPath (
 const UInt8 *path,
 FNMessage message,
 OptionBits flags
);

Parameters
path

The path to the directory for which to broadcast the notification.

message
An indication of what happened to the target directory.

flags
Options regarding the delivery of the notification. Specify kNilOptions for the default behavior.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FNSubscribe
Subscribes to change notifications for the specified directory.

Functions 41
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FNSubscribe (
 const FSRef *directoryRef,
 FNSubscriptionUPP callback,
 void *refcon,
 OptionBits flags,
 FNSubscriptionRef *subscription
);

Parameters
directoryRef

A file system reference describing the directory for which the caller wants notifications.

callback
A pointer to the function to call when a notification arrives.

refcon
A pointer to user state carried with the subscription.

flags
Specify kNilOptions, or one of the options described in “Notification Subscription Options” (page
308).

subscription
A subscription token for subsequent query or unsubscription.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNSubscribeByPath
Subscribes to change notifications for the specified directory.

OSStatus FNSubscribeByPath (
 const UInt8 *directoryPath,
 FNSubscriptionUPP callback,
 void *refcon,
 OptionBits flags,
 FNSubscriptionRef *subscription
);

Parameters
directoryPath

A path to the directory for which the caller wants notifications.

callback
The function to call when a notification arrives.

refcon
A pointer to the user state carried with the subscription.

42 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

flags
Specify kNilOptions, or one of the options described in “Notification Subscription Options” (page
308).

subscription
A subscription token for subsequent query or unsubscription.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNUnsubscribe
Releases a subscription which is no longer needed.

OSStatus FNUnsubscribe (
 FNSubscriptionRef subscription
);

Parameters
subscription

A subscription previously returned from the FNSubscribe orFNSubscribeByPath functions.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FSAllocateFork
Allocates space on a volume to an open fork.

OSErr FSAllocateFork (
 FSIORefNum forkRefNum,
 FSAllocationFlags flags,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 *actualCount
);

Parameters
forkRefNum

The reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 85) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

Functions 43
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

flags
A constant indicating how the new space should be allocated. See “Allocation Flags” (page 270) for a
description of the constants which you can use in this parameter.

positionMode
A constant specifying the base location for the start of the allocation. See “Position Mode
Constants” (page 311) for more information on the constants which you can use to specify the base
location.

positionOffset
The offset from the base location of the start of the allocation.

requestCount
The number of bytes to allocate.

actualCount
On return, a pointer to the number of bytes actually allocated to the file. The value returned in here
may be smaller than the number specified in the requestCount parameter if some of the space was
already allocated. The value pointed to by the actualCount parameter does not reflect any additional
bytes that may have been allocated because space is allocated in terms of fixed units such as allocation
blocks, or the use of a clump size to reduce fragmentation.

The actualCount output is optional if you don’t want the number of allocated bytes returned, set
actualCount to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSAllocateFork function attempts to allocate requestCount bytes of physical storage starting at
the offset specified by the positionMode and positionOffset parameters. For volume formats that
support preallocated space, you can later write to this range of bytes (including extending the size of the
fork) without requiring an implicit allocation.

Any extra space allocated but not used will be deallocated when the fork is closed, using FSCloseFork (page
47) , PBCloseForkSync (page 115) , or PBCloseForkAsync (page 115) ; or when the fork is flushed, using
FSFlushFork (page 63) , PBFlushForkSync (page 131) , or PBFlushForkAsync (page 130).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCancelVolumeOperation
Cancels an outstanding asynchronous volume mounting operation.

OSStatus FSCancelVolumeOperation (
 FSVolumeOperation volumeOp
);

Parameters
volumeOp

The asynchronous volume operation to cancel.

Return Value
A result code. See “File Manager Result Codes” (page 326).

44 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Special Considerations

This function currently is only supported for server mounts.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSCatalogSearch
Searches for objects traversed by a catalog iterator that match a given set of criteria.

OSErr FSCatalogSearch (
 FSIterator iterator,
 const FSSearchParams *searchCriteria,
 ItemCount maximumObjects,
 ItemCount *actualObjects,
 Boolean *containerChanged,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo *catalogInfos,
 FSRef *refs,
 FSSpecPtr specs,
 HFSUniStr255 *names
);

Parameters
iterator

The iterator to use. Objects traversed by this iterator are matched against the criteria specified by the
searchCriteria parameter. You can obtain a catalog iterator with the function
FSOpenIterator (page 86), or with one of the related parameter block calls,
PBOpenIteratorSync (page 154) and PBOpenIteratorAsync (page 153). Currently, this iterator
must be created with the kFSIterateSubtree option and the container must be the root directory
of a volume. See FSIterator (page 218) for more information on the FSIterator data type.

Functions 45
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

searchCriteria
A pointer to a structure containing the search criteria.

You can match against the object’s name in Unicode and by the fields in an FSCatalogInfo (page
209) structure. You may use the same search bits as passed in the ioSearchBits field to the
PBCatSearchSync (page 380) and PBCatSearchAsync (page 378) functions; they control the
corresponding FSCatalogInfo fields. See “Catalog Search Masks” (page 283) for a description of the
search bits.

There are a few new search criteria supported by FSCatalogSearch but not by PBCatSearchSync
and PBCatSearchAsync. These new search criteria are indicated by the constants described in
“Catalog Search Constants” (page 282).

If the searchTime field of this structure is non-zero, it is interpreted as a Time Manager duration; the
search may terminate after this duration even if maximumObjects objects have not been returned
and the entire catalog has not been scanned. If searchTime is zero, there is no time limit for the
search.

If you are searching by any criteria other than name, you must set the searchInfo1 and searchInfo2
fields of the structure in this parameter to point to FSCatalogInfo structures containing the values
to match against.

See FSSearchParams (page 222) for a description of the FSSearchParams data type.

maximumObjects
The maximum number of items to return for this call.

actualObjects
On return, a pointer to the actual number of items found for this call.

containerChanged
On return, a pointer to a Boolean value indicating whether the container’s contents have changed.
If true, the container’s contents changed since the previous FSCatalogSearch call. Objects may
still be returned even though the container changed. Note that if the container has changed, then
the total set of items returned may be incorrect; some items may be returned multiple times, and
some items may not be returned at all.

This parameter is optional if you don’t want this information, pass a NULL pointer.

whichInfo
A bitmap specifying the catalog information fields to return for each item. If you don’t wish any catalog
information returned, pass the constant kFSCatInfoNone in this parameter. See “Catalog Information
Bitmap Constants” (page 274) for a description of the bits in this parameter.

catalogInfos
A pointer to an array of catalog information structures; one for each found item. On input, the
catalogInfosparameter should point to an array ofmaximumObjects catalog information structures.

This parameter is optional; if you do not wish any catalog information returned, pass NULL here.

See FSCatalogInfo (page 209) for a description of the FSCatalogInfo data type.

refs
A pointer to an array of FSRef structures; one for each returned item. If you want an FSRef for each
item found, set this parameter to point to an array of maximumObjectsFSRef structures. Otherwise,
set it to NULL. See FSRef (page 220) for a description of the FSRef data type.

46 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

specs
names

A pointer to an array of filenames; one for each returned item. If you want the Unicode filename for
each item found, set this parameter to point to an array of maximumObjectsHFSUniStr255 structures.
Otherwise, set it to NULL. See HFSUniStr255 (page 238) for a description of the HFSUniStr255 data
type.

Return Value
A result code. See “File Manager Result Codes” (page 326). When the entire volume has been searched,
errFSNoMoreItems is returned.

Discussion
A single search may span more than one call to FSCatalogSearch. The call may complete with no error
before scanning the entire volume. This typically happens because the time limit (searchTime) has been
reached or maximumObjects items have been returned. If the search is not completed, you can continue
the search by making another call to FSCatalogSearch and passing the updated iterator returned by the
previous call in the iterator parameter.

Before calling this function, you should determine that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCloseFork
Closes an open fork.

OSErr FSCloseFork (
 FSIORefNum forkRefNum
);

Parameters
forkRefNum

The reference number of the fork to close. After the call to this function, the reference number in this
parameter is invalid.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSCloseFork function causes all data written to the fork to be written to disk, in the same manner as
the FSFlushFork (page 63) function, before it closes the fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 47
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSCloseIterator
Closes a catalog iterator.

OSErr FSCloseIterator (
 FSIterator iterator
);

Parameters
iterator

The catalog iterator to be closed. FSCloseIterator releases memory and other system resources
used by the iterator, making the iterator invalid. See FSIterator (page 218) for a description of the
FSIterator data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function releases memory and other system resources used by the iterator. The iterator becomes invalid.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Files.h

FSCompareFSRefs
Determines whether two FSRef structures refer to the same file or directory.

OSErr FSCompareFSRefs (
 const FSRef *ref1,
 const FSRef *ref2
);

Parameters
ref1

A pointer to the first FSRef to compare. For a description of the FSRef data type, see FSRef (page
220).

ref2
A pointer to the second FSRef to compare.

Return Value
A result code. See “File Manager Result Codes” (page 326). If the two FSRef structures refer to the same file
or directory, then noErr is returned. If they refer to objects on different volumes, then diffVolErr is
returned. If they refer to different files or directories on the same volume, then errFSRefsDifferent is
returned. This function may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.

48 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
You must use FSCompareFSRefs, or one of the corresponding parameter block functions,
PBCompareFSRefsSync (page 118) and PBCompareFSRefsAsync (page 117) , to compare FSRef structures.
It is not possible to compare the FSRef structures directly since some bytes may be uninitialized,
case-insensitive text, or contain hint information.

Some volume formats may be able to tell that two FSRef structures would refer to two different files or
directories, without having to actually find those objects. In this case, the volume format may return
errFSRefsDifferent even if one or both objects no longer exist. Similarly, if the FSRef structures are for
objects on different volumes, the File Manager will return diffVolErr even if one or both volumes are no
longer mounted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCopyDiskIDForVolume
Returns a copy of the disk ID for a volume.

OSStatus FSCopyDiskIDForVolume (
 FSVolumeRefNum vRefNum,
 CFStringRef *diskID
);

Parameters
vRefNum

The volume reference number of the target volume.

diskID
A pointer to a Core Foundation string. On return, the string contains the disk ID associated with the
target volume. The caller is responsible for releasing the string.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSCopyObjectAsync
Starts an asynchronous file operation to copy a source object to a destination directory.

Functions 49
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSCopyObjectAsync (
 FSFileOperationRef fileOp,
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 OptionBits flags,
 FSFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this copy operation.

source
A pointer to the source object to copy. The object can be a file or a directory.

destDir
A pointer to the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 300).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 171). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 212). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSCopyObjectSync
Copies a source object to a destination directory.

50 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSCopyObjectSync (
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 FSRef *target,
 OptionBits options
);

Parameters
source

A pointer to the source object to copy. The object can be a file or a directory.

destDir
A pointer to the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

target
A pointer to an FSRef variable that, on output, refers to the new object in the destination directory.
This parameter is optional; pass NULL if you don’t need to refer to the new object.

options
One or more file operation option flags. See “File Operation Options” (page 300).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function could take a significant amount of time to execute. To avoid blocking your user interface, you
should either call this function in a thread other than the main thread or use FSCopyObjectAsync (page
49) instead.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSCopyURLForVolume
Returns a copy of the URL for a volume.

OSStatus FSCopyURLForVolume (
 FSVolumeRefNum vRefNum,
 CFURLRef *url
);

Parameters
vRefNum

The volume reference number of the target volume.

url
A pointer to a CFURLRef variable allocated by the caller. On return, a Core Foundation URL that
specifies the location of the target volume. The caller is responsible for releasing the URL.

Functions 51
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Files.h

FSCreateDirectoryUnicode
Creates a new directory (folder) with a Unicode name.

OSErr FSCreateDirectoryUnicode (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 FSRef *newRef,
 FSSpecPtr newSpec,
 UInt32 *newDirID
);

Parameters
parentRef

A pointer to an FSRef specifying the parent directory where the new directory is to be created. See
FSRef (page 220) for a description of the FSRef data type.

nameLength
The length of the new directory's Unicode name.

name
A pointer to the Unicode name of the new directory.

whichInfo
A bitmap specifying which catalog information fields to set for the new directory. Specify the values
for these fields in the catalogInfo parameter.

If you do not wish to set catalog information for the new directory, specify the constant
kFSCatInfoNone. See “Catalog Information Bitmap Constants” (page 274) for a description of the
bits defined for this parameter.

catalogInfo
A pointer to the FSCatalogInfo structure which specifies the values for the catalog information
fields for the new directory. Specify which fields to set in the whichInfo parameter.

This parameter is optional; specify NULL if you do not wish to set catalog information for the new
directory.

See FSCatalogInfo (page 209) for a description of the FSCatalogInfo data type.

newRef
On return, a pointer to the FSRef for the new directory. This parameter is optional; specify NULL if
you do not want the FSRef returned.

52 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

newSpec
On return, a pointer to the FSSpec for the new directory. This parameter is optional; specify NULL if
you do not want the FSSpec returned. See FSSpec (page 223) for a description of the FSSpec data
type.

newDirID
On return, a pointer to the directory ID of the directory. This parameter is optional; specify NULL if
you do not want the directory ID returned.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
You may optionally set catalog information for the new directory using the whichInfo and catalogInfo
parameters; this is equivalent to calling FSSetCatalogInfo (page 98) , or one of the corresponding parameter
block functions, PBSetCatalogInfoSync (page 161) and PBSetCatalogInfoAsync (page 159) , after
creating the directory.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catalogInfo parameter. This will be used by the volume format when converting the Unicode filename to
other encodings.

Special Considerations

If the FSCreateDirectoryUnicode function is present, but is not implemented by a particular volume, the
File Manager will emulate this function by making the appropriate call to PBDirCreateSync (page 383).
However, if the function is not directly supported by the volume, you will not be able to use the long Unicode
directory names, or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
Files.h

FSCreateFileUnicode
Creates a new file with a Unicode name.

OSErr FSCreateFileUnicode (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 FSRef *newRef,
 FSSpecPtr newSpec
);

Parameters
parentRef

A pointer to an FSRef for the directory where the file is to be created. See FSRef (page 220) for a
description of the FSRef data type.

Functions 53
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

nameLength
The length of the file's name.

name
A pointer to the Unicode name for the new file.

whichInfo
A bitmap specifying which catalog information fields to set for the new file. You specify the values
for these fields in the catalogInfo parameter. If you do not wish to set catalog information for the
new file, pass the constant kFSCatInfoNone. See “Catalog Information Bitmap Constants” (page 274)
for a description of the bits defined for this parameter.

catalogInfo
A pointer to the FSCatalogInfo structure which specifies the values of the new file’s catalog
information. Specify which fields to set in the whichInfo parameter.

This parameter is optional; specify NULL if you do not wish to set catalog information for the new file.

newRef
On return, a pointer to the FSRef for the new file. If you do not want the FSRef returned, specify
NULL.

newSpec
On return, a pointer to the FSSpec for the new file. If you do not want the FSSpec returned, specify
NULL. See FSSpec (page 223) for a description of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
You may optionally set catalog information for the new file using the whichInfo and catalogInfo
parameters; this is equivalent to calling FSSetCatalogInfo (page 98) , or one of the corresponding parameter
block functions, PBSetCatalogInfoSync (page 161) and PBSetCatalogInfoAsync (page 159) , after
creating the file.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catalogInfo parameter. This will be used by the volume format when converting the Unicode filename to
other encodings.

Special Considerations

If the FSCreateFileUnicode function is present, but is not implemented by a particular volume, the File
Manager will emulate this function by making the appropriate call to PBHCreateSync (page 436). However,
if the function is not directly supported by the volume, you will not be able to use the long Unicode filenames,
or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
Files.h

54 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSCreateFork
Creates a named fork for a file or directory.

OSErr FSCreateFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName
);

Parameters
ref

A pointer to an FSRef specifying the file or directory. See FSRef (page 220) for a description of the
FSRef data type.

forkNameLength
The length of the name of the new fork.

forkName
A pointer to the Unicode name of the fork.

Return Value
A result code. See “File Manager Result Codes” (page 326). If the named fork already exists, the function returns
errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given volume,
FSCreateFork returns errFSBadForkName or errFSNameTooLong.

Discussion
A newly created fork has zero length (that is, its logical end-of-file is zero). The data and resource forks of a
file are automatically created and deleted as needed. This is done for compatibility with older APIs, and
because data and resource forks are often handled specially. If a given fork always exists for a given volume
format (such as data and resource forks for HFS and HFS Plus, or data forks for most other volume formats),
an attempt to create that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCreateVolumeOperation
Returns an FSVolumeOperation which can be used for an asynchronous volume operation.

OSStatus FSCreateVolumeOperation (
 FSVolumeOperation *volumeOp
);

Parameters
volumeOp

The new FSVolumeOperation.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Functions 55
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
When the operation is completed the FSVolumeOperation should be disposed of to free the memory
associated with the operation using FSDisposeVolumeOperation.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSDeleteFork
Deletes a named fork from a file or directory.

OSErr FSDeleteFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName
);

Parameters
ref

A pointer to an FSRef for the file or directory from which to delete the fork. See FSRef (page 220) for
a description of the FSRef data type.

forkNameLength
The length of the Unicode name of the fork name.

forkName
A pointer to the Unicode name of the fork to delete.

Return Value
A result code. See “File Manager Result Codes” (page 326). If the named fork does not exist, the function
returns errFSForkNotFound.

Discussion
Any storage allocated to the fork is released. If a given fork always exists for a given volume format (such as
data and resource forks for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSDeleteObject
Deletes a file or an empty directory.

56 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSDeleteObject (
 const FSRef *ref
);

Parameters
ref

A pointer to an FSRef specifying the file or directory to be deleted. If the object to be deleted is a
directory, it must be empty (it must contain no files or folders). See FSRef (page 220) for a description
of the FSRef data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you attempt to delete a folder for which there
is an open catalog iterator, this function succeeds and returns noErr. Iteration, however, will continue to
work until the iterator is closed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSDisposeVolumeOperation
Releases the memory associated with a volume operation.

OSStatus FSDisposeVolumeOperation (
 FSVolumeOperation volumeOp
);

Parameters
volumeOp

The FSVolumeOperation to release.

Return Value
A result code. See “File Manager Result Codes” (page 326). This function will return paramErr if the
FSVolumeOperation is in use.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSEjectVolumeAsync
Asynchronously ejects a volume.

Functions 57
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSEjectVolumeAsync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 FSVolumeOperation volumeOp,
 void *clientData,
 FSVolumeEjectUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
vRefNum

The volume reference number of the volume to eject.

flags
Options for future use.

volumeOp
An FSVolumeOperation returned by FSCreateVolumeOperation.

clientData
A pointer to client data associated with the operation. This parameter can be NULL.

callback
The function to call when eject is complete.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function starts the process of ejecting the volume specified by the vRefNum parameter. If a callback
function is provided, that function will be called when the eject operation is complete. Once this function
returns noErr the status of the operation can be found using FSGetAsyncEjectStatus.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSEjectVolumeSync
Ejects a volume.

58 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSEjectVolumeSync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 pid_t *dissenter
);

Parameters
vRefNum

The volume reference number of the volume to eject.

flags
Options for future use.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the eject is denied.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function ejects the volume specified by the vRefNum parameter. If the volume cannot be ejected the
pid of the process which denied the unmount will be returned in the dissenter parameter. This function
returns after the eject is complete. Ejecting a volume will result in the unmounting of other volumes on the
same device.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSExchangeObjects
Swaps the contents of two files.

OSErr FSExchangeObjects (
 const FSRef *ref,
 const FSRef *destRef
);

Parameters
ref

A pointer to an FSRef for the first file. See FSRef (page 220) for a description of the FSRef data type.

destRef
A pointer to an FSRef for the second file.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSExchangeObjects function allows programs to implement a “safe save” operation by creating and
writing a complete new file and swapping the contents. An alias, FSSpec, or FSRef that refers to the old file
will now access the new data. The corresponding information in in-memory data structures are also exchanged.

Either or both files may have open access paths. After the exchange, the access path will refer to the opposite
file’s data (that is, to the same data it originally referred, which is now part of the other file).

Functions 59
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSFileOperationCancel
Cancels an asynchronous file operation.

OSStatus FSFileOperationCancel (
 FSFileOperationRef fileOp
);

Parameters
fileOp

The file operation to cancel.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function makes the specified file operation ineligible to run on any run loop. You may call this function
at any time during the operation. Typically, you would use this function if the user cancels the operation.
Note that to release your file operation object, you still need to call CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationCopyStatus
Gets a copy of the current status information for an asynchronous file operation.

OSStatus FSFileOperationCopyStatus (
 FSFileOperationRef fileOp,
 FSRef *currentItem,
 FSFileOperationStage *stage,
 OSStatus *error,
 CFDictionaryRef *statusDictionary,
 void **info
);

Parameters
fileOp

The file operation to access.

currentItem
A pointer to an FSRef variable. On output, the variable contains the object currently being moved
or copied. If the operation is complete, this parameter refers to the target (the new object
corresponding to the source object in the destination directory).

60 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

stage
A pointer to a file operation stage variable. On output, the variable contains the current stage of the
file operation.

error
A pointer to an error status variable. On output, the variable contains the current error status of the
file operation.

statusDictionary
A pointer to a dictionary variable. On output, the variable contains a dictionary with more detailed
status information. For information about the contents of the dictionary, see “File Operation
Status Dictionary Keys” (page 302). You should release the dictionary when you are finished
using it.

info
A pointer to a generic pointer. On output, the generic pointer refers to user-defined data associated
with this file operation.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationCreate
Creates an object that represents an asynchronous file operation.

FSFileOperationRef FSFileOperationCreate (
 CFAllocatorRef alloc
);

Parameters
alloc

The allocator to use. Pass NULL for the default allocator.

Return Value
A new FSFileOperation object, or NULL if the object could not be created. When you no longer need the
object, you should release it by calling CFRelease.

Discussion
Before passing a file operation object to a function that starts an asynchronous copy or move operation, you
should schedule the file operation using the function FSFileOperationScheduleWithRunLoop (page
62).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

Functions 61
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSFileOperationGetTypeID
Returns the Core Foundation type identifier for the FSFileOperation opaque type.

CFTypeID FSFileOperationGetTypeID (
 void
);

Return Value
The type identifier for the FSFileOperation opaque type. For information about this type, see
FSFileOperationRef (page 213).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationScheduleWithRunLoop
Schedules an asynchronous file operation with the specified run loop and mode.

OSStatus FSFileOperationScheduleWithRunLoop (
 FSFileOperationRef fileOp,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
fileOp

The file operation to schedule.

runLoop
The run loop in which to schedule the operation. For information about Core Foundation run loops,
see Run Loops.

runLoopMode
The run loop mode in which to schedule the operation. In most cases, you may specify
kCFRunLoopCommonModes.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
To run, a file operation must be scheduled with at least one run loop. A file operation can be scheduled with
multiple run loop and mode combinations.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationUnscheduleFromRunLoop
Unschedules an asynchronous file operation from the specified run loop and mode.

62 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSFileOperationUnscheduleFromRunLoop (
 FSFileOperationRef fileOp,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
fileOp

The file operation to unschedule.

runLoop
The run loop on which to unschedule the operation.

runLoopMode
The run loop mode in which to unschedule the operation.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFlushFork
Causes all data written to an open fork to be written to disk.

OSErr FSFlushFork (
 FSIORefNum forkRefNum
);

Parameters
forkRefNum

The reference number of the fork to flush.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSFlushFork function causes the actual fork contents to be written to disk, as well as any other volume
structures needed to access the fork. On HFS and HFS Plus, this includes the catalog, extents, and attribute
B-trees; the volume bitmap; and the volume header and alternate volume header (the MDB and alternate
MDB on HFS volumes), as needed.

On volumes that do not support FSFlushFork directly, the entire volume is flushed to be sure all volume
structures associated with the fork are written to disk.

You do not, need to use FSFlushFork to flush a file fork before it is closed; the file is automatically flushed
when it is closed and all cache blocks associated with it are removed from the cache.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 63
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSFlushVolume
For the specified volume, writes all open and modified files in the current process to permanent storage.

OSStatus FSFlushVolume (
 FSVolumeRefNum vRefNum
);

Parameters
vRefNum

The volume reference number of the volume to flush.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSGetAsyncEjectStatus
Returns the current status of an asynchronous eject operation.

OSStatus FSGetAsyncEjectStatus (
 FSVolumeOperation volumeOp,
 FSEjectStatus *status,
 OSStatus *volumeOpStatus,
 FSVolumeRefNum *volumeRefNum,
 pid_t *dissenter,
 void **clientData
);

Parameters
volumeOp

The asynchronous volume operation to get status about.

status
On return, a pointer to the status of the operation.

volumeOpStatus
If the status parameter is kAsyncEjectComplete then this contains the result code (OSStatus)
for the operation on return.

volumeRefNum
On return, the volume reference number of the volume being ejected.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the eject is denied.

clientData
On return, a pointer to client data associated with the original FSMountServerVolumeAsync
operation.

Return Value
A result code. See “File Manager Result Codes” (page 326). A return value of noErr signifies that the status
parameter has been filled with valid information.

64 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSGetAsyncMountStatus
Returns the current status of an asynchronous mount operation.

OSStatus FSGetAsyncMountStatus (
 FSVolumeOperation volumeOp,
 FSMountStatus *status,
 OSStatus *volumeOpStatus,
 FSVolumeRefNum *mountedVolumeRefNum,
 void **clientData
);

Parameters
volumeOp

The asynchronous volume operation to get status about.

status
On return, a pointer to the status of the operation.

volumeOpStatus
If the status is kAsyncMountComplete then this parameter contains the result code for the operation
on return.

mountedVolumeRefNum
If the status is kAsyncMountComplete and the volumeOpStatus parameter is noErr then this is
the volume reference number for the newly mounted volume, on return.

clientData
On return, a pointer to client data associated with the original FSMountServerVolumeAsync
operation.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
A return value of noErr signifies that the status parameter has been filled with valid information. If the
status is kAsyncMountComplete then the rest of data returned is valid. If the status is anything else then
the volumeOpStatus and mountedVolumeRefNum parameters are invalid, but the clientData parameter
is valid.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSGetAsyncUnmountStatus
Returns the current status of an asynchronous unmount operation.

Functions 65
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSGetAsyncUnmountStatus (
 FSVolumeOperation volumeOp,
 FSUnmountStatus *status,
 OSStatus *volumeOpStatus,
 FSVolumeRefNum *volumeRefNum,
 pid_t *dissenter,
 void **clientData
);

Parameters
volumeOp

The asynchronous volume operation to get status about.

status
On return, a pointer to the status of the operation.

volumeOpStatus
If the status is kAsyncUnmountComplete then this parameter contains a pointer to the result code
(OSStatus) for the operation on return.

volumeRefNum
On return, a pointer to the volume reference number of the volume being unmounted.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the unmount is denied.

clientData
On return, a pointer to client data associated with the original FSMountServerVolumeAsync
operation.

Return Value
A result code. See “File Manager Result Codes” (page 326). A return value of noErr signifies that the status
parameter has been filled with valid information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSGetCatalogInfo
Returns catalog information about a file or directory. You can use this function to map an FSRef to an FSSpec.

OSErr FSGetCatalogInfo (
 const FSRef *ref,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo *catalogInfo,
 HFSUniStr255 *outName,
 FSSpecPtr fsSpec,
 FSRef *parentRef
);

Parameters
ref

A pointer to an FSRef specifying the file or directory for which to retrieve information. See FSRef (page
220) for a description of the FSRef data type.

66 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

whichInfo
A bitmap specifying the catalog information fields to return. If you don’t want any catalog information,
set whichInfo to the constant kFSCatInfoNone. See “Catalog Information Bitmap Constants” (page
274) for a description of the bits in this parameter.

catalogInfo
On return, a pointer to a catalog information structure containing the information about the file or
directory. Only the information specified in the whichInfo parameter is returned. If you don’t want
any catalog information, pass NULL here. See FSCatalogInfo (page 209) for a description of the
FSCatalogInfo data type.

outName
On return, a pointer to the Unicode name of the file or directory is returned here. This parameter is
optional; if you do not wish the name returned, pass NULL here. See HFSUniStr255 (page 238) for a
description of the HFSUniStr255 data type.

fsSpec
On return, a pointer to the FSSpec for the file or directory. This parameter is optional; if you do not
wish the FSSpec returned, pass NULL here. See FSSpec (page 223) for a description of the FSSpec
data type.

parentRef
On return, a pointer to the FSRef for the object's parent directory. This parameter is optional; if you
do not wish the parent directory returned, pass NULL here.

If the object specified in the ref parameter is a volume’s root directory, then the FSRef returned
here will not be a valid FSRef, since the root directory has no parent object.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
QTCarbonShell

Declared In
Files.h

FSGetCatalogInfoBulk
Returns information about one or more objects from a catalog iterator. This function can return information
about multiple objects in a single call.

Functions 67
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSGetCatalogInfoBulk (
 FSIterator iterator,
 ItemCount maximumObjects,
 ItemCount *actualObjects,
 Boolean *containerChanged,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo *catalogInfos,
 FSRef *refs,
 FSSpecPtr specs,
 HFSUniStr255 *names
);

Parameters
iterator

The iterator to use. You can obtain a catalog iterator with the function FSOpenIterator (page 86),
or with one of the related parameter block calls, PBOpenIteratorSync (page 154) and
PBOpenIteratorAsync (page 153). Currently, the iterator must be created with the kFSIterateFlat
option. See FSIterator (page 218) for a description of the FSIterator data type.

maximumObjects
The maximum number of items to return for this call.

actualObjects
On return, a pointer to the actual number of items found for this call.

containerChanged
On return, a pointer to a value indicating whether or not the container’s contents have changed since
the previous FSGetCatalogInfoBulk call. If true, the contents have changed. Objects may still be
returned, even though the container has changed. If so, note that if the container has changed, then
the total set of items returned may be incorrect: some items may be returned multiple times, and
some items may not be returned at all.

This parameter is optional if you don’t want this information returned, pass a NULL pointer.

In Mac OS X version 10.2 and later, this parameter is always set to false. To find out whether the
container has changed since the last call to FSGetCatalogInfoBulk, check the modification date
of the container.

whichInfo
A bitmap specifying the catalog information fields to return for each item. If you don’t wish any catalog
information returned, pass the constant kFSCatInfoNone in this parameter. For a description of the
bits in this parameter, see “Catalog Information Bitmap Constants” (page 274).

catalogInfos
A pointer to an array of catalog information structures; one for each returned item. On input, the
catalogInfosparameter should point to an array ofmaximumObjects catalog information structures.

This parameter is optional; if you do not wish any catalog information returned, pass NULL here.

refs
A pointer to an array of FSRef structures; one for each returned item. On input, this parameter should
to point to an array of maximumObjectsFSRef structures.

This parameter is optional; if you do not wish any FSRef structures returned, pass NULL here.

specs
A pointer to an array of FSSpec structures; one for each returned item. On input, this parameter
should to point to an array of maximumObjectsFSSpec structures.

This parameter is optional; if you do not wish any FSSpec structures returned, pass NULL here.

68 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

names
A pointer to an array of names; one for each returned item. If you want the Unicode name for each
item found, set this parameter to point to an array of maximumObjectsHFSUniStr255 structures.
Otherwise, set it to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326). When all of the iterator’s objects have been returned,
the call will return errFSNoMoreItems.

Discussion
The FSGetCatalogInfoBulk call may complete and return noErrwith fewer than maximumObjects items
returned. This may be due to various reasons related to the internal implementation. In this case, you may
continue to make FSGetCatalogInfoBulk calls using the same iterator.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Files.h

FSGetDataForkName
Returns a Unicode string constant for the name of the data fork.

OSErr FSGetDataForkName (
 HFSUniStr255 *dataForkName
);

Parameters
dataForkName

On input, a pointer to an HFSUniStr255 structure. On return, this structure contains the Unicode
name of the data fork. Currently, this is the empty string. See HFSUniStr255 (page 238) for a description
of the HFSUniStr255 data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
There is no parameter block-based form of this call since it is not dispatched to individual volume formats,
and does not require any I/O.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetForkCBInfo
Returns information about a specified open fork, or about all open forks.

Functions 69
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSGetForkCBInfo (
 FSIORefNum desiredRefNum,
 FSVolumeRefNum volume,
 short *iterator,
 FSIORefNum *actualRefNum,
 FSForkInfo *forkInfo,
 FSRef *ref,
 HFSUniStr255 *outForkName
);

Parameters
desiredRefNum

If you want information on a specific fork, set this parameter to that fork’s reference number, and
pass NULL in the iterator parameter. If you pass a non-zero value in this parameter, the function
attempts to get information on the fork specified by that reference number.

Pass zero in this parameter to iterate over all open forks. You can limit this iteration to a specific
volume with the volume parameter.

volume
The volume to search, when iterating over multiple forks. To iterate over all open forks on a single
volume, specify the volume reference number in this parameter. To iterate over all open forks on all
volumes, set this parameter to the constant kFSInvalidVolumeRefNum.

This parameter is ignored if you specify a fork reference number in the desiredRefNum parameter.
Set desiredRefNum to zero if you wish to iterate over multiple forks.

See FSVolumeRefNum (page 230) for a description of the FSVolumeRefNum data type.

iterator
A pointer to an iterator. If the desiredRefNum parameter is 0, the iterator maintains state between
calls to FSGetForkCBInfo. Set the iterator parameter to 0 before you begin iterating, on the first
call to FSGetForkCBInfo. On return, the iterator will be updated; pass this updated iterator in the
iterator parameter of the next call to FSIterateForks to continue iterating.

actualRefNum
On return, a pointer to the reference number of the open fork. This parameter is optional if you do
not wish to retrieve the fork’s reference number, pass NULL.

forkInfo
On return, a pointer to an FSForkInfo structure containing information about the open fork. This
parameter is optional; if you do not wish this information returned, set forkInfo to NULL. See
FSForkInfo (page 215) for a description of the FSForkInfo data type.

On OS X, the value returned by FSGetForkCBInfo in the physicalEOF field of the FSForkInfo
structure may differ from the physical file length reported by FSGetCatalogInfo, PBGetCatInfo,
and related functions. When a write causes a file to grow in size, the physical length reported by
FSGetCatalogInfo and similar calls increases by the clump size, which is a multiple of the allocation
block size. However, the physical length returned by FSGetForkCBInfo changes according to the
allocation block size and the file lengths returned by the respective functions get out of sync.

ref
On return, a pointer to the FSRef for the file or directory that contains the fork. This parameter is
optional; if you do not wish to retrieve the FSRef, set ref to NULL. See FSRef (page 220) for a
description of the FSRef data type.

outForkName
On return, a pointer to the name of the fork. This parameter is optional; if you do not wish the name
returned, set outForkName to NULL. See HFSUniStr255 (page 238) for a description of the
HFSUniStr255 data type.

70 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326). If you are iterating over multiple forks, the function
returns errFSNoMoreItems if there are no more open forks to return.

Discussion
Carbon applications are no longer guaranteed access to the FCB table. Instead, applications should use
FSGetForkCBInfo, or one of the related parameter block functions, PBGetForkCBInfoSync (page 139)
and PBGetForkCBInfoAsync (page 138) , to access information about a fork control block.

Special Considerations

Returning the fork information in the forkInfo parameter generally does not require a disk access; returning
the information in the ref or forkName parameters may cause disk access for some volume formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetForkPosition
Returns the current position of an open fork.

OSErr FSGetForkPosition (
 FSIORefNum forkRefNum,
 SInt64 *position
);

Parameters
forkRefNum

The reference number of a fork previously opened by the FSOpenFork (page 85) function or one of
its corresponding parameter block calls, PBOpenForkSync (page 152) and PBOpenForkAsync (page
151).

position
On return, a pointer to the current position of the fork. The returned fork position is relative to the
start of the fork (that is, it is an absolute offset in bytes).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Special Considerations

Before calling the FSGetForkPosition function, call the Gestalt function with the gestaltFSAttr
selector to determine if FSGetForkPosition is available. If the function is available, but is not directly
supported by a volume, the File Manager will automatically call PBGetFPosSync (page 432); however, you
will not be able to determine the fork position of a named fork other than the data or resource fork, or of a
fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 71
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSGetForkSize
Returns the size of an open fork.

OSErr FSGetForkSize (
 FSIORefNum forkRefNum,
 SInt64 *forkSize
);

Parameters
forkRefNum

The reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 85) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

forkSize
On return, a pointer to the logical size (the logical end-of-file) of the fork, in bytes. The size returned
is the total number of bytes that can be read from the fork; the amount of space actually allocated
on the volume (the physical size) will probably be larger.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Special Considerations

To determine whether the FSGetForkSize function is present, call the Gestalt function. If FSGetForkSize
is present, but is not directly supported by a volume, the File Manager will call PBGetEOFSync (page 426);
however, you will not be able to determine the size of a fork other than the data or resource fork, or of a fork
larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetResourceForkName
Returns a Unicode string constant for the name of the resource fork.

OSErr FSGetResourceForkName (
 HFSUniStr255 *resourceForkName
);

Parameters
resourceForkName

On input, a pointer to an HFSUniStr255 structure. On return, this structure contains the Unicode
name of the resource fork. Currently, this is “RESOURCE_FORK”. See HFSUniStr255 (page 238) for a
description of the HFSUniStr255 data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
There is no parameter block-based form of this call since it is not dispatched to individual volume formats,
and does not require any I/O.

72 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetVolumeInfo
Returns information about a volume.

OSErr FSGetVolumeInfo (
 FSVolumeRefNum volume,
 ItemCount volumeIndex,
 FSVolumeRefNum *actualVolume,
 FSVolumeInfoBitmap whichInfo,
 FSVolumeInfo *info,
 HFSUniStr255 *volumeName,
 FSRef *rootDirectory
);

Parameters
volume

If you wish to obtain information on a particular volume, pass that volume’s reference number here.
If you wish to index through the list of mounted volumes, pass the constant
kFSInvalidVolumeRefNum in this parameter. See FSVolumeRefNum (page 230) for a description of
the FSVolumeRefNum data type.

volumeIndex
The index of the desired volume, or 0 to use the volume reference number in the volume parameter.

actualVolume
On return, a pointer to the volume reference number of the volume. This is useful when indexing
over all mounted volumes. If you don’t want this information (if, for instance, you supplied a particular
volume reference number in the volume) parameter, set actualVolume to NULL.

whichInfo
A bitmap specifying which volume information fields to get and return in the info parameter. If you
don’t want information about the volume returned in the info parameter, set whichInfo to
kFSVolInfoNone. See “Volume Information Bitmap Constants” (page 321) for a description of the
bits in this parameter.

info
On return, a pointer to the volume information. If you don’t want this output, set this parameter to
NULL. See FSVolumeInfo (page 225) for a description of the FSVolumeInfo data type.

volumeName
On return, a pointer to the Unicode name of the volume. If you do not wish the name returned, pass
NULL. See HFSUniStr255 (page 238) for a description of the HFSUniStr255 data type.

rootDirectory
On return, a pointer to the FSRef for the volume’s root directory. If you do not wish the root directory
returned, pass NULL. See FSRef (page 220) for a description of the FSRef data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Functions 73
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
You can specify a particular volume or index through the list of mounted volumes. To get information on a
particular volume, pass the volume reference number of the desired volume in the volume parameter and
set the volumeIndex parameter to zero. To index through the list of mounted volumes, pass
kFSInvalidVolumeRefNum in the volume parameter and set volumeIndex to the index, starting at 1 with
the first call to FSGetVolumeInfo.

When indexing through the list of mounted volumes, you may encounter an error with a particular volume.
The terminating error code for full traversal of this list is nsvErr. In order to completely traverse the entire
list, you may have to bump the index count when encountering other errors (for example, ioErr).

To get information about the root directory of a volume, use the FSGetCatalogInfo (page 66) function,
or one of the corresponding parameter block calls, PBGetCatalogInfoSync (page 137) and
PBGetCatalogInfoAsync (page 133).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to FSGetVolumeInfo returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetVolumeMountInfo
Retrieves the mounting information associated with the specified volume.

OSStatus FSGetVolumeMountInfo (
 FSVolumeRefNum volume,
 BytePtr buffer,
 ByteCount bufferSize,
 ByteCount *actualSize
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSGetVolumeMountInfoSize
Determines the size of the mounting information associated with the specified volume.

74 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSGetVolumeMountInfoSize (
 FSVolumeRefNum volume,
 ByteCount *size
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSGetVolumeParms
Retrieves information about the characteristics of a volume.

OSStatus FSGetVolumeParms (
 FSVolumeRefNum volume,
 GetVolParmsInfoBuffer *buffer,
 ByteCount bufferSize
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSIterateForks
Determines the name and size of every named fork belonging to a file or directory.

OSErr FSIterateForks (
 const FSRef *ref,
 CatPositionRec *forkIterator,
 HFSUniStr255 *forkName,
 SInt64 *forkSize,
 UInt64 *forkPhysicalSize
);

Parameters
ref

A pointer to an FSRef specifying the file or directory to iterate. See FSRef (page 220) for a description
of the FSRef data type.

forkIterator
A pointer to a structure which maintains state between calls to FSIterateForks. Before the first
call, set the initialize field of the structure to 0. The fork iterator will be updated after the call
completes; the updated iterator should be passed into the next call. See CatPositionRec (page 184)
for a description of the CatPositionRec data type.

forkName
On return, a pointer to the Unicode name of the fork. This parameter is optional; if you do not wish
the name returned, pass a NULL pointer. See HFSUniStr255 (page 238) for a description of the
HFSUniStr255 data type.

Functions 75
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

forkSize
On return, a pointer to the logical size of the fork, in bytes. This parameter is optional; if you do not
wish to retrieve the logical fork size, pass a NULL pointer.

forkPhysicalSize
On return, a pointer to the physical size of the fork (that is, to the amount of space allocated on disk),
in bytes. This parameter is optional; if you do not wish to retrieve the physical fork size, pass a NULL
pointer.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Since information is returned about one fork at a time, several calls may be required to iterate through all
the forks. There is no guarantee about the order in which forks are returned; the order may vary between
iterations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSLockRange
Locks a range of bytes of the specified fork.

OSStatus FSLockRange (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 *rangeStart
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSMakeFSRefUnicode
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

76 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSMakeFSRefUnicode (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 TextEncoding textEncodingHint,
 FSRef *newRef
);

Parameters
parentRef

A pointer to the FSRef of the parent directory of the file or directory for which to create a new FSRef.
See FSRef (page 220) for a description of the FSRef data type.

nameLength
The length of the file or directory name.

name
A pointer to the Unicode name for the file or directory. The name must be a leaf name; partial or full
pathnames are not allowed. If you have a partial or full pathname in Unicode, you will have to parse
it yourself and make multiple calls to FSMakeFSRefUnicode.

textEncodingHint
The suggested text encoding to use when converting the Unicode name of the file or directory to
some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager will use
a default value.

newRef
On return, if the function returns a result of noErr, a pointer to the new FSRef.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSMountLocalVolumeAsync
Mounts a volume asynchronously.

Functions 77
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSMountLocalVolumeAsync (
 CFStringRef diskID,
 CFURLRef mountDir,
 FSVolumeOperation volumeOp,
 void *clientData,
 OptionBits flags,
 FSVolumeMountUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
diskID

The disk to mount.

mountDir
Pass in NULL ; currently only NULL is supported.

volumeOp
An FSVolumeOperation returned by FSCreateVolumeOperation

clientData
A pointer to client data associated with the operation. This parameter can be NULL.

flags
Options for future use.

callback
The function to call when mount is complete. This parameter can be NULL.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function starts the process to mount the disk specified by the diskID parameter at the location specified
by the mountDir parameter. If mountDir is NULL, the default location is used. If a callback function is
provided, that function will be called when the mount operation is complete. Once this function returns
noErr the status of the operation can be found using the FSGetAsyncMountStatus function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMountLocalVolumeSync
Mounts a volume.

78 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSMountLocalVolumeSync (
 CFStringRef diskID,
 CFURLRef mountDir,
 FSVolumeRefNum *mountedVolumeRefNum,
 OptionBits flags
);

Parameters
diskID

The disk to mount.

mountDir
Pass in NULL; currently only NULL is supported.

mountedVolumeRefNum
On return, a pointer to the volume reference number of the newly mounted volume.

flags
Options for future use.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function mounts the disk specified by the diskID parameter at the location specified by the mountDir
parameter. If mountDir is NULL, the default location is used. This function returns after the mount is complete.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMountServerVolumeAsync
Mounts a server volume asynchronously.

OSStatus FSMountServerVolumeAsync (
 CFURLRef url,
 CFURLRef mountDir,
 CFStringRef user,
 CFStringRef password,
 FSVolumeOperation volumeOp,
 void *clientData,
 OptionBits flags,
 FSVolumeMountUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
url

The server to mount.

mountDir
The directory to mount the server to. If this parameter is NULL, the default location is used.

Functions 79
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

user
A string to pass as the user for authentication. This parameter can be NULL.

password
A string to pass as the password for authenticated log in. This parameter can be NULL.

volumeOp
An FSVolumeOperation returned by the FSCreateVolumeOperation function.

clientData
A pointer to client data associated with the operation. This parameter can be NULL.

flags
Options for future use.

callback
A function to call when the mount is complete. This parameter can be NULL.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function will start the process to mount the server specified by the url parameter at the location specified
by the mountDir parameter. If mountDir is NULL, the default location is used. An optional user and password
can be passed in for authentication. If no user or password is provided then the underlying file system will
handle authentication if required. If a callback function is provided, that function will be called when the
mount operation is complete. Once this function returns noErr the status of the operation can be found
using the FSGetAsyncMountStatus function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMountServerVolumeSync
Mounts a server volume.

OSStatus FSMountServerVolumeSync (
 CFURLRef url,
 CFURLRef mountDir,
 CFStringRef user,
 CFStringRef password,
 FSVolumeRefNum *mountedVolumeRefNum,
 OptionBits flags
);

Parameters
url

The server to mount.

80 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

mountDir
The directory to mount the server to. If this parameter is NULL, the default location is used.

user
A string to pass as the user for authentication.

password
A string to pass as the password for authenticated log in.

mountedVolumeRefNum
On return, a pointer to the volume reference number of the newly mounted volume.

flags
Options for future use.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function will mount the server specified by the url parameter at the location specified by the mountDir
parameter. If mountDir is NULL, the default location is used. An optional user and password can be passed
in for authentication. If no user or password is provided then the underlying file system will handle
authentication if required. This function returns after the mount is complete.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMoveObject
Moves a file or directory into a different directory.

OSErr FSMoveObject (
 const FSRef *ref,
 const FSRef *destDirectory,
 FSRef *newRef
);

Parameters
ref

A pointer to an FSRef specifying the file or directory to move. See FSRef (page 220) for a description
of the FSRef data type.

destDirectory
A pointer to an FSRef specifying the directory into which the file or directory indicated by the ref
parameter will be moved.

newRef
On return, a pointer to the new FSRef for the file or directory in its new location. This parameter is
optional; if you do not wish the FSRef returned, pass NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326). If the destDirectory parameter specifies a
non-existent object, dirNFErr is returned; if it refers to a file, errFSNotAFolder is returned. If the directory
specified in the destDirectory parameter is on a different volume than the file or directory indicated in
the ref parameter, diffVolErr is returned.

Functions 81
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
Moving an object may change its FSRef. If you want to continue to refer to the object, you should pass a
non- NULL pointer in the newRef parameter and use the FSRef returned there to refer to the object after
the move. The original FSRef passed in the ref parameter may or may not be usable after the move. The
newRef parameter may point to the same storage as the destDirectory or ref parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSMoveObjectAsync
Starts an asynchronous file operation to move a source object to a destination directory.

OSStatus FSMoveObjectAsync (
 FSFileOperationRef fileOp,
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 OptionBits flags,
 FSFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation.

source
A pointer to the source object to move. The object can be a file or a directory.

destDir
A pointer to the destination directory. If the destination directory is not on the same volume as the
source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 300). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 171). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

82 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 212). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSMoveObjectSync
Moves a source object to a destination directory.

OSStatus FSMoveObjectSync (
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 FSRef *target,
 OptionBits options
);

Parameters
source

A pointer to the source object to move. The object can be a file or a directory. On output, the source
object is no longer valid; if you want to refer to the moved object, you should use the FSRef variable
passed back in the target parameter.

destDir
A pointer to the destination directory. If the destination directory is not on the same volume as the
source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

target
A pointer to an FSRef variable that, on output, refers to the new object in the destination directory.
This parameter is optional; pass NULL if you don’t need to refer to the new object.

options
One or more file operation option flags. See “File Operation Options” (page 300). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Functions 83
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
If the destination directory is on the same volume as the source object, this is a fast operation. If the move
is across volumes, this function could take a significant amount of time to execute; you should either call it
in a thread other than the main thread or use FSMoveObjectAsync (page 82) instead.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSMoveObjectToTrashAsync
Starts an asynchronous file operation to move a source object to the Trash.

OSStatus FSMoveObjectToTrashAsync (
 FSFileOperationRef fileOp,
 const FSRef *source,
 OptionBits flags,
 FSFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation. For more information, see the function
FSFileOperationCreate (page 61).

source
A pointer to the source object to move. The object can be a file or a directory.

flags
One or more file operation option flags. See “File Operation Options” (page 300).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 171). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. This data is passed to the function you specify in
the callbackparameter. For more information, see FSFileOperationClientContext (page 212).
This parameter is optional; pass NULL if you don’t need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function starts an asynchronous file operation to move the object specified by the source parameter
to the Trash. If the source volume does not support a trash folder, the operation will fail and return an error
to the status callback specified in the callback parameter. (This is the same circumstance that triggers the
delete immediately behavior in the Finder.)

84 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Status callbacks occur on one of the runloop and mode combinations on which the operation was scheduled.
Upon successful completion of the operation, the last currentItem parameter (passed to the last status
callback or retrieved by calling FSFileOperationCopyStatus (page 60)) is the object in the Trash.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSMoveObjectToTrashSync
Moves a source object to the Trash.

OSStatus FSMoveObjectToTrashSync (
 const FSRef *source,
 FSRef *target,
 OptionBits options
);

Parameters
source

A pointer to the source object to move. The object can be a file or a directory. On output, the source
object is no longer valid; if you want to refer to the moved object, you should use the value passed
back in the target parameter.

target
A pointer to the target object that, on output, resides in a trash folder. This parameter is optional;
pass NULL if you don’t need to refer to this object.

options
One or more file operation option flags. See “File Operation Options” (page 300).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function moves a file or directory to the Trash, adjusting the object’s name if necessary. The appropriate
trash folder is chosen based on the source volume and the current user. If the source volume does not support
a trash folder, this function does nothing and returns an error. (This is the same circumstance that triggers
the delete immediately behavior in the Finder.)

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSOpenFork
Opens any fork of a file or directory for streaming access.

Functions 85
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSOpenFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 SInt8 permissions,
 FSIORefNum *forkRefNum
);

Parameters
ref

A pointer to an FSRef specifying the file or directory owning the fork to open. See FSRef (page 220)
for a description of the FSRef data type.

forkNameLength
The length of the fork name in Unicode characters.

forkName
A pointer to the Unicode name of the fork to open. You can obtain the string constants for the data
fork and resource fork names using the FSGetDataForkName (page 69) and
FSGetResourceForkName (page 72) functions. All volume formats should support data and resource
forks; other named forks may be supported by some volume formats.

permissions
A constant indicating the type of access which you wish to have to the fork via the returned fork
reference. This parameter is the same as the permission parameter passed to the FSpOpenDF and
FSpOpenRF functions. For a description of the types of access which you can request, see “File Access
Permission Constants” (page 291).

forkRefNum
On return, a pointer to the fork reference number for accessing the open fork.

Return Value
A result code. See “File Manager Result Codes” (page 326). On some file systems, FSOpenFork will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
When you use this function to open a file on a local volume and pass in a permissions value of fsCurPerm,
fsWrPerm, or fsRdWrPerm , Mac OS X does not guarantee exclusive file access. Before making any assumptions
about the underlying file access, you should always check to see whether the Supports Exclusive Locks feature
is available. If this feature is not available, your application cannot know whether another application has
access to the same file. For more information, see ADC Technical Note TN2037.

To access named forks or forks larger than 2GB, you must use the FSOpenFork function or one of the
corresponding parameter block calls: PBOpenForkSync and PBOpenForkAsync. To determine if the
FSOpenFork function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSOpenIterator
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

86 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

http://developer.apple.com/technotes/tn/tn2037.html

OSErr FSOpenIterator (
 const FSRef *container,
 FSIteratorFlags iteratorFlags,
 FSIterator *iterator
);

Parameters
container

A pointer to an FSRef for the directory to iterate. The set of items to iterate over can either be the
objects directly contained in the directory, or all items directly or indirectly contained in the directory
(in which case, the specified directory is the root of the subtree to iterate). See FSRef (page 220) for
a description of the FSRef data type.

iteratorFlags
A set of flags which controls whether the iterator iterates over subtrees or just the immediate children
of the container. See “Iterator Flags” (page 307) for a description of the flags defined for this parameter.

Iteration over subtrees which do not originate at the root directory of a volume are not currently
supported, and passing the kFSIterateSubtree flag in this parameter returns
errFSBadIteratorFlags. To determine whether subtree iterators are supported, check that the
bSupportsSubtreeIterators bit returned by PBHGetVolParmsSync (page 514) or
PBHGetVolParmsAsync (page 512) is set.

iterator
On return, a pointer to the new FSIterator. You can pass this iterator to the
FSGetCatalogInfoBulk (page 67) or FSCatalogSearch (page 45) functions and their parameter
block-based counterparts.

The iterator is automatically initialized so that the next use of the iterator returns the first item. The
order that items are returned in is volume format dependent and may be different for two different
iterators created with the same container and flags.

See FSIterator (page 218) for a description of the FSIterator data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Catalog iterators must be closed when you are done using them, whether or not you have iterated over all
the items. Iterators are automatically closed upon process termination, just like open files. However, you
should use the FSCloseIterator (page 48) function, or one of the related parameter block functions,
PBCloseIteratorSync (page 117) and PBCloseIteratorAsync (page 116) , to close an iterator to free up
any system resources allocated to the iterator.

Before calling this function, you should check that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Files.h

Functions 87
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSPathCopyObjectAsync
Starts an asynchronous file operation to copy a source object to a destination directory using pathnames.

OSStatus FSPathCopyObjectAsync (
 FSFileOperationRef fileOp,
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 OptionBits flags,
 FSPathFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this copy operation.

sourcePath
The UTF-8 pathname of the source object to copy. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 300).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 171). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 212). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

88 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSPathCopyObjectSync
Copies a source object to a destination directory using pathnames.

OSStatus FSPathCopyObjectSync (
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 char **targetPath,
 OptionBits options
);

Parameters
sourcePath

The UTF-8 pathname of the source object to copy. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

targetPath
A pointer to a char* variable that, on output, refers to the UTF-8 pathname of the new object in the
destination directory. If the operation fails, the pathname is set to NULL. When you no longer need
the pathname, you should free it. This parameter is optional; pass NULL if you don’t need the pathname.

options
One or more file operation option flags. See “File Operation Options” (page 300).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function could take a significant amount of time to execute. To avoid blocking your user interface, you
should either call this function in a thread other than the main thread or use FSPathCopyObjectAsync (page
88) instead.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathFileOperationCopyStatus
Gets a copy of the current status information for an asynchronous file operation that uses pathnames.

Functions 89
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSPathFileOperationCopyStatus (
 FSFileOperationRef fileOp,
 char **currentItem,
 FSFileOperationStage *stage,
 OSStatus *error,
 CFDictionaryRef *statusDictionary,
 void **info
);

Parameters
fileOp

The file operation to access.

currentItem
A pointer to a char* variable. On output, the variable refers to the UTF-8 pathname of the object
currently being moved or copied. If the operation is complete, this parameter refers to the target (the
new object corresponding to the source object in the destination directory). You should free the
pathname when you are finished using it.

stage
A pointer to a file operation stage variable. On output, the variable contains the current stage of the
file operation.

error
A pointer to an error status variable. On output, the variable contains the current error status of the
file operation.

statusDictionary
A pointer to a dictionary variable. On output, the variable contains a dictionary with more detailed
status information. For information about the contents of the dictionary, see “File Operation
Status Dictionary Keys” (page 302). You should release the dictionary when you are finished
using it.

info
A pointer to a generic pointer. On output, the generic pointer refers to user-defined data associated
with this file operation.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMakeRef
Converts a POSIX-style pathname into an FSRef structure.

90 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus FSPathMakeRef (
 const UInt8 *path,
 FSRef *ref,
 Boolean *isDirectory
);

Parameters
path

A UTF-8 C string that contains the pathname to convert.

ref
A pointer to an FSRef structure allocated by the caller. On output, the FSRef structure refers to the
object whose location is specified by the path parameter.

isDirectory
A pointer to a Boolean variable allocated by the caller. On output, true indicates the object is a
directory. This parameter is optional and may be NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
Files.h

FSPathMakeRefWithOptions
Converts a POSIX-style pathname into an FSRef structure with options.

OSStatus FSPathMakeRefWithOptions (
 const UInt8 *path,
 OptionBits options,
 FSRef *ref,
 Boolean *isDirectory
);

Parameters
path

A UTF-8 C string that contains the pathname to convert.

options
One or more conversion flags. See “Path Conversion Options” (page 311).

ref
A pointer to an FSRef structure allocated by the caller. On output, the FSRef structure refers to the
object whose location is specified by the path parameter. If the object is a symbolic link, the options
parameter determines whether the FSRef structure refers to the link itself or to the linked object.

isDirectory
A pointer to a Boolean variable allocated by the caller. On output, true indicates the object is a
directory. This parameter is optional and may be NULL.

Functions 91
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMoveObjectAsync
Starts an asynchronous file operation to move a source object to a destination directory using pathnames.

OSStatus FSPathMoveObjectAsync (
 FSFileOperationRef fileOp,
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 OptionBits flags,
 FSPathFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation.

sourcePath
The UTF-8 pathname of the source object to move. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory. If the destination directory is not on the same
volume as the source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 300). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 171). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 212). This parameter is optional; pass NULL if you don’t
need to supply a client context.

92 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMoveObjectSync
Moves a source object to a destination directory using pathnames.

OSStatus FSPathMoveObjectSync (
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 char **targetPath,
 OptionBits options
);

Parameters
sourcePath

The UTF-8 pathname of the source object to move. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory. If the destination directory is not on the same
volume as the source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

targetPath
A pointer to a char* variable that, on output, refers to the UTF-8 pathname of the new object in the
destination directory. When you no longer need the pathname, you should free it. If the operation
fails, the pathname is set to NULL. This parameter is optional; pass NULL if you don’t need the
pathname.

options
One or more file operation option flags. See “File Operation Options” (page 300). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If the destination directory is on the same volume as the source object, this is a fast operation. If the move
is across volumes, this function could take a significant amount of time to execute; you should call it in a
thread other than the main thread or use FSPathMoveObjectAsync (page 92) instead.

Functions 93
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMoveObjectToTrashAsync
Starts an asynchronous file operation to move a source object, specified using a pathname, to the Trash.

OSStatus FSPathMoveObjectToTrashAsync (
 FSFileOperationRef fileOp,
 const char *sourcePath,
 OptionBits flags,
 FSPathFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation. For more information, see the function
FSFileOperationCreate (page 61).

sourcePath
The UTF-8 pathname of the source object to move. The object can be a file or a directory.

flags
One or more file operation option flags. See “File Operation Options” (page 300).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 171). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. This data is passed to the function you specify in
the callbackparameter. For more information, see FSFileOperationClientContext (page 212).
This parameter is optional; pass NULL if you don’t need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function starts an asynchronous file operation to move the object specified by the sourcePath parameter
to the Trash. If the source volume does not support a trash folder, the operation will fail and return an error
to the status callback specified in the callback parameter. (This is the same circumstance that triggers the
delete immediately behavior in the Finder.)

Status callbacks occur on one of the runloop and mode combinations on which the operation was scheduled.
Upon successful completion of the operation, the last currentItem parameter (passed to the last status
callback or retrieved by calling FSFileOperationCopyStatus (page 60)) is the object in the Trash.

94 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSPathMoveObjectToTrashSync
Moves a source object, specified using a pathname, to the Trash.

OSStatus FSPathMoveObjectToTrashSync (
 const char *sourcePath,
 char **targetPath,
 OptionBits options
);

Parameters
sourcePath

The UTF-8 pathname of the source object to move. The object can be a file or a directory.

targetPath
A pointer to a char* variable that, on output, refers to the UTF-8 pathname of the target object in the
Trash. When you no longer need the pathname, you should free it. If the operation fails, the pathname
is set to NULL. This parameter is optional; pass NULL if you don’t need the pathname.

options
One or more file operation option flags. See “File Operation Options” (page 300).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function moves a file or directory to the Trash, adjusting the object’s name if necessary. The appropriate
trash folder is chosen based on the source volume and the current user. If the source volume does not support
a trash folder, this function does nothing and returns an error. (This is the same circumstance that triggers
the delete immediately behavior in the Finder.)

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSReadFork
Reads data from an open fork.

Functions 95
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSReadFork (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 ByteCount requestCount,
 void *buffer,
 ByteCount *actualCount
);

Parameters
forkRefNum

The reference number of the fork to read from. You should have previously opened this fork using
the FSOpenFork (page 85) call, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
A constant specifying the base location within the fork for the start of the read. See “Position Mode
Constants” (page 311) for a description of the constants which you can use to specify the base location.

The caller can also use this parameter to hint to the File Manager whether the data being read should
or should not be cached. Caching reads appropriately can be important in ensuring that your program
access files efficiently.

If you add the forceReadMask constant to the value you pass in this parameter, this tells the File
Manager to force the data to be read directly from the disk. This is different from adding the
noCacheMask constant since forceReadMask tells the File Manager to flush the appropriate part
of the cache first, then ignore any data already in the cache. However, data that is read may be placed
in the cache for future reads. The forceReadMask constant is also passed to the device driver,
indicating that the driver should avoid reading from any device caches.

See “Cache Constants” (page 272) for further description of the constants that you can use to indicate
your preference for caching the read.

positionOffset
The offset from the base location for the start of the read.

requestCount
The number of bytes to read.

buffer
A pointer to the buffer where the data will be returned.

actualCount
On return, a pointer to the number of bytes actually read. The value pointed to by the actualCount
parameter should be equal to the value in the requestCount parameter unless there was an error
during the read operation.

This parameter is optional; if you don’t want this information returned, set actualCount to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326). If there are fewer than requestCount bytes from
the specified position to the logical end-of-file, then all of those bytes are read, and eofErr is returned.

Discussion
FSReadFork reads data starting at the position specified by the positionMode and positionOffset
parameters. The function reads up to requestCountbytes into the buffer pointed to by the bufferparameter
and sets the fork’s current position to the byte immediately after the last byte read (that is, the initial position
plus actualCount).

96 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

To verify that data previously written has been correctly transferred to disk, read it back in using the
forceReadMask constant in the positionMode parameter and compare it with the data you previously
wrote.

When reading data from a fork, it is important to pay attention to that way that your program accesses the
fork, because this can have a significant performance impact. For best results, you should use an I/O size of
at least 4KB and block align your read requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSRefMakePath
Converts an FSRef structure into a POSIX-style pathname.

OSStatus FSRefMakePath (
 const FSRef *ref,
 UInt8 *path,
 UInt32 maxPathSize
);

Parameters
ref

A pointer to the FSRef structure to convert.

path
A pointer to a character buffer allocated by the caller. On output, the buffer contains a UTF-8 C string
that specifies the absolute path to the object referred to by the ref parameter. The File Manager
uses the maxPathSize parameter to make sure it does not overrun the buffer.

maxPathSize
The maximum number of bytes to copy into the buffer.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
Files.h

FSRenameUnicode
Renames a file or folder.

Functions 97
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSRenameUnicode (
 const FSRef *ref,
 UniCharCount nameLength,
 const UniChar *name,
 TextEncoding textEncodingHint,
 FSRef *newRef
);

Parameters
ref

A pointer to an FSRef for the file or directory to rename. See FSRef (page 220) for a description of
the FSRef data type.

nameLength
The length of the new name in Unicode characters.

name
A pointer to the new Unicode name of the file or directory.

textEncodingHint
The suggested text encoding to use when converting the Unicode name of the file or directory to
some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager will use
a default value.

newRef
On return, a pointer to the new FSRef for the file or directory. This parameter is optional; if you do
not wish the FSRef returned, pass NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Because renaming an object may change its FSRef, you should pass a non- NULL pointer in the newRef
parameter and use the FSRef returned there to access the object after the renaming, if you wish to continue
to refer to the object. The FSRef passed in the ref parameter may or may not be usable after the object is
renamed. The FSRef returned in the newRef parameter may point to the same storage as the FSRef passed
in ref.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSetCatalogInfo
Sets catalog information about a file or directory.

98 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSSetCatalogInfo (
 const FSRef *ref,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo
);

Parameters
ref

A pointer to an FSRef specifying the file or directory whose information is to be changed. See
FSRef (page 220) for a description of the FSRef data type.

whichInfo
A bitmap specifying which catalog information fields to set. Only some of the catalog information
fields may be set. These fields are given by the constant kFSCatInfoSettableInfo; no other bits
may be set in the whichInfo parameter. See “Catalog Information Bitmap Constants” (page 274) for
a description of the bits in this parameter.

To set the user ID (UID) and group ID (GID), specify the kFSCatInfoSetOwnership flag in this
parameter. The File Manager attempts to set the user and group ID to the values specified in the
permissions field of the catalog information structure. If FSSetCatalogInfo cannot set the user
and group IDs, it returns an error.

catalogInfo
A pointer to the structure containing the new catalog information. Only some of the catalog information
fields may be set. The fields which may be set are:

 ■ createDate

 ■ contentModDate

 ■ attributeModDate

 ■ accessDate

 ■ backupDate

 ■ permissions

 ■ finderInfo

 ■ extFinderInfo

 ■ textEncodingHint

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
Files.h

FSSetForkPosition
Sets the current position of an open fork.

Functions 99
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr FSSetForkPosition (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset
);

Parameters
forkRefNum

The reference number of a fork previously opened by the FSOpenFork (page 85),
PBOpenForkSync (page 152), or PBOpenForkAsync (page 151) function.

positionMode
A constant specifying the base location within the fork for the new position. If this parameter is equal
to fsAtMark, then the positionOffset parameter is ignored. See “Position Mode Constants” (page
311) for a description of the constants you can use to specify the base location.

positionOffset
The offset of the new position from the base location specified in the positionMode parameter.

Return Value
A result code. See “File Manager Result Codes” (page 326). This function returns the result code posErr if
you attempt to set the current position of the fork to an offset before the start of the file.

Special Considerations

To determine if the FSSetForkPosition function is present, call the Gestalt function with the
gestaltFSAttr selector. If the FSSetForkPosition function is present, but the volume does not directly
support it, the File Manager will automatically call the PBSetFPosSync (page 482) function. However, if the
volume does not directly support the FSSetForkPosition function, you can only set the file position for
the data and resource forks, and you cannot grow these files beyond 2GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSetForkSize
Changes the size of an open fork.

OSErr FSSetForkSize (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset
);

Parameters
forkRefNum

The reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 85) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
A constant indicating the base location within the fork for the new size. See “Position Mode
Constants” (page 311) for more information about the constants you can use to specify the base
location.

100 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

positionOffset
The offset of the new size from the base location specified in the positionMode parameter.

Return Value
A result code. See “File Manager Result Codes” (page 326). If there is not enough space on the volume to
extend the fork, then dskFulErr is returned and the fork’s size is unchanged.

Discussion
The FSSetForkSize function sets the logical end-of-file to the position indicated by the positionMode
and positionOffset parameters. The fork’s new size may be less than, equal to, or greater than the fork’s
current size. If the fork’s new size is greater than the fork’s current size, then the additional bytes, between
the old and new size, will have an undetermined value.

If the fork’s current position is larger than the fork’s new size, then the current position will be set to the new
fork size the current position will be equal to the logical end-of-file.

Special Considerations

You do not need to check that the volume supports the FSSetForkSize function. If a volume does not
support the FSSetForkSize function, but the FSSetForkSize function is present, the File Manager
automatically calls the PBSetEOFSync (page 480) function and translates between the calls appropriately.

Note, however, that if the volume does not support the FSSetForkSize function, you can only access the
data and resource forks, and you cannot grow the fork beyond 2GB. To check that the FSSetForkSize
function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSetVolumeInfo
Sets information about a volume.

OSErr FSSetVolumeInfo (
 FSVolumeRefNum volume,
 FSVolumeInfoBitmap whichInfo,
 const FSVolumeInfo *info
);

Parameters
volume

The volume reference number of the volume whose information is to be changed. See
FSVolumeRefNum (page 230) for a description of the FSVolumeRefNum data type.

whichInfo
A bitmap specifying which information to set. Only some of the volume information fields may be
set. The settable fields are given by the constant kFSVolInfoSettableInfo; no other bits may be
set in whichInfo. The fields which may be set are the backupDate, finderInfo, and flags fields. See
“Volume Information Bitmap Constants” (page 321) for a description of the bits in this parameter.

info
A pointer to the new volume information. See FSVolumeInfo (page 225) for a description of the
FSVolumeInfo data type.

Functions 101
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
To set information about the root directory of a volume, use the FSSetCatalogInfo (page 98) function,
or one of the corresponding parameter block calls, PBSetCatalogInfoSync (page 161) and
PBSetCatalogInfoAsync (page 159).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSUnlockRange
Unlocks a range of bytes of the specified fork.

OSStatus FSUnlockRange (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 *rangeStart
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSUnmountVolumeAsync
Unmounts a volume asynchronously.

OSStatus FSUnmountVolumeAsync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 FSVolumeOperation volumeOp,
 void *clientData,
 FSVolumeUnmountUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
vRefNum

The volume reference number of the volume to unmount.

flags
Options for future use.

volumeOp
An FSVolumeOperation returned by the FSCreateVolumeOperation function.

102 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

clientData
A pointer to client data associated with the operation.

callback
The function to call when the unmount is complete.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function starts the process of unmounting the volume specified by the vRefNum parameter. If a callback
function is provided, that function will be called when the unmount operation is complete. Once this function
returns noErr the status of the operation can be found using the FSGetAsyncUnmountStatus function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSUnmountVolumeSync
Unmounts a volume.

OSStatus FSUnmountVolumeSync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 pid_t *dissenter
);

Parameters
vRefNum

The volume reference number of the volume to unmount.

flags
Options for future use.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the unmount is denied.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
This function unmounts the volume specified by the vRefNum parameter. If the volume cannot be unmounted
the pid of the process which denied the unmount will be returned in the dissenter parameter. This function
returns after the unmount is complete.

Availability
Available in Mac OS X v10.2 and later.

Functions 103
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

FSVolumeMount
Mounts a volume using the specified mounting information.

OSStatus FSVolumeMount (
 BytePtr buffer,
 FSVolumeRefNum *mountedVolume
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSWriteFork
Writes data to an open fork.

OSErr FSWriteFork (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 ByteCount requestCount,
 const void *buffer,
 ByteCount *actualCount
);

Parameters
forkRefNum

The reference number of the fork to which to write. You should have previously opened the fork using
the FSOpenFork (page 85) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
A constant specifying the base location within the fork for the start of the write. See “Position Mode
Constants” (page 311) for a description of the constants which you can use to specify the base location.

The caller can also use this parameter to hint to the File Manager whether the data being written
should or should not be cached. See “Cache Constants” (page 272) for further description of the
constants that you can use to indicate your preference for caching.

positionOffset
The offset from the base location for the start of the write.

requestCount
The number of bytes to write.

buffer
A pointer to a buffer containing the data to write.

104 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

actualCount
On return, a pointer to the number of bytes actually written. The value pointed to by the actualCount
parameter will be equal to the value in the requestCount parameter unless there was an error during
the write operation.

This parameter is optional; if you don’t want this information, set actualCount to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 326). If there is not enough space on the volume to
write requestCount bytes, then dskFulErr is returned.

Discussion
FSWriteFork writes data starting at the position specified by the positionMode and positionOffset
parameters. The function attempts to write requestCount bytes from the buffer pointed at by the buffer
parameter and sets the fork’s current position to the byte immediately after the last byte written (that is, the
initial position plus actualCount).

When writing data to a fork, it is important to pay attention to that way that your program accesses the fork,
because this can have a significant performance impact. For best results, you should use an I/O size of at
least 4KB and block align your write requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

InvokeFNSubscriptionUPP
Calls your directory change callback function.

void InvokeFNSubscriptionUPP (
 FNMessage message,
 OptionBits flags,
 void *refcon,
 FNSubscriptionRef subscription,
 FNSubscriptionUPP userUPP
);

Discussion
The File Manager calls this function to invoke the directory change function which you have provided for
use after an asynchronous call has been completed. You should not need to use this function yourself. For
more information on directory change functions, see FNSubscriptionProcPtr (page 171).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

InvokeFSVolumeEjectUPP
Calls your volume ejection callback function.

Functions 105
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void InvokeFSVolumeEjectUPP (
 FSVolumeOperation volumeOp,
 void *clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter,
 FSVolumeEjectUPP userUPP
);

Discussion
The File Manager calls this function to invoke the volume ejection function which you have provided for use
after an asynchronous call has been completed. You should not need to use this function yourself. For more
information on change notification functions, see FSVolumeEjectProcPtr (page 174).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

InvokeFSVolumeMountUPP
Calls your volume mount callback function.

void InvokeFSVolumeMountUPP (
 FSVolumeOperation volumeOp,
 void *clientData,
 OSStatus err,
 FSVolumeRefNum mountedVolumeRefNum,
 FSVolumeMountUPP userUPP
);

Discussion
The File Manager calls this function to invoke the volume mount function which you have provided for use
after an asynchronous call has been completed. You should not need to use this function yourself. For more
information on change notification functions, see FSVolumeMountProcPtr (page 175).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

InvokeFSVolumeUnmountUPP
Calls your volume unmount callback function.

106 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void InvokeFSVolumeUnmountUPP (
 FSVolumeOperation volumeOp,
 void *clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter,
 FSVolumeUnmountUPP userUPP
);

Discussion
The File Manager calls this function to invoke the volume unmount function which you have provided for
use after an asynchronous call has been completed. You should not need to use this function yourself. For
more information on change notification functions, see FSVolumeUnmountProcPtr (page 176).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

InvokeIOCompletionUPP
Calls your I/O completion callback function.

void InvokeIOCompletionUPP (
 ParmBlkPtr paramBlock,
 IOCompletionUPP userUPP
);

Discussion
The File Manager calls this function to invoke the I/O completion function which you have provided for use
after an asynchronous call has been completed. You should not need to use this function yourself. For more
information on I/O completion functions, see IOCompletionProcPtr (page 176).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

NewFNSubscriptionUPP
Creates a new universal procedure pointer (UPP) to your directory change callback function.

FNSubscriptionUPP NewFNSubscriptionUPP (
 FNSubscriptionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a directory change callback function. For more information, see
FNSubscriptionProcPtr (page 171).

Return Value
A UPP to your directory change callback function.

Functions 107
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

NewFSVolumeEjectUPP
Creates a new universal procedure pointer (UPP) to your volume ejection callback function.

FSVolumeEjectUPP NewFSVolumeEjectUPP (
 FSVolumeEjectProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a volume ejection callback function. For more information, see
FSVolumeEjectProcPtr (page 174).

Return Value
A UPP to your volume ejection callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

NewFSVolumeMountUPP
Creates a new universal procedure pointer (UPP) to your volume mount callback function.

FSVolumeMountUPP NewFSVolumeMountUPP (
 FSVolumeMountProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a volume mount callback function. For more information, see
FSVolumeEjectProcPtr (page 174).

Return Value
A UPP to your volume mount callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

NewFSVolumeUnmountUPP
Creates a new universal procedure pointer (UPP) to your volume unmount callback function.

108 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSVolumeUnmountUPP NewFSVolumeUnmountUPP (
 FSVolumeUnmountProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a volume unmount callback function. For more information, see
FSVolumeUnmountProcPtr (page 176).

Return Value
A UPP to your volume unmount callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

NewIOCompletionUPP
Creates a new universal procedure pointer (UPP) to your I/O completion callback function.

IOCompletionUPP NewIOCompletionUPP (
 IOCompletionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your I/O completion callback function. For more information, see
IOCompletionProcPtr (page 176).

Return Value
A UPP to your I/O completion callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBAllocateForkAsync
Allocates space on a volume to an open fork.

void PBAllocateForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

Functions 109
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 85) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

allocationFlags
On input, a constant indicating how the new space should be allocated. See “Allocation Flags” (page
270) for a description of the constants which you can use in this field.

positionMode
On input, a constant specifying the base location within the fork for the start of the allocation. See
“Position Mode Constants” (page 311) for more information on the constants which you can use to
specify the base location.

positionOffset
On input, the offset from the base location of the start of the allocation.

allocationAmount
On input, the number of bytes to allocate. On output, the number of bytes actually allocated to the
file. The number of bytes allocated may be smaller than the requested amount if some of the space
was already allocated. The value returned in this field does not reflect any additional bytes that may
have been allocated because space is allocated in terms of fixed units such as allocation blocks, or
the use of a clump size to reduce fragmentation.

The PBAllocateForkAsync function attempts to allocate the number of requested bytes of physical storage
starting at the offset specified by the positionMode and positionOffset fields. For volume formats that
support preallocated space, you can later write to this range of bytes (including extending the size of the
fork) without requiring an implicit allocation.

Any extra space allocated but not used will be deallocated when the fork is closed, using FSCloseFork (page
47) , PBCloseForkSync (page 115) , or PBCloseForkAsync (page 115) ; or when flushed, using
FSFlushFork (page 63) , PBFlushForkSync (page 131) , or PBFlushForkAsync (page 130).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBAllocateForkSync
Allocates space on a volume to an open fork.

110 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr PBAllocateForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 85) function, or with one of the corresponding parameter block functions,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

allocationFlags
On input, a constant indicating how the new space should be allocated. See “Allocation Flags” (page
270) for a description of the constants you can use in this field.

positionMode
On input, a constant specifying the base location within the fork for the start of the allocation. See
“Position Mode Constants” (page 311) for more information on the constants which you can use to
specify the base location.

positionOffset
On input, the offset from the base location of the start of the allocation.

allocationAmount
On input, the number of bytes to allocate. On output, the number of bytes actually allocated to the
file. The number of bytes allocated may be smaller than the requested amount if some of the space
was already allocated. The value returned in this field does not reflect any additional bytes that may
have been allocated because space is allocated in terms of fixed units such as allocation blocks, or
the use of a clump size to reduce fragmentation.

The PBAllocateForkSync function attempts to allocate the number of requested bytes of physical storage
starting at the offset specified by the positionMode and positionOffset fields. For volume formats that
support preallocated space, you can later write to this range of bytes (including extending the size of the
fork) without requiring an implicit allocation.

Any extra space allocated but not used will be deallocated when the fork is closed, using FSCloseFork (page
47) , PBCloseForkSync (page 115) , or PBCloseForkAsync (page 115) ; or when flushed, using
FSFlushFork (page 63) , PBFlushForkSync (page 131) , or PBFlushForkAsync (page 130).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCatalogSearchAsync
Searches for objects traversed by a catalog iterator that match a given set of criteria.

Functions 111
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBCatalogSearchAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of this parameter are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. When the entire volume has been searched,
errFSNoMoreItems is returned.

iterator
On input, the iterator to use. Objects traversed by this iterator are matched against the criteria specified
by the searchParams field. You can obtain a catalog iterator with the function
FSOpenIterator (page 86) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 154) and PBOpenIteratorAsync (page 153). Currently, this iterator
must be created with the kFSIterateSubtree option and the container must be the root directory
of a volume. See FSIterator (page 218) for more information on the FSIterator data type.

searchParams
On input, a pointer to an FSSearchParams (page 222) structure containing the search criteria. You
can match against the object’s name in Unicode and by the fields in an FSCatalogInfo (page 209)
structure. You may use the same search bits as passed in the ioSearchBits field to the
PBCatSearchSync (page 380) and PBCatSearchAsync (page 378) functions; they control the
corresponding FSCatalogInfo fields. See “Catalog Search Masks” (page 283) for a description of the
search bits. There are a few new search criteria supported by PBCatalogSearchAsync but not by
PBCatSearchSync and PBCatSearchAsync. These new search criteria are indicated by the constants
described in “Catalog Search Constants” (page 282).If the searchTime field of this structure is non-zero,
it is interpreted as a Time Manager duration; the search may terminate after this duration even if
maximumItems objects have not been returned and the entire catalog has not been scanned. If
searchTime is zero, there is no time limit for the search. If you are searching by any criteria other
than name, you must set the searchInfo1 and searchInfo2 fields of the structure in this field to
point to FSCatalogInfo structures containing the values to match against.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items returned for this call.

containerChanged
On output, a Boolean value indicating whether the container’s contents have changed. If true, the
container’s contents changed since the previous PBCatalogSearchAsync call. Objects may still be
returned even though the container changed. Note that if the container has changed, then the total
set of items returned may be incorrect; some items may be returned multiple times, and some items
may not be returned at all.

112 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. See “Catalog
Information Bitmap Constants” (page 274) for a description of the bits in this field.

catalogInfo
On output, a pointer to an array of FSCatalogInfo (page 209) structures; one for each found item.
On input, the catalogInfo field should point to an array of maximumItems catalog information
structures. This field is optional; if you do not wish any catalog information returned, pass NULL here.

refs
On output, a pointer to an array of FSRef (page 220) structures; one for each returned item. On input,
if you want an FSRef for each item found, pass a pointer to an array of maximumItems FSRef
structures. Otherwise, pass NULL.

names
On output, a pointer to an array of filenames; one for each returned item. On input, if you want the
Unicode filename for each item found, pass a pointer to an array of maximumItems
HFSUniStr255 (page 238) structures. Otherwise, pass NULL.

A single search may span more than one call to PBCatalogSearchAsync. The call may complete with no
error before scanning the entire volume. This typically happens because the time limit (searchTime) has
been reached or maximumItems items have been returned. If the search is not completed, you can continue
the search by making another call to PBCatalogSearchAsync and passing the updated iterator returned
by the previous call in the iterator field.

Before calling this function, you should determine that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCatalogSearchSync
Searches for objects traversed by a catalog iterator that match a given set of criteria.

OSErr PBCatalogSearchSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). When the entire volume has been searched,
errFSNoMoreItems is returned.

Discussion
The relevant fields of this parameter are:

Functions 113
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

iterator
On input, the iterator to use. Objects traversed by this iterator are matched against the criteria specified
by the searchParams field. You can obtain a catalog iterator with the function
FSOpenIterator (page 86) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 154) and PBOpenIteratorAsync (page 153). Currently, this iterator
must be created with the kFSIterateSubtree option and the container must be the root directory
of a volume. See FSIterator (page 218) for more information on the FSIterator data type.

searchParams
On input, a pointer to an FSSearchParams (page 222) structure containing the search criteria. You
can match against the object’s name in Unicode and by the fields in an FSCatalogInfo (page 209)
structure. You may use the same search bits as passed in the ioSearchBits field to the
PBCatSearchSync (page 380) and PBCatSearchAsync (page 378) functions; they control the
corresponding FSCatalogInfo fields. See “Catalog Search Masks” (page 283) for a description of the
search bits. There are a few new search criteria supported by PBCatalogSearchSync but not by
PBCatSearchSync and PBCatSearchAsync. These new search criteria are indicated by the constants
described in “Catalog Search Constants” (page 282).If the searchTime field of this structure is non-zero,
it is interpreted as a Time Manager duration; the search may terminate after this duration even if
maximumItems objects have not been returned and the entire catalog has not been scanned. If
searchTime is zero, there is no time limit for the search. If you are searching by any criteria other
than name, you must set the searchInfo1 and searchInfo2 fields of the structure in this field to
point to FSCatalogInfo structures containing the values to match against.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items returned for this call.

containerChanged
On output, a Boolean value indicating whether the container’s contents have changed. If true, the
container’s contents changed since the previous PBCatalogSearchSync call. Objects may still be
returned even though the container changed. Note that if the container has changed, then the total
set of items returned may be incorrect; some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. See “Catalog
Information Bitmap Constants” (page 274) for a description of the bits in this field.

catalogInfo
On output, a pointer to an array of FSCatalogInfo (page 209) structures; one for each found item.
On input, the catalogInfo field should point to an array of maximumItems catalog information
structures. This field is optional; if you do not wish any catalog information returned, pass NULL here.

refs
On output, a pointer to an array of FSRef (page 220) structures; one for each returned item. On input,
if you want an FSRef for each item found, pass a pointer to an array of maximumItems FSRef
structures. Otherwise, pass NULL.

names
On output, a pointer to an array of filenames; one for each returned item. On input, if you want the
Unicode filename for each item found, pass a pointer to an array of maximumItems
HFSUniStr255 (page 238) structures. Otherwise, pass NULL.

114 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

A single search may span more than one call to PBCatalogSearchSync. The call may complete with no
error before scanning the entire volume. This typically happens because the time limit (searchTime) has
been reached or maximumItems items have been returned. If the search is not completed, you can continue
the search by making another call to PBCatalogSearchSync and passing the updated iterator returned by
the previous call in the iterator field.

Before calling this function, you should determine that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseForkAsync
Closes an open fork.

void PBCloseForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the fork to close. After the call to this function, the reference
number in this parameter is invalid.

The PBCloseForkAsync function causes all data written to the fork to be written to disk, in the same manner
as the PBFlushForkAsync (page 130) function, before it closes the fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseForkSync
Closes an open fork.

Functions 115
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr PBCloseForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant field of the parameter block is:

forkRefNum
On input, the reference number of the fork to close. After the call to this function, the reference
number in this parameter is invalid.

The PBCloseForkSync function causes all data written to the fork to be written to disk, in the same manner
as the PBFlushForkSync (page 131) function, before it closes the fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseIteratorAsync
Closes a catalog iterator.

void PBCloseIteratorAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

iterator
On input, the catalog iterator to close. PBCloseIteratorAsync releases memory and other system
resources used by the iterator, making the iterator invalid. See FSIterator (page 218) for a description
of the FSIterator data type.

116 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseIteratorSync
Closes a catalog iterator.

OSErr PBCloseIteratorSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant field of the parameter block is:

iterator
On input, the catalog iterator to close. PBCloseIteratorSync releases memory and other system
resources used by the iterator, making the iterator invalid. See FSIterator (page 218) for a description
of the FSIterator data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCompareFSRefsAsync
Determines whether two FSRef structures refer to the same file or directory.

void PBCompareFSRefsAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

Functions 117
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information about completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If the two FSRef structures refer to the same file or directory,
then noErr is returned. If they refer to objects on different volumes, then diffVolErr is returned.
If they refer to different files or directories on the same volume, then errFSRefsDifferent is
returned. This call may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.
See “File Manager Result Codes”.

ref
On input, a pointer to the first FSRef to compare. See FSRef (page 220) for a description of the FSRef
data type.

parentRef
On input, a pointer to the second FSRef to compare.

You must use FSCompareFSRefs (page 48) , or one of the corresponding parameter block functions,
PBCompareFSRefsSync (page 118) and PBCompareFSRefsAsync, to compare FSRef structures. It is not
possible to compare the FSRef structures directly since some bytes may be uninitialized, case-insensitive
text, or contain hint information.

Some volume formats may be able to tell that two FSRef structures would refer to two different files or
directories, without having to actually find those objects. In this case, the volume format may return
errFSRefsDifferent even if one or both objects no longer exist. Similarly, if the FSRef structures are for
objects on different volumes, the File Manager will return diffVolErr even if one or both volumes are no
longer mounted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCompareFSRefsSync
Determines whether two FSRef structures refer to the same file or directory.

OSErr PBCompareFSRefsSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If the two FSRef structures refer to the same file
or directory, then noErr is returned. If they refer to objects on different volumes, then diffVolErr is
returned. If they refer to different files or directories on the same volume, then errFSRefsDifferent is
returned. This function may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.

Discussion
The relevant fields of the parameter block are:

118 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ref
On input, a pointer to the first FSRef to compare. See FSRef (page 220) for a description of the FSRef
data type.

parentRef
On input, a pointer to the second FSRef to compare.

You must use FSCompareFSRefs (page 48) , or one of the corresponding parameter block functions,
PBCompareFSRefsSync and PBCompareFSRefsAsync (page 117) , to compare FSRef structures. It is not
possible to compare the FSRef structures directly since some bytes may be uninitialized, case-insensitive
text, or contain hint information.

Some volume formats may be able to tell that two FSRef structures would refer to two different files or
directories, without having to actually find those objects. In this case, the volume format may return
errFSRefsDifferent even if one or both objects no longer exist. Similarly, if the FSRef structures are for
objects on different volumes, the File Manager will return diffVolErr even if one or both volumes are no
longer mounted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateDirectoryUnicodeAsync
Creates a new directory (folder) with a Unicode name.

void PBCreateDirectoryUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information about completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ref
On input, a pointer to an FSRef (page 220) for the parent directory where the new directory is to be
created.

nameLength
On input, the number of Unicode characters in the new directory's name.

name
On input, a pointer to the Unicode name of the new directory.

Functions 119
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new directory. Specify
the values for these fields in the catInfo field. If you do not wish to set catalog information for the
new directory, specify the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 274) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 209) structure which specifies the values of the new
directory’s catalog information fields. Specify which fields to set in the whichInfo field. Specify NULL
if you do not wish to set catalog information for the new directory.

newRef
On output, a pointer to the FSRef for the new directory. If you do not want the FSRef returned, pass
NULL on input.

spec
On output, a pointer to the FSSpec (page 223) for the new directory. If you do not want the FSSpec
returned, pass NULL on input.

ioDirID
On output, the directory ID of the new directory.

You may optionally set catalog information for the new directory using the whichInfo and catInfo fields;
this is equivalent to calling FSSetCatalogInfo (page 98) , or one of the corresponding parameter block
functions, PBSetCatalogInfoSync (page 161) and PBSetCatalogInfoAsync (page 159) , after creating
the directory.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateDirectoryUnicodeSync
Creates a new directory (folder) with a Unicode name.

OSErr PBCreateDirectoryUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

120 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ref
On input, a pointer to an FSRef (page 220) for the parent directory where the new directory is to be
created.

nameLength
On input, the number of Unicode characters in the new directory's name.

name
On input, a pointer to the Unicode name of the new directory.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new directory. Specify
the values for these fields in the catInfo field. If you do not wish to set catalog information for the
new directory, specify the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 274) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 209) structure which specifies the values of the new
directory’s catalog information fields. Specify which fields to set in the whichInfo field. Specify NULL
if you do not wish to set catalog information for the new directory.

newRef
On output, a pointer to the FSRef for the new directory. If you do not want the FSRef returned, pass
NULL on input.

spec
On output, a pointer to the FSSpec (page 223) for the new directory. If you do not want the FSSpec
returned, pass NULL on input.

ioDirID
On output, the directory ID of the new directory.

You may optionally set catalog information for the new directory using the whichInfo and catInfo fields;
this is equivalent to calling FSSetCatalogInfo (page 98) , or one of the corresponding parameter block
functions, PBSetCatalogInfoSync (page 161) and PBSetCatalogInfoAsync (page 159) , after creating
the directory.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateFileUnicodeAsync
Creates a new file with a Unicode name.

Functions 121
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBCreateFileUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ref
On input, a pointer to an FSRef (page 220) for the directory where the file is to be created.

nameLength
On input, the number of Unicode characters in the file's name.

name
On input, a pointer to the Unicode name of the new file.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new file. Specify the
values for these fields in the catInfo field. If you do not wish to set catalog information for the new
file, pass the constant kFSCatInfoNone here. See “Catalog Information Bitmap Constants” (page
274) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 209) structure which specifies the values of the new
file’s catalog information fields. Specify which fields to set in the whichInfo field. This field is optional;
specify NULL if you do not wish to set catalog information for the new file.

newRef
On output, a pointer to the FSRef for the new file. If you do not want the FSRef returned, pass NULL
on input.

spec
On output, a pointer to the FSSpec for the new file. If you do not want the FSSpec (page 223) returned,
pass NULL on input.

You may optionally set catalog information for the file using the whichInfo and catInfo fields; this is
equivalent to calling FSSetCatalogInfo (page 98) , or one of the corresponding parameter block functions,
PBSetCatalogInfoSync (page 161) and PBSetCatalogInfoAsync (page 159) , after creating the file.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

122 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Special Considerations

If the PBCreateFileUnicodeAsync function is present, but is not implemented by a particular volume, the
File Manager will emulate this function by making the appropriate call to PBHCreateAsync (page 434).
However, if the function is not directly supported by the volume, you will not be able to use the long Unicode
filenames, or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateFileUnicodeSync
Creates a new file with a Unicode name.

OSErr PBCreateFileUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 220) for the directory where the file is to be created.

nameLength
On input, the number of Unicode characters in the file's name.

name
On input, a pointer to the Unicode name of the new file.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new file. Specify the
values for these fields in the catInfo field. If you do not wish to set catalog information for the new
file, pass the constant kFSCatInfoNone here. See “Catalog Information Bitmap Constants” (page
274) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 209) structure which specifies the values of the new
file’s catalog information fields. Specify which fields to set in the whichInfo field. This field is optional;
specify NULL if you do not wish to set catalog information for the new file.

newRef
On output, a pointer to the FSRef for the new file. If you do not want the FSRef returned, set this
field to NULL on input.

Functions 123
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

spec
On output, a pointer to the FSSpec (page 223) for the new file. If you do not want the FSSpec returned,
set this field to NULL on input.

You may optionally set catalog information for the new file using the whichInfo and catInfo fields; this
is equivalent to calling FSSetCatalogInfo (page 98) , or one of the corresponding parameter block
functions, PBSetCatalogInfoSync (page 161) and PBSetCatalogInfoAsync (page 159) , after creating
the file.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

Special Considerations

If the PBCreateFileUnicodeSync function is present, but is not implemented by a particular volume, the
File Manager will emulate this function by making the appropriate call to PBHCreateSync (page 436). However,
if the function is not directly supported by the volume, you will not be able to use the long Unicode filenames,
or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateForkAsync
Creates a named fork for a file or directory.

void PBCreateForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If the named fork already exists, the function returns
errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given
volume, PBCreateForkAsync returns errFSBadForkName or errFSNameTooLong.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory.

forkNameLength
On input, the length of the Unicode name of the new fork.

124 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

forkName
On input, a pointer to the Unicode name of the fork.

A newly created fork has zero length (that is, its logical end-of-file is zero). The data and resource forks of a
file are automatically created and deleted as needed. This is done for compatibility with older APIs, and
because data and resource forks are often handled specially. If a given fork always exists for a given volume
format (such as data and resource forks for HFS and HFS Plus, or data forks for most other volume formats),
an attempt to create that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateForkSync
Creates a named fork for a file or directory.

OSErr PBCreateForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). . If the named fork already exists, the function
returns errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given
volume, PBCreateForkSync returns errFSBadForkName or errFSNameTooLong.

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function. If the named fork already exists, the function returns
errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given
volume, PBCreateForkAsync returns errFSBadForkName or errFSNameTooLong.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory.

forkNameLength
On input, the length of the Unicode name of the new fork.

forkName
On input, a pointer to the Unicode name of the fork.

A newly created fork has zero length (that is, its logical end-of-file is zero). The data and resource forks of a
file are automatically created and deleted as needed. This is done for compatibility with older APIs, and
because data and resource forks are often handled specially. If a given fork always exists for a given volume
format (such as data and resource forks for HFS and HFS Plus, or data forks for most other volume formats),
an attempt to create that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

Functions 125
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteForkAsync
Deletes a named fork of a file or directory.

void PBDeleteForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If the named fork does not exist, the function returns
errFSForkNotFound.

ref
On input, a pointer to an FSRef (page 220) for the file or directory from which to delete the fork.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to delete.

The permissions, forkRefNum, positionMode, and positionOffset fields of the parameter block may
be modified by this call.

Any storage allocated to the fork is released. If a given fork always exists for a given volume format (such as
data and resource forks for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteForkSync
Deletes a named fork from a file or directory.

126 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr PBDeleteForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If the named fork does not exist, the function
returns errFSForkNotFound.

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 220) for the file or directory from which to delete the fork.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to delete.

The permissions, forkRefNum, positionMode, and positionOffset fields of the parameter block may
be modified by this call.

Any storage allocated to the fork is released. If a given fork always exists for a given volume format (such as
data and resource forks for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteObjectAsync
Deletes a file or an empty directory.

void PBDeleteObjectAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

Functions 127
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
A result code. See “File Manager Result Codes” (page 326). If you attempt to delete a folder for which
there is an open catalog iterator, this function succeeds and returns noErr. Iteration, however, will
continue to work until the iterator is closed.

ref
On input, a pointer to the FSRef (page 220) for the file or directory to be deleted. If the object to be
deleted is a directory, it must be empty (it must contain no files or folders).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteObjectSync
Deletes a file or an empty directory.

OSErr PBDeleteObjectSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you attempt to delete a folder for which there
is an open catalog iterator, this function succeeds and returns noErr. Iteration, however, will continue to
work until the iterator is closed.

Discussion
The relevant field of the parameter block is:

ref
On input, a pointer to the FSRef (page 220) for the file or directory to be deleted. If the object to be
deleted is a directory, it must be empty (it must contain no files or folders).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBExchangeObjectsAsync
Swaps the contents of two files.

128 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBExchangeObjectsAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 220) for the first file.

parentRef
On input, a pointer to an FSRef for the second file.

The PBExchangeObjectsAsync function allows programs to implement a “safe save” operation by creating
and writing a complete new file and swapping the contents. An alias, FSSpec, or FSRef that refers to the
old file will now access the new data. The corresponding information in in-memory data structures are also
exchanged.

Either or both files may have open access paths. After the exchange, the access path will refer to the opposite
file’s data (that is, to the same data it originally referred, which is now part of the other file).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBExchangeObjectsSync
Swaps the contents of two files.

OSErr PBExchangeObjectsSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

Functions 129
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ref
On input, a pointer to an FSRef (page 220) for the first file.

parentRef
On input, a pointer to an FSRef for the second file.

The PBExchangeObjectsSync function allows programs to implement a “safe save” operation by creating
and writing a complete new file and swapping the contents. An alias, FSSpec, or FSRef that refers to the
old file will now access the new data. The corresponding information in in-memory data structures are also
exchanged.

Either or both files may have open access paths. After the exchange, the access path will refer to the opposite
file’s data (that is, to the same data it originally referred, which is now part of the other file).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBFlushForkAsync
Causes all data written to an open fork to be written to disk.

void PBFlushForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for more information on the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the fork to flush.

The PBFlushForkAsync function causes the actual fork contents to be written to disk, as well as any other
volume structures needed to access the fork. On HFS and HFS Plus, this includes the catalog, extents, and
attribute B-trees; the volume bitmap; and the volume header and alternate volume header (the MDB and
alternate MDB on HFS volumes), as needed.

On volumes that do not support PBFlushForkAsync directly, the entire volume is flushed to be sure all
volume structures associated with the fork are written to disk.

You do not, need to use PBFlushForkAsync to flush a file fork before it is closed; the file is automatically
flushed when it is closed and all cache blocks associated with it are removed from the cache.

130 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBFlushForkSync
Causes all data written to an open fork to be written to disk.

OSErr PBFlushForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for more information on the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant field of the parameter block is:

forkRefNum
On input, the reference number of the fork to flush.

The PBFlushForkSync function causes the actual fork contents to be written to disk, as well as any other
volume structures needed to access the fork. On HFS and HFS Plus, this includes the catalog, extents, and
attribute B-trees; the volume bitmap; and the volume header and alternate volume header (the MDB and
alternate MDB on HFS volumes), as needed.

On volumes that do not support PBFlushForkSync directly, the entire volume is flushed to be sure all
volume structures associated with the fork are written to disk.

You do not, need to use PBFlushForkSync to flush a file fork before it is closed; the file is automatically
flushed when it is closed and all cache blocks associated with it are removed from the cache.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBFlushVolumeAsync
For the specified volume, writes all open and modified files in the current process to permanent storage.

Functions 131
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSStatus PBFlushVolumeAsync (
 FSRefParamPtr paramBlock
);

Parameters
paramBlock

A parameter block containing the volume reference number of the volume to flush. See
FSRefParam (page 220).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

PBFlushVolumeSync
For the specified volume, writes all open and modified files in the current process to permanent storage.

OSStatus PBFlushVolumeSync (
 FSRefParamPtr paramBlock
);

Parameters
paramBlock

A parameter block containing the volume reference number of the volume to flush. See
FSRefParam (page 220).

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

PBFSCopyFileAsync
Duplicates a file and optionally renames it.

OSStatus PBFSCopyFileAsync (
 FSRefParamPtr paramBlock
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

132 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBFSCopyFileSync
Duplicates a file and optionally renames it.

OSStatus PBFSCopyFileSync (
 FSRefParamPtr paramBlock
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

PBGetCatalogInfoAsync
Returns catalog information about a file or directory. You can use this function to map from an FSRef to an
FSSpec.

void PBGetCatalogInfoAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) fro s description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory for which to retrieve
information.

whichInfo
On input, a bitmap specifying the catalog information fields to return. If you don’t want any catalog
information, set whichInfo to the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 274) for a description of the bits in this field.

catInfo
On output, a pointer to an FSCatalogInfo (page 209) structure containing the information about
the file or directory. Only the information specified in the whichInfo field is returned. If you don’t
want any catalog information, pass NULL here.

spec
On output, a pointer to the FSSpec (page 223) for the file or directory. This output is optional; if you
do not wish the FSSpec returned, pass NULL here.

Functions 133
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

parentRef
On output, a pointer to the FSRef for the object's parent directory. This output is optional; if you do
not wish the parent directory returned, pass NULL here. If the object specified in the ref field is a
volume’s root directory, then the FSRef returned in this field will not be a valid FSRef, since the root
directory has no parent object.

outName
On output, a pointer to the Unicode name of the file or directory. On input, pass a pointer to an
HFSUniStr255 (page 238) structure if you wish the name returned; otherwise, pass NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetCatalogInfoBulkAsync
Returns information about one or more objects from a catalog iterator. This function can return information
about multiple objects in a single call.

void PBGetCatalogInfoBulkAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. When all of the iterator’s objects have been returned, the
call will return errFSNoMoreItems.

iterator
On input, the iterator to use. You can obtain a catalog iterator with the function
FSOpenIterator (page 86) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 154) and PBOpenIteratorAsync (page 153). Currently, the iterator
must be created with the kFSIterateFlat option. See FSIterator (page 218) for a description of
the FSIterator data type.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items found for this call.

containerChanged
On output, a value indicating whether or not the container’s contents have changed since the previous
PBGetCatalogInfoBulkAsync call. If true, the contents have changed. Objects may still be returned,

134 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

even though the container has changed. If so, note that if the container has changed, then the total
set of items returned may be incorrect: some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. For a description
of the bits in this field, see “Catalog Information Bitmap Constants” (page 274).

catalogInfo
On output, a pointer to an array of catalog information structures; one for each returned item. On
input, thecatalogInfo field should point to an array ofmaximumItems catalog information structures.
This field is optional; if you do not wish any catalog information returned, pass NULL here. See
FSCatalogInfo (page 209) for a description of the FSCatalogInfo data type.

refs
On input, a pointer to an array of maximumItems FSRef (page 220) structures. On output, an FSRef
is filled out for each returned item. This field is optional; if you do not wish any FSRef structures
returned, pass NULL here.

names
On output, a pointer to an array of names; one for each returned item. If you want the Unicode name
for each item found, set this field to point to an array of maximumItems HFSUniStr255 (page 238)
structures. Otherwise, set it to NULL.

specs
On input, a pointer to an array of maximumItems FSSpec structures. On output, an FSSpec structure
is filled out for each returned item. This field is optional; if you do not wish any FSSpec structures
returned, pass NULL here.

The PBGetCatalogInfoBulkAsync call may complete and return noErr with fewer than maximumItems
items returned. This may be due to various reasons related to the internal implementation. In this case, you
may continue to make PBGetCatalogInfoBulkSync calls using the same iterator.

Before calling this function, you should determine whether it is available, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetCatalogInfoBulkSync
Returns information about one or more objects from a catalog iterator. This function can return information
about multiple objects in a single call.

OSErr PBGetCatalogInfoBulkSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Functions 135
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326). When all of the iterator’s objects have been returned,
the call will return errFSNoMoreItems.

Discussion
The relevant fields of the parameter block are:

iterator
On input, the iterator to use. You can obtain a catalog iterator with the function
FSOpenIterator (page 86) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 154) and PBOpenIteratorAsync (page 153). Currently, the iterator
must be created with the kFSIterateFlat option. See FSIterator (page 218) for a description of
the FSIterator data type.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items found for this call.

containerChanged
On output, a value indicating whether or not the container’s contents have changed since the previous
PBGetCatalogInfoBulkSync call. If true, the contents have changed. Objects may still be returned,
even though the container has changed. If so, note that if the container has changed, then the total
set of items returned may be incorrect: some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. For a description
of the bits in this field, see “Catalog Information Bitmap Constants” (page 274).

catalogInfo
On output, a pointer to an array of catalog information structures; one for each returned item. On
input, thecatalogInfo field should point to an array ofmaximumItems catalog information structures.
This field is optional; if you do not wish any catalog information returned, pass NULL here. See
FSCatalogInfo (page 209) for a description of the FSCatalogInfo data type.

refs
On input, a pointer to an array of maximumItems HFSUniStr255 (page 238) structures. On output,
an FSRef is filled out for each returned item. This field is optional; if you do not wish any FSRef
structures returned, pass NULL here.

names
On output, a pointer to an array of names; one for each returned item. If you want the Unicode name
for each item found, set this field to point to an array of maximumItems HFSUniStr255 (page 238)
structures. Otherwise, set it to NULL.

specs
On input, a pointer to an array of maximumItems FSSpec structures. On output, an FSSpec structure
is filled out for each returned item. This field is optional; if you do not wish any FSSpec structures
returned, pass NULL here.

The PBGetCatalogInfoBulkSync call may complete and return noErr with fewer than maximumItems
items returned. This may be due to various reasons related to the internal implementation. In this case, you
may continue to make PBGetCatalogInfoBulkSync calls using the same iterator.

Before calling this function, you should determine whether it is available, by calling the Gestalt function.

136 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetCatalogInfoSync
Returns catalog information about a file or directory. You can use this function to map from an FSRef to an
FSSpec.

OSErr PBGetCatalogInfoSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory for which to retrieve
information.

whichInfo
On input, a bitmap specifying the catalog information fields to return. If you don’t want any catalog
information, set whichInfo to the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 274) for a description of the bits in this field.

catInfo
On output, a pointer to an FSCatalogInfo (page 209) structure containing the information about
the file or directory. Only the information specified in the whichInfo field is returned. If you don’t
want any catalog information, pass NULL here.

spec
On output, a pointer to the FSSpec (page 223) for the file or directory. This output is optional; if you
do not wish the FSSpec returned, pass NULL here.

parentRef
On output, a pointer to the FSRef for the object's parent directory. This output is optional; if you do
not wish the parent directory returned, pass NULL here. If the object specified in the ref field is a
volume’s root directory, then the FSRef returned in this field will not be a valid FSRef, since the root
directory has no parent object.

outName
On output, a pointer to the Unicode name of the file or directory. On input, pass a pointer to an
HFSUniStr255 (page 238) structure if you wish the name returned; otherwise, pass NULL.

Availability
Available in Mac OS X v10.0 and later.

Functions 137
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

PBGetForkCBInfoAsync
Returns information about a specified open fork, or about all open forks.

void PBGetForkCBInfoAsync (
 FSForkCBInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork control block parameter block. See FSForkCBInfoParam (page 213) for a description
of the FSForkCBInfoParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

desiredRefNum
On input, if you want information on a specific fork, set this field to that fork’s reference number. If
you pass a non-zero value in this parameter, the function attempts to get information on the fork
specified by that reference number the field is unchanged on output. Pass zero in this field to iterate
over all open forks; on output, this field contains the fork's reference number. You can limit this
iteration to a specific volume with the volumeRefNum field.

volumeRefNum
On input, the volume to search, when iterating over multiple forks. To iterate over all open forks on
a single volume, specify the volume reference number in this field. To iterate over all open forks on
all volumes, set this field to the constant kFSInvalidVolumeRefNum. This field is ignored if you
specify a fork reference number in the desiredRefNum parameter. Set desiredRefNum to zero if
you wish to iterate over multiple forks. See FSVolumeRefNum (page 230) for a description of the
FSVolumeRefNum data type.

iterator
On input, an iterator. If the desiredRefNum parameter is 0, the iterator maintains state between calls
to PBGetForkCBInfoAsync. Set the iterator field to 0 before you begin iterating, on the first call
to PBGetForkCBInfoAsync. On return, the iterator will be updated; pass this updated iterator in
the iterator field of the next call to PBGetForkCBInfoAsync to continue iterating.

actualRefNum
On output, the actual reference number of the open fork that was found.

ref
On output, a pointer to the FSRef (page 220) for the file or directory that contains the fork. This
information is optional; if you do not wish to the FSRef, set ref to NULL.

forkInfo
On output, a pointer to an FSForkInfo (page 215) structure containing information about the open
fork. This information is optional; if you do not wish it returned, set forkInfo to NULL.

138 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

forkName
On output, a pointer to the name of the fork. This field is optional; if you do not wish the name
returned, set forkName to NULL. See HFSUniStr255 (page 238) for a description of the HFSUniStr255
data type.

Carbon applications are no longer guaranteed access to the FCB table. Instead, applications should use
FSGetForkCBInfo (page 69) , or one of the related parameter block functions, PBGetForkCBInfoSync (page
139) and PBGetForkCBInfoAsync, to access information about a fork control block.

Special Considerations

Returning the fork information in the forkInfo field generally does not require a disk access; returning the
information in the ref or forkName fields may cause disk access for some volume formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkCBInfoSync
Returns information about a specified open fork, or about all open forks.

OSErr PBGetForkCBInfoSync (
 FSForkCBInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork control block parameter block. See FSForkCBInfoParam (page 213) for a description
of the FSForkCBInfoParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you are iterating over multiple forks, the function
returns errFSNoMoreItems if there are no more open forks to return.

Discussion
The relevant fields of the parameter block are:

desiredRefNum
On input, if you want information on a specific fork, set this field to that fork’s reference number. If
you pass a non-zero value in this parameter, the function attempts to get information on the fork
specified by that reference number the field is unchanged on output. Pass zero in this field to iterate
over all open forks; on output, this field contains the fork's reference number. You can limit this
iteration to a specific volume with the volumeRefNum field.

volumeRefNum
On input, the volume to search, when iterating over multiple forks. To iterate over all open forks on
a single volume, specify the volume reference number in this field. To iterate over all open forks on
all volumes, set this field to the constant kFSInvalidVolumeRefNum. This field is ignored if you
specify a fork reference number in the desiredRefNum parameter. Set desiredRefNum to zero if
you wish to iterate over multiple forks. See FSVolumeRefNum (page 230) for a description of the
FSVolumeRefNum data type.

Functions 139
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

iterator
On input, an iterator. If the desiredRefNum parameter is 0, the iterator maintains state between calls
to PBGetForkCBInfoSync. Set the iterator field to 0 before you begin iterating, on the first call
to PBGetForkCBInfoSync. On return, the iterator will be updated; pass this updated iterator in the
iterator field of the next call to PBGetForkCBInfoSync to continue iterating.

actualRefNum
On output, the actual reference number of the open fork that was found.

ref
On output, a pointer to the FSRef (page 220) for the file or directory that contains the fork. This
information is optional; if you do not wish to the FSRef, set ref to NULL.

forkInfo
On output, a pointer to an FSForkInfo (page 215) structure containing information about the open
fork. This information is optional; if you do not wish it returned, set forkInfo to NULL.

forkName
On output, a pointer to the name of the fork. This field is optional; if you do not wish the name
returned, set forkName to NULL. See HFSUniStr255 (page 238) for a description of the HFSUniStr255
data type.

Carbon applications are no longer guaranteed access to the FCB table. Instead, applications should use
FSGetForkCBInfo (page 69) , or one of the related parameter block functions, PBGetForkCBInfoSync
and PBGetForkCBInfoAsync (page 138) , to access information about a fork control block.

Special Considerations

Returning the fork information in the forkInfo field generally does not require a disk access; returning the
information in the ref or forkName fields may cause disk access for some volume formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkPositionAsync
Returns the current position of an open fork.

void PBGetForkPositionAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

140 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 85) ,
PBOpenForkSync (page 152) , or PBOpenForkAsync (page 151) function.

positionOffset
On output, the current position of the fork. The returned fork position is relative to the start of the
fork (that is, it is an absolute offset in bytes).

Special Considerations

Before calling the PBGetForkPositionAsync function, call the Gestalt function with the gestaltFSAttr
selector to determine if PBGetForkPositionAsync is available. If the function is available, but is not directly
supported by a volume, the File Manager will automatically call PBGetFPosAsync (page 431); however, you
will not be able to determine the fork position of a named fork other than the data or resource fork, or of a
fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkPositionSync
Returns the current position of an open fork.

OSErr PBGetForkPositionSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 85) ,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151) function.

positionOffset
On output, the current position of the fork. The returned fork position is relative to the start of the
fork (that is, it is an absolute offset in bytes).

Functions 141
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Special Considerations

Before calling the PBGetForkPositionSync function, call the Gestalt function with the gestaltFSAttr
selector to determine if PBGetForkPositionSync is available. If the function is available, but is not directly
supported by a volume, the File Manager will automatically call PBGetFPosSync (page 432); however, you
will not be able to determine the fork position of a named fork other than the data or resource fork, or of a
fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkSizeAsync
Returns the size of an open fork.

void PBGetForkSizeAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 85) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionOffset
On output, the logical size (the logical end-of-file) of the fork, in bytes. The size returned is the total
number of bytes that can be read from the fork; the amount of space actually allocated on the volume
(the physical size) will probably be larger.

Special Considerations

To determine whether the PBGetForkSizeAsync function is present, call the Gestalt function. If
PBGetForkSizeAsync is present, but is not directly supported by a volume, the File Manager will call
PBGetEOFAsync (page 426); however, you will not be able to determine the size of a fork other than the data
or resource fork, or of a fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

142 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

PBGetForkSizeSync
Returns the size of an open fork.

OSErr PBGetForkSizeSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 85) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionOffset
On output, the logical size (the logical end-of-file) of the fork, in bytes. The size returned is the total
number of bytes that can be read from the fork; the amount of space actually allocated on the volume
(the physical size) will probably be larger.

Special Considerations

To determine whether the PBGetForkSizeSync function is present, call the Gestalt function. If
PBGetForkSizeSync is present, but is not directly supported by a volume, the File Manager will call
PBGetEOFSync (page 426); however, you will not be able to determine the size of a fork other than the data
or resource fork, or of a fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetVolumeInfoAsync
Returns information about a volume.

Functions 143
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBGetVolumeInfoAsync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 228) for a
description of the FSVolumeInfoParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioVRefNum
On input, the volume whose information is to be returned. For information on a particular volume,
pass that volume’s reference number and set the volumeIndex field to 0. To index through the list
of mounted volumes, pass the constant kFSInvalidVolumeRefNum.On output, the volume reference
number of the volume. This is useful when indexing over all mounted volumes, when you have not
specified a particular volume reference number on input.

volumeIndex
On input, the index of the desired volume, or 0 to use the volume reference number in the ioVRefNum
field.

whichInfo
On input, a bitmap specifying which volume information fields to return in the volumeInfo field. If
you don’t want the information about the volume returned in the volumeInfo field, set whichInfo
to kFSVolInfoNone. See “Volume Information Bitmap Constants” (page 321) for a description of the
bits in this field.

volumeInfo
On output, a pointer to the volume information, as described by the FSVolumeInfo (page 225) data
type. If you don’t want this output, set this field to NULL.

volumeName
On output, a pointer to the Unicode name of the volume. If you do not wish the name returned, pass
NULL. Otherwise, pass a pointer to an HFSUniStr255 (page 238) structure.

ref
On output, a pointer to the FSRef (page 220) for the volume’s root directory. If you do not wish the
root directory returned, pass NULL.

You can specify a particular volume or index through the list of mounted volumes. To get information on a
particular volume, pass the volume reference number of the desired volume in the ioVRefNum field and set
the volumeIndex field to zero. To index through the list of mounted volumes, pass
kFSInvalidVolumeRefNum in the ioVRefNum field and set volumeIndex to the index, starting at 1 with
the first call to PBGetVolumeInfoAsync.

To get information about the root directory of a volume, use the FSGetCatalogInfo (page 66) function,
or one of the corresponding parameter block calls, PBGetCatalogInfoSync (page 137) and
PBGetCatalogInfoAsync (page 133).

144 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBGetVolumeInfoAsync returns the updated amount. This is because the
File Manager caches and periodically updates file system information, to reduce the number of calls made
to retrieve the information from the file system. Currently, the File Manager updates its information every
15 seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by
this in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetVolumeInfoSync
Returns information about a volume.

OSErr PBGetVolumeInfoSync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 228) for a
description of the FSVolumeInfoParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioVRefNum
On input, the volume whose information is to be returned. For information on a particular volume,
pass that volume’s reference number and set the volumeIndex field to 0. To index through the list
of mounted volumes, pass the constant kFSInvalidVolumeRefNum.On output, the volume reference
number of the volume. This is useful when indexing over all mounted volumes, when you have not
specified a particular volume reference number on input.

volumeIndex
On input, the index of the desired volume, or 0 to use the volume reference number in the ioVRefNum
field.

whichInfo
On input, a bitmap specifying which volume information fields to return in the volumeInfo field. If
you don’t want the information about the volume returned in the volumeInfo field, set whichInfo
to kFSVolInfoNone. See “Volume Information Bitmap Constants” (page 321) for a description of the
bits in this field.

volumeInfo
On output, a pointer to the volume information, as described by the FSVolumeInfo (page 225) data
type. If you don’t want this output, set this field to NULL.

Functions 145
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

volumeName
On output, a pointer to the Unicode name of the volume. If you do not wish the name returned, pass
NULL. Otherwise, pass a pointer to an HFSUniStr255 (page 238) structure.

ref
On output, a pointer to the FSRef (page 220) for the volume’s root directory. If you do not wish the
root directory returned, pass NULL.

You can specify a particular volume or index through the list of mounted volumes. To get information on a
particular volume, pass the volume reference number of the desired volume in the ioVRefNum field and set
the volumeIndex field to zero. To index through the list of mounted volumes, pass
kFSInvalidVolumeRefNum in the ioVRefNum field and set volumeIndex to the index, starting at 1 with
the first call to PBGetVolumeInfoSync.

To get information about the root directory of a volume, use the FSGetCatalogInfo (page 66) function,
or one of the corresponding parameter block calls, PBGetCatalogInfoSync (page 137) and
PBGetCatalogInfoAsync (page 133).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBGetVolumeInfoSync returns the updated amount. This is because the
File Manager caches and periodically updates file system information, to reduce the number of calls made
to retrieve the information from the file system. Currently, the File Manager updates its information every
15 seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by
this in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBIterateForksAsync
Determines the name and size of every named fork belonging to a file or directory.

void PBIterateForksAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for more information on the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

146 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory to iterate.

forkIterator
A pointer to a structure which maintains state between calls to PBIterateForksAsync. Before the
first call, set the initialize field of this structure to 0. The fork iterator will be updated after the
call completes; the updated iterator should be passed into the next call. See CatPositionRec (page
184) for a description of the structure pointed to in this field.

outForkName
On output, a pointer to the Unicode name of the fork.

positionOffset
On output, the logical size of the fork, in bytes.

allocationAmount
On output, the fork’s physical size (that is, the amount of space allocated on disk), in bytes.

Since information is returned about one fork at a time, several calls may be required to iterate through all
the forks. There is no guarantee about the order in which forks are returned; the order may vary between
iterations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBIterateForksSync
Determines the name and size of every named fork belonging to a file or directory.

OSErr PBIterateForksSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for more information on the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory to iterate.

forkIterator
A pointer to a structure which maintains state between calls to PBIterateForksSync. Before the
first call, set the initialize field of this structure to 0. The fork iterator will be updated after the
call completes; the updated iterator should be passed into the next call. See CatPositionRec (page
184) for a description of the structure pointed to in this field.

outForkName
On output, a pointer to the Unicode name of the fork.

Functions 147
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

positionOffset
On output, the logical size of the fork, in bytes.

allocationAmount
On output, the fork’s physical size (that is, the amount of space allocated on disk), in bytes.

Since information is returned about one fork at a time, several calls may be required to iterate through all
the forks. There is no guarantee about the order in which forks are returned; the order may vary between
iterations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMakeFSRefUnicodeAsync
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

void PBMakeFSRefUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ref
On input, a pointer to the FSRef of the parent directory of the file or directory for which to create a
new FSRef. See FSRef (page 220) for a description of the FSRef data type.

nameLength
On input, the length of the file or directory name.

name
On input, a pointer to the Unicode name for the file or directory. The name must be a leaf name;
partial or full pathnames are not allowed. If you have a partial or full pathname in Unicode, you will
have to parse it yourself and make multiple calls to PBMakeFSRefUnicodeAsync.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, if the function returns a result of noErr, a pointer to the new FSRef

148 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMakeFSRefUnicodeSync
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

OSErr PBMakeFSRefUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to the FSRef of the parent directory of the file or directory for which to create a
new FSRef. See FSRef (page 220) for a description of the FSRef data type.

nameLength
On input, the length of the file or directory name.

name
On input, a pointer to the Unicode name for the file or directory. The name must be a leaf name;
partial or full pathnames are not allowed. If you have a partial or full pathname in Unicode, you will
have to parse it yourself and make multiple calls to PBMakeFSRefUnicodeSync.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, if the function returns a result of noErr, a pointer to the new FSRef

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMoveObjectAsync
Moves a file or directory into a different directory.

Functions 149
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBMoveObjectAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If the parentRef field specifies a non-existent object,
dirNFErr is returned; if it refers to a file, then errFSNotAFolder is returned. If the directory specified
in parentRef is on a different volume than the file or directory indicated by the ref field, diffVolErr
is returned.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory to move.

parentRef
On input, a pointer to an FSRef specifying the directory into which the file or directory given in the
ref field will be moved.

newRef
On output, a pointer to the new FSRef for the file or directory in its new location. This field is optional;
if you do not wish the FSRef returned, pass NULL here.

Moving an object may change its FSRef. If you want to continue to refer to the object, you should pass a
non- NULL pointer in the newRef field and use the FSRef returned there to refer to the object after the
move. The original FSRef passed in the ref field may or may not be usable after the move. The newRef
field may point to the same storage as the parentRef or ref fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMoveObjectSync
Moves a file or directory into a different directory.

OSErr PBMoveObjectSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

150 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326). If the the parentRef field of the parameter block
specifies a non-existent object, dirNFErr is returned; if it refers to a file, errFSNotAFolder is returned. If
the directory specified in the parentRef field is on a different volume than the file or directory indicated in
the ref field, diffVolErr is returned.

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function. If the parentRef field specifies a non-existent object,
dirNFErr is returned; if it refers to a file, then errFSNotAFolder is returned. If the directory specified
in parentRef is on a different volume than the file or directory indicated by the ref field, diffVolErr
is returned.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory to move.

parentRef
On input, a pointer to an FSRef specifying the directory into which the file or directory given in the
ref field will be moved.

newRef
On output, a pointer to the new FSRef for the file or directory in its new location. This field is optional;
if you do not wish the FSRef returned, pass NULL here.

Moving an object may change its FSRef. If you want to continue to refer to the object, you should pass a
non- NULL pointer in the newRef field and use the FSRef returned there to refer to the object after the
move. The original FSRef passed in the ref field may or may not be usable after the move. The newRef
field may point to the same storage as the parentRef or ref fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBOpenForkAsync
Opens any fork of a file or directory for streaming access.

void PBOpenForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

Functions 151
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
On output, the result code of the function. On some file systems, PBOpenForkAsync will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with
read-only access.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory that owns the fork to open.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to open. You can obtain the string constants for
the data and resource fork names using the FSGetDataForkName (page 69) and
FSGetResourceForkName (page 72) functions. All volume formats should support data and resource
forks; other named forks may be supported by some volume formats.

permissions
On input, a constant indicating the type of access that you wish to have to the fork via the returned
fork reference. This parameter is the same as the permission parameter passed to the FSpOpenDF
and FSpOpenRF functions. For a description of the types of access which you can request, see “File
Access Permission Constants” (page 291).

forkRefNum
On output, the fork reference number for accessing the open fork.

If you wish to access named forks or forks larger than 2GB you must use the FSOpenFork function or one
of the corresponding parameter block calls, PBOpenForkSync and PBOpenForkAsync. To determine if the
PBOpenForkSync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBOpenForkSync
Opens any fork of a file or directory for streaming access.

OSErr PBOpenForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). On some file systems, PBOpenForkSyncwill return
the error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
The relevant fields of the parameter block are:

152 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory that owns the fork to open.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to open. You can obtain the string constants for
the data and resource fork names using the FSGetDataForkName (page 69) and
FSGetResourceForkName (page 72) functions. All volume formats should support data and resource
forks; other named forks may be supported by some volume formats.

permissions
On input, a constant indicating the type of access that you wish to have to the fork via the returned
fork reference. This parameter is the same as the permission parameter passed to the FSpOpenDF
and FSpOpenRF functions. For a description of the types of access which you can request, see “File
Access Permission Constants” (page 291).

forkRefNum
On output, the fork reference number for accessing the open fork.

If you wish to access named forks or forks larger than 2GB you must use the FSOpenFork function or one
of the corresponding parameter block calls, PBOpenForkSync and PBOpenForkAsync. To determine if the
PBOpenForkSync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBOpenIteratorAsync
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

void PBOpenIteratorAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

iterator
On output, the new FSIterator (page 218). You can pass this iterator to the
FSGetCatalogInfoBulk (page 67) or FSCatalogSearch (page 45) functions and their parameter

Functions 153
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

block-based counterparts. The iterator is automatically initialized so that the next use of the iterator
returns the first item. The order that items are returned in is volume format dependent and may be
different for two different iterators created with the same container and flags.

iteratorFlags
On input, a set of flags which controls whether the iterator iterates over subtrees or just the immediate
children of the container. See “Iterator Flags” (page 307) for a description of the flags defined for this
field. Iteration over subtrees which do not originate at the root directory of a volume are not currently
supported, and passing the kFSIterateSubtree flag in this field returns errFSBadIteratorFlags.
To determine whether subtree iterators are supported, check that the bSupportsSubtreeIterators
bit returned by PBHGetVolParmsAsync (page 512) is set.

container
On input, a pointer to an FSRef (page 220) for the directory to iterate. The set of items to iterate over
can either be the objects directly contained in the directory, or all items directly or indirectly contained
in the directory (in which case, the specified directory is the root of the subtree to iterate).

Catalog iterators must be closed when you are done using them, whether or not you have iterated over all
the items. Iterators are automatically closed upon process termination, just like open files. However, you
should use the FSCloseIterator (page 48) function, or one of the related parameter block functions,
PBCloseIteratorSync (page 117) and PBCloseIteratorAsync (page 116) , to close an iterator to free up
any system resources allocated to the iterator.

Before calling this function, you should check that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBOpenIteratorSync
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

OSErr PBOpenIteratorSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 207) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

iterator
On output, the new FSIterator (page 218). You can pass this iterator to the
FSGetCatalogInfoBulk (page 67) or FSCatalogSearch (page 45) functions and their parameter
block-based counterparts. The iterator is automatically initialized so that the next use of the iterator
returns the first item. The order that items are returned in is volume format dependent and may be
different for two different iterators created with the same container and flags.

154 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

iteratorFlags
On input, a set of flags which controls whether the iterator iterates over subtrees or just the immediate
children of the container. See “Iterator Flags” (page 307) for a description of the flags defined for this
field. Iteration over subtrees which do not originate at the root directory of a volume are not currently
supported, and passing the kFSIterateSubtree flag in this field returns errFSBadIteratorFlags.
To determine whether subtree iterators are supported, check that the bSupportsSubtreeIterators
bit returned by PBHGetVolParmsSync (page 514) is set.

container
On input, a pointer to an FSRef (page 220) for the directory to iterate. The set of items to iterate over
can either be the objects directly contained in the directory, or all items directly or indirectly contained
in the directory (in which case, the specified directory is the root of the subtree to iterate).

Catalog iterators must be closed when you are done using them, whether or not you have iterated over all
the items. Iterators are automatically closed upon process termination, just like open files. However, you
should use the FSCloseIterator (page 48) function, or one of the related parameter block functions,
PBCloseIteratorSync (page 117) and PBCloseIteratorAsync (page 116) , to close an iterator to free up
any system resources allocated to the iterator.

Before calling this function, you should check that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBReadForkAsync
Reads data from an open fork.

void PBReadForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If there are fewer than requestCount bytes from the
specified position to the logical end-of-file, then all of those bytes are read, and eofErr is returned.

forkRefNum
On input, the reference number of the fork to read from. You should have previously opened this fork
using the FSOpenFork (page 85) call, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

Functions 155
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

positionMode
On input, a constant specifying the base location within the fork for the start of the read. See “Position
Mode Constants” (page 311) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
read should or should not be cached. Caching reads appropriately can be important in ensuring that
your program access files efficiently. If you add the forceReadMask constant to the value you pass
in this parameter, this tells the File Manager to force the data to be read directly from the disk. This
is different from adding the noCacheMask constant since forceReadMask tells the File Manager to
flush the appropriate part of the cache first, then ignore any data already in the cache. However, data
that is read may be placed in the cache for future reads. The forceReadMask constant is also passed
to the device driver, indicating that the driver should avoid reading from any device caches. See
“Cache Constants” (page 272) for further description of the constants that you can use to indicate your
preference for caching the read.

positionOffset
On input, the offset from the base location for the start of the read.

requestCount
On input, the number of bytes to read. The value that you pass in this field should be greater than
zero.

buffer
A pointer to the buffer where the data will be returned.

actualCount
On output, the number of bytes actually read. The value in this field should be equal to the value in
the requestCount field unless there was an error during the read operation.

PBReadForkAsync reads data starting at the position specified by the positionMode and positionOffset
fields. The function reads up to requestCount bytes into the buffer pointed to by the buffer field and sets
the fork’s current position to the byte immediately after the last byte read (that is, the initial position plus
actualCount).

To verify that data previously written has been correctly transferred to disk, read it back in using the
forceReadMask constant in the positionMode field and compare it with the data you previously wrote.

When reading data from a fork, it is important to pay attention to that way that your program accesses the
fork, because this can have a significant performance impact. For best results, you should use an I/O size of
at least 4KB and block align your read requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBReadForkSync
Reads data from an open fork.

156 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr PBReadForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If there are fewer than requestCount bytes from
the specified position to the logical end-of-file, then all of those bytes are read, and eofErr is returned.

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the fork to read from. You should have previously opened this fork
using the FSOpenFork (page 85) call, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
On input, a constant specifying the base location within the fork for the start of the read. See “Position
Mode Constants” (page 311) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
read should or should not be cached. Caching reads appropriately can be important in ensuring that
your program access files efficiently. If you add the forceReadMask constant to the value you pass
in this parameter, this tells the File Manager to force the data to be read directly from the disk. This
is different from adding the noCacheMask constant since forceReadMask tells the File Manager to
flush the appropriate part of the cache first, then ignore any data already in the cache. However, data
that is read may be placed in the cache for future reads. The forceReadMask constant is also passed
to the device driver, indicating that the driver should avoid reading from any device caches. See
“Cache Constants” (page 272) for further description of the constants that you can use to indicate your
preference for caching the read.

positionOffset
On input, the offset from the base location for the start of the read.

requestCount
On input, the number of bytes to read. The value that you pass in this field should be greater than
zero.

buffer
A pointer to the buffer where the data will be returned.

actualCount
On output, the number of bytes actually read. The value in this field should be equal to the value in
the requestCount field unless there was an error during the read operation.

PBReadForkSync reads data starting at the position specified by the positionMode and positionOffset
fields. The function reads up to requestCount bytes into the buffer pointed to by the buffer field and sets
the fork’s current position to the byte immediately after the last byte read (that is, the initial position plus
actualCount).

To verify that data previously written has been correctly transferred to disk, read it back in using the
forceReadMask constant in the positionMode field and compare it with the data you previously wrote.

Functions 157
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

When reading data from a fork, it is important to pay attention to that way that your program accesses the
fork, because this can have a significant performance impact. For best results, you should use an I/O size of
at least 4KB and block align your read requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBRenameUnicodeAsync
Renames a file or folder.

void PBRenameUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 220) for the file or directory to rename.

nameLength
On input, the length of the new name in Unicode characters.

name
On input, a pointer to the new Unicode name of the file or directory.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, a a pointer to the new FSRef for the file or directory. This field is optional; if you do not
wish the FSRef returned, pass NULL.

Because renaming an object may change its FSRef, you should pass a non- NULL pointer in the newRef field
and use the FSRef returned there to access the object after the renaming, if you wish to continue to refer
to the object. The FSRef passed in the ref field may or may not be usable after the object is renamed. The
FSRef returned in the newRef field may point to the same storage as the FSRef passed in ref.

Availability
Available in Mac OS X v10.0 and later.

158 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

PBRenameUnicodeSync
Renames a file or folder.

OSErr PBRenameUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 220) for the file or directory to rename.

nameLength
On input, the length of the new name in Unicode characters.

name
On input, a pointer to the new Unicode name of the file or directory.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, a a pointer to the new FSRef for the file or directory. This field is optional; if you do not
wish the FSRef returned, pass NULL.

Because renaming an object may change its FSRef, you should pass a non- NULL pointer in the newRef field
and use the FSRef returned there to access the object after the renaming, if you wish to continue to refer
to the object. The FSRef passed in the ref field may or may not be usable after the object is renamed. The
FSRef returned in the newRef field may point to the same storage as the FSRef passed in ref.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetCatalogInfoAsync
Sets the catalog information about a file or directory.

Functions 159
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBSetCatalogInfoAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory whose information is to be
changed.

whichInfo
On input, a bitmap specifying which catalog information fields to set. Only some of the catalog
information fields may be set. These fields are given by the constant kFSCatInfoSettableInfo;
no other bits may be set in the whichInfo field. See “Catalog Information Bitmap Constants” (page
274) for a description of the bits in this field.

To set the user ID (UID) and group ID (GID), specify the kFSCatInfoSetOwnership flag in this field.
The File Manager attempts to set the user and group ID to the values specified in the permissions
field of the catalog information structure. If PBSetCatalogInfoAsync cannot set the user and group
IDs, it returns an error.

catInfo
On input, a pointer to theFSCatalogInfo (page 209) structure containing the new catalog information.
Only some of the catalog information fields may be set. The fields which may be set are:

 ■ createDate

 ■ contentModDate

 ■ attributeModDate

 ■ accessDate

 ■ backupDate

 ■ permissions

 ■ finderInfo

 ■ extFinderInfo

 ■ textEncodingHint

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

160 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBSetCatalogInfoSync
Sets the catalog information about a file or directory.

OSErr PBSetCatalogInfoSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) fro s description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 220) specifying the file or directory whose information is to be
changed.

whichInfo
On input, a bitmap specifying which catalog information fields to set. Only some of the catalog
information fields may be set. These fields are given by the constant kFSCatInfoSettableInfo;
no other bits may be set in the whichInfo field. See “Catalog Information Bitmap Constants” (page
274) for a description of the bits in this field.

To set the user ID (UID) and group ID (GID), specify the kFSCatInfoSetOwnership flag in this field.
The File Manager attempts to set the user and group ID to the values specified in the permissions
field of the catalog information structure. If PBSetCatalogInfoSync cannot set the user and group
IDs, it returns an error.

catInfo
On input, a pointer to theFSCatalogInfo (page 209) structure containing the new catalog information.
Only some of the catalog information fields may be set. The fields which may be set are:

 ■ createDate

 ■ contentModDate

 ■ attributeModDate

 ■ accessDate

 ■ backupDate

 ■ permissions

 ■ finderInfo

 ■ extFinderInfo

 ■ textEncodingHint

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 161
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

PBSetForkPositionAsync
Sets the current position of an open fork.

void PBSetForkPositionAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. This function returns the result code posErr if you attempt
to set the current position of the fork to an offset before the start of the file.

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 85) ,
PBOpenForkSync (page 152) , or PBOpenForkAsync (page 151) function.

positionMode
On input, a constant specifying the base location within the fork for the new position. If this field is
equal to fsAtMark, then the positionOffset field is ignored. See “Position Mode Constants” (page
311) for a description of the constants you can use to specify the base location.

positionOffset
On input, the offset of the new position from the base location specified in the positionMode field.

Special Considerations

To determine if the PBSetForkPositionAsync function is present, call the Gestalt function with the
gestaltFSAttr selector. If the PBSetForkPositionAsync function is present, but the volume does not
directly support it, the File Manager will automatically call the PBSetFPosAsync (page 481) function. However,
if the volume does not directly support the PBSetForkPositionAsync function, you can only set the file
position for the data and resource forks, and you cannot grow these files beyond 2GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetForkPositionSync
Sets the current position of an open fork.

162 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr PBSetForkPositionSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). This function returns the result code posErr if
you attempt to set the current position of the fork to an offset before the start of the file.

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 85) ,
PBOpenForkSync (page 152) , or PBOpenForkAsync (page 151) function.

positionMode
On input, a constant specifying the base location within the fork for the new position. If this field is
equal to fsAtMark, then the positionOffset field is ignored. See “Position Mode Constants” (page
311) for a description of the constants you can use to specify the base location.

positionOffset
On input, the offset of the new position from the base location specified in the positionMode field.

Special Considerations

To determine if the PBSetForkPositionSync function is present, call the Gestalt function with the
gestaltFSAttr selector. If the PBSetForkPositionSync function is present, but the volume does not
directly support it, the File Manager will automatically call the PBSetFPosSync (page 482) function. However,
if the volume does not directly support the PBSetForkPositionSync function, you can only set the file
position for the data and resource forks, and you cannot grow these files beyond 2GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetForkSizeAsync
Changes the size of an open fork.

void PBSetForkSizeAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

Functions 163
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If there is not enough space on the volume to extend the
fork, then dskFulErr is returned and the fork’s size is unchanged.

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 85) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
On input, a constant indicating the base location within the fork for the new size. See “Position Mode
Constants” (page 311) for more information about the constants you can use to specify the base
location.

positionOffset
On input, the offset of the new size from the base location specified in the positionMode field.

The PBSetForkSizeAsync function sets the logical end-of-file to the position indicated by the positionMode
and positionOffset fields. The fork’s new size may be less than, equal to, or greater than the fork’s current
size. If the fork’s new size is greater than the fork’s current size, then the additional bytes, between the old
and new size, will have an undetermined value.

If the fork’s current position is larger than the fork’s new size, then the current position will be set to the new
fork size. That is, the current position will be equal to the logical end of file.

Special Considerations

You do not need to check that the volume supports the PBSetForkSizeAsync function. If a volume does
not support the PBSetForkSizeAsync function, but the PBSetForkSizeAsync function is present, the
File Manager automatically calls the PBSetEOFAsync (page 479) function and translates between the calls
appropriately.

Note, however, that if the volume does not support the PBSetForkSizeAsync function, you can only access
the data and resource forks, and you cannot grow the fork beyond 2GB. To check that the
PBSetForkSizeAsync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetForkSizeSync
Changes the size of an open fork.

164 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

OSErr PBSetForkSizeSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If there is not enough space on the volume to
extend the fork, then dskFulErr is returned and the fork’s size is unchanged.

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 85) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
On input, a constant indicating the base location within the fork for the new size. See “Position Mode
Constants” (page 311) for more information about the constants you can use to specify the base
location.

positionOffset
On input, the offset of the new size from the base location specified in the positionMode field.

The PBSetForkSizeSync function sets the logical end-of-file to the position indicated by the positionMode
and positionOffset fields. The fork’s new size may be less than, equal to, or greater than the fork’s current
size. If the fork’s new size is greater than the fork’s current size, then the additional bytes, between the old
and new size, will have an undetermined value.

If the fork’s current position is larger than the fork’s new size, then the current position will be set to the new
fork size. That is, the current position will be equal to the logical end-of-file.

Special Considerations

You do not need to check that the volume supports the PBSetForkSizeSync function. If a volume does
not support the PBSetForkSizeSync function, but the PBSetForkSizeSync function is present, the File
Manager automatically calls the PBSetEOFSync (page 480) function and translates between the calls
appropriately.

Note, however, that if the volume does not support the PBSetForkSizeSync function, you can only access
the data and resource forks, and you cannot grow the fork beyond 2GB. To check that the
PBSetForkSizeSync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetVolumeInfoAsync
Sets information about a volume.

Functions 165
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

void PBSetVolumeInfoAsync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 228) for a
description of the FSVolumeInfoParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioVRefNum
On input, the volume reference number of the volume whose information is to be changed.

whichInfo
On input, a bitmap specifying which information to set. Only some of the volume information fields
may be set. The settable fields are given by the constant kFSVolInfoSettableInfo; no other bits
may be set in whichInfo. The fields which may be set are the backupDate, finderInfo, and flags
fields. See “Volume Information Bitmap Constants” (page 321) for a description of the bits in this
parameter.

volumeInfo
On input, the new volume information. See FSVolumeInfo (page 225) for more information about
the volume information structure.

To set information about the root directory of a volume, use the FSSetCatalogInfo (page 98) function,
or one of the corresponding parameter block calls, PBSetCatalogInfoSync (page 161) and
PBSetCatalogInfoAsync (page 159).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetVolumeInfoSync
Sets information about a volume.

OSErr PBSetVolumeInfoSync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 228) for a
description of the FSVolumeInfoParam data type.

166 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioVRefNum
On input, the volume reference number of the volume whose information is to be changed.

whichInfo
On input, a bitmap specifying which information to set. Only some of the volume information fields
may be set. The settable fields are given by the constant kFSVolInfoSettableInfo; no other bits
may be set in whichInfo. The fields which may be set are the backupDate, finderInfo, and flags
fields. See “Volume Information Bitmap Constants” (page 321) for a description of the bits in this
parameter.

volumeInfo
On input, the new volume information. See FSVolumeInfo (page 225) for more information about
the volume information structure.

To set information about the root directory of a volume, use the FSSetCatalogInfo (page 98) function,
or one of the corresponding parameter block calls, PBSetCatalogInfoSync (page 161) and
PBSetCatalogInfoAsync (page 159).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBWriteForkAsync
Writes data to an open fork.

void PBWriteForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If there is not enough space on the volume to write
requestCount bytes, then dskFulErr is returned.

Functions 167
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

forkRefNum
On input, the reference number of the fork to which to write. You should have previously opened
the fork using the FSOpenFork (page 85) function, or one of the corresponding parameter block
calls, PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
On input, a constant specifying the base location within the fork for the start of the write. See “Position
Mode Constants” (page 311) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
written should or should not be cached. See “Cache Constants” (page 272) for further description of
the constants that you can use to indicate your preference for caching.

positionOffset
On input, the offset from the base location for the start of the write.

requestCount
On input, the number of bytes to write.

buffer
A pointer to a buffer containing the data to write.

actualCount
On output, the number of bytes actually written. The value in the actualCount field will be equal
to the value in the requestCount field unless there was an error during the write operation.

PBWriteForkAsyncwrites data starting at the position specified by thepositionMode andpositionOffset
fields. The function attempts to write requestCount bytes from the buffer pointed to by the buffer field
and sets the fork’s current position to the byte immediately after the last byte written (that is, the initial
position plus actualCount).

When writing data to a fork, it is important to pay attention to that way that your program accesses the fork,
because this can have a significant performance impact. For best results, you should use an I/O size of at
least 4KB and block align your write requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBWriteForkSync
Writes data to an open fork.

OSErr PBWriteForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 216) for a description of the
FSForkIOParam.

Return Value
A result code. See “File Manager Result Codes” (page 326). If there is not enough space on the volume to
write requestCount bytes, then dskFulErr is returned.

168 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function. If there is not enough space on the volume to write
requestCount bytes, then dskFulErr is returned.

forkRefNum
On input, the reference number of the fork to which to write. You should have previously opened
the fork using the FSOpenFork (page 85) function, or one of the corresponding parameter block
calls, PBOpenForkSync (page 152) and PBOpenForkAsync (page 151).

positionMode
On input, a constant specifying the base location within the fork for the start of the write. See “Position
Mode Constants” (page 311) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
written should or should not be cached. See “Cache Constants” (page 272) for further description of
the constants that you can use to indicate your preference for caching.

positionOffset
On input, the offset from the base location for the start of the write.

requestCount
On input, the number of bytes to write.

buffer
A pointer to a buffer containing the data to write.

actualCount
On output, the number of bytes actually written. The value in the actualCount field will be equal
to the value in the requestCount field unless there was an error during the write operation.

PBWriteForkSyncwrites data starting at the position specified by the positionMode and positionOffset
fields. The function attempts to write requestCount bytes from the buffer pointed to by the buffer field
and sets the fork’s current position to the byte immediately after the last byte written (that is, the initial
position plus actualCount).

When writing data to a fork, it is important to pay attention to that way that your program accesses the fork,
because this can have a significant performance impact. For best results, you should use an I/O size of at
least 4KB and block align your write requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBXLockRangeAsync
Locks a range of bytes of the specified fork.

OSStatus PBXLockRangeAsync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Functions 169
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

PBXLockRangeSync
Locks a range of bytes of the specified fork.

OSStatus PBXLockRangeSync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

PBXUnlockRangeAsync
Unlocks a range of bytes of the specified fork.

OSStatus PBXUnlockRangeAsync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

PBXUnlockRangeSync
Unlocks a range of bytes of the specified fork.

OSStatus PBXUnlockRangeSync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

170 Functions
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Callbacks by Task

File Operation Callbacks

FSFileOperationStatusProcPtr (page 172)
Defines a status callback function for an asynchronous file operation on an FSRef object.

FSPathFileOperationStatusProcPtr (page 173)
Defines a status callback function for an asynchronous file operation on an object specified with a
pathname.

Miscellaneous Callbacks

FNSubscriptionProcPtr (page 171)
Callback delivered for directory notifications.

FSVolumeEjectProcPtr (page 174)

FSVolumeMountProcPtr (page 175)

FSVolumeUnmountProcPtr (page 176)

IOCompletionProcPtr (page 176)
Defines a pointer to a completion function. Your completion function is executed by the File Manager
after the completion of an asynchronous File Manager function call.

Callbacks

FNSubscriptionProcPtr
Callback delivered for directory notifications.

typedef void (*FNSubscriptionProcPtr) (
 FNMessage message,
 OptionBits flags,
 void * refcon,
 FNSubscriptionRef subscription
);

If you name your function MyFNSubscriptionProc, you would declare it like this:

void MyFNSubscriptionProc (
 FNMessage message,
 OptionBits flags,
 void * refcon,
 FNSubscriptionRef subscription
);

Callbacks by Task 171
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Parameters
message

An indication of what happened.

flags
Options regarding the delivery of the notification; typically kNilOptions.

refcon
A pointer to a user reference supplied with subscription.

subscription
A subscription corresponding to this notification.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FSFileOperationStatusProcPtr
Defines a status callback function for an asynchronous file operation on an FSRef object.

typedef void (*FSFileOperationStatusProcPtr) (
 FSFileOperationRef fileOp,
 const FSRef *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

If you name your function MyFSFileOperationStatusProc, you would declare it like this:

void MyFSFileOperationStatusProc (
 FSFileOperationRef fileOp,
 const FSRef *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

Parameters
fileOp

The file operation.

currentItem
A pointer to an FSRef variable. On output, the variable contains the object currently being moved
or copied. If the operation is complete, this parameter refers to the target (the new object
corresponding to the source object in the destination directory).

stage
The current stage of the operation.

error
The current error status of the operation.

172 Callbacks
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

statusDictionary
A dictionary with more detailed status information. For information about the contents of the dictionary,
see“File Operation Status Dictionary Keys” (page 302). You are not responsible for releasing
the dictionary.

info
A pointer to user-defined data associated with this operation.

Discussion
When you call FSCopyObjectAsync (page 49), FSMoveObjectAsync (page 82), or
FSMoveObjectToTrashAsync (page 84), you can specify a status callback function of this type. The function
you provide is called by the File Manager whenever the file operation changes stages (including failing due
to an error), or as updated information is available limited by the status change interval of the operation. If
you need to save any of the status information beyond the scope of the callback, you should make a copy
of the information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathFileOperationStatusProcPtr
Defines a status callback function for an asynchronous file operation on an object specified with a pathname.

typedef void (*FSPathFileOperationStatusProcPtr) (
 FSFileOperationRef fileOp,
 const char *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

If you name your function MyFSPathFileOperationStatusProc, you would declare it like this:

void MyFSPathFileOperationStatusProc (
 FSFileOperationRef fileOp,
 const char *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

Parameters
fileOp

The file operation.

currentItem
The UTF-8 pathname of the object currently being moved or copied. If the operation is complete, this
parameter refers to the target (the new object corresponding to the source object in the destination
directory).

Callbacks 173
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

stage
The current stage of the operation.

error
The current error status of the operation.

statusDictionary
A dictionary with more detailed status information. For information about the contents of the dictionary,
see“File Operation Status Dictionary Keys” (page 302). You are not responsible for releasing
the dictionary.

info
A pointer to user-defined data associated with this operation.

Discussion
When you call FSPathCopyObjectAsync (page 88), FSPathMoveObjectAsync (page 92), or
FSPathMoveObjectToTrashAsync (page 94), you can specify a status callback function of this type. The
function you provide is called by the File Manager whenever the file operation changes stages (including
failing due to an error), or as updated information is available limited by the status change interval of the
operation. If you need to save any of the status information beyond the scope of the callback, you should
make a copy of the information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSVolumeEjectProcPtr

typedef void (*FSVolumeEjectProcPtr) (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

If you name your function MyFSVolumeEjectProc, you would declare it like this:

void MyFSVolumeEjectProc (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

174 Callbacks
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Parameters
volumeOp
clientData
err
volumeRefNum
dissenter

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeMountProcPtr

typedef void (*FSVolumeMountProcPtr) (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum mountedVolumeRefNum
);

If you name your function MyFSVolumeMountProc, you would declare it like this:

void MyFSVolumeMountProc (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum mountedVolumeRefNum
);

Parameters
volumeOp
clientData
err
mountedVolumeRefNum

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

Callbacks 175
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSVolumeUnmountProcPtr

typedef void (*FSVolumeUnmountProcPtr) (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

If you name your function MyFSVolumeUnmountProc, you would declare it like this:

void MyFSVolumeUnmountProc (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

Parameters
volumeOp
clientData
err
volumeRefNum
dissenter

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

IOCompletionProcPtr
Defines a pointer to a completion function. Your completion function is executed by the File Manager after
the completion of an asynchronous File Manager function call.

typedef void (*IOCompletionProcPtr) (
 ParmBlkPtr paramBlock
);

If you name your function MyIOCompletionProc, you would declare it like this:

void MyIOCompletionProc (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the parameter block that was passed to the asynchronous File Manager function.

176 Callbacks
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Return Value
Discussion
When you execute an asynchronous File Manager function (an Async function), you can specify a completion
routine by passing the routine’s address in the ioCompletion field of the parameter block passed to the
function. Because you requested asynchronous execution, the File Manager places an I/O request in the file
I/O queue and returns control to your application—possibly even before the actual I/O operation is completed.
The File Manager takes requests from the queue one at a time and processes them meanwhile, your application
is free to do other processing.

A function executed asynchronously returns control to your application with the result code noErr as soon
as the call is placed in the file I/O queue. This result code does not indicate that the call has successfully
completed, but simply indicates that the call was successfully placed in the queue. To determine when the
call is actually completed, you can inspect the ioResult field of the parameter block. This field is set to a
positive number when the call is made and set to the actual result code when the call is completed. If you
specify a completion routine, it is executed after the result code is placed in ioResult.

The File Manager, when the File Sharing or AppleShare file server is active, will execute requests in arbitrary
order. That means that if there is a request that depends on the completion of a previous request, it is an
error for your program to issue the second request until the completion of the first request. For example,
issuing a write request and then issuing a read request for the same data isn't guaranteed to read back what
was written unless the read request isn't made until after the write request completes.

Request order can also change if a call results in a disk switch dialog to bring an offline volume back online.

Special Considerations

Because a completion routine is executed at interrupt time, it should not allocate, move, or purge memory
(either directly or indirectly) and should not depend on the validity of handles to unlocked blocks.

If your completion routine uses application global variables, it must also ensure that register A5 contains the
address of the boundary between your application global variables and your application parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Data Types

AccessParam
Defines a parameter block used by low-level HFS file and directory access rights manipulation functions.

Data Types 177
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct AccessParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short filler3;
 short ioDenyModes;
 short filler4;
 SInt8 filler5;
 SInt8 ioACUser;
 long filler6;
 long ioACOwnerID;
 long ioACGroupID;
 long ioACAccess;
 long ioDirID;
};
typedef struct AccessParam AccessParam;
typedef AccessParam * AccessParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler3
Reserved.

178 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioDenyModes
Access mode information.

filler4
Reserved.

filler5
Reserved.

ioACUser
The user’s access rights for the specified directory.

filler6
Reserved.

ioACOwnerID
The owner ID.

ioACGroupID
The group ID.

ioACAccess
The directory access privileges.

ioDirID

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

AFPAlternateAddress
Defines a block of tagged addresses for AppleShare clients.

struct AFPAlternateAddress {
 UInt8 fVersion;
 UInt8 fAddressCount;
 UInt8 fAddressList[1];
};
typedef struct AFPAlternateAddress AFPAlternateAddress;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

AFPTagData
Defines a structure which contains tagged address information for AppleShare clients.

Data Types 179
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct AFPTagData {
 UInt8 fLength;
 UInt8 fType;
 UInt8 fData[1];
};
typedef struct AFPTagData AFPTagData;

Fields
fLength

The length, in bytes, of this data tag, including the fLength field itself. See “AFP Tag Length
Constants” (page 268).

fType
The type of the data tag. See “AFP Tag Type Constants” (page 269) for the constants which you can
use here.

fData
Variable length data, containing the address.

Discussion
The new tagged data format for addressing allows for changes in addressing formats, allowing AppleShare
clients to support new addressing standards without changing the interface. The
AFPAlternateAddress (page 179) data structure uses the AFPTagData structure to specify a tagged address.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

AFPVolMountInfo
Defines a volume mounting structure for an AppleShare server.

struct AFPVolMountInfo {
 short length;
 VolumeType media;
 short flags;
 SInt8 nbpInterval;
 SInt8 nbpCount;
 short uamType;
 short zoneNameOffset;
 short serverNameOffset;
 short volNameOffset;
 short userNameOffset;
 short userPasswordOffset;
 short volPasswordOffset;
 char AFPData[144];
};
typedef struct AFPVolMountInfo AFPVolMountInfo;
typedef AFPVolMountInfo * AFPVolMountInfoPtr;

Fields
length

The length of the AFPVolMountInfo structure (that is, the total length of the structure header
described here plus the variable-length location data).

180 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

media
The volume type of the remote volume. The value AppleShareMediaType (a constant that translates
to 'afpm') represents an AppleShare volume.

flags
If bit 0 is set, no greeting message from the server is displayed.

nbpInterval
The NBP retransmit interval, in units of 8 ticks.

nbpCount
The NBP retransmit count. This field specifies the total number of times a packet should be transmitted,
including the first transmission.

uamType
The user authentication method used by the remote volume. AppleShare uses four methods, defined
by the constants described in “Authentication Method Constants” (page 271).

zoneNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare zone.

serverNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare server.

volNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the volume.

userNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the user.

userPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the user’s password (as a pascal string).

volPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the volume’s password (as a pascal string). Some versions of the AppleShare software do not pass
the information in this field to the server.

AFPData
The actual volume mounting information, offsets to which are contained in the preceding six fields.
To mount an AFP volume, you must fill in the structure with at least the zone name, server name,
user name, user password, and volume password. You can lay out the data in any order within this
data field, as long as you specify the correct offsets in the offset fields.

Discussion
The only volumes that currently support the programmatic mounting functions are AppleShare servers,
which use a volume mounting structure of type AFPVolMountInfo.

To mount an AppleShare server, fill out an AFPVolMountInfo structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

Version Notes
AppleShare clients prior to version 3.7 mount volumes over AppleTalk only. For maximum compatibility set
the uamType field to 1 for guest login or 3 for login using a password.

Data Types 181
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

To mount volumes using IP addresses and other address formats, use the AFPXVolMountInfo (page 182)
structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

AFPXVolMountInfo
Defines a volume mounting structure for an AppleShare server, for AppleShare 3.7 and later.

struct AFPXVolMountInfo {
 short length;
 VolumeType media;
 short flags;
 SInt8 nbpInterval;
 SInt8 nbpCount;
 short uamType;
 short zoneNameOffset;
 short serverNameOffset;
 short volNameOffset;
 short userNameOffset;
 short userPasswordOffset;
 short volPasswordOffset;
 short extendedFlags;
 short uamNameOffset;
 short alternateAddressOffset;
 char AFPData[176];
};
typedef struct AFPXVolMountInfo AFPXVolMountInfo;
typedef AFPXVolMountInfo * AFPXVolMountInfoPtr;

Fields
length

The length of the AFPXVolMountInfo structure (that is, the total length of the structure header
described here plus the variable-length location data).

media
The volume type of the remote volume. The value AppleShareMediaType (a constant that translates
to 'afpm') represents an AppleShare volume.

flags
Volume mount flags. See “Volume Mount Flags” (page 325) for a description of the bits in this field.
In order to use the new features of the extended AFP volume mount structure, you must set the
volMountExtendedFlagsBit bit.

nbpInterval
The NBP retransmit interval, in units of 8 ticks.

nbpCount
The NBP retransmit count. This field specifies the total number of times a packet should be transmitted,
including the first transmission.

182 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

uamType
The user authentication method used by the remote volume. AppleShare uses four methods, defined
by the constants described in “Authentication Method Constants” (page 271).

zoneNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare zone.

serverNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare server.

volNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the volume.

userNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the user.

userPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the user’s password (as a pascal string).

volPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the volume’s password (as a pascal string). Some versions of the AppleShare software do not pass
the information in this field to the server.

extendedFlags
Extended flags. See “Extended AFP Volume Mounting Information Flag” (page 286).

uamNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the user authentication module name (as a pascal string).

alternateAddressOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
IP addresses, specified as a block of tagged data. This block of tagged data begins with a version byte
and a count byte, followed by up to 255 tagged addresses. See AFPAlternateAddress (page 179).

AFPData
The actual volume mounting information, offsets to which are contained in the preceding fields. To
mount an AFP volume, you must fill in the structure with at least the zone name, server name, user
name, user password, and volume password. You can lay out the data in any order within this data
field, as long as you specify the correct offsets in the offset fields.

Discussion
To mount an AppleShare server, fill out an AFPXVolMountInfo structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

The extended AFP volume mount information structure requires AppleShare client 3.7 and later. The new
fields and flag bits allow you to specify the information needed to support TCP/IP and User Authentication
Modules.

Note that, for all fields specifying an offset, if you wish to leave the string field in the AFPData field empty,
you must specify an empty string and have the offset in the corresponding offset field point to that empty
string. You cannot simply pass 0 as the offset.

Data Types 183
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

CatPositionRec
Defines a catalog position structure, which maintains the current position of a catalog search between calls
to PBCatSearchSync or PBCatSearchAsync.

struct CatPositionRec {
 long initialize;
 short priv[6];
};
typedef struct CatPositionRec CatPositionRec;

Fields
initialize

The starting point of the catalog search. To start searching at the beginning of a catalog, specify 0 in
this field. To resume a previous search, pass the value returned by the previous call to
PBCatSearchSync or PBCatSearchAsync.

priv
An array of integers that is used internally by PBCatSearchSync and PBCatSearchAsync.

Discussion
When you call the PBCatSearchSync or PBCatSearchAsync function to search a volume’s catalog file,
you can specify, in the ioCatPosition field of the parameter block passed to PBCatSearchSync and
PBCatSearchAsync, a catalog position structure. If a catalog search consumes more time than is allowed
by the ioSearchTime field, PBCatSearchSync and PBCatSearchAsync store a directory-location index
in that structure; when you call PBCatSearchSync or PBCatSearchAsync again, it uses that structure to
resume searching where it left off.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

CInfoPBRec
Defines a catalog information parameter block for file and directory information.

184 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

union CInfoPBRec {
 HFileInfo hFileInfo;
 DirInfo dirInfo;
};
typedef union CInfoPBRec CInfoPBRec;
typedef CInfoPBRec * CInfoPBPtr;

Fields
hFileInfo
dirInfo

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

CMovePBRec
Defines a parameter block, used with the functions PBCatMoveSync and PBCatMoveAsync.

struct CMovePBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler1;
 StringPtr ioNewName;
 long filler2;
 long ioNewDirID;
 long filler3[2];
 long ioDirID;
};
typedef struct CMovePBRec CMovePBRec;
typedef CMovePBRec * CMovePBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type (This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

Data Types 185
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler1
Reserved.

ioNewName
The name of the directory into which the specified file or directory is to be moved.

filler2
Reserved.

ioNewDirID
The directory ID of the directory into which the specified file or directory is to be moved.

filler3
Reserved.

ioDirID
The current directory ID of the file or directory to be moved (used in conjunction with the ioVRefNum
and ioNamePtr fields).

Discussion
The low-level HFS function PBCatMove uses the catalog move parameter block defined by the CMovePBRec
data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

CntrlParam
Defines a parameter block used by control and status functions in the classic Device Manager.

186 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct CntrlParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioCRefNum;
 short csCode;
 short csParam[11];
};
typedef struct CntrlParam CntrlParam;
typedef CntrlParam * CntrlParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioCRefNum
The driver reference number for the I/O operation.

csCode
A value identifying the type of control or status request. Each driver may interpret this number
differently.

Data Types 187
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

csParam
The control or status information passed to or from the driver. This field is declared generically as an
array of eleven integers. Each driver may interpret the contents of this field differently. Refer to the
driver's documentation for specific information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

ConstFSSpecPtr
Defines a pointer to an FSSpec structure.

typedef const FSSpec* ConstFSSpecPtr;

Discussion
The only difference between “const FSSpec*” and the ConstFSSpecPtr data type is that, as a parameter,
a ConstFSSpecPtr data type is allowed to be NULL. See FSSpec (page 223).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

ConstHFSUniStr255Param
Defines a pointer to an HFSUniStr255 structure.

typedef const HFSUniStr255* ConstHFSUniStr255Param;

Discussion
See HFSUniStr255 (page 238).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

CopyParam
Defines a parameter block used by low-level HFS file copying functions.

188 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct CopyParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioDstVRefNum;
 short filler8;
 StringPtr ioNewName;
 StringPtr ioCopyName;
 long ioNewDirID;
 long filler14;
 long filler15;
 long ioDirID;
};
typedef struct CopyParam CopyParam;
typedef CopyParam * CopyParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioDstVRefNum
A volume reference number for the destination volume.

filler8
Reserved.

Data Types 189
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioNewName
A pointer to the destination pathname.

ioCopyName
A pointer to an optional name.

ioNewDirID
A destination directory ID.

filler14
Reserved.

filler15
Reserved.

ioDirID
A directory ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

CSParam
Defines a parameter block used by low-level HFS catalog search functions.

struct CSParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 FSSpecPtr ioMatchPtr;
 long ioReqMatchCount;
 long ioActMatchCount;
 long ioSearchBits;
 CInfoPBPtr ioSearchInfo1;
 CInfoPBPtr ioSearchInfo2;
 long ioSearchTime;
 CatPositionRec ioCatPosition;
 Ptr ioOptBuffer;
 long ioOptBufSize;
};
typedef struct CSParam CSParam;
typedef CSParam * CSParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

190 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioMatchPtr
A pointer to an array of FSSpec (page 223) structures in which the file and directory names that match
the selection criteria are returned. The array must be large enough to hold the largest possible number
of FSSpec structures, as determined by the ioReqMatchCount field.

ioReqMatchCount
The maximum number of matches to return. This number should be the number of FSSpec structures
that will fit in the memory pointed to by the ioMatchPtr field. You can use this field to avoid a
possible excess of matches for criteria that prove to be too general (or to limit the length of a search
if the ioSearchTime field isn’t used).

ioActMatchCount
The number of actual matches found.

ioSearchBits
The fields of the parameter blocks in the ioSearchInfo1 and ioSearchInfo2 fields that are relevant
to the search. See “Catalog Search Bits” (page 279) for more information.

ioSearchInfo1
A pointer to a CInfoPBRec parameter block that contains the search information. For values that
match by mask and value (Finder information, for example), set the bits in the structure passed in the
ioSearchInfo2 field, and set the matching values in this structure. For values that match against a
range (such as dates), set the lower bounds for the range in this structure.

ioSearchInfo2
A pointer to a second CInfoPBRec parameter block that contains the search information. For values
that match by mask and value (Finder information, for example), set the bits in this structure, and set
the matching values in the structure passed in the ioSearchInfo1 field. For values that match
against a range (such as dates), set the upper bounds for the range in this structure.

Data Types 191
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioSearchTime
A time limit on a search, in Time Manager format. Use this field to limit the run time of a single call
to PBCatSearchSync or PBCatSearchAsync. A value of 0 imposes no time limit. If the value of this
field is positive, it is interpreted as milliseconds. If the value of this field is negative, it is interpreted
as negated microseconds.

ioCatPosition
A position in the catalog where searching should begin. Use this field to keep an index into the catalog
when breaking down the PBCatSearchSync or PBCatSearchAsync search into a number of smaller
searches. This field is valid whenever PBCatSearchSync or PBCatSearchAsync exits because it
either spends the maximum time allowed by ioSearchTime or finds the maximum number of
matches allowed by ioReqMatchCount.

To start at the beginning of the catalog, set the initialize field of ioCatPosition to 0. Before
exiting after an interrupted search, PBCatSearchSync or PBCatSearchAsync sets that field to the
next catalog entry to be searched.

To resume where the previous call stopped, pass the entire CatPositionRec (page 184) structure
returned by the previous call as input to the next.

ioOptBuffer
A pointer to an optional read buffer. The ioOptBuffer and ioOptBufSize fields let you specify a
part of memory as a read buffer, increasing search speed.

ioOptBufSize
The size of the buffer pointed to by ioOptBuffer. Buffer size effectiveness varies with models and
configurations, but a 16 KB buffer is likely to be optimal. The size should be at least 1024 bytes and
should be an integral multiple of 512 bytes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

DirInfo
Defines a structure which holds catalog information about a directory.

192 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct DirInfo {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioACUser;
 DInfo ioDrUsrWds;
 long ioDrDirID;
 unsigned short ioDrNmFls;
 short filler3[9];
 unsigned long ioDrCrDat;
 unsigned long ioDrMdDat;
 unsigned long ioDrBkDat;
 DXInfo ioDrFndrInfo;
 long ioDrParID;
};
typedef struct DirInfo DirInfo;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

Data Types 193
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A file and directory index. If this field contains a positive number, PBGetCatInfoSync and
PBGetCatInfoAsync return information about the file or directory having that directory index in
the directory specified by the ioVRefNum field. (If ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains 0, PBGetCatInfoSync and PBGetCatInfoAsync return information about the
file or directory whose name is specified in the ioNamePtr field and that is located in the directory
specified by the ioVRefNum field. (Once again, if ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains a negative number, PBGetCatInfoSync and PBGetCatInfoAsync ignore the
ioNamePtr field and returns information about the directory specified in the ioDirID field. If both
ioDirID and ioVRefNum are set to 0, PBGetCatInfoSync and PBGetCatInfoAsync return
information about the current default directory.

ioFlAttrib
File or directory attributes. See “File Attribute Constants” (page 297) for the meaning of the bits in this
field.

ioACUser
The user’s access rights for the specified directory. See “User Privileges Constants” (page 313) for the
meaning of the bits in this field.

ioDrUsrWds
Information used by the Finder.

ioDrDirID
A directory ID. On input to PBGetCatInfoSync and PBGetCatInfoAsync , this field contains a
directory ID, which is used only if the value of the ioFDirIndex field is negative. On output, this field
contains the directory ID of the specified directory.

ioDrNmFls
The number of files in the directory.

filler3
Reserved.

ioDrCrDat
The date and time of the directory’s creation, in seconds since midnight, January 1, 1904. However,
on Mac OS X, if you set the creation date to a date between January 1, 1904 and January 1, 1970, it
will be clipped to January 1, 1970, and that is the value which will be returned if you later try to retrieve
the creation date.

Note that file systems other than AFP, HFS and HFS Plus do not generally support creation dates.

194 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioDrMdDat
The date and time of the last modification to the directory, in seconds since midnight, January 1,
1904. However, on Mac OS X, if you set the modification date to a date between January 1, 1904 and
January 1, 1970, it will be clipped to January 1, 1970.

ioDrBkDat
The date and time that the directory was last backed up, in seconds since midnight, January 1, 1904.
However, on Mac OS X, if you set the backup date to a date between January 1, 1904 and January 1,
1970, it will be clipped to January 1, 1970.

Note that file systems other than AFP, HFS and HFS Plus do not generally support backup dates.

ioDrFndrInfo
Additional information used by the Finder.

ioDrParID
The directory ID of the specified directory’s parent directory.

refCon

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

DrvQEl
Defines a drive queue element.

struct DrvQEl {
 QElemPtr qLink;
 short qType;
 short dQDrive;
 short dQRefNum;
 short dQFSID;
 unsigned short dQDrvSz;
 unsigned short dQDrvSz2;
};
typedef struct DrvQEl DrvQEl;
typedef DrvQEl * DrvQElPtr;

Fields
qLink

A pointer to the next entry in the drive queue.

qType
Used to specify the size of the drive. If the value of this field is 0, the number of logical blocks on the
drive is contained in the dQDrvSz field alone. If the value of this field is 1, both the dQDrvSz field
and the dQDrvSz2 field are used to store the number of blocks; in that case, the dQDrvSz2 field
contains the high-order word of this number and dQDrvSz contains the low-order word.

dQDrive
The drive number of the drive.

dQRefNum
The driver reference number of the driver controlling the device on which the volume is mounted.

Data Types 195
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

dQFSID
An identifier for the file system handling the volume in the drive it’s zero for volumes handled by the
File Manager and nonzero for volumes handled by other file systems.

dQDrvSz
The number of logical blocks on the drive.

dQDrvSz2
An additional field to handle large drives. This field is only used if the qType field is 1.

Discussion
The File Manager maintains a list of all disk drives connected to the computer. It maintains this list in the
drive queue, which is a standard operating system queue. The drive queue is initially created at system startup
time. Elements are added to the queue at system startup time or when you call the AddDrive function. The
drive queue can support any number of drives, limited only by memory space. Each element in the drive
queue contains information about the corresponding drive.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

DTPBRec
Defines the desktop database parameter block used by the desktop database functions.

196 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct DTPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioDTRefNum;
 short ioIndex;
 long ioTagInfo;
 Ptr ioDTBuffer;
 long ioDTReqCount;
 long ioDTActCount;
 SInt8 ioFiller1;
 UInt8 ioIconType;
 short ioFiller2;
 long ioDirID;
 OSType ioFileCreator;
 OSType ioFileType;
 long ioFiller3;
 long ioDTLgLen;
 long ioDTPyLen;
 short ioFiller4[14];
 long ioAPPLParID;
};
typedef struct DTPBRec DTPBRec;
typedef DTPBRec * DTPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

Data Types 197
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioNamePtr
A pointer to a file, directory, or volume name. Whenever a function description specifies that
ioNamePtr is used—whether for input, output, or both—it’s very important that you set this field
to point to storage for a Str255 value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
The volume reference number.

ioDTRefNum
The desktop database reference number.

ioIndex
The index into icon list.

ioTagInfo
The tag information.

ioDTBuffer
The data buffer.

ioDTReqCount
The requested length of data.

ioDTActCount
The actual length of data.

ioFiller1
Unused.

ioIconType
The icon type.

ioFiller2
Unused.

ioDirID
The parent directory ID.

ioFileCreator
The file creator.

ioFileType
The file type.

ioFiller3
Unused.

ioDTLgLen
The logical length of the desktop database.

ioDTPyLen
The physical length of the desktop database.

ioFiller4
Unused.

ioAPPLParID
The parent directory ID of an application.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

198 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

FCBPBRec
Defines a file control block (FCB) parameter block used by the functions PBGetFCBInfoSync and
PBGetFCBInfoAsync.

struct FCBPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 short filler;
 short ioFCBIndx;
 short filler1;
 long ioFCBFlNm;
 short ioFCBFlags;
 unsigned short ioFCBStBlk;
 long ioFCBEOF;
 long ioFCBPLen;
 long ioFCBCrPs;
 short ioFCBVRefNum;
 long ioFCBClpSiz;
 long ioFCBParID;
};
typedef struct FCBPBRec FCBPBRec;
typedef FCBPBRec * FCBPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

Data Types 199
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

filler
Reserved.

ioFCBIndx
An index for use with the PBGetFCBInfoSync and PBGetFCBInfoAsync functions.

filler1
Reserved.

ioFCBFlNm
The file ID.

ioFCBFlags
Flags describing the status of the file. See “FCB Flags” (page 289) for the meanings of the bits in this
field.

ioFCBStBlk
The number of the first allocation block of the file.

ioFCBEOF
The logical length (logical end-of-file) of the file.

ioFCBPLen
The physical length (physical end-of-file) of the file.

ioFCBCrPs
The current position of the file mark.

ioFCBVRefNum
The volume reference number.

ioFCBClpSiz
The file clump size.

ioFCBParID
The file’s parent directory ID.

Discussion
The low-level HFS function PBGetFCBInfo uses the file control block parameter block defined by the
FCBPBRec data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

200 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

FIDParam
Defines a parameter block used by low-level HFS file ID functions.

struct FIDParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler14;
 StringPtr ioDestNamePtr;
 long filler15;
 long ioDestDirID;
 long filler16;
 long filler17;
 long ioSrcDirID;
 short filler18;
 long ioFileID;
};
typedef struct FIDParam FIDParam;
typedef FIDParam * FIDParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

Data Types 201
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler14
Reserved.

ioDestNamePtr
A pointer to the name of the destination file.

filler15
Reserved.

ioDestDirID
The parent directory ID of the destination file.

filler16
Reserved.

filler17
Reserved.

ioSrcDirID
The parent directory ID of the source file.

filler18
Reserved.

ioFileID
The file ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

FileParam
Defines a parameter block used by low-level functions for getting and setting file information.

202 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct FileParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioFlVersNum;
 FInfo ioFlFndrInfo;
 unsigned long ioFlNum;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
};
typedef struct FileParam FileParam;
typedef FileParam * FileParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

Data Types 203
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A directory index for use with the PBHGetFInfoSync (page 440) and PBHGetFInfoAsync (page 438)
functions.

ioFlAttrib
File attributes. See “File Attribute Constants” (page 297) for the meaning of the bits in this field.

ioFlVersNum
A file version number. This feature is no longer supported, and you must always set this field to 0.

ioFlFndrInfo
Information used by the Finder.

ioFlNum
A file ID.

ioFlStBlk
The first allocation block of the data fork. This field contains 0 if the file’s data fork is empty.

ioFlLgLen
The logical length (logical end-of-file) of the data fork.

ioFlPyLen
The physical length (physical end-of-file) of the data fork.

ioFlRStBlk
The first allocation block of the resource fork. This field contains 0 if the file’s resource fork is empty.

ioFlRLgLen
The logical length (logical end-of-file) of the resource fork.

ioFlRPyLen
The physical length (physical end-of-file) of the resource fork.

ioFlCrDat
The date and time of the file’s creation, specified in seconds since midnight, January 1, 1904.

ioFlMdDat
The date and time of the last modification to the file, specified in seconds since midnight, January 1,
1904.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

204 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FNSubscriptionRef

typedef struct OpaqueFNSubscriptionRef * FNSubscriptionRef;

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNSubscriptionUPP

typedef FNSubscriptionProcPtr FNSubscriptionUPP;

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

ForeignPrivParam
Defines a parameter block used by low-level HFS foreign privileges functions.

struct ForeignPrivParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long ioFiller21;
 long ioFiller22;
 Ptr ioForeignPrivBuffer;
 long ioForeignPrivActCount;
 long ioForeignPrivReqCount;
 long ioFiller23;
 long ioForeignPrivDirID;
 long ioForeignPrivInfo1;
 long ioForeignPrivInfo2;
 long ioForeignPrivInfo3;
 long ioForeignPrivInfo4;
};
typedef struct ForeignPrivParam ForeignPrivParam;
typedef ForeignPrivParam * ForeignPrivParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

Data Types 205
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFiller21
Reserved.

ioFiller22
Reserved.

ioForeignPrivBuffer
A pointer to a buffer containing access-control information about the foreign file system.

ioForeignPrivActCount
The size of the buffer pointed to by the ioForeignPrivBuffer field.

ioForeignPrivReqCount
The amount of the buffer pointed to by the ioForeignPrivBuffer field that was actually used to
hold data.

ioFiller23
Reserved.

ioForeignPrivDirID
The parent directory ID of the foreign file or directory.

ioForeignPrivInfo1
A long word that may contain privileges data.

ioForeignPrivInfo2
A long word that may contain privileges data.

ioForeignPrivInfo3
A long word that may contain privileges data.

ioForeignPrivInfo4
A long word that may contain privileges data.

206 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

FSCatalogBulkParam
Defines a parameter block used to retrieve catalog information in bulk on HFS Plus volumes.

struct FSCatalogBulkParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 Boolean containerChanged;
 UInt8 reserved;
 FSIteratorFlags iteratorFlags;
 FSIterator iterator;
 const FSRef * container;
 ItemCount maximumItems;
 ItemCount actualItems;
 FSCatalogInfoBitmap whichInfo;
 FSCatalogInfo * catalogInfo;
 FSRef * refs;
 FSSpec * specs;
 HFSUniStr255 * names;
 const FSSearchParams * searchParams;
};
typedef struct FSCatalogBulkParam FSCatalogBulkParam;
typedef FSCatalogBulkParam * FSCatalogBulkParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

Data Types 207
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

containerChanged
A Boolean value indicating whether or not the container has changed since the last call to
PBGetCatalogInfoBulkSync or PBGetCatalogInfoBulkAsync.

reserved
Reserved.

iteratorFlags
A set of flags which specifies how the iterator should iterate over the container. See “Iterator
Flags” (page 307) for the meaning of the constants used here.

iterator
A catalog iterator.

container
An FSRef for the directory or volume to iterate over.

maximumItems
The maximum number of items to return information about.

actualItems
The actual number of items returned.

whichInfo
A bitmap indicating which fields of the catalog information structure to return. See “Catalog Information
Bitmap Constants” (page 274) for the bits defined for this field.

catalogInfo
A pointer to an array of catalog information structures. On input, you should pass a pointer to an
array of maximumItemsFSCatalogInfo (page 209) structures. On return, actualItems structures
will be filled out with the information requested in the whichInfo field. If you do not wish any catalog
information to be returned, pass a NULL pointer in this field and pass the constant kFSCatInfoNone
in the whichInfo field.

refs
A pointer to an array of FSRef structures. On input, you should pass a pointer to maximumItemsFSRef
structures. On return, actualItems structures will be filled out. If you do not wish any FSRef structures
to be returned, pass a NULL pointer in this field.

specs
A pointer to an array of FSSpec structures. On input, you should pass a pointer to maximumItems
file system specifications. On return, actualItemsFSSpec structures will be filled in. If you do not
wish any FSSpec information to be returned, pass a NULL pointer in this field.

names
A pointer to an array of Unicode names. On input, you should pass a pointer to an array of
maximumItemsHFSUniStr255 structures. On return, actualItems structures will contain Unicode
names. If you do not wish any file or directory names to be returned, pass a NULL pointer in this field.

searchParams
A pointer to an FSSearchParams (page 222) structure, specifying the values to match against.

Availability
Available in Mac OS X v10.0 and later.

208 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

FSCatalogInfo
Holds basic information about a file or directory.

struct FSCatalogInfo {
 UInt16 nodeFlags;
 FSVolumeRefNum volume;
 UInt32 parentDirID;
 UInt32 nodeID;
 UInt8 sharingFlags;
 UInt8 userPrivileges;
 UInt8 reserved1;
 UInt8 reserved2;
 UTCDateTime createDate;
 UTCDateTime contentModDate;
 UTCDateTime attributeModDate;
 UTCDateTime accessDate;
 UTCDateTime backupDate;
 UInt32 permissions[4];
 UInt8 finderInfo[16];
 UInt8 extFinderInfo[16];
 UInt64 dataLogicalSize;
 UInt64 dataPhysicalSize;
 UInt64 rsrcLogicalSize;
 UInt64 rsrcPhysicalSize;
 UInt32 valence;
 TextEncoding textEncodingHint;
};
typedef struct FSCatalogInfo FSCatalogInfo;
typedef FSCatalogInfo * FSCatalogInfoPtr;

Fields
nodeFlags

Node flags. This field has two defined bits that indicate whether an object is a file or folder, and
whether a file is locked (constants kFSNodeIsDirectoryMask and kFSNodeLockedMask). See
“Catalog Information Node Flags” (page 277) for the values you can use here.

volume
The object's volume reference.

parentDirID
The ID of the directory that contains the given object. The root directory of a volume always has ID
fsRtDirID (2); the parent of the root directory is ID fsRtParID (1). Note that there is no object with
ID fsRtParID; this is merely used when the File Manager is asked for the parent of the root directory.

nodeID
The file or directory ID.

sharingFlags
The object’s sharing flags. See “Catalog Information Sharing Flags ” (page 279) for the meaning of the
bits defined for this field.

userPrivileges
The user's effective AFP privileges (same as ioACUser in the old HFileInfo and DirInfo structures).
See “User Privileges Constants” (page 313).

Data Types 209
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

reserved1
Reserved.

reserved2
Reserved.

createDate
The date and time of the creation of the object. Note that file systems other than AFP, HFS and HFS
Plus do not generally support creation dates. For file systems which do not support creation dates,
FSGetCatalogInfo, PBGetCatalogInfoSync, and PBGetCatalogInfoAsync return 0 in this field.

contentModDate
The date and time that the data or resource fork was last modified.

attributeModDate
The date and time that an attribute of the object (such as a fork other than the data or resource fork)
was last modified.

accessDate
The date and time that the object was last accessed. The Mac OS 9 File Manager does not automatically
update the accessDate field; it exists primarily for use by other operating systems (notably Mac OS
X).

backupDate
The date and time of the object’s last backup. This field is not updated by the File Manager a backup
utility may use this field if it wishes. Note that file systems other than AFP, HFS and HFS Plus do not
generally support backup dates. For file systems which do not support backup dates,
FSGetCatalogInfo, PBGetCatalogInfoSync, and PBGetCatalogInfoAsync return 0 in this field.

permissions
User and group permission information. The Mac OS 8 and 9 File Manager does not use or enforce
this permission information. It could be used by a file server program or other operating system
(primarily Mac OS X). In Mac OS X, this array contains the file system permissions of the returned item.
To use this information, coerce the parameter to a FSPermissionInfo (page 219) structure.

finderInfo
Basic Finder information for the object. This information is available in the catalog information, instead
of in a named fork, for historical reasons. The File Manager does not interpret the contents of these
fields. To use this information, coerce the parameter to a FileInfo or FolderInfo structure.

extFinderInfo
Extended Finder information for the object. This information is available in the catalog information,
instead of in a named fork, for historical reasons. The File Manager does not interpret the contents
of these fields. To use this information, coerce the parameter to an ExtendedFileInfo or
ExtendedFolderInfo structure.

dataLogicalSize
The size of the data fork in bytes (the fork’s logical size). The information in this field is only valid for
files do not rely upon the value returned in this field for folders.

dataPhysicalSize
The amount of disk space, in bytes, occupied by the data fork (the fork’s physical size). The information
in this field is only valid for files do not rely upon the value returned in this field for folders.

rsrcLogicalSize
The size of the resource fork (the fork’s logical size). The information in this field is only valid for files
do not rely upon the value returned in this field for folders.

210 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

rsrcPhysicalSize
The amount of disk space occupied by the resource fork (the fork’s physical size). The information in
this field is only valid for files do not rely upon the value returned in this field for folders.

valence
For folders only, the number of items (files plus directories) contained within the directory. For files,
it is set to zero. Many volume formats do not store a field containing a directory’s valence. For those
volume formats, this field is very expensive to compute. Think carefully before you ask the File Manager
to return this field.

textEncodingHint
The textEncodingHint field is used in conjunction with the Unicode filename of the object. It is an
optional hint that can be used by the volume format when converting the Unicode to some other
encoding. For example, HFS Plus stores this value and uses it when converting the name to a Mac OS
encoding, such as when the name is returned by PBGetCatInfoSync or PBGetCatInfoAsync. As
another example, HFS volumes use this value to convert the Unicode name to a Mac OS encoded
name stored on disk. If the entire Unicode name can be converted to a single Mac OS encoding, then
that encoding should be used as the textEncodingHint; otherwise, a text encoding corresponding
to the first characters of the name will probably provide the best user experience.

If a textEncodingHint is not supplied when a file or directory is created or renamed, the volume
format will use a default value. This default value may not be the best possible choice for the given
filename. Whenever possible, a client should supply a textEncodingHint.

Discussion
The FSCatalogInfoBitmap type is used to indicate which fields of the FSCatalogInfo should be set or
retrieved. If the bit corresponding to a particular field is not set, then that field is not changed if the
FSCatalogInfo is an output parameter, and that field is ignored if the FSCatalogInfo is an input parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCatalogInfoBitmap
Describes which fields of the FSCatalogInfo structure you wish to retrieve or set.

typedef UInt32 FSCatalogInfoBitmap;

Discussion
If the bit corresponding to a particular field is not set in the bitmap, then that field is not changed in the
FSCatalogInfo structure if it is an output parameter, and that field is ignored if the FSCatalogInfo
structure is an input parameter. See “Catalog Information Bitmap Constants” (page 274) for a description of
the constants you should use with this data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Data Types 211
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSEjectStatus

typedef UInt32 FSEjectStatus;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSFileOperationClientContext
Specifies user-defined data and callbacks associated with an asynchronous file operation.

struct FSFileOperationClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct FSFileOperationClientContext FSFileOperationClientContext;

Fields
version

The version number of the structure; this field should always contain 0.

info
A generic pointer to your user-defined data. This pointer is passed back to your application when you
check the status of the file operation. There are two ways you can ask the File Manager for status
information about a file operation: by supplying a status callback function when you start the operation,
or by calling a file operation status function directly.

retain
An optional callback function that the File Manager can use to retain the user-defined data specified
in the info parameter. If your data is a Core Foundation object, you can simply specify the function
CFRetain. If no callback is needed, set this field to NULL.

release
An optional callback function that the File Manager can use to release the user-defined data specified
in the info parameter. If your data is a Core Foundation object, you can simply specify the function
CFRelease. If no callback is needed, set this field to NULL.

copyDescription
An optional callback function that the File Manager can use to create a descriptive string representation
of your user-defined data for debugging purposes. If no callback is needed, set this field to NULL.

Discussion
You supply a client context when calling functions such as FSCopyObjectAsync (page 49) or
FSMoveObjectAsync (page 82) that start an asynchronous copy or move operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

212 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSFileOperationRef
Defines an opaque type that represents an asynchronous file operation.

typedef struct __FSFileOperation * FSFileOperationRef;

Discussion
You supply a file operation object when calling functions such as FSCopyObjectAsync (page 49) or
FSMoveObjectAsync (page 82) to start an asynchronous copy or move operation. You can also use a file
operation object to check the status of a file operation or to cancel the operation.

To perform an asynchronous file operation:

1. Create a file operation object using the function FSFileOperationCreate (page 61).

2. Pass the object to the function FSFileOperationScheduleWithRunLoop (page 62) to schedule the
operation.

3. Pass the object to one of the asynchronous file operation functions to start the operation.

The FSFileOperationRef opaque type is a standard Core Foundation data type. It is derived from CFType
and inherits the properties that all Core Foundation types have in common. For more information, see CFType
Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSForkCBInfoParam
Defines a parameter block used by low-level HFS Plus fork control block functions.

Data Types 213
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct FSForkCBInfoParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 SInt16 desiredRefNum;
 SInt16 volumeRefNum;
 SInt16 iterator;
 SInt16 actualRefNum;
 FSRef * ref;
 FSForkInfo * forkInfo;
 HFSUniStr255 * forkName;
};
typedef struct FSForkCBInfoParam FSForkCBInfoParam;
typedef FSForkCBInfoParam * FSForkCBInfoParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

desiredRefNum
A fork reference number.

volumeRefNum
The volume reference number of the volume to match, or zero to match all volumes.

iterator
An iterator. Set to zero to start iteration.

actualRefNum
On return, the actual fork reference number found.

ref
A pointer to an FSRef for the specified fork.

forkInfo
A pointer to a fork information structure, FSForkInfo (page 215).

214 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

forkName
A pointer to the fork’s Unicode name.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSForkInfo
Contains information about an open fork.

struct FSForkInfo {
 SInt8 flags;
 SInt8 permissions;
 FSVolumeRefNum volume;
 UInt32 reserved2;
 UInt32 nodeID;
 UInt32 forkID;
 UInt64 currentPosition;
 UInt64 logicalEOF;
 UInt64 physicalEOF;
 UInt64 process;
};
typedef struct FSForkInfo FSForkInfo;
typedef FSForkInfo * FSForkInfoPtr;

Fields
flags

Flags describing the status of the fork. See “FCB Flags” (page 289) for a description of the bits in this
field.

permissions
User and group permission information.

volume
A volume specification. This can be a volume reference number, drive number, or 0 for the default
volume.

reserved2
Reserved.

nodeID
The file or directory ID of the file or directory with which the fork is associated.

forkID
The fork ID.

currentPosition
The current position within the fork.

logicalEOF
The logical size of the fork.

physicalEOF
The physical size of the fork.

process
The process which opened the fork.

Data Types 215
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
This data type is used in the forkInfo parameter of the FSGetForkCBInfo function, and in the forkInfo
field of the FSForkCBInfoParam parameter block passed to the PBGetForkCBInfoSync and
PBGetForkCBInfoAsync functions. When these functions return, the FSForkInfo structure contains
information about the specified open fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSForkIOParam
Defines a parameter block used by low-level HFS Plus fork I/O functions.

struct FSForkIOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 void * reserved1;
 SInt16 reserved2;
 SInt16 forkRefNum;
 UInt8 reserved3;
 SInt8 permissions;
 const FSRef * ref;
 Ptr buffer;
 UInt32 requestCount;
 UInt32 actualCount;
 UInt16 positionMode;
 SInt64 positionOffset;
 FSAllocationFlags allocationFlags;
 UInt64 allocationAmount;
 UniCharCount forkNameLength;
 const UniChar * forkName;
 CatPositionRec forkIterator;
 HFSUniStr255 * outForkName;
};
typedef struct FSForkIOParam FSForkIOParam;
typedef FSForkIOParam * FSForkIOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

216 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

reserved1
Reserved.

reserved2
Reserved.

forkRefNum
A reference number for a fork.

reserved3
Reserved.

permissions
The desired type of access to the specified fork. See “File Access Permission Constants” (page 291) for
a description of the types of access that you can request.

ref
An FSRef for the file or directory to open.

buffer
A pointer to a data buffer.

requestCount
The number of bytes requested for the given operation.

actualCount
The actual number of bytes completed by the call.

positionMode
A constant indicating the base location within the file for the start of the operation. See “Position
Mode Constants” (page 311) for the meaning of the constants you can use in this field.

positionOffset
The offset from the base location specified in the positionMode offset for the start of the operation.

allocationFlags
A set of bit flags used by the FSAllocateFork (page 43) function to control how space is allocated.
See “Allocation Flags” (page 270) for a description of the defined flags.

allocationAmount
For the FSAllocateFork (page 43) function, the amount of space, in bytes, to allocate.

forkNameLength
The length of the file or directory name passed in the forkName field, in Unicode characters.

forkName
A pointer to the file or directory’s Unicode name. This field is an input parameter functions which
return the file or directory name in the parameter block use the outForkName field.

forkIterator
A fork iterator.

Data Types 217
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

outForkName
A pointer to the file or directory’s Unicode name this is an output parameter. For functions which
require the file or directory name as an input argument, you should pass a pointer to that name in
the forkName field and pass the length of the name in the forkNameLength field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSIterator
Refers to a position within the catalog, used when iterating over files and folders in a directory.

typedef struct OpaqueFSIterator * FSIterator;

Discussion
This data type is like a file reference number because it maintains state internally to the File Manager and
must be explicitly opened and closed.

An FSIterator is returned by FSOpenIterator and is passed as input to FSGetCatalogInfoBulk
, FSCatalogSearch and FSCloseIterator .

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSMountStatus

typedef UInt32 FSMountStatus;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

218 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSPermissionInfo

struct FSPermissionInfo {
 UInt32 userID;
 UInt32 groupID;
 UInt8 reserved1;
 UInt8 userAccess;
 UInt16 mode;
 UInt32 reserved2;
};
typedef struct FSPermissionInfo FSPermissionInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSRangeLockParam
Defines a parameter block for use with 64-bit range locking functions.

struct FSRangeLockParam {
 QElemPtr qLink;
 SInt16 qType;
 SInt16 ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 FSIORefNum forkRefNum;
 UInt64 requestCount;
 UInt16 positionMode;
 SInt64 positionOffset;
 UInt64 rangeStart;
};
typedef struct FSRangeLockParam FSRangeLockParam;

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSRangeLockParamPtr
Defines a pointer to a range lock parameter block.

typedef FSRangeLockParam *FSRangeLockParamPtr;

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

Data Types 219
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSRef
Identifies a directory or file, including a volume’s root directory.

struct FSRef {
 UInt8 hidden[80];
};
typedef struct FSRef FSRef;
typedef FSRef * FSRefPtr;

Discussion
This data type’s purpose is similar to an FSSpec except that an FSRef is completely opaque. An FSRef
contains whatever information is needed to find the given object; the internal structure of an FSRef is likely
to vary based on the volume format, and may vary based on the particular object being identified.

The client of the File Manager cannot examine the contents of an FSRef to extract information about the
parent directory or the object’s name. Similarly, an FSRef cannot be constructed directly by the client; the
FSRef must be constructed and returned via the File Manager. There is no need to call the File Manager to
dispose an FSRef.

To determine the volume, parent directory and name associated with an FSRef, or to get an equivalent
FSSpec, use the FSGetCatalogInfo call.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSRefParam
Defines a parameter block used by low-level HFS Plus functions.

220 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct FSRefParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 ConstStringPtr ioNamePtr;
 short ioVRefNum;
 SInt16 reserved1;
 UInt8 reserved2;
 UInt8 reserved3;
 const FSRef * ref;
 FSCatalogInfoBitmap whichInfo;
 FSCatalogInfo * catInfo;
 UniCharCount nameLength;
 const UniChar * name;
 long ioDirID;
 FSSpec * spec;
 FSRef * parentRef;
 FSRef * newRef;
 TextEncoding textEncodingHint;
 HFSUniStr255 * outName;
};
typedef struct FSRefParam FSRefParam;
typedef FSRefParam * FSRefParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—you should set this field to point to storage for a Str255 value (if you’re
using a pathname) or to NULL (if you’re not).

Data Types 221
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVRefNum
A volume reference number, or 0 for the default volume.

reserved1
Reserved.

reserved2
Reserved.

reserved3
Reserved.

ref
The FSRef describing the file or directory which is the target of the call.

whichInfo
An FSCatalogInfoBitmap which describes the fields of the catalog information structure passed
in the catInfo field which are to be retrieved or set.

catInfo
A catalog information structure containing information about the specified file or directory.

nameLength
The length of the file or directory’s name, for the PBCreateSync, PBCreateAsync, PBRenameSync,
and PBRenameAsync functions.

name
A pointer to the file or directory’s Unicode name, for the PBCreateSync, PBCreateAsync,
PBRenameSync, and PBRenameAsync functions.

ioDirID
The directory ID of the specified file or directory’s parent directory.

spec
The target or source FSRef.

parentRef
The secondary or destination FSRef. (Or the ref of the directory to move another file or directory to).

newRef
The output FSRef (ie, a new FSRef).

textEncodingHint
A text encoding hint for the file or directory’s Unicode name, used by the PBMakeFSRefSync,
PBMakeFSRefAsync, PBRenameSync, and PBRenameAsync functions.

outName
On output, a pointer to the Unicode name of the file or directory, used by the PBGetCatalogInfoSync
and PBGetCatalogInfoAsync functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSearchParams
Describes the search criteria for a catalog information search.

222 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct FSSearchParams {
 Duration searchTime;
 OptionBits searchBits;
 UniCharCount searchNameLength;
 const UniChar * searchName;
 FSCatalogInfo * searchInfo1;
 FSCatalogInfo * searchInfo2;
};
typedef struct FSSearchParams FSSearchParams;
typedef FSSearchParams * FSSearchParamsPtr;

Fields
searchTime

A Time Manager duration for the duration of the search. If you specify a non-zero value in this field,
the search may terminate after the specified time, even if the maximum number of requested objects
has not been returned and the entire catalog has not been scanned.

If this value is negative, the time is interpreted in microseconds; if positive, it is interpreted as
milliseconds. If searchTime is zero, there is no time limit on the search.

searchBits
A set of bits specifying which catalog information fields to search on. See “Catalog Search
Constants” (page 282) for the constants which you can use here.

searchNameLength
The length of the Unicode name to search by.

searchName
A pointer to the Unicode name to search by.

searchInfo1
An FSCatalogInfo (page 209) structure which specifies the values and lower bounds of a search.

searchInfo2
A FSCatalogInfo (page 209) structure which specifies the masks and upper bounds of a search.

Discussion
Used by FSCatalogSearch , PBCatalogSearchSync , and PBCatalogSearchAsync to specify the criteria
for a catalog search.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSpec
Specifies the name and location of a file or directory.

Data Types 223
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct FSSpec {
 short vRefNum;
 long parID;
 StrFileName name;
};
typedef struct FSSpec FSSpec;
typedef FSSpec * FSSpecPtr;

Fields
vRefNum

The volume reference number of the volume containing the specified file or directory.

parID
The parent directory ID of the specified file or directory (the directory ID of the directory containing
the given file or directory).

name
The name of the specified file or directory. In Carbon, this name must be a leaf name; the name cannot
contain a semicolon.

Discussion
The FSSpec structure can describe only a file or a directory, not a volume. A volume can be identified by its
root directory, although the system software never uses an FSSpec structure to describe a volume. The
directory ID of the root’s parent directory is fsRtParID. The name of the root directory is the same as the
name of the volume.

If you need to convert a file specification into an FSSpec structure, call the function FSMakeFSSpec (page
344) . Do not fill in the fields of an FSSpec structure yourself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSpecArrayPtr
Defines a pointer to an array of FSSpec structures.

typedef FSSpecPtr FSSpecArrayPtr;

Discussion
See FSSpec (page 223).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

224 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSUnmountStatus

typedef UInt32 FSUnmountStatus;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeEjectUPP

typedef FSVolumeEjectProcPtr FSVolumeEjectUPP;

Discussion
For more information, see the description of the FSVolumeEjectProcPtr (page 174) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeInfo
Used when getting or setting information about a volume.

Data Types 225
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct FSVolumeInfo {
 UTCDateTime createDate;
 UTCDateTime modifyDate;
 UTCDateTime backupDate;
 UTCDateTime checkedDate;
 UInt32 fileCount;
 UInt32 folderCount;
 UInt64 totalBytes;
 UInt64 freeBytes;
 UInt32 blockSize;
 UInt32 totalBlocks;
 UInt32 freeBlocks;
 UInt32 nextAllocation;
 UInt32 rsrcClumpSize;
 UInt32 dataClumpSize;
 UInt32 nextCatalogID;
 UInt8 finderInfo[32];
 UInt16 flags;
 UInt16 filesystemID;
 UInt16 signature;
 UInt16 driveNumber;
 short driverRefNum;
};
typedef struct FSVolumeInfo FSVolumeInfo;
typedef FSVolumeInfo * FSVolumeInfoPtr;

Fields
createDate

The date and time the volume was created. A value of 0 means that the volume creation date is
unknown.

modifyDate
The last time when the volume was modified in any way. A value of 0 means “never” or “unknown.

backupDate
Indicates when the volume was last backed up. This field is for use by backup utilities. A value of 0
means “never” or “unknown.

checkedDate
The last date and time that the volume was checked for consistency. A value of 0 means “never” or
“unknown.

fileCount
The total number of files on the volume, or 0 if unknown.

folderCount
The total number of folders on the volume, or 0 if unknown. Note that no root directory counts.

totalBytes
The size of the volume in bytes.

freeBytes
The number of bytes of free space on the volume.

blockSize
The size of an allocation block, in bytes. This field is only appropriate for volume formats (such as HFS
and HFS Plus) that allocate space in fixed-size pieces; other volume formats may not have a similar
concept, and may set this field to zero.

226 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

totalBlocks
The total number of allocation blocks on the volume. This field is only appropriate for volume formats
(such as HFS and HFS Plus) that allocate space in fixed-size pieces; other volume formats may not
have a similar concept, and may set this field to zero.

freeBlocks
The number of unused allocation blocks on the volume. This field is only appropriate for volume
formats (such as HFS and HFS Plus) that allocate space in fixed-size pieces; other volume formats may
not have a similar concept, and may set this field to zero.

nextAllocation
A hint for where to start searching for free space during an allocation. This field is only appropriate
for volume formats (such as HFS and HFS Plus) that allocate space in fixed-size pieces; other volume
formats may not have a similar concept, and may set this field to zero.

rsrcClumpSize
Default resource fork clump size. When a fork is automatically grown as it is written, the File Manager
attempts to allocate space that is a multiple of the clump size. This field is zero for volume formats
that don’t support the notion of a clump size.

dataClumpSize
Default data fork clump size. When a fork is automatically grown as it is written, the File Manager
attempts to allocate space that is a multiple of the clump size. This field is zero for volume formats
that don’t support the notion of a clump size.

nextCatalogID
The next unused catalog node ID. Some volume formats (such as HFS and HFS Plus) use a monotonically
increasing number for the catalog node ID (i.e. File ID or Directory ID) of newly created files and
directories. For those volume formats, the nextCatalogID is the next file/directory ID that will be
assigned. For other volume formats, this field will be zero.

finderInfo
Information used by Finder, such as the Directory ID of the System Folder. Some volume formats do
not support Finder information for a volume and will set this field to all zeroes.

flags
This field contains bit flags holding information about the volume. See “Volume Information
Flags” (page 323) for the attribute constants you can use here.

filesystemID
Identifies the filesystem implementation that is handling the volume; this is zero for HFS and HFS Plus
volumes.

signature
This field is used to distinguish between volume formats supported by a single filesystem
implementation.

driveNumber
The drive number for the drive (drive queue element) associated with the volume. Mac OS X does
not support drive numbers; in Mac OS X, the File Manager always returns a value of 1 in this field.

driverRefNum
The driver reference number for the drive (drive queue element) associated with the volume.

Discussion
This structure contains information about a volume as a whole information about a volume’s root directory
would use the FSCatalogInfo (page 209) structure.

Availability
Available in Mac OS X v10.0 and later.

Data Types 227
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

FSVolumeInfoBitmap
Describes which fields of the FSVolumeInfo structure you wish to retrieve or set.

typedef UInt32 FSVolumeInfoBitmap;

Discussion
If the bit corresponding to a particular field is not set in the bitmap, then that field is not changed in the
FSVolumeInfo structure if it is an output parameter, and that field is ignored if the FSVolumeInfo structure
is an input parameter. See “Volume Information Bitmap Constants” (page 321) for a description of the constants
you should use with this data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSVolumeInfoParam
Defines a parameter block used by low-level HFS Plus volume manipulation functions.

struct FSVolumeInfoParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 FSVolumeRefNum ioVRefNum;
 UInt32 volumeIndex;
 FSVolumeInfoBitmap whichInfo;
 FSVolumeInfo * volumeInfo;
 HFSUniStr255 * volumeName;
 FSRef * ref;
};
typedef struct FSVolumeInfoParam FSVolumeInfoParam;
typedef FSVolumeInfoParam * FSVolumeInfoParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

228 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a volume name. This field is unused.

ioVRefNum
The volume reference number.

volumeIndex
The volume index. If this field is 0, the value in the ioVRefNum field only is used to identify the target
volume.

whichInfo
A bitmap indicating which volume information fields to retrieve or set in the FSVolumeInfo (page
225) structure passed in the volumeInfo field. See “Volume Information Bitmap Constants” (page
321) for the meaning of the bits in this field.

volumeInfo
A pointer to a volume information structure containing the requested volume information on return,
or the new values of the volume information to set on input. See FSVolumeInfo (page 225).

volumeName
On output, a pointer to the volume’s name.

ref
A pointer to an FSRef for the specified volume’s root directory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSVolumeMountUPP

typedef FSVolumeMountProcPtr FSVolumeMountUPP;

Discussion
For more information, see the description of the FSVolumeMountProcPtr (page 175) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

Data Types 229
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FSVolumeOperation

typedef struct OpaqueFSVolumeOperation * FSVolumeOperation;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeRefNum
Identifies a particular mounted volume.

typedef SInt16 FSVolumeRefNum;

Discussion
This data type is the same as the 16-bit volume refnum previously passed in the ioVRefNum fields of a
parameter block; this is simply a new type name for the old data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSVolumeUnmountUPP

typedef FSVolumeUnmountProcPtr FSVolumeUnmountUPP;

Discussion
For more information, see the description of the FSVolumeUnmountProcPtr (page 176) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

GetVolParmsInfoBuffer
Defines a volume attributes buffer, used by the PBHGetVolParmsSync and PBHGetVolParmAsync functions
to return volume information.

230 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct GetVolParmsInfoBuffer {
 short vMVersion;
 long vMAttrib;
 Handle vMLocalHand;
 long vMServerAdr;
 long vMVolumeGrade;
 short vMForeignPrivID;
 long vMExtendedAttributes;
 void * vMDeviceID;
 UniCharCount vMMaxNameLength;
};
typedef struct GetVolParmsInfoBuffer GetVolParmsInfoBuffer;

Fields
vMVersion

The version number of the attributes buffer structure. Currently this field returns 1, 2, 3 or 4. Version
3 is introduced to support the HFS Plus APIs.

vMAttrib
A 32-bit quantity that encodes information about the volume attributes. See “Volume Attribute
Constants” (page 314) for the meaning of the bits in this field.

vMLocalHand
A handle to private data for shared volumes. On creation of the VCB (right after mounting), this field
is a handle to a 2-byte block of memory. The Finder uses this for its local window list storage, allocating
and deallocating memory as needed. It is disposed of when the volume is unmounted. Your application
should treat this field as reserved.

vMServerAdr
For AppleTalk server volumes, this field contains the internet address of an AppleTalk server volume.
Your application can inspect this field to tell which volumes belong to which server; the value of this
field is 0 if the volume does not have a server.

vMVolumeGrade
The relative speed rating of the volume. The scale used to determine these values is currently
uncalibrated. In general, lower values indicate faster speeds. A value of 0 indicates that the volume’s
speed is unrated. The buffer version returned in the vMVersion field must be greater than 1 for this
field to be meaningful.

vMForeignPrivID
An integer representing the privilege model supported by the volume. Currently two values are
defined for this field: 0 represents a standard HFS or HFS Plus volume that might or might not support
the AFP privilege model; fsUnixPriv represents a volume that supports the A/UX privilege model.
The buffer version returned in the vMVersion field must be greater than 1 for this field to be
meaningful.

vMExtendedAttributes
Contains bits that describe a volume’s extended attributes. For this field to be meaningful, the
vMVersion must be greater than 2. See “Extended Volume Attributes” (page 286) for the meaning of
the bits in this field.

vMDeviceID
A device name identifying the device in /dev that corresponds to the volume. You can use this string
to build a POSIX path to the device for use with IOKit APIs.

Data Types 231
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

vMMaxNameLength

Discussion
Volumes that implement the HFS Plus APIs must use version 3 (or newer) of the GetVolParmsInfoBuffer.
Volumes that don’t implement the HFS Plus APIs may still implement version 3 of the
GetVolParmsInfoBuffer. If the version of the GetVolParmsInfoBuffer is 2 or less, or the
bSupportsHFSPlusAPIs bit is clear (zero), then the volume does not implement the HFS Plus APIs, and
they are being emulated for that volume by the File Manager itself.

If a volume does not implement the HFS Plus APIs, and supports version 2 or earlier of the
GetVolParmsInfoBuffer, it cannot itself describe whether it supports the FSCatalogSearch (page 45)
or FSExchangeObjects calls. The compatibility layer will implement the FSCatalogSearch call if the
volume supports the PBCatSearch call (i.e. the bHasCatSearch bit of vMAttrib is set). The compatibility
layer will implement the FSExchangeObjects call if the volume supports PBExchangeFiles (i.e. the
bHasFileIDs bit of vMAttrib is set).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

HFileInfo
Defines a structure which holds catalog information about a file.

232 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct HFileInfo {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioACUser;
 FInfo ioFlFndrInfo;
 long ioDirID;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
 unsigned long ioFlBkDat;
 FXInfo ioFlXFndrInfo;
 long ioFlParID;
 long ioFlClpSiz;
};
typedef struct HFileInfo HFileInfo;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

Data Types 233
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A file and directory index. If this field contains a positive number, PBGetCatInfoSync and
PBGetCatInfoAsync return information about the file or directory having that directory index in
the directory specified by the ioVRefNum field. (If ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains 0, PBGetCatInfoSync or PBGetCatInfoAsync returns information about the
file or directory whose name is specified in the ioNamePtr field and that is located in the directory
specified by the ioVRefNum field. (Once again, if ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains a negative number, PBGetCatInfoSync or PBGetCatInfoAsync ignores the
ioNamePtr field and returns information about the directory specified in the ioDirID field. If both
ioDirID and ioVRefNum are set to 0, PBGetCatInfoSync or PBGetCatInfoAsync returns
information about the current default directory.

ioFlAttrib
File or directory attributes. See “File Attribute Constants” (page 297) for the meaning of the bits in this
field.

ioACUser
The user’s access rights for the specified directory. See “User Privileges Constants” (page 313) for the
meaning of the bits in this field.

ioFlFndrInfo
Finder information.

ioDirID
A directory ID or file ID. On input to PBGetCatInfoSync or PBGetCatInfoAsync , this field contains
a directory ID (which is used only if the ioFDirIndex field is negative). On output, this field contains
the file ID of the specified file.

ioFlStBlk
The first allocation block of the data fork. This field contains 0 if the file’s data fork is empty.

ioFlLgLen
The logical length (logical end-of-file) of the data fork.

ioFlPyLen
The physical length (physical end-of-file) of the data fork.

ioFlRStBlk
The first allocation block of the resource fork.

234 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioFlRLgLen
The logical length (logical end-of-file) of the resource fork.

ioFlRPyLen
The physical length (physical end-of-file) of the resource fork.

ioFlCrDat
The date and time of the file’s creation, in seconds since midnight, January 1, 1904. However, on Mac
OS X, if you set the creation date to a date between January 1, 1904 and January 1, 1970, it will be
clipped to January 1, 1970, and that is the value which will be returned if you later try to retrieve the
creation date.

Note that file systems other than AFP, HFS and HFS Plus do not generally support creation dates.

ioFlMdDat
The date and time of the last modification to the file, in seconds since midnight, January 1, 1904.
However, on Mac OS X, if you set the modification date to a date between January 1, 1904 and January
1, 1970, it will be clipped to January 1, 1970.

ioFlBkDat
The date and time that the file was last backed up, in seconds since midnight, January 1, 1904. However,
on Mac OS X, if you set the backup date to a date between January 1, 1904 and January 1, 1970, it
will be clipped to January 1, 1970.

Note that file systems other than AFP, HFS and HFS Plus do not generally support backup dates.

ioFlXFndrInfo
Additional Finder information.

ioFlParID
The directory ID of the file’s parent directory.

ioFlClpSiz
The clump size to be used when writing the file if it’s 0, the volume’s clump size is used when the file
is opened.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

HFileParam
Defines a parameter block used by low-level HFS functions for file creation, deletion, and information retrieval.

Data Types 235
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct HFileParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioFlVersNum;
 FInfo ioFlFndrInfo;
 long ioDirID;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
};
typedef struct HFileParam HFileParam;
typedef HFileParam * HFileParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

236 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A directory index for use with the PBHGetFInfoSync (page 440) and PBHGetFInfoAsync (page 438)
functions.

ioFlAttrib
File attributes. See “File Attribute Constants” (page 297) for the meaning of the bits in this field.

ioFlVersNum
A file version number. This feature is no longer supported, and you must always set this field to 0.

ioFlFndrInfo
Information used by the Finder.

ioDirID
A directory ID.

ioFlStBlk
The first allocation block of the data fork. This field contains 0 if the file’s data fork is empty.

ioFlLgLen
The logical length (logical end-of-file) of the data fork.

ioFlPyLen
The physical length (physical end-of-file) of the data fork.

ioFlRStBlk
The first allocation block of the resource fork. This field contains 0 if the file’s resource fork is empty.

ioFlRLgLen
The logical length (logical end-of-file) of the resource fork.

ioFlRPyLen
The physical length (physical end-of-file) of the resource fork.

ioFlCrDat
The date and time of the file’s creation, specified in seconds since midnight, January 1, 1904.

ioFlMdDat
The date and time of the last modification to the file, specified in seconds since midnight, January 1,
1904.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

Data Types 237
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

HFSUniStr255
Used by the File Manager to return Unicode strings.

struct HFSUniStr255 {
 UInt16 length;
 UniChar unicode[255];
};
typedef struct HFSUniStr255 HFSUniStr255;

Fields
length

The number of unicode characters in the string.

unicode
The string, in unicode characters.

Discussion
This data type is a string of up to 255 16-bit Unicode characters, with a preceding 16-bit length (number of
characters). Note that only the first length characters have meaningful values; the remaining characters may
be set to arbitrary values. A caller should always assume that the entire structure will be modified, even if
the actual string length is less than 255.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

HIOParam
Defines a parameter block used by low-level HFS I/O functions.

238 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct HIOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 SInt8 ioVersNum;
 SInt8 ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 short ioPosMode;
 long ioPosOffset;
};
typedef struct HIOParam HIOParam;
typedef HIOParam * HIOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

Data Types 239
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVersNum
A version number. This field is no longer used and you should always set it to 0.

ioPermssn
The access mode. See “File Access Permission Constants” (page 291).

ioMisc
Depending on the function called, this field contains either a logical end-of-file, a new version number,
a pointer to an access path buffer, or a pointer to a new pathname. Because ioMisc is of type Ptr,
you’ll need to perform type coercion to interpret the value of ioMisc correctly when it contains an
end-of-file (a LongInt value) or version number (a SignedByte value).

ioBuffer
A pointer to a data buffer into which data is written by PBReadSync and PBReadAsync calls, and
from which data is read by PBWriteSync and PBWriteAsync calls.

ioReqCount
The requested number of bytes to be read, written, or allocated.

ioActCount
The number of bytes actually read, written, or allocated.

ioPosMode
The positioning mode (base location) for setting the mark. Bits 0 and 1 of this field indicate how to
position the mark; you can use the constants described in “Position Mode Constants” (page 311) to
set or test their value.

You can also use the constants described in “Cache Constants” (page 272) to indicate whether or not
to cache the data.

ioPosOffset
The offset to be used in conjunction with the base location specified in the ioPosMode field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

HParamBlockRec
Describes the HFS parameter block.

240 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

union HParamBlockRec {
 HIOParam ioParam;
 HFileParam fileParam;
 HVolumeParam volumeParam;
 AccessParam accessParam;
 ObjParam objParam;
 CopyParam copyParam;
 WDParam wdParam;
 FIDParam fidParam;
 CSParam csParam;
 ForeignPrivParam foreignPrivParam;
};
typedef union HParamBlockRec HParamBlockRec;
typedef HParamBlockRec * HParmBlkPtr;

Fields
ioParam

A parameter block used by low-level HFS I/O functions. See HIOParam (page 238).

fileParam
A parameter block used by low-level HFS functions for file creation, deletion, and information retrieval.
See HFileParam (page 235).

volumeParam
A parameter block used by low-level HFS volume manipulation functions. See HVolumeParam (page
242).

accessParam
A parameter block used by low-level HFS file and directory access rights manipulation functions. See
AccessParam (page 177).

objParam
A parameter block used by low-level HFS user and group information functions. See ObjParam (page
248).

copyParam
A parameter block used by low-level HFS file copying functions. See CopyParam (page 188).

wdParam
A parameter block used by low-level HFS working directory functions. See WDParam (page 259).

fidParam
A parameter block used by low-level HFS file ID functions. See FIDParam (page 201).

csParam
A parameter block used by low-level HFS catalog search functions. See CSParam (page 190).

foreignPrivParam
A parameter block used by low-level HFS foreign privileges functions. See ForeignPrivParam (page
205).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

Data Types 241
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

HVolumeParam
Defines a parameter block used by low-level HFS volume manipulation functions.

struct HVolumeParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler2;
 short ioVolIndex;
 unsigned long ioVCrDate;
 unsigned long ioVLsMod;
 short ioVAtrb;
 unsigned short ioVNmFls;
 unsigned short ioVBitMap;
 unsigned short ioAllocPtr;
 unsigned short ioVNmAlBlks;
 unsigned long ioVAlBlkSiz;
 unsigned long ioVClpSiz;
 unsigned short ioAlBlSt;
 unsigned long ioVNxtCNID;
 unsigned short ioVFrBlk;
 unsigned short ioVSigWord;
 short ioVDrvInfo;
 short ioVDRefNum;
 short ioVFSID;
 unsigned long ioVBkUp;
 short ioVSeqNum;
 unsigned long ioVWrCnt;
 unsigned long ioVFilCnt;
 unsigned long ioVDirCnt;
 long ioVFndrInfo[8];
};
typedef struct HVolumeParam HVolumeParam;
typedef HVolumeParam * HVolumeParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

242 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler2
Reserved.

ioVolIndex
A volume index for use with the PBHGetVInfoSync (page 446) and PBHGetVInfoAsync (page 443)
functions.

ioVCrDate
The date and time of the volume’s initialization.

ioVLsMod
The date and time the volume information was last modified. (This field is not changed when
information is written to a file and does not necessarily indicate when the volume was flushed.

ioVAtrb
The volume attributes. See “Volume Information Attribute Constants” (page 320) for the meanings of
the bits in this field.

ioVNmFls
The number of files in the root directory of the volume. For performance reasons, the Carbon File
Manager does not return the number of files in this field; instead, it sets ioVNmFls to 0.

To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoAsync (page 419) orPBGetCatInfoSync (page 423) for the root directory. The number
of files in the root directory is returned in the ioDrNmFls field.

ioVBitMap
The first block of the volume bitmap.

ioAllocPtr
The block at which the next new file starts. Used internally.

ioVNmAlBlks
The number of allocation blocks.

ioVAlBlkSiz
The size of allocation blocks.

ioVClpSiz
The clump size.

Data Types 243
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioAlBlSt
The first block in the volume map.

ioVNxtCNID
The next unused catalog node ID.

ioVFrBlk
The number of unused allocation blocks.

ioVSigWord
A signature word identifying the type of volume it’s $D2D7 for MFS volumes and $4244 for volumes
that support HFS calls.

ioVDrvInfo
The drive number of the drive containing the volume.

ioVDRefNum
For online volumes, the reference number of the I/O driver for the drive identified by the ioVDrvInfo
field.

ioVFSID
The file-system identifier. It indicates which file system is servicing the volume it’s zero for File Manager
volumes and nonzero for volumes handled by an external file system.

ioVBkUp
The date and time the volume was last backed up; this is 0 if the volume has never been backed up.

ioVSeqNum
Used internally.

ioVWrCnt
The volume write count.

ioVFilCnt
The total number of files on the volume.

ioVDirCnt
The total number of directories (not including the root directory) on the volume.

ioVFndrInfo
Information used by the Finder.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

IOCompletionUPP
A universal procedure pointer to an application-defined completion function.

typedef IOCompletionProcPtr IOCompletionUPP;

Discussion
See IOCompletionProcPtr (page 176).

Availability
Available in Mac OS X v10.0 and later.

244 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

IOParam
Defines a parameter block used by low-level I/O functions.

struct IOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 SInt8 ioVersNum;
 SInt8 ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 short ioPosMode;
 long ioPosOffset;
};
typedef struct IOParam IOParam;
typedef IOParam * IOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

Data Types 245
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

ioVersNum
A version number. This field is no longer used and you should always set it to 0.

ioPermssn
The access mode. See “File Access Permission Constants” (page 291).

ioMisc
Depending on the function called, this field contains either a new logical end-of-file (for the
PBGetEOFSync/ PBGetEOFAsync and PBSetEOFSync/ PBSetEOFAsync functions), a new version
number, or a pointer to a new pathname (for the PBHRenameSync/ PBHRenameAsync functions).
Because ioMisc is of type Ptr, you’ll need to perform type coercion to interpret the value of ioMisc
correctly when it contains an end-of-file (a LongInt value) or version number (a SignedByte value).

ioBuffer
A pointer to a data buffer into which data is written by PBReadSync and PBReadAsync calls; and
from which data is read by PBWriteSync and PBWriteAsync calls.

ioReqCount
The requested number of bytes to be read, written, or allocated.

ioActCount
The number of bytes actually read, written, or allocated.

ioPosMode
The positioning mode (base location) for positioning the file mark. Bits 0 and 1 of this field indicate
how to position the mark; you can use the constants described in “Position Mode Constants” (page
311) to set or test their value.

You can also use the constants described in “Cache Constants” (page 272) to indicate whether the
data should be cached.

ioPosOffset
The offset to be used in conjunction with the base location specified in the ioPosMode field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

MultiDevParam
Defines a parameter block used by low-level functions in the classic Device Manager to access multiple
devices.

246 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct MultiDevParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioMRefNum;
 SInt8 ioMVersNum;
 SInt8 ioMPermssn;
 Ptr ioMMix;
 short ioMFlags;
 Ptr ioSEBlkPtr;
};
typedef struct MultiDevParam MultiDevParam;
typedef MultiDevParam * MultiDevParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioMRefNum
The driver reference number.

ioMVersNum
The slot version number.

ioMPermssn
Permissions.

Data Types 247
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioMMix
Reserved.

ioMFlags
Flags specifying the number of additional fields. You should set the fMulti bit (bit 0) of this field
and clear all of the other bits.

ioSEBlkPtr
A pointer to an external parameter block that is customized for the devices installed in the slot.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

ObjParam
Defines a parameter block used by low-level HFS user and group information functions.

struct ObjParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short filler7;
 short ioObjType;
 StringPtr ioObjNamePtr;
 long ioObjID;
};
typedef struct ObjParam ObjParam;
typedef ObjParam * ObjParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

248 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler7
Reserved.

ioObjType
A function code. The values passed in this field are determined by the function to which you pass
this parameter block.

ioObjNamePtr
A pointer to the returned creator/group name.

ioObjID
The creator/group ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

ParamBlockRec
Describes the basic File Manager parameter block.

Data Types 249
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

union ParamBlockRec {
 IOParam ioParam;
 FileParam fileParam;
 VolumeParam volumeParam;
 CntrlParam cntrlParam;
 SlotDevParam slotDevParam;
 MultiDevParam multiDevParam;
};
typedef union ParamBlockRec ParamBlockRec;
typedef ParamBlockRec * ParmBlkPtr;

Fields
ioParam
fileParam
volumeParam
cntrlParam
slotDevParam
multiDevParam

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

SlotDevParam
Defines a parameter block used by low-level functions in the classic Device Manager to access a single slot
device.

struct SlotDevParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioSRefNum;
 SInt8 ioSVersNum;
 SInt8 ioSPermssn;
 Ptr ioSMix;
 short ioSFlags;
 SInt8 ioSlot;
 SInt8 ioID;
};
typedef struct SlotDevParam SlotDevParam;
typedef SlotDevParam * SlotDevParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

250 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioSRefNum
The driver reference number.

ioSVersNum
The slot version number.

ioSPermssn
Permissions.

ioSMix
Reserved.

ioSFlags
Flags determining the number of additional fields. You should clear all of the bits in this field.

ioSlot
The slot number.

ioID
The slot resource ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

VCB
Defines a volume control block.

Data Types 251
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct VCB {
 QElemPtr qLink;
 short qType;
 short vcbFlags;
 unsigned short vcbSigWord;
 unsigned long vcbCrDate;
 unsigned long vcbLsMod;
 short vcbAtrb;
 unsigned short vcbNmFls;
 short vcbVBMSt;
 short vcbAllocPtr;
 unsigned short vcbNmAlBlks;
 long vcbAlBlkSiz;
 long vcbClpSiz;
 short vcbAlBlSt;
 long vcbNxtCNID;
 unsigned short vcbFreeBks;
 Str27 vcbVN;
 short vcbDrvNum;
 short vcbDRefNum;
 short vcbFSID;
 short vcbVRefNum;
 Ptr vcbMAdr;
 Ptr vcbBufAdr;
 short vcbMLen;
 short vcbDirIndex;
 short vcbDirBlk;
 unsigned long vcbVolBkUp;
 unsigned short vcbVSeqNum;
 long vcbWrCnt;
 long vcbXTClpSiz;
 long vcbCTClpSiz;
 unsigned short vcbNmRtDirs;
 long vcbFilCnt;
 long vcbDirCnt;
 long vcbFndrInfo[8];
 unsigned short vcbVCSize;
 unsigned short vcbVBMCSiz;
 unsigned short vcbCtlCSiz;
 unsigned short vcbXTAlBlks;
 unsigned short vcbCTAlBlks;
 short vcbXTRef;
 short vcbCTRef;
 Ptr vcbCtlBuf;
 long vcbDirIDM;
 short vcbOffsM;
};
typedef struct VCB VCB;
typedef VCB * VCBPtr;

Fields
qLink

A pointer to the next entry in the VCB queue.

qType
The queue type. When the volume is mounted and the VCB is created, this field is cleared. Thereafter,
bit 7 of this field is set whenever a file on that volume is opened.

252 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

vcbFlags
Volume flags. Bit 15 is set if the volume information has been changed by a File Manager call since
the volume was last flushed by a FlushVol (page 498) call. See “Volume Control Block Flags” (page
318).

vcbSigWord
The volume signature.

vcbCrDate
The date and time of the volume’s creation (initialization).

vcbLsMod
The date and time of the volume’s last modification. This is not necessarily when the volume was last
flushed.

vcbAtrb
The volume attributes.

vcbNmFls
The number of files in the root directory of the volume.

vcbVBMSt
The first block of the volume bitmap.

vcbAllocPtr
The start block of the next allocation search. This field is used internally.

vcbNmAlBlks
The number of allocation blocks in the volume.

vcbAlBlkSiz
The allocation block size, in bytes. This value must always be a multiple of 512 bytes.

vcbClpSiz
The default clump size.

vcbAlBlSt
The first allocation block in the volume.

vcbNxtCNID
The next unused catalog node ID (directory or file ID).

vcbFreeBks
The number of unused allocation blocks on the volume.

vcbVN
The volume name. Note that a volume name can occupy at most 27 characters; this is an exception
to the normal file and directory name limit of 31 characters.

vcbDrvNum
The drive number of the drive on which the volume is located. When a mounted drive is placed offline
or ejected, this field is set to 0.

vcbDRefNum
The driver reference number of the driver used to access the volume When a volume is ejected, this
field is set to the previous value of the vcbDrvNum field (and hence is a positive number). When a
volume is placed offline, this field is set to the negative of the previous value of the vcbDrvNum field
(and hence is a negative number).

vcbFSID
An identifier for the file system handling the volume it’s zero for volumes handled by the File Manager
and nonzero for volumes handled by other file systems.

Data Types 253
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

vcbVRefNum
The volume reference number of the volume.

vcbMAdr
Used internally.

vcbBufAdr
Used internally.

vcbMLen
Used internally.

vcbDirIndex
Used internally.

vcbDirBlk
Used internally.

vcbVolBkUp
The date and time that the volume was last backed up.

vcbVSeqNum
Used internally.

vcbWrCnt
The volume write count.

vcbXTClpSiz
The clump size of the extents overflow file.

vcbCTClpSiz
The clump size of the catalog file.

vcbNmRtDirs
The number of directories in the root directory.

vcbFilCnt
The total number of files on the volume.

vcbDirCnt
The total number of directories on the volume.

vcbFndrInfo
Finder information.

vcbVCSize
Used internally.

vcbVBMCSiz
Used internally.

vcbCtlCSiz
Used internally.

vcbXTAlBlks
The size, in allocation blocks, of the extents overflow file.

vcbCTAlBlks
The size, in allocation blocks, of the catalog file.

vcbXTRef
The path reference number for the extents overflow file.

vcbCTRef
The path reference number for the catalog file.

254 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

vcbCtlBuf
A pointer to the extents and catalog caches.

vcbDirIDM
The directory last searched.

vcbOffsM
The offspring index at the last search.

Discussion
The volume control block queue is a standard operating system queue that’s maintained in the system heap.
It contains a volume control block for each mounted volume. A volume control block is a nonrelocatable
block that contains volume-specific information.

Each time a volume is mounted, the File Manager reads its volume information from the master directory
block and uses the information to build a new volume control block (VCB) in the volume control block queue
(unless an ejected or offline volume is being remounted). The File Manager also creates a volume buffer in
the system heap. When a volume is placed offline, its buffer is released. When a volume is unmounted, its
VCB is removed from the VCB queue as well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

VolMountInfoHeader
Defines a volume mounting information header structure for remote volumes.

struct VolMountInfoHeader {
 short length;
 VolumeType media;
};
typedef struct VolMountInfoHeader VolMountInfoHeader;
typedef VolMountInfoHeader * VolMountInfoPtr;

Fields
length

The length of the VolMountInfoHeader structure, which is the total length of the structure header
described here, plus the variable-length location data which follows the header.

media
The volume type of the remote volume. The AppleShareMediaType represents an AppleShare
volume.

If you are adding support for the programmatic mounting functions to a non-Macintosh file system,
you should register a four-character identifier for your volumes with DTS.

Discussion
To mount a remote server, fill out an VolMountInfoHeader structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

Availability
Available in Mac OS X v10.0 and later.

Data Types 255
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Declared In
Files.h

VolumeMountInfoHeader
Defines an extended volume mounting information header structure for remote volumes.

struct VolumeMountInfoHeader {
 short length;
 VolumeType media;
 short flags;
};
typedef struct VolumeMountInfoHeader VolumeMountInfoHeader;
typedef VolumeMountInfoHeader * VolumeMountInfoHeaderPtr;

Fields
length

The length of the VolumeMountInfoHeader structure, which is the total length of the structure
header described here, plus the variable-length location data which follows the header.

media
The volume type of the remote volume. The AppleShareMediaType represents an AppleShare
volume.

If you are adding support for the programmatic mounting functions to a non-Macintosh file system,
you should register a four-character identifier for your volumes with DTS.

flags
The volume mount flags. See “Volume Mount Flags” (page 325).

Discussion
This volume mount info record supersedes the VolMountInfoHeader (page 255) structure;
VolMountInfoHeader is included for compatibility. The VolumeMountInfoHeader record allows access
to the volume mount flags by foreign filesystem writers.

To mount a remote server, fill out an VolumeMountInfoHeader structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

VolumeParam
Defines a parameter block used by low-level volume manipulation functions.

256 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct VolumeParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler2;
 short ioVolIndex;
 unsigned long ioVCrDate;
 unsigned long ioVLsBkUp;
 unsigned short ioVAtrb;
 unsigned short ioVNmFls;
 unsigned short ioVDirSt;
 short ioVBlLn;
 unsigned short ioVNmAlBlks;
 unsigned long ioVAlBlkSiz;
 unsigned long ioVClpSiz;
 unsigned short ioAlBlSt;
 unsigned long ioVNxtFNum;
 unsigned short ioVFrBlk;
};
typedef struct VolumeParam VolumeParam;
typedef VolumeParam * VolumeParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

Data Types 257
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler2
Reserved.

ioVolIndex
The volume index.

ioVCrDate
The date and time of the volume’s initialization.

ioVLsBkUp
The date and time the volume information was last modified. (This field is not changed when
information is written to a file and does not necessarily indicate when the volume was flushed.

ioVAtrb
The volume attributes. See “Volume Information Attribute Constants” (page 320) for the meanings of
the bits in this field.

ioVNmFls
The number of files in the root directory.

ioVDirSt
The first block of the volume directory.

ioVBlLn
Length of directory in blocks.

ioVNmAlBlks
The number of allocation blocks.

ioVAlBlkSiz
The size of allocation blocks.

ioVClpSiz
The volume clump size.

ioAlBlSt
The first block in the volume map.

ioVNxtFNum
The next unused file number.

ioVFrBlk
The number of unused allocation blocks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

VolumeType
Defines the “signature” of the file system.

258 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

typedef OSType VolumeType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

WDParam
Defines a parameter block used by low-level HFS working directory functions.

struct WDParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioWDCreated;
 short ioWDIndex;
 long ioWDProcID;
 short ioWDVRefNum;
 short filler10;
 long filler11;
 long filler12;
 long filler13;
 long ioWDDirID;
};
typedef struct WDParam WDParam;
typedef WDParam * WDParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

Data Types 259
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioWDCreated

ioWDIndex
An index to working directories.

ioWDProcID

ioWDVRefNum
The volume reference number for the working directory.

filler10
Reserved.

filler11
Reserved.

filler12
Reserved.

filler13
The working directory’s directory ID.

ioWDDirID
The working directory’s directory ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

WDPBRec
Defines a working directory parameter block.

260 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct WDPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short filler1;
 short ioWDIndex;
 long ioWDProcID;
 short ioWDVRefNum;
 short filler2[7];
 long ioWDDirID;
};
typedef struct WDPBRec WDPBRec;
typedef WDPBRec * WDPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler1
Reserved.

ioWDIndex
An index.

Data Types 261
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioWDProcID
An identifier that’s used to distinguish between working directories set up by different users you
should set ioWDProcID to your application’s signature.

ioWDVRefNum
The working directory’s volume reference number.

filler2
Reserved.

ioWDDirID
The working directory’s directory ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

XCInfoPBRec
Defines an extended catalog information parameter block.

struct XCInfoPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 ProcPtr ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler1;
 StringPtr ioShortNamePtr;
 short filler2;
 short ioPDType;
 long ioPDAuxType;
 long filler3[2];
 long ioDirID;
};
typedef struct XCInfoPBRec XCInfoPBRec;
typedef XCInfoPBRec * XCInfoPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

262 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler1
Reserved; set this field to 0.

ioShortNamePtr
A pointer to a Pascal string buffer, of a minimum 13 bytes, which holds the file or directory’s short
name (MS-DOS format name). This field is required and cannot be NULL.

filler2
Reserved; set this field to 0.

ioPDType
The ProDOS file type of the file or directory.

ioPDAuxType
The ProDOS auxiliary type of the file or directory.

filler3
Reserved; set this field to 0.

ioDirID
A directory ID.

Discussion
The PBGetXCatInfoSync and PBGetXCatInfoAsync functions use this parameter block to return the short
name and ProDOS information for files and directories.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

XIOParam
Defines an extended I/O parameter block structure.

Data Types 263
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct XIOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 SInt8 ioVersNum;
 SInt8 ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 short ioPosMode;
 wide ioWPosOffset;
};
typedef struct XIOParam XIOParam;
typedef XIOParam * XIOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

264 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVersNum
A version number. This field is no longer used and you should always set it to 0.

ioPermssn
The access mode. See “File Access Permission Constants” (page 291).

ioMisc
Depending on the function called, this field contains either a logical end-of-file, a new version number,
a pointer to an access path buffer, or a pointer to a new pathname. Because ioMisc is of type Ptr,
you’ll need to perform type coercion to interpret the value of ioMisc correctly when it contains an
end-of-file (a LongInt value) or version number (a SignedByte value).

ioBuffer
A pointer to a data buffer into which data is written by _Read calls and from which data is read by
_Write calls.

ioReqCount
The requested number of bytes to be read or written.

ioActCount
The number of bytes actually read or written.

ioPosMode
The positioning mode (base location) for setting the mark. Bits 0 and 1 of this field indicate how to
position the mark; you can use the constants described in “Position Mode Constants” (page 311) to
set or test their value. For the functions which use this parameter block, you must have the
kUseWidePositioning bit set. See “Large Volume Constants” (page 309) for a description of this
and other constants.

You can also use the constants described in “Cache Constants” (page 272) to indicate whether or not
to cache the data.

ioWPosOffset
The wide positioning offset to be used in conjunction with the positioning mode specified in the
ioPosMode field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

XVolumeParam
Defines an extended volume information parameter block.

Data Types 265
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

struct XVolumeParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 unsigned long ioXVersion;
 short ioVolIndex;
 unsigned long ioVCrDate;
 unsigned long ioVLsMod;
 short ioVAtrb;
 unsigned short ioVNmFls;
 unsigned short ioVBitMap;
 unsigned short ioAllocPtr;
 unsigned short ioVNmAlBlks;
 unsigned long ioVAlBlkSiz;
 unsigned long ioVClpSiz;
 unsigned short ioAlBlSt;
 unsigned long ioVNxtCNID;
 unsigned short ioVFrBlk;
 unsigned short ioVSigWord;
 short ioVDrvInfo;
 short ioVDRefNum;
 short ioVFSID;
 unsigned long ioVBkUp;
 short ioVSeqNum;
 unsigned long ioVWrCnt;
 unsigned long ioVFilCnt;
 unsigned long ioVDirCnt;
 long ioVFndrInfo[8];
 UInt64 ioVTotalBytes;
 UInt64 ioVFreeBytes;
};
typedef struct XVolumeParam XVolumeParam;
typedef XVolumeParam * XVolumeParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 176) for information about completion
routines.

266 Data Types
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioXVersion
The version of the XVolumeParam parameter block; currently, this is 0.

ioVolIndex
A volume index for use with the PBXGetVolInfoSync (page 493) and PBXGetVolInfoAsync (page
490) functions.

ioVCrDate
The date and time that the volume was created (initialized).

ioVLsMod
The date and time that the volume information was last modified. This field is not changed when
information is written to a file and does not necessarily indicate when the volume was flushed.

ioVAtrb
The volume attributes. See “Volume Information Attribute Constants” (page 320) for the meanings of
the bits in this field.

ioVNmFls
The number of files in the root directory.

ioVBitMap
The first block of the volume bitmap.

ioAllocPtr
The block at which the next new file starts. Used internally.

ioVNmAlBlks
The number of allocation blocks.

ioVAlBlkSiz
The size of the allocation blocks.

ioVClpSiz
The clump size.

ioAlBlSt
The first block in the volume map.

ioVNxtCNID
The next unused catalog node ID.

ioVFrBlk
The number of unused allocation blocks.

ioVSigWord
A signature word identifying the type of volume it’s $D2D7 for MFS volumes and $4244 for volumes
that support HFS calls.

Data Types 267
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

ioVDrvInfo
The drive number of the drive containing the volume.

ioVDRefNum
For online volumes, the reference number of the I/O driver for the drive identified by the ioVDrvInfo
field.

ioVFSID
The file-system identifier. It indicates which file system is servicing the volume it’s zero for File Manager
volumes and nonzero for volumes handled by an external file system.

ioVBkUp
The date and time that the volume was last backed up; this is 0 if the volume has never been backed
up.

ioVSeqNum
Used internally.

ioVWrCnt
The volume write count.

ioVFilCnt
The total number of files on the volume.

ioVDirCnt
The total number of directories (not including the root directory) on the volume.

ioVFndrInfo
Information used by the Finder.

ioVTotalBytes
The total number of bytes on the volume.

ioVFreeBytes
The number of free bytes on the volume.

Discussion
The functions PBXGetVolInfoSync and PBXGetVolInfoAsync use this parameter block structure to pass
arguments and return values.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

Constants

AFP Tag Length Constants
Specify the length of tagged address information for AppleShare volumes.

268 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kAFPTagLengthIP = 0x06,
 kAFPTagLengthIPPort = 0x08,
 kAFPTagLengthDDP = 0x06
};

Constants
kAFPTagLengthIP

The length of a 4 byte IP address.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagLengthIPPort
The length of a 4 byte IP address and a 2 byte port.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagLengthDDP
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the fLength field of the AFPTagData (page 179) structure to indicate the length,
in bytes, of the tagged address information. This length includes the fLength field itself.

AFP Tag Type Constants
Specify the type of tagged address information for AppleShare clients.

enum {
 kAFPTagTypeIP = 0x01,
 kAFPTagTypeIPPort = 0x02,
 kAFPTagTypeDDP = 0x03,
 kAFPTagTypeDNS = 0x04
};

Constants
kAFPTagTypeIP

A basic 4 byte IP address, most significant byte first.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagTypeIPPort
A 4 byte IP address and a 2 byte port number, most significant byte first.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagTypeDDP
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 269
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kAFPTagTypeDNS
The address is a DNS name in address:port format. The total length of the DNS name is variable up
to 254 characters.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the fType field of the tagged address structure, AFPTagData (page 179), to
specify the type of address represented by the structure.

Allocation Flags
Indicate how new space is to be allocated.

typedef UInt16 FSAllocationFlags;
enum {
 kFSAllocDefaultFlags = 0x0000,
 kFSAllocAllOrNothingMask = 0x0001,
 kFSAllocContiguousMask = 0x0002,
 kFSAllocNoRoundUpMask = 0x0004,
 kFSAllocReservedMask = 0xFFF8
};

Constants
kFSAllocDefaultFlags

Allocate as much as possible, not necessarily contiguous.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSAllocAllOrNothingMask
This bit is set when an allocation must allocate the total requested amount, or else fail with nothing
allocated; when this bit is not set, the allocation may complete successfully but allocate less than
requested.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSAllocContiguousMask
This bit is set when an allocation should allocate one contiguous range of space on the volume. If
this bit is clear, multiple discontiguous extents may be allocated to fulfill the request.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSAllocNoRoundUpMask
This bit is set when an allocation should no round up to the clump size. If this bit is clear, then additional
space beyond the amount requested may be allocated; this is done by some volume formats (including
HFS and HFS Plus) to avoid many small allocation requests. If the bit is set, no additional allocation is
done (except where required by the volume format, such as rounding up to a multiple of the allocation
block size).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

270 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSAllocReservedMask
Reserved; set to zero.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
If the kFSAllocContiguousMask bit is set, then then any newly allocated space must be in one contiguous
extent (preferably contiguous with any space already allocated). If kFSAllocAllOrNothingMask is set,
then the entire requestCount bytes must be allocated for the call to succeed; if not set, as many bytes as
possible will be allocated (without error). If kFSAllocNoRoundUpMask is set, then no additional space is
allocated (such as rounding up to a multiple of a clump size); if clear, the volume format may allocate more
space than requested as an attempt to reduce fragmentation.

AppleShare Volume Signature
Defines the volume signature for AppleShare volumes.

enum {
 AppleShareMediaType = 'afpm'
};

Authentication Method Constants
Define the login methods for remote volumes.

enum {
 kNoUserAuthentication = 1,
 kPassword = 2,
 kEncryptPassword = 3,
 kTwoWayEncryptPassword = 6
};

Constants
kNoUserAuthentication

No password.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kPassword
8-byte password.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kEncryptPassword
Encrypted 8-byte password.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kTwoWayEncryptPassword
Two-way random encryption.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 271
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
These constants are used in the uamType field of an AFPVolMountInfo (page 180) structure and in the
ioObjType field of the parameter block passed to thePBHGetLogInInfoSync andPBHGetLogInInfoAsync
functions to specify the type of user authentication used by a remote volume.

Cache Constants
Indicate whether or not data should be cached.

enum {
 pleaseCacheBit = 4,
 pleaseCacheMask = 0x0010,
 noCacheBit = 5,
 noCacheMask = 0x0020,
 rdVerifyBit = 6,
 rdVerifyMask = 0x0040,
 rdVerify = 64,
 forceReadBit = 6,
 forceReadMask = 0x0040,
 newLineBit = 7,
 newLineMask = 0x0080,
 newLineCharMask = 0xFF00
};

Constants
pleaseCacheBit

Indicates that the data should be cached.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

pleaseCacheMask
Requests that the data be cached, if possible. You should cache reads and writes if you read or write
the same portion of a file multiple times.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

noCacheBit
Indicates that data should not be cached.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

noCacheMask
Requests that the data not be cached, if possible. You should not cache reads and writes if you read
or write data from a file only once.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

rdVerifyBit
Indicates that all reads should come from the source and be verified against the data in memory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

272 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

rdVerifyMask
Requests that all reads (not writes) come directly from the source and be verified against the data in
memory. This flushes the cache and sends all read requests to the data source.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

rdVerify
This is the old name of rdVerifyMask. Both request that all reads come directly from the source of
the data and be compared against the data in memory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

forceReadBit
Indicates that reads should come from the disk.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

forceReadMask
Forces reads from disk, bypassing all caches. Clients can use this to verify that data is stored correctly
on the media (for example, to verify after writing) by reading the data into a different buffer while
setting the bit, and then comparing the newly read data with the previously written data.

The forceReadMask is the same as the rdVerifyMask used in the older APIs. The actual
implementation of the rdVerifyMask in the older APIs actually caused the “force read” behavior,
and only compared the data in partial sectors. FSReadFork cleans up this behavior by always letting
the client do all of the compares.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

newLineBit
Indicates that newline mode should be used for reads.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

newLineMask
Requests that newline mode be used for reads. In newline mode, the read stops when one of the
following conditions is met:

 ■ The requested number of bytes have been read.

 ■ The end-of-file is reached.

 ■ The newline character has been read. If the newline character is found, it will be the last character
put into the buffer and the number of bytes read will include it.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

newLineCharMask
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
For the FSReadFork and FSWriteFork functions, and their parameter block equivalents, you may add
either of the pleaseCacheMask or noCacheMask constants to one of the “Position Mode Constants” (page
311) to hint whether the data should be cached or not.

Constants 273
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

The pleaseCacheBit and the noCacheBit are mutually exclusive and only one should be set at a time. If
neither bit is set, the program has indicated that it doesn’t care if the data is cached or not.

Catalog Information Bitmap Constants
Specify what file or fork information to get or set.

enum {
 kFSCatInfoNone = 0x00000000,
 kFSCatInfoTextEncoding = 0x00000001,
 kFSCatInfoNodeFlags = 0x00000002,
 kFSCatInfoVolume = 0x00000004,
 kFSCatInfoParentDirID = 0x00000008,
 kFSCatInfoNodeID = 0x00000010,
 kFSCatInfoCreateDate = 0x00000020,
 kFSCatInfoContentMod = 0x00000040,
 kFSCatInfoAttrMod = 0x00000080,
 kFSCatInfoAccessDate = 0x00000100,
 kFSCatInfoBackupDate = 0x00000200,
 kFSCatInfoPermissions = 0x00000400,
 kFSCatInfoFinderInfo = 0x00000800,
 kFSCatInfoFinderXInfo = 0x00001000,
 kFSCatInfoValence = 0x00002000,
 kFSCatInfoDataSizes = 0x00004000,
 kFSCatInfoRsrcSizes = 0x00008000,
 kFSCatInfoSharingFlags = 0x00010000,
 kFSCatInfoUserPrivs = 0x00020000,
 kFSCatInfoUserAccess = 0x00080000,
 kFSCatInfoSetOwnership = 0x00100000,
 kFSCatInfoAllDates = 0x000003E0,
 kFSCatInfoGettableInfo = 0x0003FFFF,
 kFSCatInfoSettableInfo = 0x00001FE3,
 kFSCatInfoReserved = 0xFFFC0000
};

Constants
kFSCatInfoNone

No catalog information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoTextEncoding
Retrieve or set the text encoding hint, in the textEncodingHint field.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoNodeFlags
Retrieve or set the catalog node flags. Currently, you can only set bits 0 and 4. See “Catalog Information
Node Flags” (page 277) for more information on these flags.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

274 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSCatInfoVolume
Retrieve the volume reference number of the volume on which the file or directory resides.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoParentDirID
Retrieve the parent directory ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoNodeID
Retrieve the file or directory ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoCreateDate
Retrieve or set the creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoContentMod
Retrieve or set the date that the resource or data fork was last modified.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoAttrMod
Retrieve or set the date that an attribute or named fork was last modified.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoAccessDate
Retrieve or set the date that the fork or file was last accessed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoBackupDate
Retrieve or set the date that the fork or file was last backed up.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoPermissions
Retrieve or set the file or fork’s permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoFinderInfo
Retrieve or set the file or fork’s Finder information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 275
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSCatInfoFinderXInfo
Retrieve or set the file or fork’s extended Finder information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoValence
For folders only, retrieve the valence of the folder. For files, this is zero.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoDataSizes
Retrieve the logical and physical size of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoRsrcSizes
Retrieve the logical and physical size of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoSharingFlags
Retrieve the fork or file’s sharing flags: kioFlAttribMountedBit, kioFlAttribSharePointBit.
See “File Attribute Constants” (page 297) for more information on these bits.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoUserPrivs
Retrieve the file’s user privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoUserAccess
Available in Mac OS X v10.1 and later.

Declared in Files.h.

kFSCatInfoSetOwnership
Attempt to set the file’s user and group (UID and GID). If the File Manager cannot set the the user or
group ID, the call fails. (Mac OS X only).

Available in Mac OS X v10.3 and later.

Declared in Files.h.

kFSCatInfoAllDates
Retrieve or set all of the date information for the fork or file: creation date, modification dates, access
date, backup date, etc.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoGettableInfo
Retrieve all gettable data.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

276 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSCatInfoSettableInfo
Set all settable data. This includes the flags, dates, permissions, Finder info, and text encoding hint.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoReserved
Represents bits that are currently reserved.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the FSCatalogInfoBitmap type to specify what file or fork information to get
or set. If used with the FSGetCatalogInfo or FSGetCatalogInfoBulk functions, these constants tell the
File Manager which fields to return information in. If used with the FSSetCatalogInfo function, these
constants tell the File Manager which fields you’ve filled out with values that it should use to change the fork
or file’s catalog information.

Catalog Information Node Flags
Define the values used in the nodeFlags field of the FSCatalogInfo structure.

enum {
 kFSNodeLockedBit = 0,
 kFSNodeLockedMask = 0x0001,
 kFSNodeResOpenBit = 2,
 kFSNodeResOpenMask = 0x0004,
 kFSNodeDataOpenBit = 3,
 kFSNodeDataOpenMask = 0x0008,
 kFSNodeIsDirectoryBit = 4,
 kFSNodeIsDirectoryMask = 0x0010,
 kFSNodeCopyProtectBit = 6,
 kFSNodeCopyProtectMask = 0x0040,
 kFSNodeForkOpenBit = 7,
 kFSNodeForkOpenMask = 0x0080,
 kFSNodeHardLinkBit = 8,
 kFSNodeHardLinkMask = 0x00000100
};

Constants
kFSNodeLockedBit

Set if the file or directory is locked.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeLockedMask
Indicates that the file or directory is locked.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeResOpenBit
Set if the resource fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 277
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSNodeResOpenMask
Indicates that the resource fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeDataOpenBit
Set if the data fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeDataOpenMask
Indicates that the data fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsDirectoryBit
Set if the object is a directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsDirectoryMask
Indicates that the object is a directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeCopyProtectBit
Set of the file or directory is copy protected.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeCopyProtectMask
Indicates that the file or directory is copy protected.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeForkOpenBit
Set if the file or directory has any open fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeForkOpenMask
Indicates that the file or directory has an open fork of any type.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeHardLinkBit
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kFSNodeHardLinkMask
Available in Mac OS X v10.2 and later.

Declared in Files.h.

278 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Catalog Information Sharing Flags
Indicate the status of a shared directory.

enum {
 kFSNodeInSharedBit = 2,
 kFSNodeInSharedMask = 0x0004,
 kFSNodeIsMountedBit = 3,
 kFSNodeIsMountedMask = 0x0008,
 kFSNodeIsSharePointBit = 5,
 kFSNodeIsSharePointMask = 0x0020
};

Constants
kFSNodeInSharedBit

Set if a directory is within a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeInSharedMask
Indicates that the directory is within a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsMountedBit
Set if a directory is a share point currently mounted by some user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsMountedMask
Indicates that the directory is a share point currently mounted by some user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsSharePointBit
Set if a directory is a share point (an exported volume).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsSharePointMask
Indicates that the directory is a share point (an exported volume).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
The FSCatalogInfo (page 209) structure uses these constants in its sharingFlags field.

Catalog Search Bits
Indicate the criteria for a catalog search.

Constants 279
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 fsSBPartialNameBit = 0,
 fsSBFullNameBit = 1,
 fsSBFlAttribBit = 2,
 fsSBFlFndrInfoBit = 3,
 fsSBFlLgLenBit = 5,
 fsSBFlPyLenBit = 6,
 fsSBFlRLgLenBit = 7,
 fsSBFlRPyLenBit = 8,
 fsSBFlCrDatBit = 9,
 fsSBFlMdDatBit = 10,
 fsSBFlBkDatBit = 11,
 fsSBFlXFndrInfoBit = 12,
 fsSBFlParIDBit = 13,
 fsSBNegateBit = 14,
 fsSBDrUsrWdsBit = 3,
 fsSBDrNmFlsBit = 4,
 fsSBDrCrDatBit = 9,
 fsSBDrMdDatBit = 10,
 fsSBDrBkDatBit = 11,
 fsSBDrFndrInfoBit = 12,
 fsSBDrParIDBit = 13
};

Constants
fsSBPartialNameBit

Indicates a search by a substring of the name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFullNameBit
Indicates a search by the full name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlAttribBit
Indicates a search by the file or directory attributes.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlFndrInfoBit
For files only indicates a search by the file’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlLgLenBit
For files only; indicates a search by the logical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlPyLenBit
For files only; indicates a search by the physical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

280 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsSBFlRLgLenBit
For files only; indicates a search for the logical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlRPyLenBit
For files only; indicates a search by the physical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlCrDatBit
For files only indicates a search by the file’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlMdDatBit
For files only indicates a search by the date of the file’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlBkDatBit
For files only indicates a search by the date of the file’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlXFndrInfoBit
For files only indicates a search by the file’s extended Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlParIDBit
For files only indicates a search by the file’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBNegateBit
Indicates a search for all non-matches. That is, if a file or directory matches one of the other specified
criteria, it is not returned; if it does not match any of the specified criteria, it is returned.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrUsrWdsBit
For directories only indicates a search by the directory’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrNmFlsBit
For directories only; indicates a search by the number of files in the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 281
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsSBDrCrDatBit
For directories only indicates a search by the directory’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrMdDatBit
For directories only indicates a search by the date of the directory’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrBkDatBit
For directories only indicates a search by the date of the directory’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrFndrInfoBit
For directories only indicates a search by the directory’s additional Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrParIDBit
For directories only indicates a search by the directory’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Catalog Search Constants
Specify the which catalog information fields to use as search criteria.

enum {
 fsSBNodeID = 0x00008000,
 fsSBAttributeModDate = 0x00010000,
 fsSBAccessDate = 0x00020000,
 fsSBPermissions = 0x00040000,
 fsSBNodeIDBit = 15,
 fsSBAttributeModDateBit = 16,
 fsSBAccessDateBit = 17,
 fsSBPermissionsBit = 18
};

Constants
fsSBNodeID

Search by a range of catalog node ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBAttributeModDate
Search by a range of attribute (fork) modification date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

282 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsSBAccessDate
Search by a range of access date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBPermissions
Search by a value or mask of permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBNodeIDBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBAttributeModDateBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBAccessDateBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBPermissionsBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Catalog Search Masks
Specify the criteria for a catalog search.

Constants 283
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 fsSBPartialName = 1,
 fsSBFullName = 2,
 fsSBFlAttrib = 4,
 fsSBFlFndrInfo = 8,
 fsSBFlLgLen = 32,
 fsSBFlPyLen = 64,
 fsSBFlRLgLen = 128,
 fsSBFlRPyLen = 256,
 fsSBFlCrDat = 512,
 fsSBFlMdDat = 1024,
 fsSBFlBkDat = 2048,
 fsSBFlXFndrInfo = 4096,
 fsSBFlParID = 8192,
 fsSBNegate = 16384,
 fsSBDrUsrWds = 8,
 fsSBDrNmFls = 16,
 fsSBDrCrDat = 512,
 fsSBDrMdDat = 1024,
 fsSBDrBkDat = 2048,
 fsSBDrFndrInfo = 4096,
 fsSBDrParID = 8192
};

Constants
fsSBPartialName

Search by a substring of the name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFullName
Search by the full name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlAttrib
Search by the file or directory attributes. You can use the attributes to specify that you are searching
for a directory, or for a file or directory that is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlFndrInfo
For files only search by the file’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlLgLen
For files only; search by the logical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlPyLen
For files only; search by the physical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

284 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsSBFlRLgLen
For files only; search for the logical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlRPyLen
For files only; search by the physical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlCrDat
For files only search by the file’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlMdDat
For files only search by the date of the file’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlBkDat
For files only search by the date of the file’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlXFndrInfo
For files only search by the file’s extended Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlParID
For files only search by the file’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBNegate
Search for all non-matches. That is, if a file or directory matches one of the other specified criteria, it
is not returned; if it does not match any of the specified criteria, it is returned.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrUsrWds
For directories only search by the directory’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrNmFls
For directories only; search by the number of files in the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 285
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsSBDrCrDat
For directories only search by the directory’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrMdDat
For directories only search by the date of the directory’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrBkDat
For directories only search by the date of the directory’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrFndrInfo
For directories only search by the directory’s additional Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrParID
For directories only search by the directory’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Use these constants in the ioSearchBits field of the PBCatSearchSync and PBCatSearchAsync functions
to specify the criteria for your search.

Extended AFP Volume Mounting Information Flag
Specifies a flag used in the extendedFlags field of the AFPXVolMountInfo structure.

enum {
 kAFPExtendedFlagsAlternateAddressMask = 1
};

Constants
kAFPExtendedFlagsAlternateAddressMask

Indicates that the alternateAddressOffset field in the AFPXVolMountInfo record is used.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
See the AFPXVolMountInfo (page 182) structure for more information.

Extended Volume Attributes
Describe a volume’s extended attributes.

286 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 bIsEjectable = 0,
 bSupportsHFSPlusAPIs = 1,
 bSupportsFSCatalogSearch = 2,
 bSupportsFSExchangeObjects = 3,
 bSupports2TBFiles = 4,
 bSupportsLongNames = 5,
 bSupportsMultiScriptNames = 6,
 bSupportsNamedForks = 7,
 bSupportsSubtreeIterators = 8,
 bL2PCanMapFileBlocks = 9
 bParentModDateChanges = 10,
 bAncestorModDateChanges = 11
 bSupportsSymbolicLinks = 13,
 bIsAutoMounted = 14,
 bAllowCDiDataHandler = 17,
 bSupportsExclusiveLocks = 18
 bSupportsJournaling = 19,
 bNoVolumeSizes = 20,
 bIsCaseSensitive = 22,
 bIsCasePreserving = 23,
 bDoNotDisplay = 24
};

Constants
bIsEjectable

The volume is in an ejectable disk drive .

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsHFSPlusAPIs
The volume supports the HFS Plus APIs directly, i.e., the File Manager does not emulate them.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsFSCatalogSearch
The volume supports the FSCatalogSearch (page 45) operation.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsFSExchangeObjects
The volume supports the FSExchangeObjects (page 59) function.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupports2TBFiles
The volume supports 2 terabyte files.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsLongNames
The volume supports file, directory, and volume names longer than 31 characters.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 287
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

bSupportsMultiScriptNames
The volume supports file, directory, and volume names with characters from multiple script systems.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsNamedForks
The volume supports named forks other than the data and resource forks.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsSubtreeIterators
The volume supports recursive iterators, not at the volume root.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bL2PCanMapFileBlocks
The volume supports the Lg2Phys SPI correctly.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bParentModDateChanges
On this volume, changing a file or folder causes its parent's modification date to change.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bAncestorModDateChanges
On this volume, changing a file or folder causes all ancestor modification dates to change.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsSymbolicLinks
The volume supports the creation and use of symbolic links (Mac OS X only).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bIsAutoMounted
The volume was mounted automatically (Mac OS X only).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bAllowCDiDataHandler
QuickTime's CDi data handler is allowed to examine the volume.

Available in Mac OS X v10.1 and later.

Declared in Files.h.

bSupportsExclusiveLocks
The volume supports exclusive access to files opened for writing.

Available in Mac OS X v10.2 and later.

Declared in Files.h.

288 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

bSupportsJournaling
The volume supports journaling. This does not indicate whether journaling is currently enabled on
the volume.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bNoVolumeSizes
The volume is unable to report volume size or free space.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bIsCaseSensitive
The volume is case-sensitive.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bIsCasePreserving
The volume is preserves case.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bDoNotDisplay
The volume should not be displayed in the user interface.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

Discussion
The GetVolParmsInfoBuffer (page 230) structure uses these constants in its vMExtendedAttributes
field.

FCB Flags
Specify flags that describe the state of a file.

Constants 289
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kioFCBWriteBit = 8,
 kioFCBWriteMask = 0x0100,
 kioFCBResourceBit = 9,
 kioFCBResourceMask = 0x0200,
 kioFCBWriteLockedBit = 10,
 kioFCBWriteLockedMask = 0x0400,
 kioFCBLargeFileBit = 11,
 kioFCBLargeFileMask = 0x0800,
 kioFCBSharedWriteBit = 12,
 kioFCBSharedWriteMask = 0x1000,
 kioFCBFileLockedBit = 13,
 kioFCBFileLockedMask = 0x2000,
 kioFCBOwnClumpBit = 14,
 kioFCBOwnClumpMask = 0x4000,
 kioFCBModifiedBit = 15,
 kioFCBModifiedMask = 0x8000
};

Constants
kioFCBWriteBit

Set if data can be written to this file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBWriteMask
Tests if data can be written to this file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBResourceBit
Set if this FCB describes a resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBResourceMask
Tests if this FCB describes a resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBWriteLockedBit
Set if this file has a locked byte range.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBWriteLockedMask
Tests if this file has a locked byte range.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBLargeFileBit
Set if this file may grow beyond 2GB and the cache uses file blocks, not bytes.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

290 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioFCBLargeFileMask
Tests if this file may grow beyond 2GB and the cache uses file blocks, not bytes.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBSharedWriteBit
Set if this file has shared write permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBSharedWriteMask
Tests if this file has shared write permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBFileLockedBit
Set if this file is locked (write-protected).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBFileLockedMask
Tests if this file is locked (write-protected).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBOwnClumpBit
Set if this file’s clump size is specified in the FCB.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBOwnClumpMask
Tests if this file’s clump size is specified in the FCB.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBModifiedBit
Set if this file has changed since it was last flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBModifiedMask
Tests if this file has changed since it was last flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioFCBFlags field of the FCBPBRec (page 199) returned by the functions
PBGetFCBInfoSync and PBGetFCBInfoAsync .

File Access Permission Constants
Specify the type of read and write access to a file or fork.

Constants 291
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 fsCurPerm = 0x00,
 fsRdPerm = 0x01,
 fsWrPerm = 0x02,
 fsRdWrPerm = 0x03,
 fsRdWrShPerm = 0x04,
 fsRdDenyPerm = 0x10,
 fsWrDenyPerm = 0x20
};

Constants
fsCurPerm

Requests whatever permissions are currently allowed. If write access in unavailable (because the file
is locked or the file is already open with write permission), then read permission is granted. Otherwise
read/write permission is granted.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRdPerm
Requests permission to read the file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsWrPerm
Requests permission to write to the file. If write permission is granted, no other access paths are
granted write permission. Note, however, that the File Manager does not support write-only access
to a file. Thus, fsWrPerm is synonymous with fsRdWrPerm.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRdWrPerm
Requests exclusive read and write permission. If exclusive read/ write permission is granted, no other
users are granted permission to write to the file. Other users may, however, be granted permission
to read the file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRdWrShPerm
Requests shared read and write permission. Shared read and write permission allows multiple access
paths for reading and writing. This is safe only if there is some way of locking portions of the file
before writing to them. On volumes that support range locking, you can use the functions
PBLockRangeSync and PBUnlockRangeSync to lock and unlock ranges of bytes within a file.
Applications running in Mac OS X version 10.4 or later should use the functions FSLockRange and
FSUnlockRange for this purpose.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

292 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsRdDenyPerm
Requests that any other paths be prevented from having read access. A path cannot be opened if
you request read permission (with the fsRdPerm constant) but some other path has requested
deny-read access. Similarly, the path cannot be opened if you request deny-read permission, but
some other path already has read access. This constant is only supported on volumes which return
the bHasOpenDeny attribute when you call FSGetVolumeParms.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsWrDenyPerm
Requests that any other paths be prevented from having write access. A path cannot be opened if
you request write permission (with the fsWrPerm constant) but some other path has requested
deny-write access. Similarly, the path cannot be opened if you request deny-write permission, but
some other path already has write access. This constant is only supported on volumes which return
the bHasOpenDeny attribute when you call FSGetVolumeParms.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Use these constants to request a type of access to a file or fork, or to deny a type of access to a file or fork to
other paths that may request access.

Note that it is possible, in Mac OS 8 and 9, to open a file residing on read-only media with write access. In
Mac OS X, however, you cannot open a file with write access on read-only media; the attempt to open the
file fails with a wrPermErr error.

File and Folder Access Privilege Constants
Specify access privileges for files and directories in the ioACAccess field of the AccessParam data type.

Constants 293
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kioACAccessOwnerBit = 31,
 kioACAccessOwnerMask = 0x80000000,
 kioACAccessBlankAccessBit = 28,
 kioACAccessBlankAccessMask = 0x10000000,
 kioACAccessUserWriteBit = 26,
 kioACAccessUserWriteMask = 0x04000000,
 kioACAccessUserReadBit = 25,
 kioACAccessUserReadMask = 0x02000000,
 kioACAccessUserSearchBit = 24,
 kioACAccessUserSearchMask = 0x01000000,
 kioACAccessEveryoneWriteBit = 18,
 kioACAccessEveryoneWriteMask = 0x00040000,
 kioACAccessEveryoneReadBit = 17,
 kioACAccessEveryoneReadMask = 0x00020000,
 kioACAccessEveryoneSearchBit = 16,
 kioACAccessEveryoneSearchMask = 0x00010000,
 kioACAccessGroupWriteBit = 10,
 kioACAccessGroupWriteMask = 0x00000400,
 kioACAccessGroupReadBit = 9,
 kioACAccessGroupReadMask = 0x00000200,
 kioACAccessGroupSearchBit = 8,
 kioACAccessGroupSearchMask = 0x00000100,
 kioACAccessOwnerWriteBit = 2,
 kioACAccessOwnerWriteMask = 0x00000004,
 kioACAccessOwnerReadBit = 1,
 kioACAccessOwnerReadMask = 0x00000002,
 kioACAccessOwnerSearchBit = 0,
 kioACAccessOwnerSearchMask = 0x00000001,
 kfullPrivileges = 0x00070007,
 kownerPrivileges = 0x00000007
};

Constants
kioACAccessOwnerBit

Indicates that the user is the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerMask
The user is the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessBlankAccessBit
Indicates that the directory has blank access privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessBlankAccessMask
The directory has blank access privileges. A directory with blank access privileges set ignores the other
access privilege bits and uses the access privilege bits of its parent directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

294 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioACAccessUserWriteBit
Indicates that the user has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserWriteMask
The user has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserReadBit
Indicates that the user has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserReadMask
The user has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserSearchBit
Indicates that the user has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserSearchMask
The user has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneWriteBit
Indicates that everyone has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneWriteMask
Everyone has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneReadBit
Indicates that everyone has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneReadMask
Everyone has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 295
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioACAccessEveryoneSearchBit
Indicates that everyone has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneSearchMask
Everyone has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupWriteBit
Indicates that the group has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupWriteMask
The group has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupReadBit
Indicates that the group has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupReadMask
The group has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupSearchBit
Indicates that the group has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupSearchMask
The group has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerWriteBit
Indicates that the owner has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerWriteMask
The owner has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

296 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioACAccessOwnerReadBit
Indicates that the owner has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerReadMask
The owner has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerSearchBit
Indicates that the owner has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerSearchMask
The owner has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kfullPrivileges
Indicates that everyone, including the owner, have all privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kownerPrivileges
Indicates that only the owner has all privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
See AccessParam (page 177).

File Attribute Constants
Define file and directory attributes returned by the PBGetCatInfoSync and PBGetCatInfoAsync functions.

Constants 297
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kioFlAttribLockedBit = 0,
 kioFlAttribLockedMask = 0x01,
 kioFlAttribResOpenBit = 2,
 kioFlAttribResOpenMask = 0x04,
 kioFlAttribDataOpenBit = 3,
 kioFlAttribDataOpenMask = 0x08,
 kioFlAttribDirBit = 4,
 kioFlAttribDirMask = 0x10,
 ioDirFlg = 4,
 ioDirMask = 0x10,
 kioFlAttribCopyProtBit = 6,
 kioFlAttribCopyProtMask = 0x40,
 kioFlAttribFileOpenBit = 7,
 kioFlAttribFileOpenMask = 0x80,
 kioFlAttribInSharedBit = 2,
 kioFlAttribInSharedMask = 0x04,
 kioFlAttribMountedBit = 3,
 kioFlAttribMountedMask = 0x08,
 kioFlAttribSharePointBit = 5,
 kioFlAttribSharePointMask = 0x20
};

Constants
kioFlAttribLockedBit

Indicates that the file or directory is locked. Use the functions PBHSetFLockSync and
PBHSetFLockAsync to lock a file or directory. Use the functions PBHRstFLockSync and
PBHRstFLockAsync to unlock a file or directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribLockedMask
Tests if the file or directory is locked.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribResOpenBit
Indicates that the resource fork is open. On Mac OS X, this bit is not set if the resource fork of the file
has been opened by a process other than the process making the call to PBHGetCatInfo or
PBHGetFInfo.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribResOpenMask
Tests if the resource fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribDataOpenBit
Indicates that the data fork is open. On Mac OS X, this bit is not set if the data fork of the file has been
opened by a process other than the process making the call to PBHGetCatInfo or PBHGetFInfo.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

298 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioFlAttribDataOpenMask
Tests if the data fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribDirBit
Indicates that this is a directory, not a file. This bit is always clear for files, and is always set for
directories.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribDirMask
Tests if this is a directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

ioDirFlg
Indicates that this is a directory; this is the old name of the kioFlAttribDirBit.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

ioDirMask
Tests if this is a directory; this is the old name of the kioFlAttribDirMask.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribCopyProtBit
Indicates that the file is “copy-protected” by the AppleShare server.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribCopyProtMask
Tests if the file is “copy-protected” by the AppleShare server.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribFileOpenBit
Indicates that the file is open. This bit is set if either the data or the resource fork are open. On Mac
OS X, this bit is not set if the file has been opened by a process other than the process making the
call to PBHGetCatInfo or PBHGetFInfo.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribFileOpenMask
Tests if the file is open. The file is open if either the data or the resource fork are open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribInSharedBit
Indicates that the directory is within a shared area of the directory hierarchy.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 299
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioFlAttribInSharedMask
Tests if the directory is within a shared area of the directory hierarchy.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribMountedBit
Indicates that the directory is a share point that is mounted by a user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribMountedMask
Tests if the directory is a share point that is mounted by a user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribSharePointBit
Indicates that the directory is a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribSharePointMask
Tests if the directory is a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioFlAttrib fields of the HFileInfo (page 232) and DirInfo (page 192)
structures returned by the functions PBGetCatInfoSync and PBGetCatInfoAsync .

File Operation Options
Flags you can use to specify how to perform a file operation.

enum {
 kFSFileOperationDefaultOptions = 0,
 kFSFileOperationOverwrite = 0x01,
 kFSFileOperationSkipSourcePermissionErrors = 0x02,
 kFSFileOperationDoNotMoveAcrossVolumes = 0x04,
 kFSFileOperationSkipPreflight = 0x08
};

Constants
kFSFileOperationDefaultOptions

Use the following default options:

 ■ If the destination directory contains an object with the same name as a source object, abort the
operation.

 ■ If a source object cannot be read, abort the operation.

 ■ If asked to move an object across volume boundaries, perform the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

300 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSFileOperationOverwrite
If the destination directory contains an object with the same name as a source object, overwrite the
destination object.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSFileOperationSkipSourcePermissionErrors
If a source object cannot be read, skip the object and continue the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSFileOperationDoNotMoveAcrossVolumes
If asked to move an object across volume boundaries, abort the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSFileOperationSkipPreflight
Skip the preflight stage for a directory move or copy operation. This option limits the status information
that can be returned during the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Discussion
These flags may be passed to any of the functions that initiate a file operation. For more information, see
“Copying and Moving Objects Using Asynchronous High-Level File Operations” (page 21).

File Operation Stages
Constants used by the File Manager to indicate the current stage of an asynchronous file operation.

typedef UInt32 FSFileOperationStage;
enum {
 kFSOperationStageUndefined = 0,
 kFSOperationStagePreflighting = 1,
 kFSOperationStageRunning = 2,
 kFSOperationStageComplete = 3
};

Constants
kFSOperationStageUndefined

The File Manager has not started the file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationStagePreflighting
The File Manager is performing tasks such as calculating the sizes and number of objects in the
operation, and checking to make sure there is enough space on the destination volume to complete
the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Constants 301
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSOperationStageRunning
The File Manager is copying or moving the file or directory.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationStageComplete
The file operation is complete.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Discussion
These constants are passed back to your file operation status callback function. For more information, see
“File Operation Callbacks” (page 171). You can also get the current stage of a file operation by calling a status
accessor function such as FSFileOperationCopyStatus (page 60).

File Operation Status Dictionary Keys
Keys used to determine the status of a file operation as reported in a status dictionary.

const CFStringRef kFSOperationTotalBytesKey;
const CFStringRef kFSOperationBytesCompleteKey;
const CFStringRef kFSOperationBytesRemainingKey;
const CFStringRef kFSOperationTotalObjectsKey;
const CFStringRef kFSOperationObjectsCompleteKey;
const CFStringRef kFSOperationObjectsRemainingKey;
const CFStringRef kFSOperationTotalUserVisibleObjectsKey;
const CFStringRef kFSOperationUserVisibleObjectsCompleteKey;
const CFStringRef kFSOperationUserVisibleObjectsRemainingKey;
const CFStringRef kFSOperationThroughputKey;

Constants
kFSOperationTotalBytesKey

The value for this key is a CFNumber that represents the total number of bytes that will be moved or
copied by this file operation. This value is not available for a directory operation if the
kFSFileOperationSkipPreflight (page 301) option flag is specified.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationBytesCompleteKey
The value for this key is a CFNumber that represents the total number of bytes that have already been
moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationBytesRemainingKey
The value for this key is a CFNumber that represents the total number of bytes that remain to be
moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

302 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSOperationTotalObjectsKey
The value for this key is a CFNumber that represents the total number of objects that will be moved
or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationObjectsCompleteKey
The value for this key is a CFNumber that represents the total number of objects that have already
been moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationObjectsRemainingKey
The value for this key is a CFNumber that represents the total number of objects that remain to be
moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationTotalUserVisibleObjectsKey
The value for this key is a CFNumber that represents the total number of user-visible objects that will
be moved or copied by this file operation. In general, an object is user-visible if it is displayed in a
Finder window. For example, a package is counted as a single user-visible object even though it
typically contains many other objects.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationUserVisibleObjectsCompleteKey
The value for this key is a CFNumber that represents the total number of user-visible objects that
have already been moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationUserVisibleObjectsRemainingKey
The value for this key is a CFNumber that represents the total number of user-visible objects that
remain to be moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationThroughputKey
The value for this key is a CFNumber that represents the current throughput of this file operation in
bytes per second.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Discussion
The status dictionary for a file operation is passed back to your status callback function. For more information,
see “File Operation Callbacks” (page 171). You can also get the status dictionary for a file operation by calling
a status accessor function such as FSFileOperationCopyStatus (page 60).

Constants 303
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

FNMessage

typedef UInt32 FNMessage;
enum {
 kFNDirectoryModifiedMessage = 1
};

Constants
kFNDirectoryModifiedMessage

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Foreign Privilege Model Constant
Identifies the A/UX privilege model.

enum {
 fsUnixPriv = 1
};

Constants
fsUnixPriv

Represents a volume that supports the A/UX privilege model.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Used in the vMForeignPrivID field of the GetVolParmsInfoBuffer (page 230).

Group ID Constant

enum {
 knoGroup = 0
};

Constants
knoGroup

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Icon Size Constants
Specify the sizes of the desktop database icon types.

304 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kLargeIconSize = 256,
 kLarge4BitIconSize = 512,
 kLarge8BitIconSize = 1024,
 kSmallIconSize = 64,
 kSmall4BitIconSize = 128,
 kSmall8BitIconSize = 256
};

Constants
kLargeIconSize

Large black-and-white icon with mask. Corresponding resource type: 'ICN#'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kLarge4BitIconSize
Large 4-bit color icon. Corresponding resource type: 'icl4’.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kLarge8BitIconSize
Large 8-bit color icon. Corresponding resource type: 'icl8'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kSmallIconSize
Small black-and-white icon with mask. Corresponding resource type: 'ics#'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kSmall4BitIconSize
Small 4-bit color icon. Corresponding resource type: 'ics4'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kSmall8BitIconSize
Small 8-bit color icon. Corresponding resource type: 'ics8'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants indicate the amount of storage you should allocate for the icon data for each of the icon
types specified by the “Icon Type Constants” (page 305). The desktop database functions which set or retrieve
icon data–namely, PBDTAddIconSync , PBDTAddIconAsync , PBDTGetIconSync , PBDTGetIconAsync ,
PBDTGetIconInfoSync , and PBDTGetIconInfoAsync –expect a pointer to the the storage in the
ioDTBuffer field of the DTPBRec (page 196) parameter block and the appropriate constant in the
ioDTReqCount field.

Icon Type Constants
Specify the icon types for the desktop database.

Constants 305
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kLargeIcon = 1,
 kLarge4BitIcon = 2,
 kLarge8BitIcon = 3,
 kSmallIcon = 4,
 kSmall4BitIcon = 5,
 kSmall8BitIcon = 6,
 kicnsIconFamily = 239
};

Constants
kLargeIcon

Large black-and-white icon with mask. Corresponding resource type: 'ICN#'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kLarge4BitIcon
Large 4-bit color icon. Corresponding resource type: 'icl4’.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kLarge8BitIcon
Large 8-bit color icon. Corresponding resource type: 'icl8'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kSmallIcon
Small black-and-white icon with mask. Corresponding resource type: 'ics#'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kSmall4BitIcon
Small 4-bit color icon. Corresponding resource type: 'ics4'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kSmall8BitIcon
Small 8-bit color icon. Corresponding resource type: 'ics8'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kicnsIconFamily
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

306 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
These constants are used in the ioIconType field of the DTPBRec (page 196) parameter block.

Invalid Volume Reference Constant
Represents an invalid volume reference number.

enum {
 kFSInvalidVolumeRefNum = 0
};

Constants
kFSInvalidVolumeRefNum

Invalid volume reference number.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Iterator Flags
Indicate whether an iterator iterates over subtrees or just the immediate children of the container.

enum {
 kFSIterateFlat = 0,
 kFSIterateSubtree = 1,
 kFSIterateDelete = 2,
 kFSIterateReserved = 0xFFFFFFFC
};
typedef OptionBits FSIteratorFlags;

Constants
kFSIterateFlat

Iterate over the immediate children of the container only.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSIterateSubtree
Iterate over the entire subtree rooted at the container.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSIterateDelete
Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSIterateReserved
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 307
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kAsyncMountInProgress

enum {
 kAsyncMountInProgress = 1,
 kAsyncMountComplete = 2,
 kAsyncUnmountInProgress = 3,
 kAsyncUnmountComplete = 4,
 kAsyncEjectInProgress = 5,
 kAsyncEjectComplete = 6
};

Constants
kAsyncMountInProgress

Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncMountComplete
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncUnmountInProgress
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncUnmountComplete
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncEjectInProgress
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncEjectComplete
Available in Mac OS X v10.2 and later.

Declared in Files.h.

Notification Subscription Options
Options that can be specified at subscription time.

enum {
 kFNNoImplicitAllSubscription = (1 << 0),
 kFNNotifyInBackground = (1 << 1)
};

Constants
kFNNoImplicitAllSubscription

Specify this option if you do not want to receive notifications on this subscription when FNNotifyAll
is called. By default, any subscription is also implicitly a subscription to wildcard notifications.

Available in Mac OS X v10.1 and later.

Declared in Files.h.

308 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFNNotifyInBackground
Specify this option if you want to receive notifications on this subscription when your application is
in background. By default, notifications will be coalesced and and delivered when your application
becomes foreground.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

kHFSCatalogNodeIDsReusedBit

enum {
 kHFSCatalogNodeIDsReusedBit = 12,
 kHFSCatalogNodeIDsReusedMask = 1 << kHFSCatalogNodeIDsReusedBit
};

Constants
kHFSCatalogNodeIDsReusedBit

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in HFSVolumes.h.

kHFSCatalogNodeIDsReusedMask
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in HFSVolumes.h.

Large Volume Constants

enum {
 kWidePosOffsetBit = 8,
 kUseWidePositioning = (1 << kWidePosOffsetBit),
 kMaximumBlocksIn4GB = 0x007FFFFF
};

Constants
kWidePosOffsetBit

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kUseWidePositioning
Available in Mac OS X v10.0 and later.

Declared in Files.h.

kMaximumBlocksIn4GB
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Mapping Code Constants
Specify the type of object to map or return.

Constants 309
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kOwnerID2Name = 1,
 kGroupID2Name = 2,
 kOwnerName2ID = 3,
 kGroupName2ID = 4,
 kReturnNextUser = 1,
 kReturnNextGroup = 2,
 kReturnNextUG = 3
};

Constants
kOwnerID2Name

Map a user ID to the user name. Used with the PBHMapIDSync or PBHMapIDAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kGroupID2Name
Map a group ID to the group name. Used with the PBHMapIDSync or PBHMapIDAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kOwnerName2ID
Map a user name to the user ID. Used with the PBHMapNameSync or PBHMapNameAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kGroupName2ID
Map a group name to the group ID. Used with the PBHMapNameSync or PBHMapNameAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kReturnNextUser
Return the next user entry.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kReturnNextGroup
Return the next group entry.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kReturnNextUG
Return the next user or group entry.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioObjType field of the ObjParam (page 248) parameter block. The first four
constants are passed to the PBHMapIDSync , PBHMapIDAsync , PBHMapNameSync , and PBHMapNameAsync
functions to specify the mapping to be performed. The last three constants are passed to the
PBGetUGEntrySync or PBGetUGEntryAsync functions to specify the type of object to be returned.

310 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Path Conversion Options
Specify how a pathname is converted to an FSRef structure by the function
FSPathMakeRefWithOptions (page 91).

enum {
 kFSPathMakeRefDefaultOptions = 0,
 kFSPathMakeRefDoNotFollowLeafSymlink = 0x01
};

Constants
kFSPathMakeRefDefaultOptions

Use the default options.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSPathMakeRefDoNotFollowLeafSymlink
When converting a path that refers to a symbolic link, do not follow the link. The new FSRef should
refer to the link itself.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Position Mode Constants
Together with an offset, specify a position within a fork.

enum {
 fsAtMark = 0,
 fsFromStart = 1,
 fsFromLEOF = 2,
 fsFromMark = 3
};

Constants
fsAtMark

The starting point is the access path’s current position. The offset is ignored.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsFromStart
The starting point is offset bytes from the start of the fork. The offset must be non-negative.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsFromLEOF
The starting point is offset bytes from the logical end of the fork. The offset must not be positive.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 311
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

fsFromMark
The starting point is offset bytes from the access path’s current position. The offset may be positive
or negative.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioPosMode and positionMode fields and parameters of the HFS and HFS
Plus file access functions. These functions include those for reading from and writing to files or forks, changing
the current position within a file or fork, changing the size of a file or fork, and allocating space to a file or
fork.

For the FSReadFork and FSWriteFork calls, you may also add either of the pleaseCacheMask or
noCacheMask constants to hint whether the data should be cached or not. See “Cache Constants” (page
272).

Root Directory Constants
Specify the directory IDs of the root directory of a volume and its parent.

enum {
 fsRtParID = 1,
 fsRtDirID = 2
};

Constants
fsRtParID

Represents the directory ID of the root directory’s parent directory. The root directory has no parent
this constant is used when specifying the root directory to functions which require the parent directory
ID to identify directories.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRtDirID
Represents the directory ID of the volume’s root directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

User ID Constants
Specify basic user IDs for shared directories.

enum {
 knoUser = 0,
 kadministratorUser = 1
};

Constants
knoUser

Available in Mac OS X v10.0 and later.

Declared in Files.h.

312 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kadministratorUser
Available in Mac OS X v10.0 and later.

Declared in Files.h.

User Privileges Constants
Specify the user privileges for a directory on a remote volume.

enum {
 kioACUserNoSeeFolderBit = 0,
 kioACUserNoSeeFolderMask = 0x01,
 kioACUserNoSeeFilesBit = 1,
 kioACUserNoSeeFilesMask = 0x02,
 kioACUserNoMakeChangesBit = 2,
 kioACUserNoMakeChangesMask = 0x04,
 kioACUserNotOwnerBit = 7,
 kioACUserNotOwnerMask = 0x80
};

Constants
kioACUserNoSeeFolderBit

Set if the user does not have “See Folders” privileges. Without “See Folders” privileges, the user cannot
see other directories in the specified directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoSeeFolderMask
Tests if the user has “See Folders” privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoSeeFilesBit
Set if the user does not have “See Files” privileges. Without “See Files” privileges, the user cannot
open documents or applications in the specified directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoSeeFilesMask
Tests if the user has “See Files” privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoMakeChangesBit
Set if the user does not have “Make Changes” privileges. Without “Make Changes” privileges, the user
cannot create, modify, rename, or delete any file or directory within the specified directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoMakeChangesMask
Tests if the user has “Make Changes” privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 313
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioACUserNotOwnerBit
Set if the user is not the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNotOwnerMask
Tests whether the user is the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioACUser field of the HFileInfo (page 232) and DirInfo (page 192)
structures returned by the PBGetCatInfoSync and PBGetCatInfoAsync functions.

Volume Attribute Constants
Bit position constants that specify volume attributes.

314 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 bLimitFCBs = 31,
 bLocalWList = 30,
 bNoMiniFndr = 29,
 bNoVNEdit = 28,
 bNoLclSync = 27,
 bTrshOffLine = 26,
 bNoSwitchTo = 25,
 bNoDeskItems = 20,
 bNoBootBlks = 19,
 bAccessCntl = 18,
 bNoSysDir = 17,
 bHasExtFSVol = 16,
 bHasOpenDeny = 15,
 bHasCopyFile = 14,
 bHasMoveRename = 13,
 bHasDesktopMgr = 12,
 bHasShortName = 11,
 bHasFolderLock = 10,
 bHasPersonalAccessPrivileges = 9,
 bHasUserGroupList = 8,
 bHasCatSearch = 7,
 bHasFileIDs = 6,
 bHasBTreeMgr = 5,
 bHasBlankAccessPrivileges = 4,
 bSupportsAsyncRequests = 3,
 bSupportsTrashVolumeCache = 2
};
enum {
 bHasDirectIO = 1
};

Constants
bLimitFCBs

The Finder limits the number of file control blocks used during copying to 8 instead of 16.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bLocalWList
The Finder uses the returned shared volume handle for its local window list.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoMiniFndr
Reserved; always set to 1.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoVNEdit
This volume’s name cannot be edited.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 315
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

bNoLclSync
Don’t let the Finder change the modification date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bTrshOffLine
Any time this volume goes offline, it is zoomed to the Trash and unmounted.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoSwitchTo
The Finder will not switch launch to any application on this volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoDeskItems
Don’t place objects in this volume on the Finder desktop.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoBootBlks
This volume is not a startup volume. The Startup menu item is disabled. Boot blocks are not copied
during copy operations.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bAccessCntl
This volume supports AppleTalk AFP access-control interfaces. The following functions are supported:

 ■ PBHGetLogInInfoSync

 ■ PBHGetLogInInfoAsync

 ■ PBHGetDirAccessSync

 ■ PBHGetDirAccessAsync

 ■ PBHSetDirAccessSync

 ■ PBHSetDirAccessAsync

 ■ PBHMapIDSync

 ■ PBHMapIDAsync

 ■ PBHMapNameSync

 ■ PBHMapNameAsync

Special folder icons are used. The Access Privileges menu command is enabled for disk and folder
items. The ioFlAttrib field of the parameter block passed to the PBGetCatInfoSync and
PBGetCatInfoSync functions is assumed to be valid.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

316 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

bNoSysDir
This volume doesn’t support a system directory. Do not switch launch to this volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasExtFSVol
This volume is an external file system volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasOpenDeny
This volume supports the PBHOpenDenySync , PBHOpenDenyAsync, PBHOpenRFDenySync and
PBHOpenRFDenyAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasCopyFile
This volume supports the PBHCopyFileSync and PBHCopyFileAsync functions, which is used in
copy and duplicate operations if both source and destination volumes have the same server address.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasMoveRename
This volume supports the PBHMoveRenameSync and PBHMoveRenameAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasDesktopMgr
This volume supports all of the desktop functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasShortName
This volume supports AFP short names.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasFolderLock
Folders on the volume can be locked, and so they cannot be deleted or renamed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasPersonalAccessPrivileges
This volume has local file sharing enabled.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasUserGroupList
This volume supports the Users and Groups file and thus the AFP privilege functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 317
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

bHasCatSearch
This volume supports the PBCatSearchSync and PBCatSearchAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasFileIDs
This volume supports the file ID functions, including the PBExchangeFilesSync and
PBExchangeFilesAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasBTreeMgr
Reserved for internal use.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasBlankAccessPrivileges
This volume supports inherited access privileges for folders (blank access privileges).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsAsyncRequests
This volume correctly handles asynchronous requests at any time.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsTrashVolumeCache

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants correspond to bit positions in the vMAttrib field of the GetVolParmsInfoBuffer (page
230) structure returned by the PBHGetVolParmsSync (page 514) and PBHGetVolParmsAsync (page 512)
functions.

Volume Control Block Flags
Used in the vcbFlags field of a volume control block to specify information about a volume.

318 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kVCBFlagsIdleFlushBit = 3,
 kVCBFlagsIdleFlushMask = 0x0008,
 kVCBFlagsHFSPlusAPIsBit = 4,
 kVCBFlagsHFSPlusAPIsMask = 0x0010,
 kVCBFlagsHardwareGoneBit = 5,
 kVCBFlagsHardwareGoneMask = 0x0020,
 kVCBFlagsVolumeDirtyBit = 15,
 kVCBFlagsVolumeDirtyMask = 0x8000
};

Constants
kVCBFlagsIdleFlushBit

Indicates that the volume should be flushed at idle time.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsIdleFlushMask
Flushes the volume at idle time.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHFSPlusAPIsBit
Indicates that the volume directly implements the HFS Plus APIs (rather than emulating them).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHFSPlusAPIsMask
The volume directly implements the HFS Plus APIs.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHardwareGoneBit
Indicates that the disk driver returned a hardwareGoneErr in response to a read or write call.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHardwareGoneMask
Tests if the disk driver returned a hardwareGoneErr in response to a read or write call.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsVolumeDirtyBit
Indicates that the volume information has changed since the last time the volume was flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsVolumeDirtyMask
The volume has changed since the last time the volume was flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
See VCB (page 251) for a description of the volume control block.

Constants 319
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Volume Information Attribute Constants
Define volume attributes returned by the functions PBHGetVInfoSync, PBHGetVInfoAsync,
PBXGetVolInfoSync, and PBXGetVolInfoAsync.

enum {
 kioVAtrbDefaultVolumeBit = 5,
 kioVAtrbDefaultVolumeMask = 0x0020,
 kioVAtrbFilesOpenBit = 6,
 kioVAtrbFilesOpenMask = 0x0040,
 kioVAtrbHardwareLockedBit = 7,
 kioVAtrbHardwareLockedMask = 0x0080,
 kioVAtrbSoftwareLockedBit = 15,
 kioVAtrbSoftwareLockedMask = 0x8000
};

Constants
kioVAtrbDefaultVolumeBit

Indicates that the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbDefaultVolumeMask
Tests if the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbFilesOpenBit
Indicates that there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbFilesOpenMask
Tests if there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbHardwareLockedBit
Indicates that the volume is locked by a hardware setting. On Mac OS X, the File Manager only sets
the software locked bit for CDs and other read-only media; it does not set the hardware locked bit.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbHardwareLockedMask
Tests if the volume is locked by a hardware setting.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbSoftwareLockedBit
Indicates that the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

320 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kioVAtrbSoftwareLockedMask
Tests if the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioVAtrb field of the HVolumeParam (page 242) parameter block returned
by the PBHGetVInfoSync (page 446) and PBHGetVInfoAsync (page 443) functions, and in the ioVAtrb
field of the XVolumeParam (page 265) parameter block returned by the PBXGetVolInfoSync (page 493)
and PBXGetVolInfoAsync (page 490) functions.

Volume Information Bitmap Constants
Indicate what volume information to set or retrieve.

enum {
 kFSVolInfoNone = 0x0000,
 kFSVolInfoCreateDate = 0x0001,
 kFSVolInfoModDate = 0x0002,
 kFSVolInfoBackupDate = 0x0004,
 kFSVolInfoCheckedDate = 0x0008,
 kFSVolInfoFileCount = 0x0010,
 kFSVolInfoDirCount = 0x0020,
 kFSVolInfoSizes = 0x0040,
 kFSVolInfoBlocks = 0x0080,
 kFSVolInfoNextAlloc = 0x0100,
 kFSVolInfoRsrcClump = 0x0200,
 kFSVolInfoDataClump = 0x0400,
 kFSVolInfoNextID = 0x0800,
 kFSVolInfoFinderInfo = 0x1000,
 kFSVolInfoFlags = 0x2000,
 kFSVolInfoFSInfo = 0x4000,
 kFSVolInfoDriveInfo = 0x8000,
 kFSVolInfoGettableInfo = 0xFFFF,
 kFSVolInfoSettableInfo = 0x3004
};

Constants
kFSVolInfoNone

No volume information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoCreateDate
Retrieve the creation date of the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoModDate
Retrieve the date of the volume’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 321
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSVolInfoBackupDate
Retrieve or set the date of the volume’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoCheckedDate
Retrieve the date that the volume was last checked for consistency.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoFileCount
Retrieve the number of files on the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoDirCount
Retrieve the number of directories on the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoSizes
Retrieve the total number of bytes on the volume and the number of unused bytes on the volume
(in the totalBytes and freeBytes fields).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoBlocks
Retrieve the block information: the block size, the number of total blocks on the volume, and the
number of free blocks on the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoNextAlloc
Retrieve the address at which to start the next allocation.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoRsrcClump
Retrieve the resource fork clump size.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoDataClump
Retrieve the data fork clump size.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoNextID
Retrieve the next available catalog node ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

322 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

kFSVolInfoFinderInfo
Retrieve or set the volume’s Finder information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoFlags
Retrieve or set the volume’s flags. See “Volume Information Flags” (page 323) for more information
on the volume’s flags.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoFSInfo
Retrieve the filesystem ID and signature.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoDriveInfo
Retrieve the drive information: the drive number and driver reference number.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoGettableInfo
Retrieve all of the gettable information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoSettableInfo
Set all of the settable information. Currently, this is the backup date, Finder information, and flags.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used with the FSVolumeInfoBitmap (page 228) data type to indicate what volume
information to set or retrieve with the functions FSSetVolumeInfo (page 101) and FSGetVolumeInfo (page
73) , and their corresponding parameter block calls.

Volume Information Flags
Used by the FSVolumeInfo structure to specify characteristics of a volume.

Constants 323
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

enum {
 kFSVolFlagDefaultVolumeBit = 5,
 kFSVolFlagDefaultVolumeMask = 0x0020,
 kFSVolFlagFilesOpenBit = 6,
 kFSVolFlagFilesOpenMask = 0x0040,
 kFSVolFlagHardwareLockedBit = 7,
 kFSVolFlagHardwareLockedMask = 0x0080,
 kFSVolFlagSoftwareLockedBit = 15,
 kFSVolFlagSoftwareLockedMask = 0x8000
};

Constants
kFSVolFlagDefaultVolumeBit

Set if the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagDefaultVolumeMask
Indicates that the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagFilesOpenBit
Set if there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagFilesOpenMask
Indicates that there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagHardwareLockedBit
Set if the volume is locked by a hardware setting. On Mac OS X, the File Manager only sets the software
locked bit for CDs and other read-only media; it does not set the hardware locked bit.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagHardwareLockedMask
Indicates that the volume is locked by a hardware setting.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagSoftwareLockedBit
Set if the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagSoftwareLockedMask
Indicates that the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

324 Constants
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

Discussion
See the flags field of the FSVolumeInfo (page 225) structure.

Volume Mount Flags
Define flags used by the volume mounting information structures.

enum {
 volMountNoLoginMsgFlagBit = 0,
 volMountNoLoginMsgFlagMask = 0x0001,
 volMountExtendedFlagsBit = 7,
 volMountExtendedFlagsMask = 0x0080,
 volMountInteractBit = 15,
 volMountInteractMask = 0x8000,
 volMountChangedBit = 14,
 volMountChangedMask = 0x4000,
 volMountFSReservedMask = 0x00FF,
 volMountSysReservedMask = 0xFF00
};

Constants
volMountNoLoginMsgFlagBit

Indicates that any log-in message or greeting dialog will be suppressed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountNoLoginMsgFlagMask
Tells the file system to suppress any log-in message or greeting dialog.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountExtendedFlagsBit
Indicates that the mounting information is a AFPXVolMountInfo record for AppleShare Client version
3.7 and later.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountExtendedFlagsMask
Tells the file system that the mounting information is an AFPXVolMountInfo (page 182) record for
AppleShare Client version 3.7 and later.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountInteractBit
Indicates that it's safe for the file system to perform user interaction to mount the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountInteractMask
Tells the file system that it’s safe to perform user interaction to mount the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 325
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

volMountChangedBit
Indicates that the volume was mounted, but the volume mounting information record needs to be
updated.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountChangedMask
Tests if the volume mounting information record needs to be updated.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountFSReservedMask
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountSysReservedMask
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Bits 0-7 are defined by each file system for its own use; bits 8-15 are reserved for Apple system use. These
constants are used in the flags fields of the AFPVolMountInfo (page 180), AFPXVolMountInfo (page 182)
, and VolumeMountInfoHeader (page 256) structures.

Result Codes

The most common result codes returned by File Manager functions are listed below.

DescriptionValueResult Code

File directory full.-33dirFulErr

Available in Mac OS X v10.0 and later.

Disk or volume full.-34dskFulErr

Available in Mac OS X v10.0 and later.

Volume not found.-35nsvErr

Available in Mac OS X v10.0 and later.

I/O error.-36ioErr

Available in Mac OS X v10.0 and later.

Bad filename or volume name.-37bdNamErr

Available in Mac OS X v10.0 and later.

326 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

File not open.-38fnOpnErr

Available in Mac OS X v10.0 and later.

Logical end-of-file reached.-39eofErr

Available in Mac OS X v10.0 and later.

Attempt to position mark before the start of the file.-40posErr

Available in Mac OS X v10.0 and later.

Memory full (open) or file won't fit (load)-41mFulErr

Available in Mac OS X v10.0 and later.

Too many files open.-42tmfoErr

Available in Mac OS X v10.0 and later.

File or directory not found; incomplete pathname.-43fnfErr

Available in Mac OS X v10.0 and later.

Volume is locked through hardware.-44wPrErr

Available in Mac OS X v10.0 and later.

File is locked.-45fLckdErr

Available in Mac OS X v10.0 and later.

Volume is locked through software.-46vLckdErr

Available in Mac OS X v10.0 and later.

One or more files are open-47fBsyErr

File is busy

Directory is not empty.

Available in Mac OS X v10.0 and later.

Duplicate filename and version-48dupFNErr

Destination file already exists

File found instead of folder

Available in Mac OS X v10.0 and later.

File already open for writing.-49opWrErr

Available in Mac OS X v10.0 and later.

Invalid value passed in a parameter. Your application passed an
invalid parameter for dialog options.

-50paramErr

Available in Mac OS X v10.0 and later.

Result Codes 327
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

Invalid reference number.-51rfNumErr

Available in Mac OS X v10.0 and later.

Error during GetFPos, PBGetFPosSync or PBGetFPosAsync.-52gfpErr

Available in Mac OS X v10.0 and later.

Volume is offline.-53volOffLinErr

Available in Mac OS X v10.0 and later.

Attempt to open locked file for writing-54permErr

Permissions error

Available in Mac OS X v10.0 and later.

Volume already online.-55volOnLinErr

Available in Mac OS X v10.0 and later.

No such drive.-56nsDrvErr

Available in Mac OS X v10.0 and later.

Not a Macintosh disk.-57noMacDskErr

Available in Mac OS X v10.0 and later.

Volume belongs to an external file system.-58extFSErr

Available in Mac OS X v10.0 and later.

Problem during rename.-59fsRnErr

Available in Mac OS X v10.0 and later.

Bad master directory block.-60badMDBErr

Available in Mac OS X v10.0 and later.

Read/ write permission doesn’t allow writing.-61wrPermErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-64lastDskErr

Drive not installed.-64noDriveErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-84firstDskErr

Directory not found or incomplete pathname.-120dirNFErr

Available in Mac OS X v10.0 and later.

Too many working directories open.-121tmwdoErr

Available in Mac OS X v10.0 and later.

328 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

Attempt to move.-122badMovErr

Available in Mac OS X v10.0 and later.

Volume does not support Desktop Manager-123wrgVolTypErr

Not an HFS volume

Available in Mac OS X v10.0 and later.

Server volume has been disconnected.-124volGoneErr

Available in Mac OS X v10.0 and later.

non-hardware internal file system error.-127fsDSIntErr

Available in Mac OS X v10.0 and later.

Foreign file system does not exist.-431fsmFFSNotFoundErr

Available in Mac OS X v10.0 and later.

File system is busy, cannot be removed.-432fsmBusyFFSErr

Available in Mac OS X v10.0 and later.

Name length not 1 <= length <= 31-433fsmBadFFSNameErr

Available in Mac OS X v10.0 and later.

FSD size incompatible with current FSM vers-434fsmBadFSDLenErr

Available in Mac OS X v10.0 and later.

FSID already exists.-435fsmDuplicateFSIDErr

Available in Mac OS X v10.0 and later.

FSM version incompatible with FSD-436fsmBadFSDVersionErr

Available in Mac OS X v10.0 and later.

no alternate stack for HFS CI-437fsmNoAlternateStackErr

Available in Mac OS X v10.0 and later.

unknown message passed to FSM-438fsmUnknownFSMMessageErr

Available in Mac OS X v10.0 and later.

disk driver's hardware was disconnected-503driverHardwareGoneErr

Available in Mac OS X v10.0 and later.

File ID not found-1300fidNotFound

Available in Mac OS X v10.0 and later.

File ID already exists-1301fidExists

Available in Mac OS X v10.0 and later.

Result Codes 329
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

Specified file is a directory-1302notAFileErr

Available in Mac OS X v10.0 and later.

Files on different volumes-1303diffVolErr

Available in Mac OS X v10.0 and later.

Catalog has changed and catalog position record may be invalid-1304catChangedErr

Available in Mac OS X v10.0 and later.

Can’t exchange a file with itself-1306sameFileErr

Available in Mac OS X v10.0 and later.

File ID is dangling or doesn’t match with the file number-1307badFidErr

Available in Mac OS X v10.0 and later.

_Mount allows only remounts and doesn’t get one-1308notARemountErr

Available in Mac OS X v10.0 and later.

File’s EOF, offset, mark or size is too big-1309fileBoundsErr

Available in Mac OS X v10.0 and later.

File or volume is too big for system-1310fsDataTooBigErr

Available in Mac OS X v10.0 and later.

Can’t eject because volume is in use by VM-1311volVMBusyErr

Available in Mac OS X v10.0 and later.

FCBRecPtr is not valid-1327badFCBErr

Available in Mac OS X v10.0 and later.

Selector is not recognized by this file system-1400errFSUnknownCall

Available in Mac OS X v10.0 and later.

An FSRef parameter was invalid. There are several possible
causes:

-1401errFSBadFSRef

The parameter was not optional, but the pointer was NULL.

The volume reference number contained within the FSRef does
not match a currently mounted volume. This can happen if the
volume was unmounted after the FSRef was created.

Some other private field inside the FSRef contains a value that
could never be valid. If the field value could be valid, but doesn’t
happen to match the existing volume or in-memory structures,
a “not found” error would be returned instead.

Available in Mac OS X v10.0 and later.

330 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

A supplied fork name was invalid (i.e., was syntactically illegal
for the given volume). For example, the fork name might contain
characters that cannot be stored on the given volume (such as
a colon on HFS volumes).

-1402errFSBadForkName

Some volume formats do not store fork names in Unicode. These
volume formats will attempt to convert the Unicode name to
the kind of encoding used by the volume format. If the name
could not be converted, errFSBadForkName is returned.

Some volume formats only support a limited set of forks, such
as the data and resource forks on HFS volumes. For those
volumes, if any other fork name is passed, this error is returned.

Available in Mac OS X v10.0 and later.

A non-optional buffer pointer was NULL , or its size was invalid
for the type of data it was expected to contain. In a protected
memory system, this could also mean the buffer space is not
part of the address space for the calling process.

-1403errFSBadBuffer

Available in Mac OS X v10.0 and later.

A file reference number does not correspond to a fork opened
with theFSOpenFork,PBOpenForkSync , orPBOpenForkAsync
functions. This could be because that fork has already been
closed. Or, you may have passed a reference number created
with older APIs (e.g., by the PBHOpenDF functions). A value of
zero is never a valid file reference number.

-1404errFSBadForkRef

Available in Mac OS X v10.0 and later.

A FSCatalogInfoBitmap or FSVolumeInfoBitmap has one
or more reserved or undefined bits set. This error code can also
be returned if a defined bit is set, but the corresponding
FSCatalogInfo or FSVolumeInfo field cannot be operated
on with that call (for example, trying to use FSSetCatalogInfo
to set the valence of a directory).

-1405errFSBadInfoBitmap

Available in Mac OS X v10.0 and later.

A FSCatalogInfo pointer is NULL , but is not optional. Or, the
FSCatalogInfo is optional and NULL, but the corresponding
FSCatalogInfoBitmap is not zero (that is,the bitmap says that
one or more of the FSCatalogInfo fields is being passed, but
the supplied pointer was NULL).

-1406errFSMissingCatInfo

Available in Mac OS X v10.0 and later.

Result Codes 331
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

A parameter was expected to identify a folder, but it identified
some other kind of object (e.g., a file) instead. This implies that
the specified object exists, but is of the wrong type. For example,
one of the parameters to FSCreateFileUnicode is an FSRef
of the directory where the file will be created; if the FSRef
actually refers to a file, this error is returned.

-1407errFSNotAFolder

Available in Mac OS X v10.0 and later.

An attempt to specify a fork of a given file or directory, but that
particular fork does not exist.

-1409errFSForkNotFound

Available in Mac OS X v10.0 and later.

A file or fork name was too long. This means that the given name
could never exist; this is different from a “file not found” or
errFSForkNotFound error.

-1410errFSNameTooLong

Available in Mac OS X v10.0 and later.

A required file or fork name parameter was a NULL pointer, or
the length of a filename was zero.

-1411errFSMissingName

Available in Mac OS X v10.0 and later.

Reserved or invalid bits in a positionMode field were set. For
example, the FSReadFork call does not support newline mode,
so setting the newline bit or a newline character in the
positionMode parameter would cause this error.

-1412errFSBadPosMode

Available in Mac OS X v10.0 and later.

Reserved or invalid bits were set in an FSAllocationFlags
parameter.

-1413errFSBadAllocFlags

Available in Mac OS X v10.0 and later.

There are no more items to return when enumerating a directory
or searching a volume. Note that FSCatalogSearch returns
this error, whereas the PBCatSearch functions would return
eofErr.

-1417errFSNoMoreItems

Available in Mac OS X v10.0 and later.

The maximumObjects parameter to FSGetCatalogInfoBulk
or FSCatalogSearch was zero.

-1418errFSBadItemCount

Available in Mac OS X v10.0 and later.

The search criteria to FSCatalogSearch are invalid or
inconsistent.

-1419errFSBadSearchParams

Available in Mac OS X v10.0 and later.

332 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

The two FSRef structures passed to FSCompareFSRefs are for
different files or directories. Note that a volume format may be
able to compare the FSRef structures without searching for the
files or directories, so this error may be returned even if one or
both of the FSRef structures refers to non-existent objects.

-1420errFSRefsDifferent

Available in Mac OS X v10.0 and later.

An attempt to create a fork, but that fork already exists.-1421errFSForkExists

Available in Mac OS X v10.0 and later.

The flags passed to FSOpenIterator are invalid.-1422errFSBadIteratorFlags

Available in Mac OS X v10.0 and later.

The value of an FSIterator parameter does not correspond
to any currently open iterator.

-1423errFSIteratorNotFound

Available in Mac OS X v10.0 and later.

The iterator flags or container of an FSIterator are not supported
by that call. For example, in the initial release, the
FSCatalogSearch call only supports an iterator whose container
is in the volume’s root directory and whose flags are
kFSIterateSubtree (i.e., an iterator for the entire volume’s
contents). Similarly, in the initial release, FSGetCatalogInfoBulk
only supports an iterator whose flags are kFSIterateFlat.

-1424errFSIteratorNotSupported

Available in Mac OS X v10.0 and later.

The user’s quota of disk blocks has been exhausted.-1425errFSQuotaExceeded

Available in Mac OS X v10.2 and later.

User does not have the correct access to the file-5000afpAccessDenied

Directory cannot be shared

Available in Mac OS X v10.0 and later.

Further information required to complete AFPLogin call.-5001afpAuthContinue

Available in Mac OS X v10.0 and later.

User authentication method is unknown.-5002afpBadUAM

Available in Mac OS X v10.0 and later.

Workstation is using an AFP version that the server doesn’t
recognize.

-5003afpBadVersNum

Available in Mac OS X v10.0 and later.

Bitmap contained bits undefined for call.-5004afpBitmapErr

Available in Mac OS X v10.0 and later.

Result Codes 333
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

Move destination is offspring of source or root was specified.-5005afpCantMove

Available in Mac OS X v10.0 and later.

Requested user permission not possible.-5006afpDenyConflict

Available in Mac OS X v10.0 and later.

Cannot delete non-empty directory.-5007afpDirNotEmpty

Available in Mac OS X v10.0 and later.

Insufficient free space on volume for operation.-5008afpDiskFull

Available in Mac OS X v10.0 and later.

Read beyond logical end-of-file.-5009afpEofError

Available in Mac OS X v10.0 and later.

Cannot delete an open file.-5010afpFileBusy

Available in Mac OS X v10.0 and later.

Cannot create directory on specified volume.-5011afpFlatVol

Available in Mac OS X v10.0 and later.

Unknown user name/ user ID or missing comment / APPL entry.-5012afpItemNotFound

Available in Mac OS X v10.0 and later.

Some or all of requested range is locked by another user.-5013afpLockErr

Available in Mac OS X v10.0 and later.

Unexpected error encountered during execution.-5014afpMiscErr

Available in Mac OS X v10.0 and later.

No more ranges can be locked.-5015afpNoMoreLocks

Available in Mac OS X v10.0 and later.

Server is not responding.-5016afpNoServer

Available in Mac OS X v10.0 and later.

Specified destination file or directory already exists.-5017afpObjectExists

Available in Mac OS X v10.0 and later.

Specified file or directory does not exist.-5018afpObjectNotFound

Available in Mac OS X v10.0 and later.

A specified parameter was out of allowable range.-5019afpParmErr

Available in Mac OS X v10.0 and later.

334 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

Specified range was not locked.-5020afpRangeNotLocked

Available in Mac OS X v10.0 and later.

Part of range is already locked.-5021afpRangeOverlap

Available in Mac OS X v10.0 and later.

Session closed.-5022afpSessClosed

Available in Mac OS X v10.0 and later.

User authentication failed (usually, password is not correct).-5023afpUserNotAuth

Available in Mac OS X v10.0 and later.

Unsupported AFP call was made.-5024afpCallNotSupported

Available in Mac OS X v10.0 and later.

A directory exists with that name-5025afpObjectTypeErr

Directory not found

Folder locking not supported by volume

Object was a file, not a directory

Available in Mac OS X v10.0 and later.

Maximum open file count reached.-5026afpTooManyFilesOpen

Available in Mac OS X v10.0 and later.

Server is shutting down.-5027afpServerGoingDown

Available in Mac OS X v10.0 and later.

AFPRename cannot rename volume.-5028afpCantRename

Available in Mac OS X v10.0 and later.

Unknown directory specified.-5029afpDirNotFound

Available in Mac OS X v10.0 and later.

Icon size specified is different from existing icon size.-5030afpIconTypeError

Available in Mac OS X v10.0 and later.

Volume is read-only.-5031afpVolLocked

Available in Mac OS X v10.0 and later.

Object is M/R/D/W inhibited.-5032afpObjectLocked

Available in Mac OS X v10.0 and later.

The directory contains a share point.-5033afpContainsSharedErr

Available in Mac OS X v10.0 and later.

Result Codes 335
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

File ID not found.-5034afpIDNotFound

Available in Mac OS X v10.0 and later.

File ID already exists.-5035afpIDExists

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-5036afpDiffVolErr

Catalog has changed and search cannot be resumed.-5037afpCatalogChanged

Available in Mac OS X v10.0 and later.

Source and destination files are the same.-5038afpSameObjectErr

Available in Mac OS X v10.0 and later.

File ID not found.-5039afpBadIDErr

Available in Mac OS X v10.0 and later.

Someone tried to change their password to the same password
on a mandatory password change.

-5040afpPwdSameErr

Available in Mac OS X v10.0 and later.

The password being set is too short: there is a minimum length
that must be met or exceeded.

-5041afpPwdTooShortErr

Available in Mac OS X v10.0 and later.

Password has expired on server.-5042afpPwdExpiredErr

Available in Mac OS X v10.0 and later.

The directory is inside a shared directory.-5043afpInsideSharedErr

Available in Mac OS X v10.0 and later.

The folder being shared is inside the trash folder OR the shared
folder is being moved into the trash folder.

-5044afpInsideTrashErr

Available in Mac OS X v10.0 and later.

The password needs to be changed.-5045afpPwdNeedsChangeErr

Available in Mac OS X v10.0 and later.

Password does not conform to server’s password policy.-5046afpPwdPolicyErr

Available in Mac OS X v10.0 and later.

User has been authenticated but is already logged in from
another machine (and that's not allowed on this server).

-5047afpAlreadyLoggedInErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-5048afpCallNotAllowed

336 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

DescriptionValueResult Code

Not a fixed directory ID volume.-5060afpBadDirIDType

Available in Mac OS X v10.0 and later.

Maximum number of volumes has been mounted.-5061afpCantMountMoreSrvre

Available in Mac OS X v10.0 and later.

Volume already mounted.-5062afpAlreadyMounted

Available in Mac OS X v10.0 and later.

Attempt to log on to a server running on the same machine.-5063afpSameNodeErr

Available in Mac OS X v10.0 and later.

Result Codes 337
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

338 Result Codes
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

File Manager Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

Allocate
Allocates additional space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
FSAllocateFork (page 43) instead.)

OSErr Allocate (
 FSIORefNum refNum,
 SInt32 *count
);

Parameters
refNum

The file reference number of the open file.

count
On input, a pointer to the number of additional bytes to allocate to the file. On return, a pointer to
the number of bytes actually allocated, rounded up to the nearest multiple of the allocation block
size.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The Allocate function adds the specified number of bytes to the file and sets the physical end-of-file to 1
byte beyond the last block allocated. If there isn’t enough empty space on the volume to satisfy the allocation
request, Allocate allocates the rest of the space on the volume and returns dskFulErr as its function
result.

The Allocate function always attempts to allocate contiguous blocks. If the total number of requested
bytes is unavailable, Allocate allocates whatever space, contiguous or not, is available. To force the allocation
of the entire requested space as a contiguous piece, call AllocContig (page 340) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the Allocate or AllocContig function to preallocate file blocks. This is most
useful if you know in advance how big a file is likely to become.

Deprecated in Mac OS X v10.4 339
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

When the File Manager allocates (or deallocates) file blocks automatically, it always adds (or removes) blocks
in clumps. The Allocate function allows you to add blocks in allocation blocks, which may be smaller than
clumps.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 495) function, or by writing data to the
file with the FSWrite (page 357) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 495)
function, or one of the related parameter block calls, PBSetEOFSync (page 480) and PBSetEOFAsync (page
479).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 43) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 110) and
PBAllocateForkAsync (page 109).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, if there is not enough space left on the volume to allocate the requested
number of bytes, the Allocate function does not return the number of bytes actually allocated. Your
application should not rely on the value returned in the count parameter.

To determine the remaining space on a volume before calling Allocate, use the functions
PBXGetVolInfoSync or PBXGetVolInfoAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

AllocContig
Allocates additional contiguous space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
FSAllocateFork (page 43) instead.)

OSErr AllocContig (
 FSVolumeRefNum refNum,
 SInt32 *count
);

Parameters
refNum

The file reference number of an open file.

count
On input, a pointer to the number of additional bytes to allocate to the file; on return, a pointer to
the number of bytes allocated, rounded up to the nearest multiple of the allocation block size.

340 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The AllocContig function is identical to the Allocate (page 339) function except that if there isn’t enough
contiguous empty space on the volume to satisfy the allocation request, AllocContig does nothing and
returns dskFulErr as its function result. If you want to allocate whatever space is available, even when the
entire request cannot be filled by the allocation of a contiguous piece, call Allocate (page 339) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the AllocContig function to preallocate file blocks. This is most useful if you
know in advance how big a file is likely to become.

When the File Manager allocates (or deallocates) file blocks automatically, it always adds (or removes) blocks
in clumps. The AllocContig function allows you to add blocks in allocation blocks, which may be smaller
than clumps.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 495) function, or by writing data to the
file with the FSWrite (page 357) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 495)
function, or one of the related parameter block calls, PBSetEOFSync (page 480) and PBSetEOFAsync (page
479).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 43) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 110) and
PBAllocateForkAsync (page 109).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, when there is not enough space to allocate the requested number of
bytes, AllocContig does not return 0 in the count parameter, so your application cannot rely upon this
value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

CatMove
Moves files or directories from one directory to another on the same volume. (Deprecated in Mac OS X v10.4.
Use FSMoveObject (page 81) instead.)

Deprecated in Mac OS X v10.4 341
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr CatMove (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param oldName,
 SInt32 newDirID,
 ConstStr255Param newName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file or directory to move.

oldName
The existing name of the file or directory to move.

newDirID
If the newName parameter is empty, the directory ID of the destination directory; otherwise, the parent
directory ID of the destination directory.

newName
The name of the destination directory. If a valid directory name is provided in this parameter, the
destination directory’s parent directory is specified in the newDirID parameter. However, you can
specify an empty name for newName, in which case newDirID should be set to the directory ID of
the destination directory.

It is usually simplest to specify the destination directory by passing its directory ID in the newDirID
parameter and by setting newName to an empty name. To specify an empty name, set newName to
':'.

Return Value
A result code. See “File Manager Result Codes” (page 326). This function returns permErr if called on a locked
file.

Discussion
CatMove is strictly a file catalog operation; it does not actually change the location of the file or directory
on the disk.

The CatMove function cannot move a file or directory to another volume (that is, the vRefNum parameter is
used in specifying both the source and the destination). Also, you cannot use it to rename files or directories;
to rename a file or directory, use HRename (page 366).

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 81) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 150) and PBMoveObjectAsync (page
149).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

342 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

DirCreate
Creates a new directory. (Deprecated in Mac OS X v10.4. Use FSCreateDirectoryUnicode (page 52)
instead.)

OSErr DirCreate (
 FSVolumeRefNum vRefNum,
 SInt32 parentDirID,
 ConstStr255Param directoryName,
 SInt32 *createdDirID
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

parentDirID
The directory ID of the parent directory. If the parent directory ID is 0 and the volume specified in the
vRefNum parameter is the default volume, the new directory is placed in the default directory of the
volume. If the parent directory ID is 0 and the volume specified in the vRefNum parameter is a volume
other than the default volume, the new directory is placed in the root directory of the volume. To
create a directory at the root of a volume, regardless of whether that volume is the current default
volume, pass the constant fsRtDirID(2) in this parameter.

directoryName
The name of the new directory.

createdDirID
On return, a pointer to the directory ID of the new directory. Note that a directory ID, unlike a volume
reference number, is a long integer.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The date and time of the new directory’s creation and last modification are set to the current date and time.

To create a directory with a Unicode name, use the function FSCreateDirectoryUnicode (page 52) , or
one of the corresponding parameter block calls, PBCreateDirectoryUnicodeSync (page 120) and
PBCreateDirectoryUnicodeAsync (page 119).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSClose
Closes an open file. (Deprecated in Mac OS X v10.4. Use FSCloseFork (page 47) instead.)

Deprecated in Mac OS X v10.4 343
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSClose (
 FSIORefNum refNum
);

Parameters
refNum

The file reference number of the open file.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSClose function removes the access path for the specified file and writes the contents of the volume
buffer to the volume.

The FSClose function calls the PBFlushFileSync function internally to write the file’s bytes onto the
volume. To ensure that the file’s catalog entry is updated, you should call FlushVol (page 498) after you call
FSClose.

Special Considerations

Make sure that you do not call FSClose with a file reference number of a file that has already been closed.
Attempting to close the same file twice may result in loss of data on a volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSMakeFSSpec
Creates an FSSpec structure describing a file or directory. (Deprecated in Mac OS X v10.4. Use
FSMakeFSRefUnicode (page 76) instead.)

OSErr FSMakeFSSpec (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 FSSpec *spec
);

Parameters
vRefNum

A volume specification for the volume containing the file or directory. This parameter can contain a
volume reference number, a drive number, or 0 to specify the default volume.

dirID
The parent directory ID of the target object. If the directory is sufficiently specified in the fileName
parameter, the dirID parameter can be set to 0. If the fileName parameter contains an empty string,
FSMakeFSSpec creates an FSSpec structure for the directory specified by the dirID parameter.

344 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

fileName
A full or partial pathname. If the fileName parameter specifies a full pathname, FSMakeFSSpec
ignores both the vRefNum and dirID parameters. A partial pathname might identify only the final
target, or it might include one or more parent directory names. If fileName specifies a partial
pathname, then vRefNum, dirID, or both must be valid.

spec
A pointer to a file system specification to be filled in by FSMakeFSSpec. The FSMakeFSSpec function
fills in the fields of the file system specification using the information contained in the other three
parameters. If your application receives any result code other than noErr or fnfErr, all fields of the
resulting FSSpec structure are set to 0.

The file system specification structure that you pass in this parameter should not share storage space
with the input pathname; the name field may be initialized to the empty string before the pathname
has been processed. For example, fileName should not refer to the name field of the output file
system specification.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
You should call FSMakeFSSpec, or one of the corresponding parameter block functions,
PBMakeFSSpecSync (page 474) and PBMakeFSSpecAsync (page 473) , whenever you want to create an
FSSpec structure. You should not create an FSSpec by filling in the fields of the structure yourself.

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, FSMakeFSSpec fills in the structure and then returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for other operations,
such as creating a file with the FSpCreate (page 346) function.

Carbon Porting Notes

Non-Carbon applications can also specify a working directory reference number in the vRefNum parameter.
However, because working directories are not supported in Carbon, you cannot specify a working directory
reference number if you wish your application to be Carbon-compatible.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTMetaData
Simple DrawSprocket

Declared In
Files.h

FSpCatMove
Moves a file or directory from one location to another on the same volume. (Deprecated in Mac OS X v10.4.
Use FSMoveObject (page 81) instead.)

Deprecated in Mac OS X v10.4 345
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpCatMove (
 const FSSpec *source,
 const FSSpec *dest
);

Parameters
source

A pointer to an FSSpec structure specifying the name and location of the file or directory to move.
See FSSpec (page 223) for a description of the FSSpec data type.

dest
A pointer to an FSSpec structure specifying the name and location of the directory into which the
source file or directory is to be moved. The directory ID specified in the parID field of this FSSpec is
the directory ID of the parent of the directory into which you want to move the source file or directory.
The name field of this FSSpec specifies the name of the directory into which you want to move the
source file or directory.

If you don’t already know the parent directory ID of the destination directory, it might be easier to
use the PBCatMoveSync or PBCatMoveAsync function, which allow you to specify only the directory
ID of the destination directory.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSpCatMove function is strictly a file catalog operation; it does not actually change the location of the
file or directory on the disk. You cannot use FSpCatMove to move a file or directory to another volume (that
is, the vRefNum field in both FSSpec structures in the source and dest parameters must be the same).
Also, you cannot use FSpCatMove to rename files or directories; to rename a file or directory, use
FSpRename (page 354).

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 81) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 150) and PBMoveObjectAsync (page
149).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpCreate
Creates a new file. (Deprecated in Mac OS X v10.4. Use FSCreateFileUnicode (page 53) instead.)

346 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpCreate (
 const FSSpec *spec,
 OSType creator,
 OSType fileType,
 ScriptCode scriptTag
);

Parameters
spec

A pointer to an FSSpec structure specifying the file to be created. See FSSpec (page 223) for a
description of the FSSpec data type.

creator
The creator of the new file. See the documentation for the Finder Interface for more information on
file creators.

fileType
The file type of the new file. See the documentation for the Finder Interface for more information on
file types.

scriptTag
The code of the script system in which the filename is to be displayed. If you have established the
name and location of the new file using either the NavAskSaveChanges or
NavCustomAskSaveChanges function, specify the script code returned in the reply structure.
Otherwise, specify the system script by setting the scriptTag parameter to the value
smSystemScript.

For more information about the functions NavAskSaveChanges and NavCustomAskSaveChanges,
see Programming With Navigation Services. See the Script Manager Reference for a description of the
smSystemScript constant.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSpCreate function creates a new file (both data and resource forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and last modification are
set to the current date and time.

Files created using FSpCreate are not automatically opened. If you want to write data to the new file, you
must first open the file using one of the file access functions, FSpOpenDF (page 352) , HOpenDF (page 364) ,
PBHOpenDFSync (page 456) or PBHOpenDFAsync (page 454).

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager functions
HCreateResFile or FSpCreateResFile to create a resource map in the file before you can open it by
calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpCreate is not available, you can use the function HCreate (page 360) instead. To create a file with a
Unicode filename, use the function FSCreateFileUnicode (page 53) , or one of the corresponding parameter
block calls, PBCreateFileUnicodeSync (page 123) and PBCreateFileUnicodeAsync (page 121).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 347
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

FSpDelete
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use FSDeleteObject (page 56) instead.)

OSErr FSpDelete (
 const FSSpec *spec
);

Parameters
spec

A pointer to an FSSpec structure specifying the file or directory to delete. See FSSpec (page 223) for
a description of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you attempt to delete an open file or a non-empty
directory, FSpDelete returns the result code fBsyErr. FSpDelete also returns the result code fBsyErr if
the directory has an open working directory associated with it.

Discussion
If the specified target is a file, both forks of the file are deleted. The file ID reference, if any, is removed. A file
must be closed before you can delete it. Similarly, a directory must be empty before you can delete it.

Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpDelete is not available, you can use the function HDelete (page 361) instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Files.h

FSpDirCreate
Creates a new directory. (Deprecated in Mac OS X v10.4. Use FSCreateDirectoryUnicode (page 52)
instead.)

348 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpDirCreate (
 const FSSpec *spec,
 ScriptCode scriptTag,
 SInt32 *createdDirID
);

Parameters
spec

A pointer to an FSSpec structure specifying the directory to be created.

Note that if the parent directory ID for the directory described by this FSSpec is 0 and the volume
specified in this FSSpec is the default volume, the new directory is placed in the default directory of
the volume. If the parent directory ID is 0 and the specified volume is a volume other than the default
volume, the new directory is placed in the root directory of the volume. To create a directory at the
root of a volume, regardless of whether that volume is the current default volume, set the parent
directory ID to the constant fsRtDirID(2).

scriptTag
The code of the script system in which the directory name is to be displayed. If you have established
the name and location of the new directory using either the NavAskSaveChanges or
NavCustomAskSaveChanges function, specify the script code returned in the reply structure.
Otherwise, specify the system script by setting the scriptTag parameter to the value
smSystemScript.

For more information on the functions NavAskSaveChanges and NavCustomAskSaveChanges, see
Programming With Navigation Services. For a description of the smSystemScript constant, see the
Script Manager Reference.

createdDirID
On return, a pointer to the directory ID of the directory that was created.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSpDirCreate function sets the date and time of creation and last modification to the current date
and time.

Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpDirCreate is not available, you can use the function DirCreate (page 343) instead. To create a directory
with a Unicode name, use the function FSCreateDirectoryUnicode (page 52) , or one of the corresponding
parameter block calls, PBCreateDirectoryUnicodeSync (page 120) and
PBCreateDirectoryUnicodeAsync (page 119).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpExchangeFiles
Exchanges the data stored in two files on the same volume. (Deprecated in Mac OS X v10.4. Use
FSExchangeObjects (page 59) instead.)

Deprecated in Mac OS X v10.4 349
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpExchangeFiles (
 const FSSpec *source,
 const FSSpec *dest
);

Parameters
source

A pointer to an FSSpec for the first file to swap. The contents of this file and its file information are
placed in the file specified in the dest parameter. See FSSpec (page 223) for a description of the
FSSpec data type.

dest
A pointer to an FSSpec for the second file to swap. The contents of this file and its file information
are placed in the file specified in the source parameter.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSpExchangeFiles function swaps the data in two files by changing the information in the volume’s
catalog and, if either of the files are open, in the file control blocks. The following fields in the catalog entries
for the files are exchanged:

 ■ ioFlStBlk

 ■ ioFlLgLen

 ■ ioFlPyLen

 ■ ioFlRStBlk

 ■ ioFlRLgLen

 ■ ioFlRPyLen

 ■ ioFlMdDat

In the file control blocks, the fcbFlNum, fcbDirID, and fcbCName fields are exchanged.

You should use FSpExchangeFiles when updating an existing file, so that the file ID remains valid in case
the file is being tracked through its file ID. The FSpExchangeFiles function changes the fields in the catalog
entries that record the location of the data and the modification dates. It swaps both the data forks and the
resource forks.

The FSpExchangeFiles function works on both open and closed files. If either file is open,
FSpExchangeFiles updates any file control blocks associated with the file. Exchanging the contents of two
files requires essentially the same access permissions as opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do not,
FSpExchangeFiles returns the result code diffVolErr.

To exchange the contents of files with named forks other than the data and resource forks, or of files larger
than 2 GB, use the FSExchangeObjects (page 59) , PBExchangeObjectsSync (page 129) , or
PBExchangeObjectsAsync (page 128) function.

350 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

The “compatibility code,” by which FSpExchangeFiles attempted to perform the file exchange itself if it
suspected that the underlying filesystem did not have Exchange capability, has been removed in Mac OS 9
and X.

Because other programs may have access paths open to one or both of the files exchanged, your application
should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
FSpExchangeFiles. Exclusive read/write access to both files will ensure that FSpExchangeFiles doesn't
affect another application because it prevents other applications from obtaining write access to one or both
of the files exchanged.

FSpExchangeFiles does not respect the file-locked attribute; it will perform the exchange even if one or
both of the files are locked. Obtaining exclusive read/write access to both files before calling
FSpExchangeFiles ensures that the files are unlocked because locked files cannot be opened with write
access.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpGetFInfo
Obtains the Finder information for a file. (Deprecated in Mac OS X v10.4. Use FSGetCatalogInfo (page 66)
instead.)

OSErr FSpGetFInfo (
 const FSSpec *spec,
 FInfo *fndrInfo
);

Parameters
spec

A pointer to an FSSpec structure specifying the file. See FSSpec (page 223) for a description of the
FSSpec data type.

fndrInfo
On return, a pointer to information used by the Finder. The FSpGetFInfo function returns the Finder
information from the volume catalog entry for the specified file. The function provides only the original
Finder information—the information in the FInfo or DInfo structures, not the information in the
FXInfo or DXInfo structures. For a description of the FInfo structure, see the Finder Interface
Reference.

Return Value
A result code. If the specified object is a folder, this function returns fnfErr. For other possible return values,
see “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 351
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Related Sample Code
QTCarbonShell

Declared In
Files.h

FSpOpenDF
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 85) instead.)

OSErr FSpOpenDF (
 const FSSpec *spec,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
spec

A pointer to an FSSpec structure specifying the file whose data fork is to be opened. See FSSpec (page
223) for a description of the FSSpec data type.

permission
A constant indicating the type of access with which to open the file’s data fork. In most cases, you
can simply set the permission parameter to fsCurPerm. Some applications request fsRdWrPerm,
to ensure that they can both read from and write to a file. For a description of the types of access that
you can request, see “File Access Permission Constants” (page 291).

refNum
On return, a pointer to the file reference number for accessing the open data fork.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpOpenDF is not available, you can use the function HOpenDF (page 364) instead.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) and PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB
with the FSpOpenDF function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpOpenRF
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 85) instead.)

352 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpOpenRF (
 const FSSpec *spec,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
spec

A pointer to an FSSpec structure specifying the file whose resource fork is to be opened. See
FSSpec (page 223) for a description of the FSSpec data type.

permission
A constant indicating the type of access with which to open the file’s resource fork. For a description
of the types of access you can request, see “File Access Permission Constants” (page 291).

refNum
On return, a pointer to the file reference number for accessing the open resource fork.

Return Value
A result code. See “File Manager Result Codes” (page 326). On some file systems, FSpOpenRF will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpOpenRF is not available, you can use the function HOpenRF (page 365) instead.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the FSpOpenRF function, you will receive an error message.

Special Considerations

Generally, your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The FSpOpenRF function does not read the resource map into memory and is
generally useful only for applications (such as utilities that copy files) that need block-level access to a resource
fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 353
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

FSpRename
Renames a file or directory. (Deprecated in Mac OS X v10.4. Use FSRenameUnicode (page 97) instead.)

OSErr FSpRename (
 const FSSpec *spec,
 ConstStr255Param newName
);

Parameters
spec

A pointer to an FSSpec structure specifying the file or directory to rename. See FSSpec (page 223)
for a description of the FSSpec data type.

newName
The new name of the file or directory.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If a file ID reference for the specified file exists, it remains with the renamed file.

If you want to change the name of a new copy of an existing file, you should use the
FSpExchangeFiles (page 349) function instead. To rename a file or directory using a long Unicode name,
use the FSRenameUnicode (page 97) function or one of the corresponding parameter block calls,
PBRenameUnicodeSync (page 159) and PBRenameUnicodeAsync (page 158).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpRstFLock
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 98) instead.)

OSErr FSpRstFLock (
 const FSSpec *spec
);

Parameters
spec

A pointer to an FSSpec structure specifying the file to unlock. See FSSpec (page 223) for a description
of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
FSpRstFLock to unlock a directory. Otherwise, you can only use this function to unlock a file.

354 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

You can lock a file or directory with the FSpSetFLock (page 355) , HSetFLock (page 368) ,
PBHSetFLockSync (page 467) , and PBHSetFLockAsync (page 466) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpSetFInfo
Sets the Finder information about a file. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 98)
instead.)

OSErr FSpSetFInfo (
 const FSSpec *spec,
 const FInfo *fndrInfo
);

Parameters
spec

A pointer to an FSSpec structure specifying the file for which to set the Finder information. See
FSSpec (page 223) for a description of the FSSpec data type.

fndrInfo
A pointer to the new Finder information. For a description of the FInfo data type, see the Finder
Interface Reference.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSpSetFInfo function changes the Finder information in the volume catalog entry for the specified
file. FSpSetFInfo allows you to set only the original Finder information—the information in the FInfo or
DInfo structures, not the information in the FXInfo or DXInfo structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSpSetFLock
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 98) instead.)

Deprecated in Mac OS X v10.4 355
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpSetFLock (
 const FSSpec *spec
);

Parameters
spec

A pointer to an FSSpec structure specifying the file or directory to lock. See FSSpec (page 223) for a
description of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) functions indicate that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
FSpSetFLock to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. This function has no effect on existing
access paths.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSRead
Reads any number of bytes from an open file. (Deprecated in Mac OS X v10.4. Use FSReadFork (page 95)
instead.)

OSErr FSRead (
 FSIORefNum refNum,
 SInt32 *count,
 void *buffPtr
);

Parameters
refNum

The file reference number of the open file from which to read.

count
On input, a pointer to the number of bytes to read; on output, a pointer to the number of bytes
actually read.

buffPtr
A pointer to the data buffer into which the data will be read. This buffer is allocated by your application
and must be at least as large as the count parameter.

Return Value
A result code. See “File Manager Result Codes” (page 326).

356 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
Because the read operation begins at the current mark, you might want to set the mark first by calling the
SetFPos (page 496) function. If you try to read past the logical end-of-file, FSRead reads in all the data up
to the end-of-file, moves the mark to the end-of-file, and returns eofErr as its function result. Otherwise,
FSRead moves the file mark to the byte following the last byte read and returns noErr.

The low-level functions PBReadSync and PBReadAsync let you set the mark without having to call SetFPos.
Furthermore, if you want to read data in newline mode, you must use PBReadSync or PBReadAsync instead
of FSRead.

If you wish to read from named forks other than the data or resource forks, or from files larger than 2GB, you
must use the FSReadFork (page 95) function, or one of its corresponding parameter block calls,
PBReadForkSync (page 156) and PBReadForkAsync (page 155). If you attempt to use FSRead to read from
a file larger than 2GB, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSWrite
Writes any number of bytes to an open file. (Deprecated in Mac OS X v10.4. Use FSWriteFork (page 104)
instead.)

OSErr FSWrite (
 FSIORefNum refNum,
 SInt32 *count,
 const void *buffPtr
);

Parameters
refNum

The file reference number of the open file to which to write.

count
On input, a pointer to the number of bytes to write to the file. Passing 0 in this parameter will return
a paramErr error.

On output, a pointer to the number of bytes actually written.

buffPtr
A pointer to the data buffer containing the data to write.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The FSWrite function takes the specified number of bytes from the data buffer and attempts to write them
to the file. Because the write operation begins at the current mark, you might want to set the mark first by
calling the SetFPos (page 496) function.

Deprecated in Mac OS X v10.4 357
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

If the write operation completes successfully, FSWrite moves the file mark to the byte following the last
byte written and returns noErr. If you try to write past the logical end-of-file, FSWrite moves the logical
end-of-file. If you try to write past the physical end-of-file, FSWrite adds one or more clumps to the file and
moves the physical end-of-file accordingly.

The low-level functions PBWriteSync and PBWriteAsync let you set the mark without having to call
SetFPos.

If you wish to write to named forks other than the data or resource forks, or grow files larger than 2GB, you
must use the FSWriteFork (page 104) function, or one of its corresponding parameter block calls,
PBWriteForkSync (page 168) and PBWriteForkAsync (page 167). If you attempt to use FSWrite to write
to a file larger than 2GB, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

GetEOF
Determines the current logical size of an open file. (Deprecated in Mac OS X v10.4. Use FSGetForkSize (page
72) instead.)

OSErr GetEOF (
 FSIORefNum refNum,
 SInt32 *logEOF
);

Parameters
refNum

The file reference number of an open file.

logEOF
On return, a pointer to the logical size (the logical end-of-file) of the given file.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
To determine the size of a named fork other than the data or resource forks, or of a fork larger than 2 GB,
use the FSGetForkSize (page 72) function, or one of the corresponding parameter block functions,
PBGetForkSizeSync (page 143) and PBGetForkSizeAsync (page 142).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

358 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

GetFPos
Returns the current position of the file mark. (Deprecated in Mac OS X v10.4. Use FSGetForkPosition (page
71) instead.)

OSErr GetFPos (
 FSIORefNum refNum,
 SInt32 *filePos
);

Parameters
refNum

The file reference number of an open file.

filePos
On return, a pointer to the current position of the mark. The position value is zero-based; that is, the
value of filePos is 0 if the file mark is positioned at the beginning of the file.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Because the read and write operations performed by the functions FSRead (page 356) and FSWrite (page
357) begin at the current mark, you should call GetFPos, or one of the parameter block functions,
PBGetFPosSync (page 432) and PBGetFPosAsync (page 431) , to determine the current position of the file
mark before reading from or writing to the file.

To determine the current position of a named fork, or of a fork larger than 2GB, use the
FSGetForkPosition (page 71) function, or one of the corresponding parameter block calls,
PBGetForkPositionSync (page 141) and PBGetForkPositionAsync (page 140).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

GetVRefNum
Gets a volume reference number from a file reference number. (Deprecated in Mac OS X v10.4. Use
FSGetCatalogInfo (page 66) instead.)

OSErr GetVRefNum (
 FSIORefNum fileRefNum,
 FSVolumeRefNum *vRefNum
);

Parameters
fileRefNum

The file reference number of an open file.

vRefNum
On return, a pointer to the volume reference number of the volume containing the file specified in
the refNum parameter.

Deprecated in Mac OS X v10.4 359
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you also want to determine the directory ID of the specified file’s parent directory, call the
PBGetFCBInfoSync (page 429) or PBGetFCBInfoAsync (page 427) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HCreate
Creates a new file. (Deprecated in Mac OS X v10.4. Use FSCreateFileUnicode (page 53) instead.)

OSErr HCreate (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 OSType creator,
 OSType fileType
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the directory in which to create the new file.

fileName
The name of the new file. This can be a full or partial pathname.

You should not allow users to give files names that begin with a period (.). This ensures that files can
be successfully opened by applications calling HOpen (page 363) instead of HOpenDF (page 364).

creator
The creator of the new file. For more information on a file’s creator, see the Finder Interface
documentation.

fileType
The file type of the new file. For more information on a file’s type, see the Finder Interface
documentation.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The HCreate function creates a new file (both data and resource forks) with the specified name, creator, and
file type. The new file is unlocked and empty. The date and time of its creation and last modification are set
to the current date and time.

360 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Files created using HCreate are not automatically opened. If you want to write data to the new file, you
must first open the file using a file access function.

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager functions
HCreateResFile or FSpCreateResFile to create a resource map in the file before you can open it (by
calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

To create a file with a Unicode filename, use the function FSCreateFileUnicode (page 53) , or one of the
corresponding parameter block calls, PBCreateFileUnicodeSync (page 123) and
PBCreateFileUnicodeAsync (page 121).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HDelete
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use FSDeleteObject (page 56) instead.)

OSErr HDelete (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the parent directory of the file or directory to delete.

fileName
The name of the file or directory to delete. This can be a full or partial pathname.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you attempt to delete an open file or a non-empty
directory, HDelete returns the result code fBsyErr. HDelete also returns the result code fBsyErr if the
directory has an open working directory associated with it.

Discussion
If the specified target is a file, both the data and the resource fork of the file are deleted. In addition, if a file
ID reference for the specified file exists, that reference is removed. A file must be closed before you can delete
it. Similarly, you cannot delete a directory unless it’s empty.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 361
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

HGetFInfo
Obtains the Finder information for a file. (Deprecated in Mac OS X v10.4. Use FSGetCatalogInfo (page 66)
instead.)

OSErr HGetFInfo (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 FInfo *fndrInfo
);

Parameters
vRefNum

The volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file.

fileName
The name of the file.

fndrInfo
On return, a pointer to the Finder information stored in the specified volume’s catalog. The function
returns only the original Finder information—that contained in an FInfo structure, not that in an
FXInfo structure.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HGetVol
Determines the current default volume and default directory. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

362 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr HGetVol (
 StringPtr volName,
 FSVolumeRefNum *vRefNum,
 SInt32 *dirID
);

Parameters
volName

On return, a pointer to the name of the default volume. If you do not want the name of the default
volume returned, set this parameter to NULL.

vRefNum
On return, a pointer to the volume reference number of the default volume.

dirID
On return, a pointer to the directory ID of the default directory.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Version Notes
When CarbonLib is not present, the HGetVol function returns a working directory reference number in the
vRefNum parameter if the previous call to HSetVol (page 369) (or one of the corresponding parameter block
calls) passed in a working directory reference number.

Carbon Porting Notes

Carbon applications should use HGetVol and HSetVol to get and set the default directory. the functions
GetVol and SetVol, as well as working directories, are no longer supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HOpen
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 85) instead.)

OSErr HOpen (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the file’s parent directory.

Deprecated in Mac OS X v10.4 363
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

fileName
The name of the file.

permission
A constant specifying the type of access with which to open the file’s data fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291).

refNum
On return, a pointer to the file reference number for accessing the open fork.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you use HOpen to try to open a file whose name begins with a period, you might mistakenly open a driver
instead; subsequent attempts to write data might corrupt data on the target device. To avoid these problems,
you should always use HOpenDF instead of HOpen.

Special Considerations

If you use HOpen to try to open a file whose name begins with a period, you might mistakenly open a driver
instead; subsequent attempts to write data might corrupt data on the target device. To avoid these problems,
you should always use HOpenDF (page 364) instead of HOpen.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HOpenDF
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 85) instead.)

OSErr HOpenDF (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the file’s parent directory.

fileName
The name of the file.

permission
A constant specifying the type of access with which to open the file’s data fork. For a description of
the types of access which you can request, see “File Access Permission Constants” (page 291).

364 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

refNum
On return, a pointer to the file reference number for accessing the open data fork.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the HOpenDF function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HOpenRF
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 85) instead.)

OSErr HOpenRF (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID for the file’s parent directory.

fileName
The name of the file.

permission
A constant specifying the type of access with which to open the file’s resource fork. For a description
of the types of access you can request, see “File Access Permission Constants” (page 291).

refNum
On return, a pointer to the file reference number for accessing the open resource fork.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you try to open the resource fork of a file for
which no resource fork exists with read-only access, HOpenRF returns the error eofErr.

Deprecated in Mac OS X v10.4 365
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the HOpenRF function, you will receive an error message.

Special Considerations

Generally, your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The HOpenRF function does not read the resource map into memory and is
generally useful only for applications (such as utilities that copy files) that need block-level access to a resource
fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HRename
Renames a file, directory, or volume. (Deprecated in Mac OS X v10.4. Use FSRenameUnicode (page 97)
instead.)

OSErr HRename (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param oldName,
 ConstStr255Param newName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
A directory ID.

oldName
An existing filename, directory name, or volume name.

newName
The new filename, directory name, or volume name.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Given the name of a file or directory in the oldName parameter, HRename changes it to the name in the
newName parameter. Given a volume name in the oldName parameter or a volume reference number in the
vRefNum parameter, HRename changes the name of the volume to the name in newName. Access paths
currently in use aren’t affected by this function.

366 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

If a file ID reference exists for a file you are renaming, the file ID remains with the renamed file.

To rename a file or directory using a long Unicode name, use the FSRenameUnicode (page 97) function or
one of the corresponding parameter block calls, PBRenameUnicodeSync (page 159) and
PBRenameUnicodeAsync (page 158).

Special Considerations

You cannot use HRename to change the directory in which a file resides. To move a file or directory, use the
FSpCatMove (page 345), PBCatMoveSync (page 377), or PBCatMoveAsync (page 376) functions.

If you’re renaming a volume, make sure that both names end with a colon.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HRstFLock
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 98) instead.)

OSErr HRstFLock (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file or directory to unlock.

fileName
The name of the file or directory.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
HRstFLock to unlock a directory. Otherwise, you can only use this function to unlock a file.

You can lock a file or directory with the FSpSetFLock (page 355) , HSetFLock (page 368) ,
PBHSetFLockSync (page 467) , and PBHSetFLockAsync (page 466) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 367
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

HSetFInfo
Sets the Finder information for a file. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 98)
instead.)

OSErr HSetFInfo (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 const FInfo *fndrInfo
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file.

fileName
The name of the file.

fndrInfo
A pointer to the new Finder information. The function changes the Finder information stored in the
volume’s catalog. HSetFInfo changes only the original Finder information—that contained in an
FInfo structure, not that contained in an FXInfo structure. For a description of the FInfo data type,
see the Finder Interface Reference.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HSetFLock
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 98) instead.)

OSErr HSetFLock (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

368 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

dirID
The parent directory ID of the file or directory to lock.

fileName
The name of the file or directory.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
HSetFLock to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. This function has no effect on existing
access paths.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HSetVol
Sets the default volume and the default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr HSetVol (
 ConstStr63Param volName,
 FSVolumeRefNum vRefNum,
 SInt32 dirID
);

Parameters
volName

The name of a mounted volume or the partial pathname of a directory. This parameter can be NULL.

vRefNum
A volume reference number, drive number, or 0 for the default volume.

dirID
A directory ID.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The HSetVol function lets you specify the default directory by volume reference number or by directory ID.

Both the default volume and the default directory are used in calls made with no volume name, a volume
reference number of 0, and a directory ID of 0.

Deprecated in Mac OS X v10.4 369
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

Use of the HSetVol function is discouraged if your application may execute in system software versions
prior to version 7.0. Because the specified directory might not itself be a working directory, HSetVol records
the default volume and directory separately, using the volume reference number of the volume and the
actual directory ID of the specified directory. Subsequent calls to GetVol (or PBGetVolSync or
PBGetVolAsync) return only the volume reference number, which will cause that volume’s root directory
(rather than the default directory, as expected) to be accessed.

Carbon Porting Notes

Carbon applications should use HGetVol and HSetVol to get and set the default directory. the functions
GetVol and SetVol, as well as working directories, are no longer supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBAllocateAsync
Allocates additional space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkAsync (page 109) instead.)

OSErr PBAllocateAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the file to which to allocate additional blocks.

ioReqCount
On input, the number of bytes to allocate.

370 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

The PBAllocateAsync function adds ioReqCount bytes to the specified file and sets the physical end-of-file
to 1 byte beyond the last block allocated. If there isn’t enough empty space on the volume to satisfy the
allocation request, PBAllocateAsync allocates the rest of the space on the volume and returns dskFulErr
as its function result.

If the total number of requested bytes is unavailable, PBAllocateAsync allocates whatever space, contiguous
or not, is available. To force the allocation of the entire requested space as a contiguous piece, call
PBAllocContigAsync (page 373) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocateAsync function to preallocate file blocks. This is most useful
if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 495) function, or by writing data to the
file with the FSWrite (page 357) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 495)
function, or one of the related parameter block calls, PBSetEOFSync (page 480) and PBSetEOFAsync (page
479).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 43) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 110) and
PBAllocateForkAsync (page 109).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, if there is not enough space left on the volume to allocate the requested
number of bytes, the PBAllocateAsync function does not return the number of bytes actually allocated in
the ioActCount field.

To determine the remaining space on a volume before calling PBAllocateAsync, use the functions
PBXGetVolInfoSync or PBXGetVolInfoAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 371
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBAllocateSync
Allocates additional space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkSync (page 110) instead.)

OSErr PBAllocateSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the file to which to allocate additional blocks.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

The PBAllocateSync function adds ioReqCount bytes to the specified file and sets the physical end-of-file
to 1 byte beyond the last block allocated. If there isn’t enough empty space on the volume to satisfy the
allocation request, PBAllocateSync allocates the rest of the space on the volume and returns dskFulErr
as its function result.

If the total number of requested bytes is unavailable, PBAllocateSync allocates whatever space, contiguous
or not, is available. To force the allocation of the entire requested space as a contiguous piece, call
PBAllocContigSync (page 374) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocateSync function to preallocate file blocks. This is most useful
if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 495) function, or by writing data to the
file with the FSWrite (page 357) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 495)
function, or one of the related parameter block calls, PBSetEOFSync (page 480) and PBSetEOFAsync (page
479).

372 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 43) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 110) and
PBAllocateForkAsync (page 109).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, if there is not enough space left on the volume to allocate the requested
number of bytes, the PBAllocateSync function does not return the number of bytes actually allocated in
the ioActCount field.

To determine the remaining space on a volume before calling PBAllocateSync, use the functions
PBXGetVolInfoSync or PBXGetVolInfoAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBAllocContigAsync
Allocates additional contiguous space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkAsync (page 109) instead.)

OSErr PBAllocContigAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

Deprecated in Mac OS X v10.4 373
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

The PBAllocContigAsync function is identical to the PBAllocateAsync (page 370) function except that
if there isn’t enough contiguous empty space on the volume to satisfy the allocation request,
PBAllocContigAsync does nothing and returns dskFulErr as its function result. If you want to allocate
whatever space is available, even when the entire request cannot be filled by the allocation of a contiguous
piece, call PBAllocateAsync (page 370) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocContigAsync function to preallocate file blocks. This is most
useful if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 495) function, or by writing data to the
file with the FSWrite (page 357) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 495)
function, or one of the related parameter block calls, PBSetEOFSync (page 480) and PBSetEOFAsync (page
479).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 43) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 110) and
PBAllocateForkAsync (page 109).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, when there is not enough space to allocate the requested number of
bytes, PBAllocContigAsync does not return 0 in the ioActCount field, so your application cannot rely
upon this value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBAllocContigSync
Allocates additional contiguous space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkSync (page 110) instead.)

374 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBAllocContigSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

The PBAllocContigSync function is identical to the PBAllocateSync (page 372) function except that if
there isn’t enough contiguous empty space on the volume to satisfy the allocation request,
PBAllocContigSync does nothing and returns dskFulErr as its function result. If you want to allocate
whatever space is available, even when the entire request cannot be filled by the allocation of a contiguous
piece, call PBAllocateSync (page 372) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocContigSync function to preallocate file blocks. This is most
useful if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 495) function, or by writing data to the
file with the FSWrite (page 357) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 495)
function, or one of the related parameter block calls, PBSetEOFSync (page 480) and PBSetEOFAsync (page
479).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 43) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 110) and
PBAllocateForkAsync (page 109).

Deprecated in Mac OS X v10.4 375
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, when there is not enough space to allocate the requested number of
bytes, PBAllocContigSync does not return 0 in the ioActCount field, so your application cannot rely
upon this value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatMoveAsync
Moves files or directories from one directory to another on the same volume. (Deprecated in Mac OS X v10.4.
Use PBMoveObjectAsync (page 149) instead.)

OSErr PBCatMoveAsync (
 CMovePBPtr paramBlock
);

Parameters
paramBlock

A pointer to a catalog move parameter block. See CMovePBRec (page 185) for a description of the
CMovePBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). This function returns permErr if called on a locked
file.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the file or directory to move.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioNewName
On input, a pointer to the name of the destination directory. Pass NULL in this field if you wish to
specify the destination directory by its directory ID.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, this is the parent directory ID of the directory into which the file or directory is to be
moved. It is usually simplest to specify the destination directory by passing its directory ID in the
ioNewDirID field and by setting ioNewName to NULL.

376 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioDirID
On input, the parent directory ID of the file or directory to move.

PBCatMoveAsync is strictly a file catalog operation; it does not actually change the location of the file or
directory on the disk. If a file ID reference exists for the file, the file ID reference remains with the moved file.

The PBCatMoveAsync function cannot move a file or directory to another volume (that is, the value in the
ioVRefNum field is used in specifying both the source and the destination). Also, you cannot use it to rename
files or directories; to rename a file or directory, use FSpRename (page 354) , PBHRenameSync (page 462) , or
PBHRenameAsync (page 461) .

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 81) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 150) and PBMoveObjectAsync (page
149).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatMoveSync
Moves files or directories from one directory to another on the same volume. (Deprecated in Mac OS X v10.4.
Use PBMoveObjectSync (page 150) instead.)

OSErr PBCatMoveSync (
 CMovePBPtr paramBlock
);

Parameters
paramBlock

A pointer to a catalog move parameter block. See CMovePBRec (page 185) for a description of the
CMovePBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). This function returns permErr if called on a locked
file.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file or directory to move.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioNewName
On input, a pointer to the name of the destination directory. Pass NULL in this field if you wish to
specify the destination directory by its directory ID.

Deprecated in Mac OS X v10.4 377
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, this is the parent directory ID of the destination directory. It is usually simplest to specify
the destination directory by passing its directory ID in the ioNewDirID field and by setting ioNewName
to NULL.

ioDirID
On input, the parent directory ID of the file or directory to move.

PBCatMoveSync is strictly a file catalog operation; it does not actually change the location of the file or
directory on the disk. If a file ID reference exists for the file, the file ID reference remains with the moved file.

The PBCatMoveSync function cannot move a file or directory to another volume (that is, the value in the
ioVRefNum field is used in specifying both the source and the destination). Also, you cannot use it to rename
files or directories; to rename a file or directory, use FSpRename (page 354) , PBHRenameSync (page 462) , or
PBHRenameAsync (page 461).

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 81) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 150) and PBMoveObjectAsync (page
149).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatSearchAsync
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated in Mac OS X v10.4.
Use PBCatalogSearchAsync (page 111) instead.)

OSErr PBCatSearchAsync (
 CSParamPtr paramBlock
);

Parameters
paramBlock

A pointer to a CSParam (page 190) variant of an HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

378 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioResult
On output, the result code of the function. When PBCatSearchAsync has searched the entire volume,
it returns eofErr. If it exits because it either spends the maximum time allowed in the ioSearchTime
field or finds the maximum number of matches allowed in the ioReqMatchCount field, it returns
noErr.

ioNamePtr
On input, a pointer to the name of the volume to search.

ioVRefNum
On input, a volume reference number or drive number for the volume to search; or 0 for the default
volume.

ioMatchPtr
On input, a pointer to an array of FSSpec (page 223) structure to hold the matches found by this
function. On return, the FSSpec structures in this array identify the files and directories that match
the criteria.

ioReqMatchCount
On input, the maximum number of matches to return.

ioActMatchCount
On output, the actual number of matches returned.

ioSearchBits
On input, a bitmap specifying the fields in the criteria structures to match against. See “Catalog Search
Masks” (page 283) for a description of the bits in this field.

ioSearchInfo1
On input, a pointer to a CInfoPBRec (page 184) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in the structure passed in
ioSearchInfo2, and set the matching value in this structure. For values that match against a range
(such as dates), set the lower bounds for the range in this structure.

ioSearchInfo2
On input, a pointer to a CInfoPBRec (page 184) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in this structure, and set the
matching value in the structure passed in the ioSearchInfo1 field. For values that match against
a range (such as dates), set the upper bounds for the range in this structure.

ioSearchTime
On input, the maximum allowed search time. If you pass 0 in this field, no time limit is set.

ioCatPosition
The current catalog position, specified as a CatPositionRec (page 184) structure. You can use this
field, along with the ioSearchTime field, to search a volume in segments. To search a volume in
segments, set a time limit for the search in the ioSearchTime field and set the initialize field of
the CatPositionRec structure to the location for the start of the search (0 if you wish to start
searching at the beginning of the volume). On return, the catalog position will be updated. You can
then pass this updated CatPositionRec structure to the next call to PBCatSearchSync to continue
searching at the place where you left off.

ioOptBuffer
On input, a pointer to an optional read buffer.

ioOptBufSize
On input, the length of the optional read buffer.

Deprecated in Mac OS X v10.4 379
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

If the catalog file changes between two timed calls to PBCatSearchAsync (that is, when you are using
ioSearchTime and ioCatPosition to search a volume in segments and the catalog file changes between
searches), PBCatSearchAsync returns a result code of catChangedErr and no matches. Depending on
what has changed on the volume, ioCatPosition might be invalid, most likely by a few entries in one
direction or another. You can continue the search, but you risk either skipping some entries or reading some
twice.

Special Considerations

Not all volumes support the PBCatSearchAsync function. Before you call PBCatSearchAsync to search a
particular volume, you should call the PBHGetVolParmsAsync (page 512) function to determine whether
that volume supports PBCatSearchAsync. If the bHasCatSearch bit is set in the vMAttrib field, then the
volume supports PBCatSearchAsync.

Even though AFP volumes support PBCatSearchSync, they do not support all of its features that are available
on local volumes. These restrictions apply to AFP volumes:

 ■ AFP volumes do not use the ioSearchTime field. Current versions of the AppleShare server software
search for 1 second or until 4 matches are found. The AppleShare workstation software keeps requesting
the appropriate number of matches until the server returns either the number specified in the
ioReqMatchCount field or an error.

 ■ AFP volumes do not support both logical and physical fork lengths. If you request a search using the
length of a fork, the actual minimum length used is the smallest of the values in the logical and physical
fields of the ioSearchInfo1 structure and the actual maximum length used is the largest of the values
in the logical and physical fields of the ioSearchInfo2 structure.

 ■ The fsSBNegate bit of the ioSearchBits field is ignored during searches of remote volumes that
support AFP version 2.1.

 ■ If the AFP server returns afpCatalogChanged, the catalog position structure returned to your application
(in the ioCatPosition field) is the same one you passed to PBCatSearchAsync. You should clear the
initialize field of that structure to restart the search from the beginning.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatSearchSync
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated in Mac OS X v10.4.
Use PBCatalogSearchSync (page 113) instead.)

OSErr PBCatSearchSync (
 CSParamPtr paramBlock
);

Parameters
paramBlock

A pointer to a CSParam (page 190) variant of an HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

380 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326). When PBCatSearchSync has searched the entire
volume, it returns eofErr. If it exits because it either spends the maximum time allowed in the ioSearchTime
field or finds the maximum number of matches allowed in the ioReqMatchCount field, it returns noErr.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the volume to search.

ioVRefNum
On input, a volume reference number or drive number for the volume to search; or 0 for the default
volume.

ioMatchPtr
On input, a pointer to an array of FSSpec (page 223) structure to hold the matches found by this
function. On return, the FSSpec structures in this array identify the files and directories that match
the criteria.

ioReqMatchCount
On input, the maximum number of matches to return.

ioActMatchCount
On output, the actual number of matches returned.

ioSearchBits
On input, a bitmap specifying the fields in the criteria structures to match against. See “Catalog Search
Masks” (page 283) for a description of the bits in this field.

ioSearchInfo1
On input, a pointer to a CInfoPBRec (page 184) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in the structure passed in
ioSearchInfo2, and set the matching value in this structure. For values that match against a range
(such as dates), set the lower bounds for the range in this structure.

ioSearchInfo2
On input, a pointer to a CInfoPBRec (page 184) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in this structure, and set the
matching value in the structure passed in the ioSearchInfo1 field. For values that match against
a range (such as dates), set the upper bounds for the range in this structure.

ioSearchTime
On input, the maximum allowed search time. If you pass 0 in this field, no time limit is set.

ioCatPosition
The current catalog position, specified as a CatPositionRec (page 184) structure. You can use this
field, along with the ioSearchTime field, to search a volume in segments. To search a volume in
segments, set a time limit for the search in the ioSearchTime field and set the initialize field of
the CatPositionRec structure to the location for the start of the search (0 if you wish to start
searching at the beginning of the volume). On return, the catalog position will be updated. You can
then pass this updated CatPositionRec structure to the next call to PBCatSearchSync to continue
searching at the place where you left off.

ioOptBuffer
On input, a pointer to an optional read buffer.

ioOptBufSize
On input, the length of the optional read buffer.

Deprecated in Mac OS X v10.4 381
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

If the catalog file changes between two timed calls to PBCatSearchSync (that is, when you are using
ioSearchTime and ioCatPosition to search a volume in segments and the catalog file changes between
searches), PBCatSearchSync returns a result code of catChangedErr and no matches. Depending on what
has changed on the volume, ioCatPosition might be invalid, most likely by a few entries in one direction
or another. You can continue the search, but you risk either skipping some entries or reading some twice.

Special Considerations

Not all volumes support the PBCatSearchSync function. Before you call PBCatSearchSync to search a
particular volume, you should call the PBHGetVolParmsSync (page 514) function to determine whether that
volume supports PBCatSearchSync.If the bHasCatSearch bit is set in the vMAttrib field, then the volume
supports PBCatSearchSync.

Even though AFP volumes support PBCatSearchSync, they do not support all of its features that are available
on local volumes. These restrictions apply to AFP volumes:

 ■ AFP volumes do not use the ioSearchTime field. Current versions of the AppleShare server software
search for 1 second or until 4 matches are found. The AppleShare workstation software keeps requesting
the appropriate number of matches until the server returns either the number specified in the
ioReqMatchCount field or an error.

 ■ AFP volumes do not support both logical and physical fork lengths. If you request a search using the
length of a fork, the actual minimum length used is the smallest of the values in the logical and physical
fields of the ioSearchInfo1 structure and the actual maximum length used is the largest of the values
in the logical and physical fields of the ioSearchInfo2 structure.

 ■ The fsSBNegate bit of the ioSearchBits field is ignored during searches of remote volumes that
support AFP version 2.1.

 ■ If the AFP server returns afpCatalogChanged, the catalog position structure returned to your application
(in the ioCatPosition field) is the same one you passed to PBCatSearchSync. You should clear the
initialize field of that structure to restart the search from the beginning.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDirCreateAsync
Creates a new directory. (Deprecated in Mac OS X v10.4. Use PBCreateDirectoryUnicodeAsync (page
119) instead.)

OSErr PBDirCreateAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

382 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name for the new directory.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID. If the parent directory ID is 0 and the volume specified in the
ioVRefNum field is the default volume, the new directory is placed in the default directory of the
volume. If the parent directory ID is 0 and the volume specified in the ioVRefNum field is a volume
other than the default volume, the new directory is placed in the root directory of the volume. To
create a directory at the root of a volume, regardless of whether that volume is the current default
volume, pass the constant fsRtDirID (2) in this field. On output, the directory ID of the new directory.
Note that a directory ID, unlike a volume reference number, is a long integer.

The PBDirCreateAsync function is identical to PBHCreateAsync (page 434) except that it creates a new
directory instead of a file. The date and time of the directory’s creation and last modification are set to the
current date and time.

To create a directory with a Unicode name, use the function FSCreateDirectoryUnicode (page 52) , or
one of the corresponding parameter block calls, PBCreateDirectoryUnicodeSync (page 120) and
PBCreateDirectoryUnicodeAsync (page 119).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDirCreateSync
Creates a new directory. (Deprecated in Mac OS X v10.4. Use PBCreateDirectoryUnicodeSync (page 120)
instead.)

Deprecated in Mac OS X v10.4 383
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDirCreateSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name for the new directory.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID. If the parent directory ID is 0 and the volume specified in the
ioVRefNum field is the default volume, the new directory is placed in the default directory of the
volume. If the parent directory ID is 0 and the volume specified in the ioVRefNum field is a volume
other than the default volume, the new directory is placed in the root directory of the volume. To
create a directory at the root of a volume, regardless of whether that volume is the current default
volume, pass the constant fsRtDirID (2) in this field. On output, the directory ID of the new directory.
Note that a directory ID, unlike a volume reference number, is a long integer.

The PBDirCreateSync function is identical to PBHCreateSync (page 436) except that it creates a new
directory instead of a file. The date and time of the directory’s creation and last modification are set to the
current date and time.

To create a directory with a Unicode name, use the function FSCreateDirectoryUnicode (page 52) , or
one of the corresponding parameter block calls, PBCreateDirectoryUnicodeSync (page 120) and
PBCreateDirectoryUnicodeAsync (page 119).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddAPPLAsync
Adds an application to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

384 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTAddAPPLAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database to which you wish to add
an application.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDirID
On input, the ID of the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddAPPLSync
Adds an application to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

Deprecated in Mac OS X v10.4 385
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTAddAPPLSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database to which you wish to add
an application.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDirID
On input, the ID of the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddIconAsync
Adds an icon definition to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTAddIconAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

386 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number of the database to which you wish to add an icon.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to the buffer holding the icon’s bitmap.

ioDTReqCount
On input, the size in bytes of the buffer that you’ve allocated for the icon’s bitmap. This value depends
on the icon type. Be sure to allocate enough storage for the icon data 1024 bytes is the largest amount
required for any icon in System 7. For a description of the values you can use to indicate the icon’s
size, see “Icon Size Constants” (page 304).

ioIconType
On input, the icon type. See “Icon Type Constants” (page 305) for a description of the values you can
use in this field.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

If the database already contains an icon definition for an icon of that type, file type, and file creator, the new
definition replaces the old.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddIconSync
Adds an icon definition to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

Deprecated in Mac OS X v10.4 387
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTAddIconSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number of the database to which you wish to add an icon.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to the buffer holding the icon’s bitmap.

ioDTReqCount
On input, the size in bytes of the buffer that you’ve allocated for the icon’s bitmap. This value depends
on the icon type. Be sure to allocate enough storage for the icon data 1024 bytes is the largest amount
required for any icon in System 7 For a description of the values you can use to indicate the icon’s
size, see “Icon Size Constants” (page 304).

ioIconType
On input, the icon type. See “Icon Type Constants” (page 305) for a description of the values you can
use in this field.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

If the database already contains an icon definition for an icon of that type, file type, and file creator, the new
definition replaces the old.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

388 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBDTCloseDown
Closes the desktop database, though your application should never do this itself. (Deprecated in Mac OS X
v10.4. There is no replacement function.)

OSErr PBDTCloseDown (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant field of the parameter block for this function is:

ioDTRefNum
On input, the desktop database reference number.

System software uses the PBDTCloseDown function to close the desktop database; your application should
never use this function, which is described here only for completeness. The system software closes the
database when the volume is unmounted.

PBDTCloseDown runs synchronously only, and though it will not close down the desktop databases of remote
volumes, it will invalidate all local desktop database reference values for remote desktop databases.

When the PBDTCloseDown function closes the database, it frees all resources allocated by
PBDTOpenInform (page 405) or PBDTGetPath (page 404).

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTDeleteAsync
Removes the desktop database. Unless you are manipulating the desktop database in the absence of the
Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no replacement function.)

Deprecated in Mac OS X v10.4 389
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTDeleteAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTDeleteAsync function removes the desktop database from a local volume. You can call
PBDTDeleteAsync only when the database is closed. Your application should not call PBDTDeleteAsync
unless absolutely necessary.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioVRefNum
On input, the volume reference number of the desktop database to remove.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTDeleteSync
Removes the desktop database. Unless you are manipulating the desktop database in the absence of the
Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no replacement function.)

390 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTDeleteSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTDeleteSync function removes the desktop database from a local volume. You can call
PBDTDeleteSync only when the database is closed. Your application should not call PBDTDeleteSync
unless absolutely necessary.

The relevant fields of the parameter block for this function are:

ioVRefNum
On input, the volume reference number of the desktop database to remove.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTFlushAsync
Saves your changes to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTFlushAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Deprecated in Mac OS X v10.4 391
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
If your application adds information to or removes information from the desktop database, use the
PBDTFlushAsync function to save your changes. The PBDTFlushAsync function writes the contents of the
desktop database specified in the ioDTRefNum field to the volume.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number of the desktop database to flush.

You must call PBDTFlushAsync or PBDTFlushSync (page 392) to update the copy of the desktop database
stored on the volume if your application has manipulated information in the database using any of the
following functions:

 ■ PBDTAddIconSync (page 387)

 ■ PBDTAddIconAsync (page 386)

 ■ PBDTAddAPPLSync (page 385)

 ■ PBDTAddAPPLAsync (page 384)

 ■ PBDTSetCommentSync (page 413)

 ■ PBDTSetCommentAsync (page 412)

 ■ PBDTRemoveAPPLSync (page 407)

 ■ PBDTRemoveAPPLAsync (page 406)

 ■ PBDTRemoveCommentSync (page 409)

 ■ PBDTRemoveCommentAsync (page 408)

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTFlushSync
Saves your changes to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

392 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTFlushSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If your application adds information to or removes information from the desktop database, use the
PBDTFlushSync function to save your changes. The PBDTFlushSync function writes the contents of the
desktop database specified in the ioDTRefNum field to the volume.

The relevant field of the parameter block for this function is:

ioDTRefNum
On input, the desktop database reference number of the desktop database to flush.

You must call PBDTFlushSync or PBDTFlushAsync (page 391) to update the copy of the desktop database
stored on the volume if your application has manipulated information in the database using any of the
following functions:

 ■ PBDTAddIconSync (page 387)

 ■ PBDTAddIconAsync (page 386)

 ■ PBDTAddAPPLSync (page 385)

 ■ PBDTAddAPPLAsync (page 384)

 ■ PBDTSetCommentSync (page 413)

 ■ PBDTSetCommentAsync (page 412)

 ■ PBDTRemoveAPPLSync (page 407)

 ■ PBDTRemoveAPPLAsync (page 406)

 ■ PBDTRemoveCommentSync (page 409)

 ■ PBDTRemoveCommentAsync (page 408)

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 393
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBDTGetAPPLAsync
Identifies the application that can open a file with a given creator. (Deprecated in Mac OS X v10.4. There is
no replacement function.)

OSErr PBDTGetAPPLAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code. See “File Manager Result Codes”.

ioNamePtr
On output, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the specified
application.

ioIndex
On input, an index into the application list.

ioTagInfo
On output, the application’s creation date.

ioFileCreator
On input, the signature of the application.

ioAPPLParID
On output, the application’s parent directory.

A single call, with the ioIndex field set to 0, finds the application file with the most recent creation date. If
you want to retrieve information about all copies of the application with the given signature, start with
ioIndex set to 1 and increment this value by 1 with each call to PBDTGetAPPLAsync until the result code
afpItemNotFound is returned in the ioResult field; when called multiple times in this fashion,
PBDTGetAPPLAsync returns information about all the application’s copies, including the file with the most
recent creation date, in arbitrary order.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

394 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Not available to 64-bit applications.

Declared In
Files.h

PBDTGetAPPLSync
Identifies the application that can open a file with a given creator. (Deprecated in Mac OS X v10.4. There is
no replacement function.)

OSErr PBDTGetAPPLSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On output, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the specified
application.

ioIndex
On input, an index into the application list.

ioTagInfo
On output, the application’s creation date.

ioFileCreator
On input, the signature of the application.

ioAPPLParID
On output, the application’s parent directory.

A single call, with the ioIndex field set to 0, finds the application file with the most recent creation date. If
you want to retrieve information about all copies of the application with the given signature, start with
ioIndex set to 1 and increment this value by 1 with each call to PBDTGetAPPLSync until the result code
afpItemNotFound is returned in the ioResult field; when called multiple times in this fashion,
PBDTGetAPPLSync returns information about all the application’s copies, including the file with the most
recent creation date, in arbitrary order.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 395
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetCommentAsync
Retrieves the user comments for a file or directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTGetCommentAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the name of the file or directory for which you want to retrieve comments.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDTBuffer
On input, a pointer to a buffer allocated to hold the comment text. On output, a pointer to the
comment text. Allocate a buffer at least 255 bytes in size. The PBDTGetCommentAsync function places
up to ioDTReqCount bytes of the comment into the buffer as a plain text string and places the actual
length of the comment in the ioDTActCount field.

ioDTReqCount
On input, the size of the buffer allocated to hold the comment.

ioDTActCount
On output, the comment size.

ioDirID
On input, the parent directory of the file or directory.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

396 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetCommentSync
Retrieves the user comments for a file or directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTGetCommentSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the file or directory for which you want to retrieve comments.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDTBuffer
On input, a pointer to a buffer allocated to hold the comment text. On output, a pointer to the
comment text. Allocate a buffer at least 255 bytes in size. The PBDTGetCommentSync function places
up to ioDTReqCount bytes of the comment into the buffer as a plain text string and places the actual
length of the comment in the ioDTActCount field.

ioDTReqCount
On input, the size of the buffer allocated to hold the comment.

ioDTActCount
On output, the comment size.

ioDirID
On input, the parent directory of the file or directory.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 397
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconAsync
Retrieves an icon definition. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTGetIconAsync function returns the bitmap for an icon that represents a file of a given type and
creator. For example, to get the icon for a file of file type 'SFWR' created by the application with a signature
of 'WAVE', specify these two values in the ioFileType and ioFileCreator fields.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to a buffer to hold the icon’s data. On return, a pointer to the bitmap returned in
the buffer.

ioDTReqCount
On input, the requested size of the icon’s bitmap. Pass the size in bytes of the buffer that you’ve
allocated for the icon’s bitmap pointed to by the ioDTBuffer field; this value depends on the icon
type. Be sure to allocate enough storage for the icon data; 1024 bytes is the largest amount required
for any icon in System 7. You can use the constants described in “Icon Size Constants” (page 304) to
indicate the amount of memory you have provided for the icon’s data.

ioDTActCount
On return, the actual size of the icon’s bitmap. If this value is larger than the value specified in the
ioDTReqCount field, only the amount of data allowed by the value in the ioDTReqCount field is
valid.

398 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioIconType
On input, the icon type. For a description of the constants which you can use in this field, see “Icon
Type Constants” (page 305).

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconInfoAsync
Retrieves an icon type and the associated file type supported by a given creator in the desktop database.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconInfoAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number.

ioIndex
On input, an index into the icon list.

ioTagInfo
Reserved; on input, this field must be set to 0.

Deprecated in Mac OS X v10.4 399
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioDTActCount
On output, the size of the icon’s bitmap.

ioIconType
On output, the icon type, including the icon size and color depth. For a description of the values
which may be returned in this field, see “Icon Type Constants” (page 305). Ignore any values returned
in ioIconType that are not listed there; they represent special icons and information used only by
the Finder.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On output, the icon’s file type.

To step through a list of the icon types and file types supported by an application, make repeated calls to
PBDTGetIconInfoAsync, specifying a creator and an index value in the ioIndex field for each call. Set the
index to 1 on the first call, and increment it on each subsequent call until the result code afpItemNotFound
is returned in the ioResult field.

To get a list of file types that an application can natively open, you can use the Translation Manager function,
GetFileTypesThatAppCanNativelyOpen. For a description of this function, see the TranslationManager
Reference .

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconInfoSync
Retrieves an icon type and the associated file type supported by a given creator in the desktop database.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconInfoSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

400 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioDTRefNum
On input, the desktop database reference number.

ioIndex
On input, an index into the icon list.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTActCount
On output, the size of the icon’s bitmap.

ioIconType
On output, the icon type, including the icon size and color depth. For a description of the values
which may be returned in this field, see “Icon Type Constants” (page 305). Ignore any values returned
in ioIconType that are not listed there; they represent special icons and information used only by
the Finder.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On output, the icon’s file type.

To step through a list of the icon types and file types supported by an application, make repeated calls to
PBDTGetIconInfoSync, specifying a creator and an index value in the ioIndex field for each call. Set the
index to 1 on the first call, and increment it on each subsequent call until the result code afpItemNotFound
is returned in the ioResult field.

To get a list of file types that an application can natively open, you can use the Translation Manager function,
GetFileTypesThatAppCanNativelyOpen. For a description of this function, see the TranslationManager
Reference .

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconSync
Retrieves an icon definition. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Deprecated in Mac OS X v10.4 401
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTGetIconSync function returns the bitmap for an icon that represents a file of a given type and
creator. For example, to get the icon for a file of file type 'SFWR' created by the application with a signature
of 'WAVE', specify these two values in the ioFileType and ioFileCreator fields.

The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to a buffer to hold the icon’s data. On return, a pointer to the bitmap returned in
the buffer.

ioDTReqCount
On input, the requested size of the icon’s bitmap. Pass the size in bytes of the buffer that you’ve
allocated for the icon’s bitmap, pointed to by the ioDTBuffer field; this value depends on the icon
type. Be sure to allocate enough storage for the icon data; 1024 bytes is the largest amount required
for any icon in System 7. You can use the constants described in “Icon Size Constants” (page 304) to
indicate the amount of memory you have provided for the icon’s data.

ioDTActCount
On output, the actual size of the icon’s bitmap. If this value is larger than the value specified in the
ioDTReqCount field, only the amount of data allowed by ioDTReqCount is valid.

ioIconType
On input, the icon type. For a description of the constants which you can use in this field, see “Icon
Type Constants” (page 305).

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetInfoAsync
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

402 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTGetInfoAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion function. For more information on completion functions, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioVRefNum
On output, the volume reference number of the volume where the database files are stored.

ioDTRefNum
On input, the desktop database reference number of the database which you wish to obtain information
about.

ioIndex
On output, the number of files comprising the desktop database on the volume.

ioDirID
On output, the parent directory ID of the desktop database.

ioDTLgLen
On output, the logical length of the database files (the sum of the logical lengths of the files that
constitute the desktop database for a given volume).

ioDTPyLen
On output, the physical length of the database files (the sum of the physical lengths of the files that
constitute the desktop database for a given volume).

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 403
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBDTGetInfoSync
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetInfoSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioVRefNum
On output, the volume reference number of the volume where the database files are stored.

ioDTRefNum
On input, the desktop database reference number of the database which you wish to obtain information
about.

ioIndex
On output, the number of files comprising the desktop database on the volume.

ioDirID
On output, the parent directory ID of the desktop database.

ioDTLgLen
On output, the logical length of the database files (the sum of the logical lengths of the files that
constitute the desktop database for a given volume).

ioDTPyLen
On output, the physical length of the database files (the sum of the physical lengths of the files that
constitute the desktop database for a given volume).

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetPath
Gets the reference number of the specified desktop database. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

404 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTGetPath (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the volume associated with the desktop database or the full
pathname of the desktop database.

ioVRefNum
On input, the volume reference number of the volume associated with the desktop database.

ioDTRefNum
On output, the desktop database reference number, which represents the access path to the database.
You cannot use the desktop reference number as a file reference number in any File Manager functions
other than the desktop database functions. If PBDTGetPath fails, it sets this field to 0.

If the desktop database is not already open, PBDTGetPath opens it and then returns the reference number.
If the desktop database doesn’t exist, PBDTGetPath creates it .

Special Considerations

PBDTGetPath allocates memory in the system heap; do not call it at interrupt time.

This function executes synchronously only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTOpenInform
Gets the reference number of the specified desktop database, reporting whether the desktop database was
empty when it was opened. (Deprecated in Mac OS X v10.4. There is no replacement function.)

Deprecated in Mac OS X v10.4 405
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTOpenInform (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the volume associated with the desktop database or the full
pathname of the desktop database.

ioVRefNum
On input, the volume reference number of the volume associated with the desktop database.

ioDTRefNum
On output, the desktop database reference number, which represents the access path to the database.
You cannot use the desktop reference number as a file reference number in any File Manager functions
other than the desktop database functions. If PBDTOpenInform fails, it sets this field to 0.

ioTagInfo
On output, the return flag (in the low bit of this field). If the desktop database was just created in
response to PBDTOpenInform (and is therefore empty), PBDTOpenInform sets the low bit in this
field to 0. If the desktop database had been created before you called PBDTOpenInform,
PBDTOpenInform sets the low bit in this field to 1.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

This function executes synchronously only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveAPPLAsync
Removes an application from the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

406 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTRemoveAPPLAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). When called on an HFS CD volume,
PBDTRemoveAPPL returns an afpItemNotFound error, instead of the expected volume locked error (wPrErr).

Discussion
The PBDTRemoveAPPLAsync function removes the mapping information for an application from the database
specified in the ioDTRefNum field. You can call PBDTRemoveAPPLAsync even if the application is not present
on the volume.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the application.

ioDirID
On input, the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveAPPLSync
Removes an application from the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

Deprecated in Mac OS X v10.4 407
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDTRemoveAPPLSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTRemoveAPPLSync function removes the mapping information for an application from the database
specified in the ioDTRefNum field. You can call PBDTRemoveAPPLSync even if the application is not present
on the volume.

The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the application.

ioDirID
On input, the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveCommentAsync
Removes a user comment associated with a file or directory from the desktop database. (Deprecated in Mac
OS X v10.4. There is no replacement function.)

OSErr PBDTRemoveCommentAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

408 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the filename or directory name.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDirID
On input, the parent directory ID of the file or directory.

You cannot remove a comment if the file or directory it is associated with is not present on the volume. If
no comment was stored for the file, PBDTRemoveCommentAsync returns an error.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveCommentSync
Removes a user comment associated with a file or directory from the desktop database. (Deprecated in Mac
OS X v10.4. There is no replacement function.)

OSErr PBDTRemoveCommentSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

Deprecated in Mac OS X v10.4 409
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioNamePtr
On input, a pointer to the filename or directory name.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDirID
On input, the parent directory ID of the file or directory.

You cannot remove a comment if the file or directory it is associated with is not present on the volume. If
no comment was stored for the file, PBDTRemoveCommentSync returns an error.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTResetAsync
Removes information from the desktop database. Unless you are manipulating the desktop database in the
absence of the Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr PBDTResetAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTResetAsync function removes all icons, application mappings, and comments from the desktop
database specified in the ioDTRefNum field. You can call PBDTResetAsync only when the database is open.
It remains open after the data is cleared. Your application should not call PBDTResetAsync unless absolutely
necessary.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

410 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number of the desktop database to clear.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTResetSync
Removes information from the desktop database. Unless you are manipulating the desktop database in the
absence of the Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr PBDTResetSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBDTResetSync function removes all icons, application mappings, and comments from the desktop
database specified in the ioDTRefNum field. You can call PBDTResetSync only when the database is open.
It remains open after the data is cleared. Your application should not call PBDTResetSync unless absolutely
necessary.

The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number of the desktop database to clear.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Deprecated in Mac OS X v10.4 411
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTSetCommentAsync
Adds a user comment for a file or a directory to the desktop database. (Deprecated in Mac OS X v10.4. There
is no replacement function.)

OSErr PBDTSetCommentAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the name of the file or directory.

ioDTRefNum
On input, the desktop database reference number for the desktop database to which to add the user
comment.

ioDTBuffer
On input, a pointer to the buffer containing the comment text. Put the comment in the buffer as a
plain text string.

ioDTReqCount
On input, the length of the buffer (in bytes) containing the comment text. The maximum length of a
comment is 200 bytes; longer comments are truncated. Since the comment is a plain text string and
not a Pascal string, the File Manager relies on the value in the ioDTReqCount field for determining
the length of the buffer.

ioDirID
On input, the parent directory ID of the file or directory.

If the specified object already has a comment in the database, the new comment replaces the old.

412 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTSetCommentSync
Adds a user comment for a file or a directory to the desktop database. (Deprecated in Mac OS X v10.4. There
is no replacement function.)

OSErr PBDTSetCommentSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 196) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the file or directory.

ioDTRefNum
On input, the desktop database reference number for the desktop database to which to add the user
comment.

ioDTBuffer
On input, a pointer to the buffer containing the comment text. Put the comment in the buffer as a
plain text string.

ioDTReqCount
On input, the length of the buffer containing the comment text, in bytes. The maximum length of a
comment is 200 bytes; longer comments are truncated. Since the comment is a plain text string and
not a Pascal string, the File Manager relies on the value in the ioDTReqCount field for determining
the length of the buffer.

ioDirID
On input, the parent directory ID of the file or directory.

If the specified object already has a comment in the database, the new comment replaces the old.

Deprecated in Mac OS X v10.4 413
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBExchangeFilesAsync
Exchanges the data stored in two files on the same volume. (Deprecated in Mac OS X v10.4. Use
PBExchangeObjectsAsync (page 128) instead.)

OSErr PBExchangeFilesAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 201) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the first file to swap.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDestNamePtr
On input, a pointer to the name of the second file to swap.

ioDestDirID
On input, the second file’s parent directory ID.

ioSrcDirID
On input, the first file’s parent directory ID.

Typically, you use PBExchangeFilesAsync after creating a new file during a safe save. The
PBExchangeFilesAsync function changes the fields in the catalog entries that record the location of the
data and the modification dates. It swaps both the data forks and the resource forks.

414 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

The PBExchangeFilesAsync function works on either open or closed files. PBExchangeFilesAsync swaps
the data in two files by changing some of the information in the volume catalog. If either file is open,
PBExchangeFilesAsync updates any file control blocks associated with the file. Exchanging the contents
of two files requires essentially the same access privileges as opening both files for writing.

The following fields in the catalog entries for the files are exchanged:

 ■ ioFlStBlk

 ■ ioFlLgLen

 ■ ioFlPyLen

 ■ ioFlRStBlk

 ■ ioFlRLgLen

 ■ ioFlRPyLen

 ■ ioFlMdDat

In the file control blocks, the fcbFlNum, fcbDirID, and fcbCName fields are exchanged.

You should use PBExchangeFilesAsync to preserve the file ID when updating an existing file, in case the
file is being tracked through its file ID. The PBExchangeFilesAsync function does not require that file ID
references exist for the files being exchanged.

To exchange the contents of files with named forks other than the data and resource forks, or of files larger
than 2 GB, use the FSExchangeObjects (page 59) , PBExchangeObjectsSync (page 129) , or
PBExchangeObjectsAsync (page 128) function.

Special Considerations

Your application will have to swap any open reference numbers to the two files because the file's name and
parent directory ID are exchanged in the file control blocks.

Because other programs may have access paths open to one or both of the files exchanged, your application
should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
PBExchangeFilesAsync. Exclusive read/write access to both files will ensure that PBExchangeFilesAsync
doesn't affect another application because it prevents other applications from obtaining write access to one
or both of the files exchanged.

PBExchangeFilesAsync does not respect the file-locked attribute; it will perform the exchange even if one
or both of the files are locked. Obtaining exclusive read/write access to both files before calling
PBExchangeFilesAsync ensures that the files are unlocked because locked files cannot be opened with
write access.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 415
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBExchangeFilesSync
Exchanges the data stored in two files on the same volume. (Deprecated in Mac OS X v10.4. Use
PBExchangeObjectsSync (page 129) instead.)

OSErr PBExchangeFilesSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 201) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the first file to swap.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDestNamePtr
On input, a pointer to the name of the second file to swap.

ioDestDirID
On input, the second file’s parent directory ID.

ioSrcDirID
On input, the first file’s parent directory ID.

Typically, you use PBExchangeFilesSync after creating a new file during a safe save. The
PBExchangeFilesSync function changes the fields in the catalog entries that record the location of the
data and the modification dates. It swaps both the data forks and the resource forks.

The PBExchangeFilesSync function works on either open or closed files. PBExchangeFilesSync swaps
the data in two files by changing some of the information in the volume catalog. If either file is open,
PBExchangeFilesSync updates any file control blocks associated with the file. Exchanging the contents
of two files requires essentially the same access privileges as opening both files for writing.

The following fields in the catalog entries for the files are exchanged:

 ■ ioFlStBlk

 ■ ioFlLgLen

 ■ ioFlPyLen

 ■ ioFlRStBlk

 ■ ioFlRLgLen

 ■ ioFlRPyLen

 ■ ioFlMdDat

In the file control blocks, the fcbFlNum, fcbDirID, and fcbCName fields are exchanged.

416 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

You should use PBExchangeFilesSync to preserve the file ID when updating an existing file, in case the
file is being tracked through its file ID. The PBExchangeFilesSync function does not require that file ID
references exist for the files being exchanged.

To exchange the contents of files with named forks other than the data and resource forks, or of files larger
than 2 GB, use the FSExchangeObjects (page 59) , PBExchangeObjectsSync (page 129) , or
PBExchangeObjectsAsync (page 128) function.

Special Considerations

Your application will have to swap any open reference numbers to the two files because the file's name and
parent directory ID are exchanged in the file control blocks.

Because other programs may have access paths open to one or both of the files exchanged, your application
should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
PBExchangeFilesSync. Exclusive read/write access to both files will ensure that PBExchangeFilesSync
doesn't affect another application because it prevents other applications from obtaining write access to one
or both of the files exchanged.

PBExchangeFilesSync does not respect the file-locked attribute; it will perform the exchange even if one
or both of the files are locked. Obtaining exclusive read/write access to both files before calling
PBExchangeFilesSync ensures that the files are unlocked because locked files cannot be opened with
write access.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushFileAsync
Writes the contents of a file’s access path buffer to the disk. (Deprecated in Mac OS X v10.4. Use
PBFlushForkAsync (page 130) instead.)

OSErr PBFlushFileAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

Deprecated in Mac OS X v10.4 417
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the file to flush.

After writing the contents of the file to the volume, the PBFlushFileAsync function updates the file’s entry
in the volume catalog.

In the event of a system crash, all cached data not yet written to disk is lost. If you have made changes to
space that already exists within a file (you are overwriting existing data before the file’s end-of-file), you must
use PBFlushFileAsync to ensure that everything written to the file will be written to disk. If you flush the
fork’s cached blocks using PBFlushFileAsync, the only possible data loss in a system crash will be the file’s
modification date.

You do not, however, need to use PBFlushFileAsync to flush a file fork before it is closed; the file is
automatically flushed when it is closed and all cache blocks associated with it are removed from the cache.

PBFlushFileSync flushes an open fork’s dirty cached blocks, but may not flush catalog information associated
with the file. To flush catalog information, call FlushVol (page 498) , or one of the related parameter block
calls, PBFlushVolSync (page 505) and PBFlushVolAsync (page 504).

To update a file larger than 2GB, or a named fork other than the data and resource forks, you must use the
FSFlushFork (page 63) function, or one of the corresponding parameter block calls,PBFlushForkSync (page
131) and PBFlushForkAsync (page 130).

Special Considerations

Some information stored on the volume won’t be correct until PBFlushVolAsync is called.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushFileSync
Writes the contents of a file’s access path buffer to the disk. (Deprecated in Mac OS X v10.4. Use
PBFlushForkSync (page 131) instead.)

OSErr PBFlushFileSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

418 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant field of the parameter block is:

ioRefNum
On input, a file reference number for the file to flush.

After writing the contents of the file to the volume, the PBFlushFileSync function updates the file’s entry
in the volume catalog.

In the event of a system crash, all cached data not yet written to disk is lost. If you have made changes to
space that already exists within a file (you are overwriting existing data before the file’s end-of-file), you must
use PBFlushFileSync to ensure that everything written to the file will be written to disk. If you flush the
fork’s cached blocks using PBFlushFileSync, the only possible data loss in a system crash will be the file’s
modification date.

You do not, however, need to use PBFlushFileSync to flush a file fork before it is closed; the file is
automatically flushed when it is closed and all cache blocks associated with it are removed from the cache.

PBFlushFileSync flushes an open fork’s dirty cached blocks, but may not flush catalog information associated
with the file. To flush catalog information, call FlushVol (page 498) , or one of the related parameter block
calls, PBFlushVolSync (page 505) and PBFlushVolAsync (page 504).

To update a file larger than 2GB, or a named fork other than the data and resource forks, you must use the
FSFlushFork (page 63) function, or one of the corresponding parameter block calls,PBFlushForkSync (page
131) and PBFlushForkAsync (page 130).

Special Considerations

Some information stored on the volume won’t be correct until PBFlushVolSync is called.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetCatInfoAsync
Returns catalog information about a file or directory. (Deprecated in Mac OS X v10.4. Use
PBGetCatalogInfoAsync (page 133) instead.)

OSErr PBGetCatInfoAsync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 184) for a description
of the CInfoPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Deprecated in Mac OS X v10.4 419
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The PBGetCatInfoAsync function returns information about a file or directory, depending on the values
you specify in the ioFDirIndex, ioNamePtr, ioVRefNum, and ioDirID or ioDrDirID fields. If you need
to determine whether the information returned is for a file or a directory, you can test bit 4 of the ioFlAttrib
field; if that bit is set, the information returned describes a directory.

The PBGetCatInfoAsync function selects a file or directory according to these rules:

 ■ If the value of ioFDirIndex is positive, ioNamePtr is not used as an input parameter and
PBGetCatInfoAsync returns information about the file or directory whose directory index is
ioFDirIndex in the directory specified by ioDirID (or ioDrDirID) on the volume specified by
ioVRefNum (this will be the root directory if ioVRefNum is a volume reference number or a drive
number and ioDirID is 0). If ioNamePtr is not NULL, then it must point to a Str31 buffer where the
file or directory name will be returned.

 ■ If the value of ioFDirIndex is 0, PBGetCatInfoAsync returns information about the file or directory
specified by ioNamePtr in the directory specified by ioDirID (or ioDrDirID) on the volume specified
by ioVRefNum (again, this will be the root directory if ioVRefNum is a volume reference number or a
drive number and ioDirID is 0).

 ■ If the value of ioFDirIndex is negative, PBGetCatInfoAsync ignores the ioNamePtr field and returns
information about the directory specified in the ioDrDirID field. If ioNamePtr is not NULL, then it must
point to a Str31 buffer where the directory name will be returned.

With files, PBGetCatInfoAsync is similar to PBHGetFInfoAsync (page 438) but returns some additional
information. If the object is a file, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. On output, the name of the file is returned in this field, if the file
is open. If you do not want the name of the file returned, pass NULL in this field.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFRefNum
On output, a file reference number. If the file is open, the reference number of the first access path
found is returned here .

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 297) for the meaning of the file
attributes.

ioFlFndrInfo
On output, information used by the Finder.

ioDirID
On input, a directory ID. On output, the file ID. You might need to save the value of ioDirID before
calling PBGetCatInfoAsync if you make subsequent calls with the same parameter block.

420 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioFlStBlk
On output, the first allocation block of the data fork.

ioFlLgLen
On output, the logical size (the logical end-of-file) of the data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation. Note that file systems other than AFP, HFS and
HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioFlCrDat field to 0.

ioFlMdDat
On output, the date and time of the file’s last modification.

ioFlBkDat
On output, the date and time of the file’s last backup. Note that file systems other than AFP, HFS and
HFS Plus do not generally support backup dates. For file systems which do not support backup dates,
the File Manager sets the ioFlBkDat field to 0.

ioFlXFndrInfo
On output, additional information used by the Finder.

ioFlParID
On output, the directory ID of the file’s parent directory.

ioFlClpSiz
On output, the file’s clump size.

You can also use PBGetCatInfoAsync to determine whether a file has a file ID reference. The value of the
file ID is returned in the ioDirID field. Because that parameter could also represent a directory ID, call
PBResolveFileIDRefAsync (page 530) to see if the value is a real file ID. If you want to determine whether
a file ID reference exists for a file and create one if it doesn’t, use PBCreateFileIDRefAsync (page 501) ,
which will either create a file ID or return fidExists.

If the object is a directory, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. On output, a pointer to the directory name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

Deprecated in Mac OS X v10.4 421
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the directory attributes. See “File Attribute Constants” (page 297) for the meaning of the
bits in this field. The bits in this field for directories are read-only. You cannot alter directory attributes
by setting these bits using the functionsPBSetCatInfoSync (page 477) orPBSetCatInfoAsync (page
476). Instead, you can call the PBHSetFLockSync (page 467) and PBHRstFLockSync (page 464)
functions to lock and unlock a directory, and the PBShareSync (page 486) and PBUnshareSync (page
490) functions to enable and disable file sharing on local directories.

ioACUser
On output, the directory access rights. The PBGetCatInfoAsync function returns the information
in this field only for shared volumes. As a result, you should set this field to 0 before calling
PBGetCatInfoAsync.PBGetCatInfoAsync does not return the blank access privileges bit in this
field; to determine whether a directory has blank access privileges, use the
PBHGetDirAccessAsync (page 511) function. See “User Privileges Constants” (page 313) for a
description of the constants that may be returned in this field.

ioDrUsrWds
On output, information used by the Finder.

ioDrDirID
On input, if you wish to obtain information about a specific directory, that directory’s ID. Otherwise,
if the object returned is a directory, this field contains the directory ID on output.

ioDrNmFls
On output, the number of files in the directory.

ioDrCrDat
On output, the date and time of the directory’s creation. Note that file systems other than AFP, HFS
and HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioDrCrDat field to 0.

ioDrMdDat
On output, the date and time of the directory’s last modification.

ioDrBkDat
On output, the date and time of the directory’s last backup. Note that file systems other than AFP,
HFS and HFS Plus do not generally support backup dates. For file systems which do not support
backup dates, the File Manager sets the ioDrBkDat field to 0.

ioDrFndrInfo
On output, additional information used by the Finder.

ioDrParID
On output, the directory ID of the directory’s parent directory.

To get information on a file or directory with named forks, or on a file larger than 2GB, use one of the
FSGetCatalogInfo (page 66) , PBGetCatalogInfoSync (page 137) , or PBGetCatalogInfoAsync (page
133) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

422 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBGetCatInfoSync
Returns catalog information about a file or directory. (Deprecated in Mac OS X v10.4. Use
PBGetCatalogInfoSync (page 137) instead.)

OSErr PBGetCatInfoSync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 184) for a description
of the CInfoPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBGetCatInfoSync function returns information about a file or directory, depending on the values you
specify in the ioFDirIndex, ioNamePtr, ioVRefNum, and ioDirID or ioDrDirID fields. If you need to
determine whether the information returned is for a file or a directory, you can test bit 4 of the ioFlAttrib
field; if that bit is set, the information returned describes a directory.

The PBGetCatInfoSync function selects a file or directory according to these rules:

 ■ If the value of ioFDirIndex is positive, ioNamePtr is not used as an input parameter and
PBGetCatInfoSync returns information about the file or directory whose directory index isioFDirIndex
in the directory specified by ioDirID (or ioDrDirID) on the volume specified by ioVRefNum (this
will be the root directory if ioVRefNum is a volume reference number or a drive number and ioDirID
is 0). If ioNamePtr is not NULL, then it must point to a Str31 buffer where the file or directory name
will be returned.

 ■ If the value of ioFDirIndex is 0, PBGetCatInfoSync returns information about the file or directory
specified by ioNamePtr in the directory specified by ioDirID (or ioDrDirID) on the volume specified
by ioVRefNum (again, this will be the root directory if ioVRefNum is a volume reference number or a
drive number and ioDirID is 0).

 ■ If the value of ioFDirIndex is negative, PBGetCatInfoSync ignores the ioNamePtr field and returns
information about the directory specified in the ioDrDirID field. If ioNamePtr is not NULL, then it must
point to a Str31 buffer where the directory name will be returned.

With files, PBGetCatInfoSync is similar to PBHGetFInfoSync (page 440) but returns some additional
information. If the object is a file, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. On output, the name of the file is returned in this field, if the file
is open. If you do not want the name of the file returned, pass NULL in this field.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFRefNum
On output, a file reference number. If the file is open, the reference number of the first access path
found is returned here.

ioFDirIndex
On input, a directory index.

Deprecated in Mac OS X v10.4 423
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 297) for the meaning of the file
attributes.

ioFlFndrInfo
On output, information used by the Finder.

ioDirID
On input, a directory ID. On output, the file ID. You might need to save the value of ioDirID before
calling PBGetCatInfoSync if you make subsequent calls with the same parameter block.

ioFlStBlk
On output, the first allocation block of the data fork.

ioFlLgLen
On output, the logical size (the logical end-of-file) of the data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation. Note that file systems other than AFP, HFS and
HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioFlCrDat field to 0.

ioFlMdDat
On output, the date and time of the file’s last modification.

ioFlBkDat
On output, the date and time of the file’s last backup. Note that file systems other than AFP, HFS and
HFS Plus do not generally support backup dates. For file systems which do not support backup dates,
the File Manager sets the ioFlBkDat field to 0.

ioFlXFndrInfo
On output, additional information used by the Finder.

ioFlParID
On output, the directory ID of the file’s parent directory.

ioFlClpSiz
On output, the file’s clump size.

You can also use PBGetCatInfoSync to determine whether a file has a file ID reference. The value of the
file ID is returned in the ioDirID field. Because that parameter could also represent a directory ID, call
PBResolveFileIDRefSync (page 531) to see if the value is a real file ID. If you want to determine whether
a file ID reference exists for a file and create one if it doesn’t, use PBCreateFileIDRefSync (page 502) ,
which will either create a file ID or return fidExists.

If the object is a directory, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. On output, a pointer to the directory’s name.

424 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the directory attributes. See “File Attribute Constants” (page 297) for the meaning of the
bits in this field. The bits in this field for directories are read-only. You cannot alter directory attributes
by setting these bits using the functionsPBSetCatInfoSync (page 477) orPBSetCatInfoAsync (page
476). Instead, you can call the PBHSetFLockSync (page 467) and PBHRstFLockSync (page 464)
functions to lock and unlock a directory, and the PBShareSync (page 486) and PBUnshareSync (page
490) functions to enable and disable file sharing on local directories.

ioACUser
On output, the directory access rights. The PBGetCatInfoSync function returns the information in
this field only for shared volumes. As a result, you should set this field to 0 before calling
PBGetCatInfoSync. PBGetCatInfoSync does not return the blank access privileges bit in this field;
to determine whether a directory has blank access privileges, use the PBHGetDirAccessSync (page
512) function. See “User Privileges Constants” (page 313) for a description of the constants that may
be returned here.

ioDrUsrWds
On output, information used by the Finder.

ioDrDirID
On input, if you wish to obtain information about a specific directory, that directory’s ID. Otherwise,
if the object returned is a directory, this field contains the directory ID on output.

ioDrNmFls
On output, the number of files in the directory.

ioDrCrDat
On output, the date and time of the directory’s creation. Note that file systems other than AFP, HFS
and HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioDrCrDat field to 0.

ioDrMdDat
On output, the date and time of the directory’s last modification.

ioDrBkDat
On output, the date and time of the directory’s last backup. Note that file systems other than AFP,
HFS and HFS Plus do not generally support backup dates. For file systems which do not support
backup dates, the File Manager sets the ioDrBkDat field to 0.

ioDrFndrInfo
On output, additional information used by the Finder.

ioDrParID
On output, the directory ID of the directory’s parent directory.

To get information on a file or directory with named forks, or on a file larger than 2GB, use one of the
FSGetCatalogInfo (page 66) , PBGetCatalogInfoSync (page 137) , or PBGetCatalogInfoAsync (page
133) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 425
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBGetEOFAsync
Determines the current logical size of an open file. (Deprecated in Mac OS X v10.4. Use
PBGetForkSizeAsync (page 142) instead.)

OSErr PBGetEOFAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file.

ioMisc
On output, the logical size (the logical end-of-file) of the given file. Because the ioMisc field is of
type Ptr, you’ll need to coerce the value to a long integer to interpret the value correctly.

To determine the size of a named fork other than the data or resource forks, or of a fork larger than 2 GB,
use the FSGetForkSize (page 72) function, or one of the corresponding parameter block functions,
PBGetForkSizeSync (page 143) and PBGetForkSizeAsync (page 142).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetEOFSync
Determines the current logical size of an open file. (Deprecated in Mac OS X v10.4. Use
PBGetForkSizeSync (page 143) instead.)

426 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBGetEOFSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file.

ioMisc
On output, a pointer to the logical size (the logical end-of-file) of the given file. Because the ioMisc
field is of type Ptr, you’ll need to coerce the value to a long integer to interpret the value correctly.

To determine the size of a named fork other than the data or resource forks, or of a fork larger than 2 GB,
use the FSGetForkSize (page 72) function, or one of the corresponding parameter block functions,
PBGetForkSizeSync (page 143) and PBGetForkSizeAsync (page 142).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetFCBInfoAsync
Gets information about an open file from the file control block. (Deprecated in Mac OS X v10.4. Use
PBGetForkCBInfoAsync (page 138) instead.)

OSErr PBGetFCBInfoAsync (
 FCBPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a file control block parameter block. See FCBPBRec (page 199) for a description of the
FCBPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

Deprecated in Mac OS X v10.4 427
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. You should pass a pointer to a Str31 value if you want the name
of the file returned. If you pass NULL, no filename is returned. On output, if PBGetFCBInfoAsync
executes successfully, a pointer to the name of the specified open file.

ioVRefNum
On input, a volume specification. If you specify a valid index number in the ioFCBIndx field, the File
Manager returns information on the file having that index in the FCB buffer on the volume specified
in this field. This field may contain a drive number or volume reference number. If the value of
ioVRefNum is 0, all open files are indexed; otherwise, only open files on the specified volume are
indexed.

ioRefNum
On input, if the ioFCBIndx field is 0, the file reference number of the file to get information about.
If the value of ioFCBIndx is positive, the ioRefNum field is ignored on input and contains the file
reference number on output.

ioFCBIndx
On input, an index. If the value of ioFCBIndx is positive, the File Manager returns information about
the file whose index in the FCB buffer is ioFCBIndx and that is located on the volume specified in
the ioVRefNum field. If the value of ioFCBIndx is 0, the File Manager returns information about the
file whose file reference number is specified by the ioRefNum field.

ioFCBFlNm
On output, the file ID.

ioFCBFlags
On output, file status flags. See “FCB Flags” (page 289) for a description of the bits in this field.

ioFCBStBlk
On output, the first allocation block of the file.

ioFCBEOF
On output, the logical size (the logical end-of-file) of the file.

ioFCBPLen
On output, the physical size (the physical end-of-file) of the file.

ioFCBCrPs
On output, the position of the file mark.

ioFCBVRefNum
On output, the volume reference number.

ioFCBClpSiz
On output, the file clump size.

ioFCBParID
On output, the directory ID of the file’s parent directory.

To get information about a fork control block, use one of the functions, FSGetForkCBInfo (page 69) ,
PBGetForkCBInfoSync (page 139) , or PBGetForkCBInfoAsync (page 138).

428 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

On OS X, the value returned by PBGetFCBInfoAsync in the ioFCBPLen field may differ from the physical
file length reported by FSGetCatalogInfo, PBGetCatInfo, and related functions. When a write causes a
file to grow in size, the physical length reported by FSGetCatalogInfo and similar calls increases by the
clump size, which is a multiple of the allocation block size. However, the physical length returned by
PBGetFCBInfoAsync changes according to the allocation block size and the file lengths returned by the
respective functions get out of sync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetFCBInfoSync
Gets information about an open file from the file control block. (Deprecated in Mac OS X v10.4. Use
PBGetForkCBInfoSync (page 139) instead.)

OSErr PBGetFCBInfoSync (
 FCBPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a file control block parameter block. See FCBPBRec (page 199) for a description of the
FCBPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. You should pass a pointer to a Str31 value if you want the name
of the file returned. If you pass NULL, no filename is returned. On output, if PBGetFCBInfoSync
executes successfully, a pointer to the name of the specified open file.

ioVRefNum
On input, a volume specification. If you specify a valid index number in the ioFCBIndx field, the File
Manager returns information on the file having that index in the FCB buffer on the volume specified
in this field. This field may contain a drive number or volume reference number. If the value of
ioVRefNum is 0, all open files are indexed; otherwise, only open files on the specified volume are
indexed.

ioRefNum
On input, if the ioFCBIndx field is 0, the file reference number of the file to get information about. If
the value of ioFCBIndx is positive, the ioRefNum field is ignored on input and contains the file
reference number on output.

Deprecated in Mac OS X v10.4 429
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioFCBIndx
On input, an index. If the value of ioFCBIndx is positive, the File Manager returns information about
the file whose index in the FCB buffer is ioFCBIndx and that is located on the volume specified in
the ioVRefNum field. If the value of ioFCBIndx is 0, the File Manager returns information about the
file whose file reference number is specified by the ioRefNum field.

ioFCBFlNm
On output, the file ID.

ioFCBFlags
On output, file status flags. See “FCB Flags” (page 289) for a description of the bits in this field.

ioFCBStBlk
On output, the first allocation block of the file.

ioFCBEOF
On output, the logical size (the logical end-of-file) of the file.

ioFCBPLen
On output, the physical size (the physical end-of-file) of the file.

ioFCBCrPs
On output, the current position of the file mark.

ioFCBVRefNum
On output, the volume reference number.

ioFCBClpSiz
On output, the file clump size.

ioFCBParID
On output, the directory ID of the file’s parent directory.

To get information about a fork control block, use one of the functions, FSGetForkCBInfo (page 69) ,
PBGetForkCBInfoSync (page 139) , or PBGetForkCBInfoAsync (page 138).

Special Considerations

On OS X, the value returned by PBGetFCBInfoSync in the ioFCBPLen field may differ from the physical
file length reported by FSGetCatalogInfo, PBGetCatInfo, and related functions. When a write causes a
file to grow in size, the physical length reported by FSGetCatalogInfo and similar calls increases by the
clump size, which is a multiple of the allocation block size. However, the physical length returned by
PBGetFCBInfoSync changes according to the allocation block size and the file lengths returned by the
respective functions get out of sync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetForeignPrivsAsync
Determines the native access-control information for a file or directory stored on a volume managed by a
foreign file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

430 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBGetForeignPrivsAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetForeignPrivsSync
Determines the native access-control information for a file or directory stored on a volume managed by a
foreign file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetForeignPrivsSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetFPosAsync
Returns the current position of the file mark. (Deprecated in Mac OS X v10.4. Use
PBGetForkPositionAsync (page 140) instead.)

OSErr PBGetFPosAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Deprecated in Mac OS X v10.4 431
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information about completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioRefNum
On input, the file reference number of an open file.

ioPosOffset
On output, the current position of the mark. The value returned in ioPosOffset is zero-based. Thus,
a call to PBGetFPosAsync returns 0 if you call it when the file mark is positioned at the beginning
of the file. The ioReqCount, ioActCount, and ioPosMode fields of the parameter block are all set
to 0 on output. To determine the current position of a named fork, or of a fork larger than 2GB, use
the FSGetForkPosition (page 71) function, or one of the corresponding parameter block calls,
PBGetForkPositionSync (page 141) and PBGetForkPositionAsync (page 140).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetFPosSync
Returns the current position of the file mark. (Deprecated in Mac OS X v10.4. Use
PBGetForkPositionSync (page 141) instead.)

OSErr PBGetFPosSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number of an open file.

ioPosOffset
On output, the current position of the mark. The value returned in ioPosOffset is zero-based. Thus,
a call to PBGetFPosSync returns 0 if you call it when the file mark is positioned at the beginning of
the file.

432 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

The ioReqCount, ioActCount, and ioPosMode fields of the parameter block are all set to 0 on output.

To determine the current position of a named fork, or of a fork larger than 2GB, use the
FSGetForkPosition (page 71) function, or one of the corresponding parameter block calls,
PBGetForkPositionSync (page 141) and PBGetForkPositionAsync (page 140).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetUGEntryAsync
Gets a user or group entry from the list of User and Group names and IDs on the local file server. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetUGEntryAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetUGEntrySync
Gets a user or group entry from the list of User and Group names and IDs on a local file server. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetUGEntrySync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 433
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBGetXCatInfoAsync
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetXCatInfoAsync (
 XCInfoPBPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetXCatInfoSync
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetXCatInfoSync (
 XCInfoPBPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHCreateAsync
Creates a new file. (Deprecated in Mac OS X v10.4. Use PBCreateFileUnicodeAsync (page 121) instead.)

434 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHCreateAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion functions, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name for the new file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the parent directory of the new file.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

The PBHCreateAsync function creates both forks of the file the new file is unlocked and empty. The date
and time of its creation and last modification are set to the current date and time. If the file created isn’t
temporary (that is, if it will exist after the user quits the application), the application should call
PBHSetFInfoAsync (page 465) , after the call to PBHCreateAsync, to fill in the information needed by the
Finder.

Files created using PBHCreateAsync are not automatically opened. If you want to write data to the new
file, you must first open the file using one of the file access functions, FSpOpenDF (page 352) , HOpenDF (page
364) , PBHOpenDFSync (page 456) or PBHOpenDFAsync (page 454).

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager
procedures HCreateResFile or FSpCreateResFile to create a resource map in the file before you can
open it (by calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

To create a file with a Unicode filename, use the function FSCreateFileUnicode (page 53) , or one of the
corresponding parameter block calls, PBCreateFileUnicodeSync (page 123) and
PBCreateFileUnicodeAsync (page 121).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 435
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBHCreateSync
Creates a new file. (Deprecated in Mac OS X v10.4. Use PBCreateFileUnicodeSync (page 123) instead.)

OSErr PBHCreateSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name for the new file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the parent directory of the new file.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

The PBHCreateSync function creates both the data and resource fork of the file the new file is unlocked
and empty. The date and time of its creation and last modification are set to the current date and time. If
the file created isn’t temporary (that is, if it will exist after the user quits the application), the application
should call PBHSetFInfoSync (page 466) after the call to PBHCreateSync to fill in the information needed
by the Finder.

Files created using PBHCreateSync are not automatically opened. If you want to write data to the new file,
you must first open the file using one of the file access functions, FSpOpenDF (page 352) , HOpenDF (page
364) , PBHOpenDFSync (page 456) or PBHOpenDFAsync (page 454).

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager
procedures HCreateResFile or FSpCreateResFile to create a resource map in the file before you can
open it (by calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

To create a file with a Unicode filename, use the function FSCreateFileUnicode (page 53) , or one of the
corresponding parameter block calls, PBCreateFileUnicodeSync (page 123) and
PBCreateFileUnicodeAsync (page 121).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

436 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Not available to 64-bit applications.

Declared In
Files.h

PBHDeleteAsync
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use PBDeleteObjectAsync (page 127) instead.)

OSErr PBHDeleteAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If you attempt to delete an open file or a non-empty
directory, PBHDeleteAsync returns the result code fBsyErr. PBHDeleteAsync also returns fBsyErr
if you attempt to delete a directory that has an open working directory associated with it.

ioNamePtr
On input, a pointer to the name of the file or directory to delete.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the parent directory of the file or directory to delete.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the specified target is a file, both the data and the resource fork of the file are deleted. In addition, if a file
ID reference for the specified file exists, that file ID reference is also removed. A file must be closed before
you can delete it. Similarly, you cannot delete a directory unless it’s empty.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 437
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHDeleteSync
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use PBDeleteObjectSync (page 128) instead.)

OSErr PBHDeleteSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you attempt to delete an open file or a non-empty
directory, PBHDeleteSync returns the result code fBsyErr. PBHDeleteSync also returns fBsyErr if you
attempt to delete a directory that has an open working directory associated with it.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file or directory to delete.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the parent directory of the file or directory to delete.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the specified target is a file, both the data and the resource fork of the file are deleted. In addition, if a file
ID reference for the specified file exists, that file ID reference is also removed. A file must be closed before
you can delete it. Similarly, you cannot delete a directory unless it’s empty.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetFInfoAsync
Obtains information about a file. (Deprecated in Mac OS X v10.4. Use PBGetCatalogInfoAsync (page 133)
instead.)

438 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHGetFInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. If the value of the ioFDirIndex field is negative or 0,
PBHGetFInfoAsync returns information about the file in the volume specified by the reference
number in the ioVRefNum field and having the name given here. On output, a pointer to the name
of the file, if the file is open. If you do not wish the name returned, pass NULL here.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file, or 0 for the
default volume.

ioFRefNum
On output, the reference number of the first access path found, if the file is open and if the
ioFDirIndex field is negative or 0; if the ioFDirIndex field is positive...

ioFDirIndex
On input, a directory index. If this value is positive, the function returns information about the file
having the directory index specified here, on the volume specified in the ioVRefNum field and in the
directory specified in the ioDirID field. If this value is negative or 0, the function returns information
about the file on the specified volume, having the name pointed to in the ioNamePtr field.

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 297) for a description of the file
attributes.

ioFlFndrInfo
On output, Finder information about the file. For a description of the FInfo structure, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID of the file. On output, the file’s file ID.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlStBlk
On output, the first allocation block of the data fork.

Deprecated in Mac OS X v10.4 439
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioFlLgLen
On output, the logical size (the logical end-of-file) of the file’s data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the file’s data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the file’s resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the file’s resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation.

ioFlMdDat
On output, the date and time of the file’s last modification.

You should call PBHGetFInfoAsync just before PBHSetFInfoAsync (page 465) , so that the current
information is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetFInfoSync
Obtains information about a file. (Deprecated in Mac OS X v10.4. Use PBGetCatalogInfoSync (page 137)
instead.)

OSErr PBHGetFInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. If the value of the ioFDirIndex field is negative or 0,
PBHGetFInfoSync returns information about the file in the volume specified by the reference number
in the ioVRefNum field and having the name given here. On output, a pointer to the name of the file,
if the file is open. If you do not wish the name returned, pass NULL here.

440 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file, or 0 for the
default volume.

ioFRefNum
On output, the reference number of the first access path found, if the file is open and if the
ioFDirIndex field is negative or 0; if the ioFDirIndex field is positive...

ioFDirIndex
On input, a directory index. If this value is positive, the function returns information about the file
having the directory index specified here, on the volume specified in the ioVRefNum field and in the
directory specified in the ioDirID field. If this value is negative or 0, the function returns information
about the file on the specified volume, having the name pointed to in the ioNamePtr field.

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 297) for a description of the file
attributes.

ioFlFndrInfo
On output, Finder information about the file. For a description of the FInfo data type, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID of the file. On output, the file’s file ID.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlStBlk
On output, the first allocation block of the data fork.

ioFlLgLen
On output, the logical size (the logical end-of-file) of the file’s data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the file’s data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation.

ioFlMdDat
On output, the date and time of the file’s last modification.

You should call PBHGetFInfoSync just before PBHSetFInfoSync (page 466) , so that the current information
is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 441
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBHGetLogInInfoAsync
Determines the login method used to log on to a particular shared volume. (Deprecated in Mac OS X v10.4.
There is no replacement function.)

OSErr PBHGetLogInInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 248) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname

ioVRefNum
On input, a volume specification for the shared volume. This field can contain a volume reference
number, drive number, or 0 for the default volume.

ioObjType
On output, the login method type. See “Authentication Method Constants” (page 271) for the values
that are recognized. Values in the range 7–127 are reserved for future use by Apple Computer, Inc.
Values in the range 128–255 are available to your application as user-defined values.

ioObjNamePtr
On output, a pointer to the user name used to establish the session. The login user name is returned
as a Pascal string. The maximum size of the user name is 31 characters.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

442 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHGetLogInInfoSync
Determines the login method used to log on to a particular shared volume. (Deprecated in Mac OS X v10.4.
There is no replacement function.)

OSErr PBHGetLogInInfoSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVInfoAsync
Gets detailed information about a volume. (Deprecated in Mac OS X v10.4. Use PBGetVolumeInfoAsync (page
143) instead.)

OSErr PBHGetVInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 242) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a buffer. If you specify a negative number in the ioVolIndex field, this buffer
should hold the name of the volume for which to return information. On output, a pointer to the
volume’s name. You should pass a pointer to a Str31 value if you want the name returned. If you
pass NULL, no volume name is returned.

ioVRefNum
On input, a volume specification for the volume for which to return information. If the ioVolIndex
field is negative, the File Manager uses the value in the ioNamePtr field, along with the value specified

Deprecated in Mac OS X v10.4 443
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

in the ioVRefNum field, to determine the volume. If the value in ioVolIndex is 0, the File Manager
attempts to access the volume using only the value in this field. On output, the volume reference
number.

ioVolIndex
On input, an index used for indexing through all mounted volumes. If this value is positive, the File
Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s initialization.

ioVLsMod
On output, the date and time of the volume’s last modification.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 320) for a
description of the volume attributes returned by this function.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoAsync (page 419) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block at which the search for the next new file allocation should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the size of the allocation blocks.

ioVClpSiz
On output, the default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of unused allocation blocks.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the

444 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

Mac OS X does not support drive numbers; in Mac OS X, the File Manager always returns a value of
1 in this field.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system handling this volume.

ioVBkUp
On output, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

ioVFndrInfo
On output, Finder information for the volume.

You can get information about all the online volumes by making repeated calls to PBHGetVInfoAsync,
starting with the value of the ioVolIndex field set to 1 and incrementing that value until PBHGetVInfoAsync
returns nsvErr.

If you need to obtain information about HFS Plus volumes, you should use the FSGetVolumeInfo (page
73) function, or one of the corresponding parameter block calls, PBGetVolumeInfoSync (page 145) and
PBGetVolumeInfoAsync (page 143). ThePBHGetVInfoAsync function is still supported for HFS Plus volumes,
but there is additional information returned by the FSGetVolumeInfo function (such as the date and time
that the volume was last checked for consistency).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBHGetVInfoAsync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

If the value of ioVolIndex is negative, the File Manager uses ioNamePtr and ioVRefNum in the standard
way to determine the volume. However, because PBHGetVInfoAsync returns the volume name in the buffer
whose address you passed in ioNamePtr, your input pathname will be modified. If you don't want your
input pathname modified, make a copy of it and pass the copy to PBHGetVInfoAsync.

Deprecated in Mac OS X v10.4 445
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

The volume name returned by PBHGetVInfoAsync is not a full pathname to the volume because it does
not contain a colon.

For compatibility with older programs, some values returned by PBHGetVInfoAsync are not what is stored
in the volume's Volume Control Block (VCB). Specifically:

 ■ ioVNmAlBlks and ioVFrBlk are pinned to values which, when multiplied by ioVAlBlkSiz, are always
less than 2 Gigabytes.

 ■ ioVNmAlBlks may not include the allocation blocks used by the catalog and extents overflow files.

 ■ $4244 is returned in ioVSigWord for both HFS and HFS Plus volumes.

For unpinned total and free byte counts, and for the real ioVSigWord, use PBXGetVolInfoAsync (page
490) instead of PBHGetVInfoAsync.

Version Notes
In non-Carbon applications, you may pass a working directory reference in the ioVRefNum field; if you pass
a working directory reference in that field, the number of files and directories in the specified directory is
returned in the ioVNmFls field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVInfoSync
Gets detailed information about a volume. (Deprecated in Mac OS X v10.4. Use PBGetVolumeInfoSync (page
145) instead.)

OSErr PBHGetVInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 242) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a buffer. If you specify a negative number in the ioVolIndex field, this buffer
should hold the name of the volume for which to return information. On output, a pointer to the
volume’s name. You should pass a pointer to a Str31 value if you want the name returned. If you
pass NULL, no volume name is returned.

446 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVRefNum
On input, a volume reference number or drive number for the volume for which to return information;
or 0 for the default volume. If the ioVolIndex field is negative, the File Manager uses the value in
the ioNamePtr field, along with the value specified in the ioVRefNum field, to determine the volume.
If the value in ioVolIndex is 0, the File Manager attempts to access the volume using only the value
in this field. On output, the volume reference number.

ioVolIndex
On input, an index used for indexing through all mounted volumes. If this value is positive, the File
Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s initialization.

ioVLsMod
On output, the date and time of the volume’s last modification.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 320) for a
description of the volume attributes returned by this function.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoSync (page 423) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block at which the search for the next new file allocation should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the size of the allocation blocks.

ioVClpSiz
On output, the default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of unused allocation blocks.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the

Deprecated in Mac OS X v10.4 447
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

Mac OS X does not support drive numbers; in Mac OS X, the File Manager always returns a value of
1 in this field.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system handling this volume.

ioVBkUp
On output, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

ioVFndrInfo
On output, Finder information for the volume.

You can get information about all the online volumes by making repeated calls to PBHGetVInfoSync, starting
with the value of the ioVolIndex field set to 1 and incrementing that value until PBHGetVInfoSync returns
nsvErr.

If you need to obtain information about HFS Plus volumes, you should use the FSGetVolumeInfo (page
73) function, or one of the corresponding parameter block calls, PBGetVolumeInfoSync (page 145) and
PBGetVolumeInfoAsync (page 143). The PBHGetVInfoSync function is still supported for HFS Plus volumes,
but there is additional information returned by the FSGetVolumeInfo function (such as the date and time
that the volume was last checked for consistency).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBHGetVInfoSync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

If the value of ioVolIndex is negative, the File Manager uses ioNamePtr and ioVRefNum in the standard
way to determine the volume. However, because PBHGetVInfoSync returns the volume name in the buffer
whose address you passed in ioNamePtr, your input pathname will be modified. If you don't want your
input pathname modified, make a copy of it and pass the copy to PBHGetVInfoSync.

448 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

The volume name returned by PBHGetVInfoSync is not a full pathname to the volume because it does not
contain a colon.

For compatibility with older programs, some values returned by PBHGetVInfoSync are not what is stored
in the volume's Volume Control Block (VCB). Specifically:

 ■ ioVNmAlBlks and ioVFrBlk are pinned to values which, when multiplied by ioVAlBlkSiz, are always
less than 2 Gigabytes.

 ■ ioVNmAlBlks may not include the allocation blocks used by the catalog and extents overflow files.

 ■ $4244 is returned in ioVSigWord for both HFS and HFS Plus volumes.

For unpinned total and free byte counts, and for the real ioVSigWord, use PBXGetVolInfoSync (page 493)
instead of PBHGetVInfoSync.

Version Notes
In non-Carbon applications, you may pass a working directory reference in the ioVRefNum field; if you pass
a working directory reference in that field, the number of files and directories in the specified directory is
returned in the ioVNmFls field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVolAsync
Determines the default volume and default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHGetVolAsync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 260) for a description of the
WDPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBHGetVolAsync function returns the default volume and directory last set by a call to HSetVol (page
369) or PBHSetVolSync (page 469). The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

Deprecated in Mac OS X v10.4 449
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioResult
On output, the result code of the function.

ioNamePtr
On output, a pointer to the default volume’s name. You should pass a pointer to a Str31 value if you
want that name returned. If you pass NULL in this field, no volume name is returned.

ioVRefNum
On output, the volume reference number of the default volume.

ioWDProcID
On output, the working directory user identifier.

ioWDVRefNum
On output, the volume reference number of the volume on which the default directory exists.

ioWDDirID
On output, the directory ID of the default directory.

Version Notes
When CarbonLib is not present, the PBHGetVolAsync function returns a working directory reference number
in the ioVRefNumparameter if the previous call to HSetVol (page 369) (or one of the corresponding parameter
block calls) passed in a working directory reference number.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVolSync
Determines the default volume and default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHGetVolSync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 260) for a description of the
WDPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBHGetVolSync function returns the default volume and directory last set by a call to HSetVol (page
369) or PBHSetVolSync (page 469). The relevant fields of the parameter block are:

ioNamePtr
On output, a pointer to the default volume’s name. Pass a pointer to a Str31 value if you want that
name returned. If you pass NULL in this field, no volume name is returned.

450 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVRefNum
On output, the volume reference number of the default volume.

ioWDProcID
On output, the working directory user identifier.

ioWDVRefNum
On output, the volume reference number of the volume on which the default directory exists.

ioWDDirID
On output, the directory ID of the default directory.

Version Notes
When CarbonLib is not present, the PBHGetVolSync function returns a working directory reference number
in the ioVRefNumparameter if the previous call to HSetVol (page 369) (or one of the corresponding parameter
block calls) passed in a working directory reference number.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHMoveRenameAsync
Moves a file or directory and optionally renames it. (Deprecated in Mac OS X v10.4. Use
FSMoveObjectAsync (page 82) instead.)

OSErr PBHMoveRenameAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 188) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBHMoveRenameAsync function allows you to move (not copy) a file or directory. The source and
destination pathnames must point to the same file server volume. This function is especially useful when
you want to copy or move files located on a remote volume, because it allows you to forgo transmitting
large amounts of data across a network. This function is used internally by the Finder; most applications do
not need to use it.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

Deprecated in Mac OS X v10.4 451
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the pathname for the source file or directory.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the source file or
directory. Pass 0 for the default volume.

ioNewName
On input, a pointer to the destination pathname. If ioNewName is NULL, the destination directory is
the directory having the ID specified in the ioNewDirID field. If ioNewName is not NULL, the destination
directory is the directory having the partial pathname pointed to by ioNewName in the directory
having ID ioNewDirID on the specified volume.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHMoveRenameSync
Moves a file or directory and optionally renames it. (Deprecated in Mac OS X v10.4. Use
FSMoveObjectSync (page 83) instead.)

OSErr PBHMoveRenameSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 188) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

452 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The PBHMoveRenameSync function allows you to move (not copy) a file or directory. The source and destination
pathnames must point to the same file server volume. This function is especially useful when you want to
copy or move files located on a remote volume, because it allows you to forgo transmitting large amounts
of data across a network. This function is used internally by the Finder; most applications do not need to use
it.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the pathname for the source file or directory.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the source file or
directory. Pass 0 for the default volume.

ioNewName
On input, a pointer to the destination pathname. If ioNewName is NULL, the destination directory is
the directory having the ID specified in the ioNewDirID field. If ioNewName is not NULL, the destination
directory is the directory having the partial pathname pointed to by ioNewName in the directory
having ID ioNewDirID on the specified volume.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenAsync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkAsync (page 151) instead.)

OSErr PBHOpenAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block.

Deprecated in Mac OS X v10.4 453
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If you attempt to open a locked file for writing,
PBHOpenAsync returns the result code permErr. If you request exclusive read/write permission but
another access path is already open, PBHOpenAsync returns the reference number of the existing
access path in ioRefNum and opWrErr as its function result.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open data fork. If you request exclusive read/write
permission but another access path is already open, PBHOpenAsync returns the reference number
of the existing access path. You should not use this reference number unless your application originally
opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteAsync, PBSetEOFAsync (page 479) , or PBAllocateAsync (page 370) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If you use PBHOpenAsync to try to open a file whose name begins with a period, you might mistakenly open
a driver instead; subsequent attempts to write data might corrupt data on the target device. To avoid these
problems, you should always use PBHOpenDFAsync (page 454) instead of PBHOpenAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenDFAsync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkAsync (page 151) instead.)

454 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHOpenDFAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
You should use PBHOpenDFAsync instead of the PBHOpenAsync (page 453) function; PBHOpenDFAsync
allows you to safely open a file whose name begins with a period (.).

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If you attempt to open a locked file for writing,
PBHOpenDFAsync returns the result code permErr. If you request exclusive read/write permission
but another access path is already open, PBHOpenDFAsync returns the reference number of the
existing access path in ioRefNum and opWrErr as its function result.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, the file reference number for accessing the open data fork. If you request exclusive
read/write permission but another access path is already open, PBHOpenDFAsync returns the reference
number of the existing access path. You should not use this reference number unless your application
originally opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteAsync, PBSetEOFAsync (page 479) , or PBAllocateAsync (page 370) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the PBHOpenDFAsync function, you will receive an error message.

Deprecated in Mac OS X v10.4 455
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenDFSync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkSync (page 152) instead.)

OSErr PBHOpenDFSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). . If you attempt to open a locked file for writing,
PBHOpenDFSync returns the result code permErr. If you request exclusive read/write permission but another
access path is already open, PBHOpenDFSync returns the reference number of the existing access path in
ioRefNum and opWrErr as its function result.

Discussion
You should use PBHOpenDFSync instead of the PBHOpenSync (page 459) function; PBHOpenDFSync allows
you to safely open a file whose name begins with a period (.).

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, the file reference number for accessing the open data fork. If you request exclusive
read/write permission but another access path is already open, PBHOpenDFSync returns the reference
number of the existing access path. You should not use this reference number unless your application
originally opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteSync, PBSetEOFSync (page 480) , or PBAllocateSync (page 372) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

456 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the PBHOpenDFSync function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFAsync
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkAsync (page 151) instead.)

OSErr PBHOpenRFAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. On some file systems, PBHOpenRFAsync will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with
read-only access.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open resource fork.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291).

Deprecated in Mac OS X v10.4 457
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the PBHOpenRFAsync function, you will receive an error message.

Special Considerations

Generally your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The PBHOpenRFAsync function does not read the resource map into memory
and is generally useful only for applications (such as utilities that copy files) that need block-level access to
a resource fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Because there is no support for locking and unlocking file ranges in Mac OS X, regardless of whether File
Sharing is enabled, you cannot open more than one path to a resource fork with read/ write permission. If
you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission, only the first
attempt will succeed. Subsequent attempts will return an invalid reference number and the ResError
function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFSync
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkSync (page 152) instead.)

OSErr PBHOpenRFSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). On some file systems, PBHOpenRFSync will return
the error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
The relevant fields of the parameter block are:

458 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open resource fork.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291).

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 85) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 152) or PBOpenForkAsync (page 151). If you try to open a fork larger than 2GB with
the PBOpenRFSync function, you will receive an error message.

Special Considerations

Generally your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The PBHOpenRFSync function does not read the resource map into memory and
is generally useful only for applications (such as utilities that copy files) that need block-level access to a
resource fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/ write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenSync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkSync (page 152) instead.)

Deprecated in Mac OS X v10.4 459
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHOpenSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you attempt to open a locked file for writing,
PBHOpenSync returns the result code permErr. If you request exclusive read/write permission but another
access path is already open, PBHOpenSync returns the reference number of the existing access path in
ioRefNum and opWrErr as its function result.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open data fork. If you request exclusive read/write
permission but another access path is already open, PBHOpenSync returns the reference number of
the existing access path. You should not use this reference number unless your application originally
opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 291). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteSync, PBSetEOFSync (page 480) , or PBAllocateSync (page 372) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If you use PBHOpenSync to try to open a file whose name begins with a period, you might mistakenly open
a driver instead; subsequent attempts to write data might corrupt data on the target device. To avoid these
problems, you should always use PBHOpenDFSync (page 456) instead of PBHOpenSync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

460 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHRenameAsync
Renames a file, directory, or volume. (Deprecated in Mac OS X v10.4. Use PBRenameUnicodeAsync (page
158) instead.)

OSErr PBHRenameAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the existing filename, directory name, or volume name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioMisc
On input, a pointer to the new name for the file, directory or volume.

ioDirID
On input, the parent directory ID of the file or directory to rename.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Given a pointer to the name of a file or directory in the ioNamePtr field, PBHRenameAsync changes it to
the name pointed to in the ioMisc field. Given a pointer to a volume name in ioNamePtr or a volume
reference number in ioVRefNum, the function changes the name of the volume to the name pointed to in
ioMisc.

If a file ID reference exists for the file being renamed, the file ID remains with the file.

To rename a file or directory using a long Unicode name, use the FSRenameUnicode (page 97) function or
one of the corresponding parameter block calls, PBRenameUnicodeSync (page 159) and
PBRenameUnicodeAsync (page 158).

Special Considerations

You cannot use PBHRenameAsync to change the directory in which a file is located. To move a file or directory,
use the FSpCatMove (page 345), PBCatMoveSync (page 377), or PBCatMoveAsync (page 376) functions.

Deprecated in Mac OS X v10.4 461
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRenameSync
Renames a file, directory, or volume. (Deprecated in Mac OS X v10.4. Use PBRenameUnicodeSync (page 159)
instead.)

OSErr PBHRenameSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the existing filename, directory name, or volume name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioMisc
On input, a pointer to the new name for the file, directory or volume.

ioDirID
On input, the parent directory ID of the file or directory to rename.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Given a pointer to the name of a file or directory in the ioNamePtr field, PBHRenameSync changes it to the
name pointed to in the ioMisc field. Given a pointer to a volume name in ioNamePtr or a volume reference
number in ioVRefNum, the function changes the name of the volume to the name pointed to in ioMisc.

If a file ID reference exists for the file being renamed, the file ID remains with the file.

To rename a file or directory using a long Unicode name, use the FSRenameUnicode (page 97) function or
one of the corresponding parameter block calls, PBRenameUnicodeSync (page 159) and
PBRenameUnicodeAsync (page 158).

462 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

You cannot use PBHRenameSync to change the directory in which a file is located. To move a file or directory,
use the FSpCatMove (page 345), PBCatMoveSync (page 377), or PBCatMoveAsync (page 376) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRstFLockAsync
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoAsync (page 159) instead.)

OSErr PBHRstFLockAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name for the file or directory o unlock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to unlock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHRstFLockAsync to unlock a directory. Otherwise, you can only use this function to unlock a file.

Access paths currently in use aren’t affected by this function.

Deprecated in Mac OS X v10.4 463
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRstFLockSync
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoSync (page 161) instead.)

OSErr PBHRstFLockSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name for the file or directory to unlock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to unlock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHRstFLockSync to unlock a directory. Otherwise, you can only use this function to unlock a file.

Access paths currently in use aren’t affected by this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

464 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHSetFInfoAsync
Sets information for a file. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoAsync (page 159) instead.)

OSErr PBHSetFInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the file; or 0 for
the default volume.

ioFlFndrInfo
On input, Finder information for the file. For a description of the FInfo data type, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID for the file.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

You should call the PBHGetFInfoAsync (page 438) function just before calling PBHSetFInfoAsync, so that
the current information is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 465
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHSetFInfoSync
Sets information for a file. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoSync (page 161) instead.)

OSErr PBHSetFInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the file; or 0 for
the default volume.

ioFlFndrInfo
On input, Finder information for the file. For a description of the FInfo data type, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID of the file.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

You should call the PBHGetFInfoSync (page 440) function just before calling PBHSetFInfoSync, so that
the current information is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetFLockAsync
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoAsync (page 159) instead.)

466 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHSetFLockAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a name for the file or directory to lock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to lock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHSetFLockAsync to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. Access paths currently in use aren’t affected.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetFLockSync
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoSync (page 161) instead.)

Deprecated in Mac OS X v10.4 467
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHSetFLockSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 235) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a name for the file or directory to lock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to lock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the PBHGetVolParmsSync (page 514) or PBHGetVolParmsAsync (page 512) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHSetFLockSync to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. Access paths currently in use aren’t affected.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetVolAsync
Sets the default volume and the default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHSetVolAsync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 260) for a description of the
WDPBRec data type.

468 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. If this field specifies a full pathname, the default volume is set to
the volume whose name is contained in that pathname. (A full pathname overrides the ioVRefNum
field.)If this field contains a partial pathname and the ioVRefNum field specifies a volume reference
number, then the default directory is set to the directory having the partial pathname specified here,
in the directory given in the ioWDDirID field. If this field is NULL, then the default directory is set to
the directory having the ID specified in the ioWDDirID field.

ioVRefNum
On input, a volume reference number for the default volume. This field is ignored if the ioNamePtr
field specifies a full pathname.

ioWDDirID
On input, a directory ID. If the ioVRefNum field contains a volume reference number and ioNamePtr
contains a partial pathname, this field contains the directory ID of the directory containing the default
directory. If ioNamePtr is NULL, this field contains the directory ID of the default directory.

Both the default volume and the default directory are used in calls made with no volume name, a volume
reference number of 0, and a directory ID of 0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetVolSync
Sets the default volume and the default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHSetVolSync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 260) for a description of the
WDPBRec data type.

Deprecated in Mac OS X v10.4 469
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. If this field specifies a full pathname, the default volume is set to
the volume whose name is contained in that pathname. (A full pathname overrides the ioVRefNum
field.)If this field contains a partial pathname and the ioVRefNum field specifies a volume reference
number, then the default directory is set to the directory having the partial pathname specified here,
in the directory given in the ioWDDirID field. If this field is NULL, then the default directory is set to
the directory having the ID specified in the ioWDDirID field.

ioVRefNum
On input, the volume reference number for the default volume. This field is ignored if the ioNamePtr
field specifies a full pathname.

ioWDDirID
On input, a directory ID. If the ioVRefNum field contains a volume reference number and ioNamePtr
contains a partial pathname, this field contains the directory ID of the directory containing the default
directory. If ioNamePtr is NULL, this field contains the directory ID of the default directory.

Both the default volume and the default directory are used in calls made with no volume name, a volume
reference number of 0, and a directory ID of 0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBLockRangeAsync
Locks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXLockRangeAsync (page 169) instead.)

OSErr PBLockRangeAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

470 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If you call PBLockRangeAsync on a file system that does
not implement it—for example, SMB—PBLockRangeAsync returns noErr and does nothing.

ioRefNum
On input, the file reference number of the file owning the range to lock.

ioReqCount
On input, the number of bytes in the range. Set ioReqCount to –1 to lock the maximum number of
bytes from the position specified in the ioPosOffset field.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 311) for more information on the constants you can use to specify the base location.

You should not use the fsFromLEOF constant when locking a file range. PBLockRangeAsync does
not return the start of the locked range; thus, there is no way to determine what range was actually
locked when you specify fsFromLEOF.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBLockRangeAsync function locks a portion of a file that was opened with shared read/write permission.
The beginning of the range to be locked is determined by the ioPosMode and ioPosOffset fields. The end
of the range to be locked is determined by the beginning of the range and the ioReqCount field. For example,
to lock the first 50 bytes in a file, set ioReqCount to 50, ioPosMode to fsFromStart, and ioPosOffset
to 0.

The PBLockRangeAsync function uses the same parameters as both PBReadAsync and PBWriteAsync;
by calling it immediately before PBReadAsync, you can use the information in the parameter block for the
PBReadAsync call.

When you’re finished with the data (typically after a call to PBWriteSync), you can call
PBUnlockRangeAsync (page 486) to free that portion of the file for subsequent read and write calls. Closing
a file also releases all locked ranges in that file.

Special Considerations

The PBLockRangeAsync function does nothing if the file specified in the ioRefNum field is open with shared
read/write permission but is not located on a remote server volume or is not located under a share point on
a sharable local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 230)
returned by the PBHGetVolParmsSync (page 514) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.4 471
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBLockRangeSync
Locks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXLockRangeSync (page 170) or
FSLockRange (page 76) instead.)

OSErr PBLockRangeSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). If you call PBLockRangeSync on a file system that
does not implement it—for example, SMB—PBLockRangeSync returns noErr and does nothing.

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number of the file owning the range to lock.

ioReqCount
On input, the number of bytes in the range. Set ioReqCount to –1 to lock the maximum number of
bytes from the position specified in the ioPosOffset field.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 311) for more information about the constants you can use to specify the base
location.

You should not use the fsFromLEOF constant when locking a file range. PBLockRangeSync does
not return the start of the locked range; thus, there is no way to determine what range was actually
locked when you specify fsFromLEOF.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBLockRangeSync function locks a portion of a file that was opened with shared read/write permission.
The beginning of the range to be locked is determined by the ioPosMode and ioPosOffset fields. The end
of the range to be locked is determined by the beginning of the range and the ioReqCount field. For example,
to lock the first 50 bytes in a file, set ioReqCount to 50, ioPosMode to fsFromStart, and ioPosOffset
to 0.

The PBLockRangeSync function uses the same parameters as both PBReadSync and PBWriteSync; by
calling it immediately before PBReadSync, you can use the information in the parameter block for the
PBReadSync call.

When you’re finished with the data (typically after a call to PBWriteSync), you can call
PBUnlockRangeSync (page 487) to free that portion of the file for subsequent read and write calls. Closing
a file also releases all locked ranges in that file.

472 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Special Considerations

The PBLockRangeSync function does nothing if the file specified in the ioRefNum field is open with shared
read/write permission but is not located on a remote server volume or is not located under a share point on
a sharable local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 230)
returned by the PBHGetVolParmsSync (page 514) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBMakeFSSpecAsync
Creates an FSSpec structure for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBMakeFSRefUnicodeAsync (page 148) instead.)

OSErr PBMakeFSSpecAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block. See HParamBlockRec (page 240) for a description of the
HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, PBMakeFSSpecAsync fills in the structure and returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for another
operation, such as creating a file.

PBMakeFSSpecAsync can return a number of different File Manager error codes. When PBMakeFSSpecAsync
returns any result other than noErr or fnfErr, all fields of the resulting FSSpec structure are set to 0.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. When PBMakeFSSpecAsync returns any result other than
noErr or fnfErr, all fields of the resulting FSSpec structure are set to 0. See “File Manager Result
Codes”.

Deprecated in Mac OS X v10.4 473
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioNamePtr
On input, a pointer to a full or partial pathname specifying the file or directory for which to create an
FSSpec. If the ioNamePtr field specifies a full pathname, PBMakeFSSpecAsync ignores both the
ioVRefNum and ioDirID fields. A partial pathname might identify only the final target, or it might
include one or more parent directory names. If ioNamePtr specifies a partial pathname, then
ioVRefNum, ioDirID, or both must be valid.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This field can contain
a volume reference number, a drive number, or 0 to specify the default volume.

ioMisc
On input, a pointer to an FSSpec (page 223) structure. Given a complete specification for a file or
directory, the PBMakeFSSpecAsync function fills in this FSSpec structure to identify the file or
directory. On output, this field points to the initialized FSSpec. The file system specification structure
that you pass in this field should not share storage space with the input pathname; the name field
may be initialized to the empty string before the pathname has been processed. For example,
ioNamePtr should not refer to the name field of the output file system specification.

ioDirID
On input, a directory ID. This field usually specifies the parent directory ID of the target object. If the
directory is sufficiently specified by the ioNamePtr field, the ioDirID field can be set to 0. If the
ioNamePtr field contains an empty string, PBMakeFSSpecAsync creates an FSSpec structure for
the directory specified by the ioDirID field.

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, PBMakeFSSpecAsync fills in the structure and returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for another
operation, such as creating a file.

Carbon Porting Notes

Non-Carbon applications can also specify a working directory reference number in the ioVRefNum field.
However, because working directories are not supported in Carbon, you cannot specify a working directory
reference number if you wish your application to be Carbon-compatible.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBMakeFSSpecSync
Creates an FSSpec structure for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBMakeFSRefUnicodeSync (page 149) instead.)

474 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBMakeFSSpecSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block. See HParamBlockRec (page 240) for a description of the
HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). When PBMakeFSSpecSync returns any result other
than noErr or fnfErr, all fields of the resulting FSSpec structure are set to 0.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a full or partial pathname specifying the file or directory for which to create an
FSSpec. If the ioNamePtr field specifies a full pathname, PBMakeFSSpecSync ignores both the
ioVRefNum and ioDirID fields. A partial pathname might identify only the final target, or it might
include one or more parent directory names. If ioNamePtr specifies a partial pathname, then
ioVRefNum, ioDirID, or both must be valid.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This field can contain
a volume reference number, a drive number, or 0 to specify the default volume.

ioMisc
On input, a pointer to an FSSpec (page 223) structure. Given a complete specification for a file or
directory, the PBMakeFSSpecSync function fills in this FSSpec structure to identify the file or directory.
On output, this field points to the initialized FSSpec. The file system specification structure that you
pass in this field should not share storage space with the input pathname; the name field may be
initialized to the empty string before the pathname has been processed. For example, ioNamePtr
should not refer to the name field of the output file system specification.

ioDirID
On input, a directory ID. This field usually specifies the parent directory ID of the target object. If the
directory is sufficiently specified by the ioNamePtr field, the ioDirID field can be set to 0. If the
ioNamePtr field contains an empty string, PBMakeFSSpecSync creates an FSSpec structure for the
directory specified by the ioDirID field.

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, PBMakeFSSpecSync fills in the structure and returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for another
operation, such as creating a file.

Carbon Porting Notes

Non-Carbon applications can also specify a working directory reference number in the ioVRefNum field.
However, because working directories are not supported in Carbon, you cannot specify a working directory
reference number if you wish your application to be Carbon-compatible.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 475
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBSetCatInfoAsync
Modifies catalog information for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBSetCatalogInfoAsync (page 159) instead.)

OSErr PBSetCatInfoAsync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 184) for a description
of the CInfoPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBSetCatInfoAsync function sets information about a file or directory. When used to set information
about a file, it works much as PBHSetFInfoAsync (page 465) does, but lets you set some additional
information.

If the object is a file, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFlFndrInfo
On input, Finder information for the file.

ioDirID
On input, the parent directory ID of the file.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

ioFlBkDat
On input, the date and time of the file’s last backup.

ioFlXFndrInfo
On input, extended Finder information.

If the object is a directory, the relevant fields of the parameter block are:

476 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDrUsrWds
On input, information used by the Finder.

ioDrDirID
On input, the directory ID.

ioDrCrDat
On input, the date and time of the directory’s creation.

ioDrMdDat
On input, the date and time of the directory’s last modification.

ioDrBkDat
On input, the date and time of the directory’s last backup.

ioDrFndrInfo
On input, additional information used by the Finder.

To modify the catalog information for a named fork other than the data and resource fork, or to modify other
catalog information maintained on HFS Plus volumes that is not modifiable through PBSetCatInfoAsync,
use one of the functions, FSSetCatalogInfo (page 98) , PBSetCatalogInfoSync (page 161) , or
PBSetCatalogInfoAsync (page 159).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetCatInfoSync
Modifies catalog information for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBSetCatalogInfoSync (page 161) instead.)

OSErr PBSetCatInfoSync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 184) for a description
of the CInfoPBRec data type.

Deprecated in Mac OS X v10.4 477
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The PBSetCatInfoSync function sets information about a file or directory. When used to set information
about a file, it works much as PBHSetFInfoSync (page 466) does, but lets you set some additional information.

If the object is a file, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFlFndrInfo
On input, Finder information for the file.

ioDirID
On input, the parent directory ID of the file.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

ioFlBkDat
On input, the date and time of the file’s last backup.

ioFlXFndrInfo
On input, extended Finder information.

If the object is a directory, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDrUsrWds
On input, information used by the Finder.

ioDrDirID
On input, the directory ID.

ioDrCrDat
On input, the date and time of the directory’s creation.

ioDrMdDat
On input, the date and time of the directory’s last modification.

ioDrBkDat
On input, the date and time of the directory’s last backup.

ioDrFndrInfo
On input, additional information used by the Finder.

To modify the catalog information for a named fork other than the data and resource fork, or to modify other
catalog information maintained on HFS Plus volumes that is not modifiable through PBSetCatInfoSync,
use one of the functions, FSSetCatalogInfo (page 98) , PBSetCatalogInfoSync (page 161) , or
PBSetCatalogInfoAsync (page 159).

478 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetEOFAsync
Sets the logical size of an open file. (Deprecated in Mac OS X v10.4. Use PBSetForkSizeAsync (page 163)
instead.)

OSErr PBSetEOFAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file.

ioMisc
On input, the new logical size (the logical end-of-file) of the given file. Because the ioMisc field is of
type Ptr, you must coerce the desired value from a long integer to type Ptr. If the value of the
ioMisc field is 0, all space occupied by the file on the volume is released. The file still exists, but it
contains 0 bytes. Setting a file fork’s end-of-file to 0 is therefore not the same as deleting the file,
which removes both file forks at once.

If you attempt to set the logical end-of-file beyond the current physical end-of-file, another allocation block
is added to the file if there isn’t enough space on the volume, no change is made and PBSetEOFAsync
returns dskFulErr as its function result.

To ensure that your changes to the file are written to disk, call one of the functions, FlushVol (page 498) ,
PBFlushVolSync (page 505) , or PBFlushVolAsync (page 504). To set the size of a named fork other than
the data and resource forks, or to grow the size of a file beyond 2GB, you must use the FSSetForkSize (page
100) function, or one of the corresponding parameter block calls, PBSetForkSizeSync (page 164) and
PBSetForkSizeAsync (page 163).

Deprecated in Mac OS X v10.4 479
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetEOFSync
Sets the logical size of an open file. (Deprecated in Mac OS X v10.4. Use PBSetForkSizeSync (page 164)
instead.)

OSErr PBSetEOFSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file.

ioMisc
On input, the new logical size (the logical end-of-file) of the given file. Because the ioMisc field is of
type Ptr, you must coerce the desired value from a long integer to type Ptr. If the value of the
ioMisc field is 0, all space occupied by the file on the volume is released. The file still exists, but it
contains 0 bytes. Setting a file fork’s end-of-file to 0 is therefore not the same as deleting the file,
which removes both file forks at once.

If you attempt to set the logical end-of-file beyond the current physical end-of-file, another allocation block
is added to the file if there isn’t enough space on the volume, no change is made and PBSetEOFSync returns
dskFulErr as its function result.

To ensure that your changes to the file are written to disk, call one of the functions, FlushVol (page 498) ,
PBFlushVolSync (page 505) , or PBFlushVolAsync (page 504). To set the size of a named fork other than
the data and resource forks, or to grow the size of a file beyond 2GB, you must use the FSSetForkSize (page
100) function, or one of the corresponding parameter block calls, PBSetForkSizeSync (page 164) and
PBSetForkSizeAsync (page 163).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

480 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBSetForeignPrivsAsync
Changes the native access-control information for a file or directory stored on a volume managed by a foreign
file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBSetForeignPrivsAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetForeignPrivsSync
Changes the native access-control information for a file or directory stored on a volume managed by a foreign
file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBSetForeignPrivsSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetFPosAsync
Sets the position of the file mark. (Deprecated in Mac OS X v10.4. Use PBSetForkPositionAsync (page
162) instead.)

OSErr PBSetFPosAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Deprecated in Mac OS X v10.4 481
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioRefNum
On input, the file reference number for an open file.

ioPosMode
On input, a constant indicating how to position the mark; this field must contain one of the values
described in “Position Mode Constants” (page 311).

ioPosOffset
On input, the offset from the base location specified by the ioPosMode field for the file mark. If you
specify fsAtMark in the ioPosMode field, the mark is left wherever it’s currently positioned and the
value in the ioPosOffset field is ignored. If you specify fsFromLEOF, the value in ioPosOffset
must be less than or equal to 0. On output, the position at which the mark was actually set.

The PBSetFPosAsync function sets the mark of the specified file to the position specified by the ioPosMode
and ioPosOffset fields. If you try to set the mark past the logical end-of-file, PBSetFPosAsync moves the
mark to the end-of-file and returns eofErr as its function result.

To set the file mark position for a named fork other than the data and resource forks, or to position the file
mark at a point more than 2GB into the file, use the FSSetForkPosition (page 99) function, or one of the
corresponding parameter block calls, PBSetForkPositionSync (page 162) and
PBSetForkPositionAsync (page 162).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetFPosSync
Sets the position of the file mark. (Deprecated in Mac OS X v10.4. Use PBSetForkPositionSync (page 162)
instead.)

OSErr PBSetFPosSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

482 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number for an open file.

ioPosMode
On input, a constant indicating how to position the file mark; this field must contain one of the values
described in “Position Mode Constants” (page 311).

ioPosOffset
On input, the offset from the base location specified by the ioPosMode field for the file mark. If you
specify fsAtMark in the ioPosMode field, the mark is left wherever it’s currently positioned and the
value in the ioPosOffset field is ignored. If you specify fsFromLEOF, the value in ioPosOffset
must be less than or equal to 0. On output, the position at which the mark was actually set.

The PBSetFPosSync function sets the mark of the specified file to the position specified by the ioPosMode
and ioPosOffset fields. If you try to set the mark past the logical end-of-file, PBSetFPosSync moves the
mark to the end-of-file and returns eofErr as its function result.

To set the file mark position for a named fork other than the data and resource forks, or to position the file
mark at a point more than 2GB into the file, use the FSSetForkPosition (page 99) function, or one of the
corresponding parameter block calls, PBSetForkPositionSync (page 162) and
PBSetForkPositionAsync (page 162).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetVInfoAsync
Changes information about a volume. (Deprecated in Mac OS X v10.4. Use PBSetVolumeInfoAsync (page
165) instead.)

OSErr PBSetVInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 242) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

Deprecated in Mac OS X v10.4 483
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the volume’s name. You can specify a new name for the volume here. You
cannot specify the volume by name you must use either the volume reference number or the drive
number.

ioVRefNum
On input, a volume reference number or drive number for the volume whose information is to be
changed; or 0 for the default volume.

ioVCrDate
On input, the date and time of the volume’s initialization.

ioVLsMod
On input, the date and time of the volume’s last modification.

ioVAtrb
On input, the volume attributes. Only bit 15 of the ioVAtrb field can be changed; setting it locks the
volume. See “Volume Information Attribute Constants” (page 320) for a description of the volume
attributes.

ioVBkUp
On input, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVFndrInfo
On input, Finder information for the volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetVInfoSync
Changes information about a volume. (Deprecated in Mac OS X v10.4. Use PBSetVolumeInfoSync (page
166) instead.)

OSErr PBSetVInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 242) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

484 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the volume’s name. You can specify a new name for the volume here. You
cannot specify the volume by name you must use either the volume reference number or the drive
number.

ioVRefNum
On input, a volume reference number or drive number for the volume whose information is to be
changed; or 0 for the default volume.

ioVCrDate
On input, the date and time of the volume’s initialization.

ioVLsMod
On input, the date and time of the volume’s last modification.

ioVAtrb
On input, the volume attributes. Only bit 15 of the ioVAtrb field can be changed; setting it locks the
volume. See “Volume Information Attribute Constants” (page 320) for a description of the volume
attributes.

ioVBkUp
On input, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVFndrInfo
On input, Finder information for the volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBShareAsync
Establishes a local volume or directory as a share point. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBShareAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 485
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBShareSync
Establishes a local volume or directory as a share point. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBShareSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnlockRangeAsync
Unlocks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXUnlockRangeAsync (page 170) instead.)

OSErr PBUnlockRangeAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. If you call PBUnlockRangeAsync on a file system that
does not implement it—for example, SMB—PBUnlockRangeAsync returns noErr and does nothing.

486 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioRefNum
On input, the file reference number of the file owning the range to unlock.

ioReqCount
On input, the number of bytes in the range.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 311) for more information on the constants you can use to indicate the base location.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBUnlockRangeAsync function unlocks a portion of a file that you locked with PBLockRangeSync (page
472) or PBLockRangeAsync (page 470). The beginning of the range to be unlocked is determined by the
ioPosMode and ioPosOffset fields. The end of the range to be unlocked is determined by the beginning
of the range and the ioReqCount field. For example, to unlock the first 50 bytes in a file, set ioReqCount
to 50, ioPosMode to fsFromStart, and ioPosOffset to 0. The range of bytes to be unlocked must be the
exact same range locked by a previous call to PBLockRangeSync (page 472) or PBLockRangeAsync (page
470).

If for some reason you need to unlock a range whose beginning or length is unknown, you can simply close
the file. When a file is closed, all locked ranges held by the user are unlocked.

Special Considerations

The PBUnlockRangeAsync function does nothing if the file specified in the ioRefNum field is open with
shared read/write permission but is not located on a remote server volume or is not located under a share
point on a local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 230)
returned by the PBHGetVolParmsSync (page 514) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnlockRangeSync
Unlocks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXUnlockRangeSync (page 170) or
FSUnlockRange (page 102) instead.)

OSErr PBUnlockRangeSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Deprecated in Mac OS X v10.4 487
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326). If you call PBUnlockRangeSync on a file system
that does not implement it—for example, SMB—PBUnlockRangeSync returns noErr and does nothing.

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number of the file owning the range to unlock.

ioReqCount
On input, the number of bytes in the range.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 311) for more information on the constants you can use to indicate the base location.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBUnlockRangeSync function unlocks a portion of a file that you locked with PBLockRangeSync (page
472) or PBLockRangeAsync (page 470). The beginning of the range to be unlocked is determined by the
ioPosMode and ioPosOffset fields. The end of the range to be unlocked is determined by the beginning
of the range and the ioReqCount field. For example, to unlock the first 50 bytes in a file, set ioReqCount
to 50, ioPosMode to fsFromStart, and ioPosOffset to 0. The range of bytes to be unlocked must be the
exact same range locked by a previous call to PBLockRangeSync (page 472) or PBLockRangeAsync (page
470).

If for some reason you need to unlock a range whose beginning or length is unknown, you can simply close
the file. When a file is closed, all locked ranges held by the user are unlocked.

Special Considerations

The PBUnlockRangeSync function does nothing if the file specified in the ioRefNum field is open with
shared read/write permission but is not located on a remote server volume or is not located under a share
point on a local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 230)
returned by the PBHGetVolParmsSync (page 514) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnmountVol
Unmounts a volume. (Deprecated in Mac OS X v10.4. Use FSEjectVolumeSync (page 58) or
FSUnmountVolumeSync (page 103) instead.)

488 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBUnmountVol (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the VolumeParam (page 256) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the volume.

ioVRefNum
On input, the volume reference number of the volume to unmount, or 0 for the default volume.

This function calls PBFlushVolSync to flush the specified volume, unmounts and ejects the volume, and
releases the memory used for the volume. Prior to calling this function, all user files on the volume must be
closed. Ejecting a volume results in the unmounting of other volumes on the same device.

The PBUnmountVol function always executes synchronously.

Special Considerations

Don’t unmount the startup volume. Doing so will cause a system crash.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnshareAsync
Makes a share point unavailable on the network. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBUnshareAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 489
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Not available to 64-bit applications.

Declared In
Files.h

PBUnshareSync
Makes a share point unavailable on the network. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBUnshareSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBXGetVolInfoAsync
Returns information about a volume, including size information for volumes up to 2 terabytes. (Deprecated
in Mac OS X v10.4. Use FSGetVolumeInfo (page 73) instead.)

OSErr PBXGetVolInfoAsync (
 XVolumeParamPtr paramBlock
);

Parameters
paramBlock

A pointer to an extended volume parameter block. See XVolumeParam (page 265) for a description
of the XVolumeParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the function result.

490 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioNamePtr
On input, a pointer to a buffer. You should pass a pointer to a Str31 value if you want the volume
name returned; otherwise, pass NULL. If you specify a negative number in the ioVolIndex field, this
buffer should hold the name of the volume for which to return information. On output, a pointer to
the volume’s name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume. If the value in the
ioVolIndex field is negative, the File Manager uses the name in the ioNamePtr field, along with
the value in the ioVRefNum field, to determine the volume. If the value in ioVolIndex is 0, the File
Manager attempts to access the volume using only the value in this field. On output, the volume
reference number.

ioXVersion
On input, the version of the extended volume parameter block. Currently, this value is 0.

ioVolIndex
On input, an index used for indexing through all the mounted volumes. If this value is positive, the
File Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s creation (initialization).

ioVLsMod
On output, the date and time that the volume was last modified.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 320) for a
description of these attributes.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoAsync (page 419) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block where the next new file allocation search should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the allocation block size for the volume.

ioVClpSiz
On output, the volume’s default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

Deprecated in Mac OS X v10.4 491
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVFrBlk
On output, the number of free (unused) allocation blocks on the volume.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the
drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system ID for the file system handling this volume.

ioVBkUp
On output, the date and time that the volume was last backed up.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

ioVFndrInfo
On output, Finder information for the volume.

ioVTotalBytes
On output, the total number of bytes on the volume.

ioVFreeBytes
On output, the number of free bytes on the volume.

The PBXGetVolInfoAsync function is similar to the PBHGetVInfoAsync (page 443) function except that
it returns additional volume space information in 64-bit integers and does not modify the information copied
from the volume’s volume control block (VCB). Systems that support PBXGetVolInfoAsync will have the
gestaltFSSupports2TBVols bit set in the response returned by the gestaltFSAttr Gestalt selector.
See Inside Mac OS X: Gestalt Manager Reference for a description of the gestaltFSAttr selector and of the
bits that may be returned in the response.

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBXGetVolInfoAsync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to

492 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBXGetVolInfoSync
Returns information about a volume, including size information for volumes up to 2 terabytes. (Deprecated
in Mac OS X v10.4. Use FSGetVolumeInfo (page 73) instead.)

OSErr PBXGetVolInfoSync (
 XVolumeParamPtr paramBlock
);

Parameters
paramBlock

A pointer to an extended volume parameter block. See XVolumeParam (page 265) for a description
of the XVolumeParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a buffer. You should pass a pointer to a Str31 value if you want the volume
name returned; otherwise, pass NULL. If you specify a negative number in the ioVolIndex field, this
buffer should hold the name of the volume for which to return information. On output, a pointer to
the volume’s name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume. If the value in the
ioVolIndex field is negative, the File Manager uses the name in the ioNamePtr field, along with
the value in the ioVRefNum field, to determine the volume. If the value in ioVolIndex is 0, the File
Manager attempts to access the volume using only the value in this field. On output, the volume
reference number.

ioXVersion
On input, the version of the extended volume parameter block. Currently, this value is 0.

ioVolIndex
On input, an index used for indexing through all the mounted volumes. If this value is positive, the
File Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

Deprecated in Mac OS X v10.4 493
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVCrDate
On output, the date and time of the volume’s creation (initialization).

ioVLsMod
On output, the date and time that the volume was last modified.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 320) for a
description of these attributes.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoSync (page 423) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block where the next new file allocation search should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the allocation block size for the volume.

ioVClpSiz
On output, the volume’s default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of free (unused) allocation blocks on the volume.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the
drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system ID for the file system handling this volume.

494 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVBkUp
On output, the date and time that the volume was last backed up.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

ioVFndrInfo
On output, Finder information for the volume.

ioVTotalBytes
On output, the total number of bytes on the volume.

ioVFreeBytes
On output, the number of free bytes on the volume.

The PBXGetVolInfoSync function is similar to the PBHGetVInfoSync (page 446) function except that it
returns additional volume space information in 64-bit integers and does not modify the information copied
from the volume’s volume control block (VCB). Systems that support PBXGetVolInfoSync will have the
gestaltFSSupports2TBVols bit set in the response returned by the gestaltFSAttr Gestalt selector.
See Inside Mac OS X: Gestalt Manager Reference for a description of the gestaltFSAttr selector and of the
bits that may be returned in the response.

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBXGetVolInfoSync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

SetEOF
Sets the logical size of an open file. (Deprecated in Mac OS X v10.4. Use FSSetForkSize (page 100) instead.)

Deprecated in Mac OS X v10.4 495
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr SetEOF (
 FSIORefNum refNum,
 SInt32 logEOF
);

Parameters
refNum

The file reference number of an open file.

logEOF
The new logical size (the logical end-of-file) of the given file. If you set the logEOF parameter to 0,
all space occupied by the file on the volume is released. The file still exists, but it contains 0 bytes.
Setting a file fork’s end-of-file to 0 is therefore not the same as deleting the file, which removes both
file forks at once.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
If you attempt to set the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set 1
byte beyond the end of the next free allocation block if there isn’t enough space on the volume, no change
is made, and SetEOF returns dskFulErr as its function result.

To ensure that your changes to the file are written to disk, call one of the functions, FlushVol (page 498) ,
PBFlushVolSync (page 505) , or PBFlushVolAsync (page 504). To set the size of a named fork other than
the data and resource forks, or to grow the size of a file beyond 2GB, you must use the FSSetForkSize (page
100) function, or one of the corresponding parameter block calls, PBSetForkSizeSync (page 164) and
PBSetForkSizeAsync (page 163).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

SetFPos
Sets the position of the file mark. (Deprecated in Mac OS X v10.4. Use FSSetForkPosition (page 99)
instead.)

OSErr SetFPos (
 FSIORefNum refNum,
 SInt16 posMode,
 SInt32 posOff
);

Parameters
refNum

The file reference number of an open file.

posMode
A constant specifying how to position the file mark; this parameter must contain one of the values
described in “Position Mode Constants” (page 311).

496 Deprecated in Mac OS X v10.4
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

posOff
The offset from the base location specified by the posMode parameter for the new file mark position.
If you specify fsFromLEOF in the posMode parameter, the value in the posOff parameter must be
less than or equal to 0. If you specify fsAtMark, the value in the posOff parameter is ignored.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Because the read and write operations performed by the functions FSRead (page 356) and FSWrite (page
357) begin at the current mark, you may want to call SetFPos to reposition the file mark before reading from
or writing to the file.

To set the file mark position for a named fork other than the data and resource forks, or to position the file
mark at a point more than 2GB into the file, use the FSSetForkPosition (page 99) function, or one of the
corresponding parameter block calls, PBSetForkPositionSync (page 162) and
PBSetForkPositionAsync (page 162).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

UnmountVol
Unmounts a volume that isn’t currently being used. (Deprecated in Mac OS X v10.4. Use
FSUnmountVolumeSync (page 103) instead.)

OSErr UnmountVol (
 ConstStr63Param volName,
 FSVolumeRefNum vRefNum
);

Parameters
volName

The name of a mounted volume. This parameter may be NULL.

vRefNum
The volume reference number, drive number, or 0 for the default volume.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
All files on the volume (except those opened by the Operating System) must be closed before you call
UnmountVol, which does not eject the volume.

Most applications do not need to use this function, because the user typically ejects (and possibly also
unmounts) a volume in the Finder.

Special Considerations

Don’t unmount the startup volume. Doing so will cause a system crash.

Deprecated in Mac OS X v10.4 497
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5

FlushVol
Writes the contents of the volume buffer and updates information about the volume. (Deprecated in Mac
OS X v10.5. Use FSFlushVolume (page 64) instead.)

OSErr FlushVol (
 ConstStr63Param volName,
 FSVolumeRefNum vRefNum
);

Parameters
volName

The name of the mounted volume to flush.

vRefNum
The volume reference number, drive number, or 0 for the default volume.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
For the specified volume, the FlushVol function writes the contents of the associated volume buffer and
descriptive information about the volume. Information which has changed since the last time FlushVol
was called is written to the volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

FSpMakeFSRef
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

498 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr FSpMakeFSRef (
 const FSSpec *source,
 FSRef *newRef
);

Parameters
source

A pointer to the FSSpec for the file or directory. This parameter must point to a valid FSSpec for an
existing file or directory; if it does not, the call will return fnfErr. See FSSpec (page 223) for a
description of the FSSpec data type.

newRef
On input, a pointer to an FSRef structure. On return, a pointer to the FSRef for the file or directory
specified in the FSSpec pointed to in the source parameter.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
To obtain an FSSpec from an FSRef, use the FSGetCatalogInfo (page 66) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Files.h

PBCloseAsync
Closes an open file. (Deprecated in Mac OS X v10.5. Use PBCloseForkAsync (page 115) instead.)

OSErr PBCloseAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine.

ioResult
On output, the result code of the function.

Deprecated in Mac OS X v10.5 499
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioRefNum
On input, a file reference number to the file to close.

The PBCloseAsync function writes the contents of the access path buffer specified by the ioRefNum field
to the volume and removes the access path.

Special Considerations

Some information stored on the volume won’t be updated until PBFlushVolAsync is called.

Do not call PBCloseAsync with a file reference number of a file that has already been closed. Attempting
to close the same file twice may result in loss of data on a volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBCloseSync
Closes an open file. (Deprecated in Mac OS X v10.5. Use PBCloseForkSync (page 115) instead.)

OSErr PBCloseSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant field of the parameter block is:

ioRefNum
On input, a file reference number to the file to close.

The PBCloseSync function writes the contents of the access path buffer specified by the ioRefNum field to
the volume and removes the access path.

Special Considerations

Some information stored on the volume won’t be updated until PBFlushVolSync is called.

Do not call PBCloseSync with a file reference number of a file that has already been closed. Attempting to
close the same file twice may result in loss of data on a volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

500 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBCreateFileIDRefAsync
Establishes a file ID reference for a file. (Deprecated in Mac OS X v10.5. Use FSGetCatalogInfo (page 66)
instead.)

OSErr PBCreateFileIDRefAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 201) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

Given a volume reference number, filename, and parent directory ID, the PBCreateFileIDRefAsync function
creates a structure to hold the name and parent directory ID of the specified file. The relevant fields of the
parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. PBCreateFileIDRefAsync returns the result code
fidExists if a file ID reference already exists for the file.

ioNamePtr
On input, a pointer to the file’s name.

ioVRefNum
On input, a volume reference number for the volume containing the file.

ioSrcDirID
On input, the file’s parent directory ID.

ioFileID
On output, a file ID. If a file ID reference already exists for the file, PBCreateFileIDRefAsync supplies
the file ID but returns the result code fidExists.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 501
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBCreateFileIDRefSync
Establishes a file ID reference for a file. (Deprecated in Mac OS X v10.5. Use FSGetCatalogInfo (page 66)
instead.)

OSErr PBCreateFileIDRefSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 201) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).PBCreateFileIDRefSync returns the result code
fidExists if a file ID reference already exists for the file.

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

Given a volume reference number, filename, and parent directory ID, the PBCreateFileIDRefSync function
creates a structure to hold the name and parent directory ID of the specified file. The relevant fields of the
parameter block are:

ioNamePtr
On input, a pointer to the file’s name.

ioVRefNum
On input, a volume reference number for the volume containing the file.

ioSrcDirID
On input, the file’s parent directory ID.

ioFileID
On output, a file ID. If a file ID reference already exists for the file, PBCreateFileIDRefSync supplies
the file ID but returns the result code fidExists.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBDeleteFileIDRefAsync
Deletes a file ID reference. (Deprecated in Mac OS X v10.5. There is no replacement function.)

502 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDeleteFileIDRefAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 201) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the file.

ioFileID
On input, the file ID reference to delete. After it has invalidated a file ID reference, the File Manager
can no longer resolve that ID reference to a filename and parent directory ID.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBDeleteFileIDRefSync
Deletes a file ID reference. (Deprecated in Mac OS X v10.5. There is no replacement function.)

Deprecated in Mac OS X v10.5 503
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBDeleteFileIDRefSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 201) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the file.

ioFileID
On input, the file ID reference to delete. After it has invalidated a file ID reference, the File Manager
can no longer resolve that ID reference to a filename and parent directory ID.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushVolAsync
Writes the contents of the volume buffer and updates information about the volume. (Deprecated in Mac
OS X v10.5. Use PBFlushVolumeAsync (page 131) instead.)

OSErr PBFlushVolAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the VolumeParam (page 256) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

504 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the volume to flush.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

PBFlushVolAsync flushes all open files on the volume, and then flushes all volume data structures. On the
volume specified byioNamePtrorioVRefNum, thePBFlushVolAsync function writes descriptive information
about the volume, the contents of the associated volume buffer, and all access path buffers for the volume
(if they’ve changed since the last time PBFlushVolAsync was called).

The date and time of the last modification to the volume are set when the modification is made, not when
the volume is flushed.

To ensure that all changes to a volume are flushed to the volume, use PBFlushVolAsync. You do not,
however, need to flush a volume before unmounting it, ejecting it, or putting it offline; this is done
automatically.

If changes are made to a file that affect the file’s end-of-file, the file’s name, the file’s Finder information, or
the file’s location on the volume, then you must use PBFlushVolAsync, or one of the other two volume
flush functions in this section, to ensure that these changes are written to disk.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushVolSync
Writes the contents of the volume buffer and updates information about the volume. (Deprecated in Mac
OS X v10.5. Use PBFlushVolumeSync (page 132) instead.)

OSErr PBFlushVolSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the VolumeParam (page 256) variant of the basic File Manager parameter block. See
ParamBlockRec (page 249) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Deprecated in Mac OS X v10.5 505
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the volume to flush.

ioVRefNum
On input, the volume reference number, drive number, or 0 for the default volume.

PBFlushVolSync flushes all open files on the volume, and then flushes all volume data structures. On the
volume specified by ioNamePtr or ioVRefNum, the PBFlushVolSync function writes descriptive information
about the volume, the contents of the associated volume buffer, and all access path buffers for the volume
(if they’ve changed since the last time PBFlushVolSync was called).

The date and time of the last modification to the volume are set when the modification is made, not when
the volume is flushed.

To ensure that all changes to a volume are flushed to the volume, use PBFlushVolSync. You do not, however,
need to flush a volume before unmounting it, ejecting it, or putting it offline; this is done automatically.

If changes are made to a file that affect the file’s end-of-file, the file’s name, the file’s Finder information, or
the file’s location on the volume, then you must use PBFlushVolSync, or one of the other two volume flush
functions in this section, to ensure that these changes are written to disk.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBGetVolMountInfo
Retrieves a record containing all the information needed to mount a volume, except for passwords. (Deprecated
in Mac OS X v10.5. Use FSVolumeMount (page 104) instead.)

OSErr PBGetVolMountInfo (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname

506 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioVRefNum
On input, a volume specification. This field can contain a volume reference number, drive number,
or 0 for the default volume.

ioBuffer
On input, a pointer to a buffer to hold the mounting information. The length of the buffer is specified
by the value pointed to by the ioBuffer field in a previous call to PBGetVolMountInfoSize (page
507). On output, the mounting information for the specified volume. You can later pass this structure
to the PBVolumeMount (page 532) function to mount the volume. The mounting information for an
AppleShare volume is stored as an AFP mounting record. The PBGetVolMountInfo function does
not return the user password or volume password in the AFPVolMountInfo structure. Your application
should solicit these passwords from the user and fill in the structure before attempting to mount the
remote volume.

This function allows your application to record the mounting information for a volume and then to mount
the volume later. This programmatic mounting function stores the mounting information in a structure called
the AFPVolMountInfo (page 180) structure.

Special Considerations

This function executes synchronously. You should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBGetVolMountInfoSize
Determines how much space to allocate for a volume mounting information structure. (Deprecated in Mac
OS X v10.5. Use FSVolumeMount (page 104) instead.)

OSErr PBGetVolMountInfoSize (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname

ioVRefNum
On input, a volume specification. This field can contain a volume reference number, drive number,
or 0 for the default volume.

Deprecated in Mac OS X v10.5 507
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioBuffer
On input, a pointer to storage for the size information, which is of type Integer (2 bytes). If
PBGetVolMountInfoSize returns noErr, that integer contains the size of the volume mounting
information structure on output.

You should call this function before you call PBGetVolMountInfo (page 506) , to obtain the size of the
volume mounting information for which you must allocate storage. Then call PBGetVolMountInfo to retrieve
the actual volume mounting information.

Special Considerations

This function executes synchronously. You should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHCopyFileAsync
Duplicates a file and optionally renames it. (Deprecated in Mac OS X v10.5. Use PBFSCopyFileAsync (page
132) instead.)

OSErr PBHCopyFileAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 188) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the source file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the source file.
Pass 0 for the default volume.

508 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioDstVRefNum
On input, the reference number or drive number of the destination volume. Pass 0 for the default
volume.

ioNewName
On input, a pointer to the partial pathname for the destination directory. If ioNewName is NULL, the
destination directory is the directory having the ID specified in the ioNewDirID field.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

This function is especially useful when you want to copy or move files located on a remote volume, because
it allows you to forgo transmitting large amounts of data across a network. This function is used internally
by the Finder; most applications do not need to use it.

Special Considerations

This is an optional call for AppleShare file servers. Your application should examine the information returned
by the PBHGetVolParmsAsync (page 512) function to see if the volume supports PBHCopyFileAsync. If
the bHasCopyFile bit is set in the vMAttrib field of the GetVolParmsInfoBuffer structure, then the
volume supports PBHCopyFileAsync.

For AppleShare file servers, the source and destination pathnames must indicate the same file server; however,
the parameter block may specify different source and destination volumes on that file server. A useful way
to tell if two file server volumes are on the same file server is to call the PBHGetVolParmsAsync (page 512)
function for each volume and compare the server addresses returned. The server opens source files with
read/deny write enabled and destination files with write/deny read and write enabled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHCopyFileSync
Duplicates a file and optionally renames it. (Deprecated in Mac OS X v10.5. Use PBFSCopyFileSync (page
133) instead.)

Deprecated in Mac OS X v10.5 509
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHCopyFileSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 188) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the source file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the source file.
Pass 0 for the default volume.

ioDstVRefNum
On input, the reference number or drive number of the destination volume. Pass 0 for the default
volume.

ioNewName
On input, a pointer to the partial pathname for the destination directory. If ioNewName is NULL, the
destination directory is the directory having the ID specified in the ioNewDirID field.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

This function is especially useful when you want to copy or move files located on a remote volume, because
it allows you to forgo transmitting large amounts of data across a network. This function is used internally
by the Finder; most applications do not need to use it.

Special Considerations

This is an optional call for AppleShare file servers. Your application should examine the information returned
by the PBHGetVolParmsSync (page 514) function to see if the volume supports PBHCopyFileSync. If the
bHasCopyFile bit is set in the vMAttrib field of the GetVolParmsInfoBuffer structure, then the volume
supports PBHCopyFileSync.

For AppleShare file servers, the source and destination pathnames must indicate the same file server; however,
the parameter block may specify different source and destination volumes on that file server. A useful way
to tell if two file server volumes are on the same file server is to call the PBHGetVolParmsSync (page 514)
function for each volume and compare the server addresses returned. The server opens source files with
read/deny write enabled and destination files with write/deny read and write enabled.

Availability
Available in Mac OS X v10.0 and later.

510 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetDirAccessAsync
Returns the access control information for a directory or file. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 66) instead.)

OSErr PBHGetDirAccessAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 177) variant of an HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname for the directory or file.

ioVRefNum
On input, a volume specification for the volume containing the directory or file. This field can contain
a volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On output, the user ID for the owner of the directory or file.

ioACGroupID
On output, the primary group ID of the directory or file.

ioACAccess
On output, the access rights for the directory or file. See “File and Folder Access Privilege
Constants” (page 293) for more information on these access rights.

ioDirID
On input, the directory ID.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 511
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBHGetDirAccessSync
Returns the access control information for a directory or file. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 66) instead.)

OSErr PBHGetDirAccessSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 177) variant of an HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname for the directory or file.

ioVRefNum
On input, a volume specification for the volume containing the directory or file. This field can contain
a volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On output, the user ID for the owner of the directory or file.

ioACGroupID
On output, the primary group ID of the directory or file.

ioACAccess
On output, the access rights for the directory or file. See “File and Folder Access Privilege
Constants” (page 293) for more information on these access rights.

ioDirID
On input, the directory ID.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVolParmsAsync
Returns information about the characteristics of a volume. (Deprecated in Mac OS X v10.5. Use
FSGetVolumeParms (page 75) instead.)

512 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHGetVolParmsAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the volume’s name. You can use a either a name or a volume specification to
specify the volume. If you use a volume specification to specify the volume, you should set the
ioNamePtr field to NULL.

ioVRefNum
On input, a volume specification. You can use a either a name or a volume specification to specify
the volume. A volume specification can be a volume reference number, drive number, or 0 for the
default volume.

ioBuffer
On input, a pointer to a GetVolParmsInfoBuffer (page 230) record; you must allocate this memory
to hold the returned attributes. On return, the PBHGetVolParmsAsync function places the attributes
information in the buffer. Volumes that implement the HFS Plus APIs must use version 3 (or newer)
of the GetVolParmsInfoBuffer structure. If the version of the GetVolParmsInfoBuffer is 2 or
less, or the bSupportsHFSPlusAPIs bit is clear, then the volume does not implement the HFS Plus
APIs and they are being emulated for that volume by the File Manager.

ioReqCount
On input, the size, in bytes, of the buffer area pointed to in the ioBuffer field.

ioActCount
On output, the size of the data actually returned.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 513
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHGetVolParmsSync
Returns information about the characteristics of a volume. (Deprecated in Mac OS X v10.5. Use
FSGetVolumeParms (page 75) instead.)

OSErr PBHGetVolParmsSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 238) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the volume’s name. You can use a either a name or a volume specification to
specify the volume. If you use a volume specification to specify the volume, you should set the
ioNamePtr field to NULL.

ioVRefNum
On input, a volume specification. You can use a either a name or a volume specification to specify
the volume. A volume specification can be a volume reference number, drive number, or 0 for the
default volume.

ioBuffer
On input, a pointer to a GetVolParmsInfoBuffer (page 230) record; you must allocate this memory
to hold the returned attributes. On return, the PBHGetVolParmsSync function places the attributes
information in the buffer. Volumes that implement the HFS Plus APIs must use version 3 (or newer)
of the GetVolParmsInfoBuffer structure. If the version of the GetVolParmsInfoBuffer is 2 or
less, or the bSupportsHFSPlusAPIs bit is clear, then the volume does not implement the HFS Plus
APIs and they are being emulated for that volume by the File Manager.

ioReqCount
On input, the size, in bytes, of the buffer area pointed to in the ioBuffer field.

ioActCount
On output, the size of the data actually returned.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHMapIDAsync
Determines the name of a user or group given the user or group ID. (Deprecated in Mac OS X v10.5. There
is no replacement function.)

514 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHMapIDAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 248) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 1 if you’re mapping a user ID to a user name or 2 if
you’re mapping a group ID to a group name. See “Mapping Code Constants” (page 309) for more
information about the values you can use in this field.

ioObjNamePtr
On output, a pointer to the user or group name; the maximum size of the name is 31 characters
(preceded by a length byte).

ioObjID
On input, the user or group ID to be mapped. AppleShare uses the value 0 to signify Any User.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might not need to
specify a value in the ioObjType field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 515
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHMapIDSync
Determines the name of a user or group given the user or group ID. (Deprecated in Mac OS X v10.5. There
is no replacement function.)

OSErr PBHMapIDSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 248) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 1 if you’re mapping a user ID to a user name or 2 if
you’re mapping a group ID to a group name. See “Mapping Code Constants” (page 309) for more
information about the values you can use in this field.

ioObjNamePtr
On output, a pointer to the user or group name; the maximum size of the name is 31 characters
(preceded by a length byte).

ioObjID
On input, the user or group ID to be mapped. AppleShare uses the value 0 to signify Any User.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might not need to
specify a value in the ioObjType field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHMapNameAsync
Determines the user ID or group ID from a user or group name. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

516 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHMapNameAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 248) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 3 if you’re mapping a user name to a user ID or 4 if
you’re mapping a group name to a group ID. See “Mapping Code Constants” (page 309) for more
information on the values you can use in this field.

ioObjNamePtr
On input, a pointer to the user or group name. The maximum size of the name is 31 characters. If
NULL is passed, the ID returned is always 0.

ioObjID
On output, the mapped user or group ID.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might need to set the
ioObjType field to determine which database (user or group) to search first. If both a user and a group have
the same name, this field determines which kind of ID you receive.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 517
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHMapNameSync
Determines the user ID or group ID from a user or group name. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

OSErr PBHMapNameSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 248) variant of the HFS parameter block. See HParamBlockRec (page
240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 3 if you’re mapping a user name to a user ID or 4 if
you’re mapping a group name to a group ID. See “Mapping Code Constants” (page 309) for more
information on the values you can use in this field.

ioObjNamePtr
On input, a pointer to the user or group name. The maximum size of the name is 31 characters. If
NULL is passed, the ID returned is always 0.

ioObjID
On output, the mapped user or group ID.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might need to set the
ioObjType field to determine which database (user or group) to search first. If both a user and a group have
the same name, this field determines which kind of ID you receive.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

518 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHOpenDenyAsync
Opens a file’s data fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkAsync (page 151) with deny modes in the permissions field.)

OSErr PBHOpenDenyAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. The function returns the result code opWrErr if you’ve
requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
291) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use thePBHOpenDenyAsync andPBHOpenRFDenyAsync (page 521) functions (or their synchronous
counterparts, PBHOpenDenySync (page 520) and PBHOpenRFDenySync (page 522)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenDenyAsync is
not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 514) or
PBHGetVolParmsAsync (page 512) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 291) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

Deprecated in Mac OS X v10.5 519
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

To open a file’s resource fork with access deny permissions, use the PBHOpenRFDenySync (page 522) or
PBHOpenRFDenyAsync (page 521) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenDenySync
Opens a file’s data fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkSync (page 152) with deny modes in the permissions field.)

OSErr PBHOpenDenySync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 177) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). The function returns the result code opWrErr if
you’ve requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
291) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use the PBHOpenDenySync and PBHOpenRFDenySync (page 522) functions (or their asynchronous
counterparts, PBHOpenDenyAsync (page 519) and PBHOpenRFDenyAsync (page 521)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenDenySync is
not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

520 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 514) or
PBHGetVolParmsAsync (page 512) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 291) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s resource fork with access deny permissions, use the PBHOpenRFDenySync (page 522) or
PBHOpenRFDenyAsync (page 521) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFDenyAsync
Opens a file’s resource fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkAsync (page 151) with deny modes in the permissions field.)

OSErr PBHOpenRFDenyAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 177) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. The function returns the result code opWrErr if you’ve
requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

Deprecated in Mac OS X v10.5 521
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
291) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use thePBHOpenRFDenyAsync andPBHOpenDenyAsync (page 519) functions (or their synchronous
counterparts, PBHOpenRFDenySync (page 522) and PBHOpenDenySync (page 520)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenRFDenyAsync
is not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 514) or
PBHGetVolParmsAsync (page 512) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 291) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s data fork with access deny permissions, use the PBHOpenDenySync (page 520) or
PBHOpenDenyAsync (page 519) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFDenySync
Opens a file’s resource fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkSync (page 152) with deny modes in the permissions field.)

OSErr PBHOpenRFDenySync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 177) variant of the basic HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). The function returns the result code opWrErr if
you’ve requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

522 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function.

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
291) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use the PBHOpenRFDenySync and PBHOpenDenySync (page 520) functions (or their asynchronous
counterparts, PBHOpenRFDenyAsync (page 521) and PBHOpenDenyAsync (page 519)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenRFDenySync is
not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 514) or
PBHGetVolParmsAsync (page 512) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 291) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s data fork with access deny permissions, use the PBHOpenDenySync (page 520) or
PBHOpenDenyAsync (page 519) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetDirAccessAsync
Changes the access control information for a directory. (Deprecated in Mac OS X v10.5. Use
FSSetCatalogInfo (page 98) instead.)

Deprecated in Mac OS X v10.5 523
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBHSetDirAccessAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an AccessParam (page 177) variant of an HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the directory. This field can contain a
volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On input, the owner ID.

ioACGroupID
On input, the group ID.

ioACAccess
On input, the directory’s access rights. You cannot set the owner or user rights bits of the ioACAccess
field directly; if you try to do this, PBHSetDirAccessAsync returns the result code paramErr. Only
the blank access privileges can be set for a directory using this function. See “File and Folder Access
Privilege Constants” (page 293) for more information on directory access privileges.

ioDirID
On input, the directory ID.

To change the owner or group, you should set the ioACOwnerID or ioACGroupID field to the appropriate
ID. You must be the owner of the directory to change the owner or group ID. A guest on a server can
manipulate the privileges of any directory owned by the guest.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

524 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBHSetDirAccessSync
Changes the access control information for a directory. (Deprecated in Mac OS X v10.5. Use
FSSetCatalogInfo (page 98) instead.)

OSErr PBHSetDirAccessSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an AccessParam (page 177) variant of an HFS parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the directory. This field can contain a
volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On input, the owner ID.

ioACGroupID
On input, the group ID.

ioACAccess
On input, the directory’s access rights. You cannot set the owner or user rights bits of the ioACAccess
field directly; if you try to do this, PBHSetDirAccessSync returns the result code paramErr. Only
the blank access privileges can be set for a directory using this function. See “File and Folder Access
Privilege Constants” (page 293) for more information on directory access privileges.

ioDirID
On input, the directory ID.

To change the owner or group, you should set the ioACOwnerID or ioACGroupID field to the appropriate
ID. You must be the owner of the directory to change the owner or group ID. A guest on a server can
manipulate the privileges of any directory owned by the guest.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 525
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBMakeFSRefAsync
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated in Mac OS X v10.5. Use
PBMakeFSRefUnicodeAsync (page 148) instead.)

void PBMakeFSRefAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Discussion
For the parameter block based calls, the fields of the source FSSpec are passed as separate parameters (in
the ioNamePtr, ioVRefNum, and ioDirID fields). This allows the call to be dispatched to external file systems
the same way as other FSp calls are.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the file or directory for which you wish to create an FSRef.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This can be a volume
reference number, a drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the file or directory’s parent directory.

newRef
On input, a pointer to an FSRef structure. On output, this FSRef refers to the specified file or
directory.

To obtain an FSSpec from an FSRef, use the PBGetCatalogInfoAsync (page 133) call.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBMakeFSRefSync
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated in Mac OS X v10.5. Use
PBMakeFSRefUnicodeSync (page 149) instead.)

526 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

OSErr PBMakeFSRefSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 220) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
For the parameter block based calls, the fields of the source FSSpec are passed as separate parameters (in
the ioNamePtr, ioVRefNum, and ioDirID fields). This allows the call to be dispatched to external file systems
the same way as other FSp calls are.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file or directory for which you wish to create an FSRef.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This can be a volume
reference number, a drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the file or directory’s parent directory.

newRef
On input, a pointer to an FSRef structure. On output, this FSRef refers to the specified file or
directory.

To obtain an FSSpec from an FSRef, use the PBGetCatalogInfoSync (page 137) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBReadAsync
Reads any number of bytes from an open file. (Deprecated in Mac OS X v10.5. Use PBReadForkAsync (page
155) instead.)

OSErr PBReadAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Deprecated in Mac OS X v10.5 527
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine.

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for an open file to be read.

ioBuffer
On input, a pointer to a data buffer into which the bytes are read.

ioReqCount
On input, the number of bytes requested. The value that you pass in this field should be greater than
zero.

ioActCount
On output, the number of bytes actually read.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

This function attempts to read ioReqCount bytes from the open file whose access path is specified in the
ioRefNum field and transfer them to the data buffer pointed to by the ioBuffer field. The position of the
mark is specified by ioPosMode and ioPosOffset. If your application tries to read past the logical end-of-file,
PBReadAsync reads the data, moves the mark to the end-of-file, and returns eofErr as its function result.
Otherwise, PBReadAsync moves the file mark to the byte following the last byte read and returns noErr.

You can specify that PBReadAsync read the file data 1 byte at a time until the requested number of bytes
have been read or until the end-of-file is reached. To do so, set bit 7 of the ioPosMode field. Similarly, you
can specify that PBReadAsync should stop reading data when it reaches an application-defined newline
character. To do so, place the ASCII code of that character into the high-order byte of the ioPosMode field;
you must also set bit 7 of that field to enable newline mode.

When reading data in newline mode, PBReadAsync returns the newline character as part of the data read
and sets ioActCount to the actual number of bytes placed into the buffer (which includes the newline
character).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

528 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBReadSync
Reads any number of bytes from an open file. (Deprecated in Mac OS X v10.5. Use PBReadForkSync (page
156) instead.)

OSErr PBReadSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for an open file to be read.

ioBuffer
On input, a pointer to a data buffer into which the bytes are read.

ioReqCount
On input, the number of bytes requested. The value that you pass in this field should be greater than
zero.

ioActCount
On output, the number of bytes actually read.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

This function attempts to read ioReqCount bytes from the open file whose access path is specified in the
ioRefNum field and transfer them to the data buffer pointed to by the ioBuffer field. The position of the
mark is specified by ioPosMode and ioPosOffset. If your application tries to read past the logical end-of-file,
PBReadSync reads the data, moves the mark to the end-of-file, and returns eofErr as its function result.
Otherwise, PBReadSync moves the file mark to the byte following the last byte read and returns noErr.

You can specify that PBReadSync read the file data 1 byte at a time until the requested number of bytes
have been read or until the end-of-file is reached. To do so, set bit 7 of the ioPosMode field. Similarly, you
can specify that PBReadSync should stop reading data when it reaches an application-defined newline
character. To do so, place the ASCII code of that character into the high-order byte of the ioPosMode field;
you must also set bit 7 of that field to enable newline mode.

When reading data in newline mode, PBReadSync returns the newline character as part of the data read
and sets ioActCount to the actual number of bytes placed into the buffer (which includes the newline
character).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 529
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBResolveFileIDRefAsync
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 66) instead.)

OSErr PBResolveFileIDRefAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an FIDParam (page 201) variant of the HFS parameter block. See HParamBlockRec (page
240) for more information on the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDS internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 176).

ioResult
On output, the result code of the function. A return code of fidNotFound means that the specified
file ID reference has become invalid, either because the file was deleted or because the file ID reference
was destroyed by PBDeleteFileIDRefSync (page 503) or PBDeleteFileIDRefAsync (page 502).

ioNamePtr
On input, a pointer to a pathname. If the name string is NULL, PBResolveFileIDRefAsync doe s
not return the filename, but returns only the parent directory ID of the file in the ioSrcDirID field.
If the name string is not NULL but is only a volume name, PBResolveFileIDRefAsync ignores the
value in the ioVRefNum field and uses the volume name instead. On output, a pointer to the filename
for the file with the given file ID.

ioVRefNum
On input, a volume specification for the volume containing the file. This field can contain a volume
reference number, a drive number, or 0 for the default volume.

ioSrcDirID
On output, the file’s parent directory ID.

ioFileID
On input, a file ID for the file to retrieve information about.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

530 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Declared In
Files.h

PBResolveFileIDRefSync
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 66) instead.)

OSErr PBResolveFileIDRefSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an FIDParam (page 201) variant of the HFS parameter block. See HParamBlockRec (page
240) for more information on the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326). A return code of fidNotFound means that the
specified file ID reference has become invalid, either because the file was deleted or because the file ID
reference was destroyed by PBDeleteFileIDRefSync (page 503) or PBDeleteFileIDRefAsync (page
502).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. If the name string is NULL, PBResolveFileIDRefSync doe s not
return the filename, but returns only the parent directory ID of the file in the ioSrcDirID field. If the
name string is not NULL but is only a volume name, PBResolveFileIDRefSync ignores the value
in the ioVRefNum field and uses the volume name instead. On output, a pointer to the filename of
the file with the given file ID.

ioVRefNum
On input, a volume specification for the volume containing the file. This field can contain a volume
reference number, drive number, or 0 for the default volume.

ioSrcDirID
On output, the file’s parent directory ID.

ioFileID
On input, a file ID for the file to retrieve information about.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 531
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

PBVolumeMount
Mounts a volume. (Deprecated in Mac OS X v10.5. Use FSVolumeMount (page 104) instead.)

OSErr PBVolumeMount (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 245) variant of the basic File Manager parameter block. See
HParamBlockRec (page 240) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Discussion
The relevant fields of the parameter block are:

ioVRefNum
On output, a volume reference number for the mounted volume.

ioBuffer
On input, a pointer to mounting information. You can use the volume mounting information returned
by the PBGetVolMountInfo (page 506) function or you can use a volume mounting information
structure filled in by your application. If you’re mounting an AppleShare volume, place the volume’s
AFP mounting information structure in the buffer pointed to by the ioBuffer field.

This function allows your application to record the mounting information for a volume and then to mount
the volume later.

The PBGetVolMountInfo function does not return the user and volume passwords they’re returned blank.
Typically, your application asks the user for any necessary passwords and fills in those fields just before calling
PBVolumeMount. If you want to mount a volume with guest status, pass an empty string as the user password.

If you have enough information about the volume, you can fill in the mounting structure yourself and call
PBVolumeMount, even if you did not save the mounting information while the volume was mounted. To
mount an AFP volume, you must fill in the structure with at least the zone name, server name, user name,
user password, and volume password. You can lay out the fields in any order within the data field, as long
as you specify the correct offsets.

In general, it is easier to mount remote volumes by creating and then resolving alias records that describe
those volumes. The Alias Manager displays the standard user interface for user authentication when resolving
alias records for remote volumes. As a result, this function is primarily of interest for applications that need
to mount remote volumes with no user interface or with some custom user interface.

Special Considerations

AFP volumes currently ignore the user authentication method passed in the uamType field of the volume
mounting information structure whose address is passed in the ioBuffer field of the parameter block. The
most secure available method is used by default, except when a user mounts the volume as Guest and uses
the kNoUserAuthentication authentication method.

This function executes synchronously. You should not call it at interrupt time.

Version Notes
The File Sharing workstation software introduced in system software version 7.0 does not currently pass the
volume password. The AppleShare 3.0 workstation software does, however, pass the volume password.

532 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBWaitIOComplete
Keeps the system idle until either an interrupt occurs or the specified timeout value is reached. (Deprecated
in Mac OS X v10.5. There is no replacement function.)

OSErr PBWaitIOComplete (
 ParmBlkPtr paramBlock,
 Duration timeout
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

timeout
The maximum length of time you want the system to be kept idle.

Return Value
A result code. If the timeout value is reached, returns kMPTimeoutErr.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBWriteAsync
Writes any number of bytes to an open file. (Deprecated in Mac OS X v10.5. Use PBWriteForkAsync (page
167) instead.)

OSErr PBWriteAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 326).

Deprecated in Mac OS X v10.5 533
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine.

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file to which to write.

ioBuffer
On input, a pointer to a data buffer containing the bytes to write.

ioReqCount
On input, the number of bytes requested.

ioActCount
On output, the number of bytes actually written.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

The PBWriteAsync function takes ioReqCount bytes from the buffer pointed to by ioBuffer and attempts
to write them to the open file whose access path is specified by ioRefNum. The position of the mark is
specified by ioPosMode and ioPosOffset. If the write operation completes successfully, PBWriteAsync
moves the file mark to the byte following the last byte written and returns noErr. If you try to write past the
logical end-of-file, PBWriteAsyncmoves the logical end-of-file. If you try to write past the physical end-of-file,
PBWriteAsync adds one or more clumps to the file and moves the physical end-of-file accordingly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBWriteSync
Writes any number of bytes to an open file. (Deprecated in Mac OS X v10.5. Use PBWriteForkSync (page
168) instead.)

OSErr PBWriteSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 326).

534 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file to which to write.

ioBuffer
On input, a pointer to a data buffer containing the bytes to write.

ioReqCount
On input, the number of bytes requested.

ioActCount
On output, the number of bytes actually written.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

The PBWriteSync function takes ioReqCount bytes from the buffer pointed to by ioBuffer and attempts
to write them to the open file whose access path is specified by ioRefNum. The position of the mark is
specified by ioPosMode and ioPosOffset. If the write operation completes successfully, PBWriteSync
moves the file mark to the byte following the last byte written and returns noErr. If you try to write past the
logical end-of-file, PBWriteSyncmoves the logical end-of-file. If you try to write past the physical end-of-file,
PBWriteSync adds one or more clumps to the file and moves the physical end-of-file accordingly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Deprecated in Mac OS X v10.5 535
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

536 Deprecated in Mac OS X v10.5
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated File Manager Functions

This table describes the changes to File Manager Reference.

NotesDate

Made minor format changes and added new content.2007-07-13

Added information about high-level operations for moving objects to the Trash.

Added information about high-level file operations. Removed constants and
data types not declared in Files.h.

2006-09-05

Added deprecation information.2006-03-08

Added field descriptions to HParamBlockRec (page 240).

Updated description of the file access permission constant fsRdWrShPerm (page
292).

Updated descriptions of several fields in the FSCatalogInfo (page 209)
structure.

Updated to fix several documentation bugs.2005-08-11

Added new information to discussion of FSGetVolumeInfo function.2005-04-29

Moved functions that are no longer recommended to the section “Not
Recommended” (page 36).

2004-03-01

Changed the discussion of FSGetCatalogInfoBulk (page 67).

Updated the description of the whichInfo parameter to the functions
FSSetCatalogInfo (page 98), PBSetCatalogInfoSync (page 161), and
PBSetCatalogInfoAsync (page 159).

Added constant descriptions to “Extended Volume Attributes” (page 286).

Updated the discussion for the PBLockRangeSync (page 472) and
PBLockRangeAsync (page 470) functions.

Corrected the description of the ioVDrvInfo argument to
PBHGetVInfoSync (page 446) and PBHGetVInfoAsync (page 443).

Corrected the description of the driveNumber field of the FSVolumeInfo (page
225) structure.

Updated discussion of several functions in the section “Getting and Setting
Volume Information” (page 26).

537
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Updated formatting.2003-02-01

538
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AccessParam structure 177
AFP Tag Length Constants 268
AFP Tag Type Constants 269
afpAccessDenied constant 333
afpAlreadyLoggedInErr constant 336
afpAlreadyMounted constant 337
AFPAlternateAddress structure 179
afpAuthContinue constant 333
afpBadDirIDType constant 337
afpBadIDErr constant 336
afpBadUAM constant 333
afpBadVersNum constant 333
afpBitmapErr constant 333
afpCallNotAllowed constant 336
afpCallNotSupported constant 335
afpCantMountMoreSrvre constant 337
afpCantMove constant 334
afpCantRename constant 335
afpCatalogChanged constant 336
afpContainsSharedErr constant 335
afpDenyConflict constant 334
afpDiffVolErr constant 336
afpDirNotEmpty constant 334
afpDirNotFound constant 335
afpDiskFull constant 334
afpEofError constant 334
afpFileBusy constant 334
afpFlatVol constant 334
afpIconTypeError constant 335
afpIDExists constant 336
afpIDNotFound constant 336
afpInsideSharedErr constant 336
afpInsideTrashErr constant 336
afpItemNotFound constant 334
afpLockErr constant 334
afpMiscErr constant 334
afpNoMoreLocks constant 334
afpNoServer constant 334
afpObjectExists constant 334

afpObjectLocked constant 335
afpObjectNotFound constant 334
afpObjectTypeErr constant 335
afpParmErr constant 334
afpPwdExpiredErr constant 336
afpPwdNeedsChangeErr constant 336
afpPwdPolicyErr constant 336
afpPwdSameErr constant 336
afpPwdTooShortErr constant 336
afpRangeNotLocked constant 335
afpRangeOverlap constant 335
afpSameNodeErr constant 337
afpSameObjectErr constant 336
afpServerGoingDown constant 335
afpSessClosed constant 335
AFPTagData structure 179
afpTooManyFilesOpen constant 335
afpUserNotAuth constant 335
afpVolLocked constant 335
AFPVolMountInfo structure 180
AFPXVolMountInfo structure 182
Allocate function (Deprecated in Mac OS X v10.4) 339
Allocation Flags 270
AllocContig function (Deprecated in Mac OS X v10.4)

340
AppleShare Volume Signature 271
Authentication Method Constants 271

B

bAccessCntl constant 316
badFCBErr constant 330
badFidErr constant 330
badMDBErr constant 328
badMovErr constant 329
bAllowCDiDataHandler constant 288
bAncestorModDateChanges constant 288
bdNamErr constant 326
bDoNotDisplay constant 289
bHasBlankAccessPrivileges constant 318
bHasBTreeMgr constant 318

539
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

Index

bHasCatSearch constant 318
bHasCopyFile constant 317
bHasDesktopMgr constant 317
bHasExtFSVol constant 317
bHasFileIDs constant 318
bHasFolderLock constant 317
bHasMoveRename constant 317
bHasOpenDeny constant 317
bHasPersonalAccessPrivileges constant 317
bHasShortName constant 317
bHasUserGroupList constant 317
bIsAutoMounted constant 288
bIsCasePreserving constant 289
bIsCaseSensitive constant 289
bIsEjectable constant 287
bL2PCanMapFileBlocks constant 288
bLimitFCBs constant 315
bLocalWList constant 315
bNoBootBlks constant 316
bNoDeskItems constant 316
bNoLclSync constant 316
bNoMiniFndr constant 315
bNoSwitchTo constant 316
bNoSysDir constant 317
bNoVNEdit constant 315
bNoVolumeSizes constant 289
bParentModDateChanges constant 288
bSupports2TBFiles constant 287
bSupportsAsyncRequests constant 318
bSupportsExclusiveLocks constant 288
bSupportsFSCatalogSearch constant 287
bSupportsFSExchangeObjects constant 287
bSupportsHFSPlusAPIs constant 287
bSupportsJournaling constant 289
bSupportsLongNames constant 287
bSupportsMultiScriptNames constant 288
bSupportsNamedForks constant 288
bSupportsSubtreeIterators constant 288
bSupportsSymbolicLinks constant 288
bSupportsTrashVolumeCache constant 318
bTrshOffLine constant 316

C

Cache Constants 272
Catalog Information Bitmap Constants 274
Catalog Information Node Flags 277
Catalog Information Sharing Flags 279
Catalog Search Bits 279
Catalog Search Constants 282
Catalog Search Masks 283
catChangedErr constant 330

CatMove function (Deprecated in Mac OS X v10.4) 341
CatPositionRec structure 184
CInfoPBRec structure 184
CMovePBRec structure 185
CntrlParam structure 186
ConstFSSpecPtr data type 188
ConstHFSUniStr255Param data type 188
CopyParam structure 188
CSParam structure 190

D

diffVolErr constant 330
DirCreate function (Deprecated in Mac OS X v10.4) 343
dirFulErr constant 326
DirInfo structure 192
dirNFErr constant 328
DisposeFNSubscriptionUPP function 37
DisposeFSVolumeEjectUPP function 38
DisposeFSVolumeMountUPP function 38
DisposeFSVolumeUnmountUPP function 38
DisposeIOCompletionUPP function 39
driverHardwareGoneErr constant 329
DrvQEl structure 195
dskFulErr constant 326
DTPBRec structure 196
dupFNErr constant 327

E

eofErr constant 327
errFSBadAllocFlags constant 332
errFSBadBuffer constant 331
errFSBadForkName constant 331
errFSBadForkRef constant 331
errFSBadFSRef constant 330
errFSBadInfoBitmap constant 331
errFSBadItemCount constant 332
errFSBadIteratorFlags constant 333
errFSBadPosMode constant 332
errFSBadSearchParams constant 332
errFSForkExists constant 333
errFSForkNotFound constant 332
errFSIteratorNotFound constant 333
errFSIteratorNotSupported constant 333
errFSMissingCatInfo constant 331
errFSMissingName constant 332
errFSNameTooLong constant 332
errFSNoMoreItems constant 332
errFSNotAFolder constant 332

540
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

errFSQuotaExceeded constant 333
errFSRefsDifferent constant 333
errFSUnknownCall constant 330
Extended AFP Volume Mounting Information Flag 286
Extended Volume Attributes 286
extFSErr constant 328

F

fBsyErr constant 327
FCB Flags 289
FCBPBRec structure 199
fidExists constant 329
fidNotFound constant 329
FIDParam structure 201
File Access Permission Constants 291
File and Folder Access Privilege Constants 293
File Attribute Constants 297
File Operation Options 300
File Operation Stages 301
File Operation Status Dictionary Keys 302
fileBoundsErr constant 330
FileParam structure 202
firstDskErr constant 328
fLckdErr constant 327
FlushVol function (Deprecated in Mac OS X v10.5) 498
fnfErr constant 327
FNGetDirectoryForSubscription function 39
FNMessage 304
FNNotify function 40
FNNotifyAll function 40
FNNotifyByPath function 41
fnOpnErr constant 327
FNSubscribe function 41
FNSubscribeByPath function 42
FNSubscriptionProcPtr callback 171
FNSubscriptionRef data type 205
FNSubscriptionUPP data type 205
FNUnsubscribe function 43
forceReadBit constant 273
forceReadMask constant 273
Foreign Privilege Model Constant 304
ForeignPrivParam structure 205
FSAllocateFork function 43
fsAtMark constant 311
FSCancelVolumeOperation function 44
FSCatalogBulkParam structure 207
FSCatalogInfo structure 209
FSCatalogInfoBitmap data type 211
FSCatalogSearch function 45
FSClose function (Deprecated in Mac OS X v10.4) 343
FSCloseFork function 47

FSCloseIterator function 48
FSCompareFSRefs function 48
FSCopyDiskIDForVolume function 49
FSCopyObjectAsync function 49
FSCopyObjectSync function 50
FSCopyURLForVolume function 51
FSCreateDirectoryUnicode function 52
FSCreateFileUnicode function 53
FSCreateFork function 55
FSCreateVolumeOperation function 55
fsCurPerm constant 292
fsDataTooBigErr constant 330
FSDeleteFork function 56
FSDeleteObject function 56
FSDisposeVolumeOperation function 57
fsDSIntErr constant 329
FSEjectStatus data type 212
FSEjectVolumeAsync function 57
FSEjectVolumeSync function 58
FSExchangeObjects function 59
FSFileOperationCancel function 60
FSFileOperationClientContext structure 212
FSFileOperationCopyStatus function 60
FSFileOperationCreate function 61
FSFileOperationGetTypeID function 62
FSFileOperationRef data type 213
FSFileOperationScheduleWithRunLoop function 62
FSFileOperationStatusProcPtr callback 172
FSFileOperationUnscheduleFromRunLoop function

62
FSFlushFork function 63
FSFlushVolume function 64
FSForkCBInfoParam structure 213
FSForkInfo structure 215
FSForkIOParam structure 216
fsFromLEOF constant 311
fsFromMark constant 312
fsFromStart constant 311
FSGetAsyncEjectStatus function 64
FSGetAsyncMountStatus function 65
FSGetAsyncUnmountStatus function 65
FSGetCatalogInfo function 66
FSGetCatalogInfoBulk function 67
FSGetDataForkName function 69
FSGetForkCBInfo function 69
FSGetForkPosition function 71
FSGetForkSize function 72
FSGetResourceForkName function 72
FSGetVolumeInfo function 73
FSGetVolumeMountInfo function 74
FSGetVolumeMountInfoSize function 74
FSGetVolumeParms function 75
FSIterateForks function 75

541
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

FSIterator data type 218
FSLockRange function 76
FSMakeFSRefUnicode function 76
FSMakeFSSpec function (Deprecated in Mac OS X v10.4)

344
fsmBadFFSNameErr constant 329
fsmBadFSDLenErr constant 329
fsmBadFSDVersionErr constant 329
fsmBusyFFSErr constant 329
fsmDuplicateFSIDErr constant 329
fsmFFSNotFoundErr constant 329
fsmNoAlternateStackErr constant 329
FSMountLocalVolumeAsync function 77
FSMountLocalVolumeSync function 78
FSMountServerVolumeAsync function 79
FSMountServerVolumeSync function 80
FSMountStatus data type 218
FSMoveObject function 81
FSMoveObjectAsync function 82
FSMoveObjectSync function 83
FSMoveObjectToTrashAsync function 84
FSMoveObjectToTrashSync function 85
fsmUnknownFSMMessageErr constant 329
FSOpenFork function 85
FSOpenIterator function 86
FSPathCopyObjectAsync function 88
FSPathCopyObjectSync function 89
FSPathFileOperationCopyStatus function 89
FSPathFileOperationStatusProcPtr callback 173
FSPathMakeRef function 90
FSPathMakeRefWithOptions function 91
FSPathMoveObjectAsync function 92
FSPathMoveObjectSync function 93
FSPathMoveObjectToTrashAsync function 94
FSPathMoveObjectToTrashSync function 95
FSpCatMove function (Deprecated in Mac OS X v10.4)

345
FSpCreate function (Deprecated in Mac OS X v10.4) 346
FSpDelete function (Deprecated in Mac OS X v10.4) 348
FSpDirCreate function (Deprecated in Mac OS X v10.4)

348
FSPermissionInfo structure 219
FSpExchangeFiles function (Deprecated in Mac OS X

v10.4) 349
FSpGetFInfo function (Deprecated in Mac OS X v10.4)

351
FSpMakeFSRef function (Deprecated in Mac OS X v10.5)

498
FSpOpenDF function (Deprecated in Mac OS X v10.4) 352
FSpOpenRF function (Deprecated in Mac OS X v10.4) 352
FSpRename function (Deprecated in Mac OS X v10.4) 354
FSpRstFLock function (Deprecated in Mac OS X v10.4)

354

FSpSetFInfo function (Deprecated in Mac OS X v10.4)
355

FSpSetFLock function (Deprecated in Mac OS X v10.4)
355

FSRangeLockParam structure 219
FSRangeLockParamPtr data type 219
fsRdDenyPerm constant 293
fsRdPerm constant 292
fsRdWrPerm constant 292
fsRdWrShPerm constant 292
FSRead function (Deprecated in Mac OS X v10.4) 356
FSReadFork function 95
FSRef structure 220
FSRefMakePath function 97
FSRefParam structure 220
FSRenameUnicode function 97
fsRnErr constant 328
fsRtDirID constant 312
fsRtParID constant 312
fsSBAccessDate constant 283
fsSBAccessDateBit constant 283
fsSBAttributeModDate constant 282
fsSBAttributeModDateBit constant 283
fsSBDrBkDat constant 286
fsSBDrBkDatBit constant 282
fsSBDrCrDat constant 286
fsSBDrCrDatBit constant 282
fsSBDrFndrInfo constant 286
fsSBDrFndrInfoBit constant 282
fsSBDrMdDat constant 286
fsSBDrMdDatBit constant 282
fsSBDrNmFls constant 285
fsSBDrNmFlsBit constant 281
fsSBDrParID constant 286
fsSBDrParIDBit constant 282
fsSBDrUsrWds constant 285
fsSBDrUsrWdsBit constant 281
fsSBFlAttrib constant 284
fsSBFlAttribBit constant 280
fsSBFlBkDat constant 285
fsSBFlBkDatBit constant 281
fsSBFlCrDat constant 285
fsSBFlCrDatBit constant 281
fsSBFlFndrInfo constant 284
fsSBFlFndrInfoBit constant 280
fsSBFlLgLen constant 284
fsSBFlLgLenBit constant 280
fsSBFlMdDat constant 285
fsSBFlMdDatBit constant 281
fsSBFlParID constant 285
fsSBFlParIDBit constant 281
fsSBFlPyLen constant 284
fsSBFlPyLenBit constant 280

542
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

fsSBFlRLgLen constant 285
fsSBFlRLgLenBit constant 281
fsSBFlRPyLen constant 285
fsSBFlRPyLenBit constant 281
fsSBFlXFndrInfo constant 285
fsSBFlXFndrInfoBit constant 281
fsSBFullName constant 284
fsSBFullNameBit constant 280
fsSBNegate constant 285
fsSBNegateBit constant 281
fsSBNodeID constant 282
fsSBNodeIDBit constant 283
fsSBPartialName constant 284
fsSBPartialNameBit constant 280
fsSBPermissions constant 283
fsSBPermissionsBit constant 283
FSSearchParams structure 222
FSSetCatalogInfo function 98
FSSetForkPosition function 99
FSSetForkSize function 100
FSSetVolumeInfo function 101
FSSpec structure 223
FSSpecArrayPtr data type 224
fsUnixPriv constant 304
FSUnlockRange function 102
FSUnmountStatus data type 225
FSUnmountVolumeAsync function 102
FSUnmountVolumeSync function 103
FSVolumeEjectProcPtr callback 174
FSVolumeEjectUPP data type 225
FSVolumeInfo structure 225
FSVolumeInfoBitmap data type 228
FSVolumeInfoParam structure 228
FSVolumeMount function 104
FSVolumeMountProcPtr callback 175
FSVolumeMountUPP data type 229
FSVolumeOperation data type 230
FSVolumeRefNum data type 230
FSVolumeUnmountProcPtr callback 176
FSVolumeUnmountUPP data type 230
fsWrDenyPerm constant 293
FSWrite function (Deprecated in Mac OS X v10.4) 357
FSWriteFork function 104
fsWrPerm constant 292

G

GetEOF function (Deprecated in Mac OS X v10.4) 358
GetFPos function (Deprecated in Mac OS X v10.4) 359
GetVolParmsInfoBuffer structure 230
GetVRefNum function (Deprecated in Mac OS X v10.4)

359

gfpErr constant 328
Group ID Constant 304

H

HCreate function (Deprecated in Mac OS X v10.4) 360
HDelete function (Deprecated in Mac OS X v10.4) 361
HFileInfo structure 232
HFileParam structure 235
HFSUniStr255 structure 238
HGetFInfo function (Deprecated in Mac OS X v10.4) 362
HGetVol function (Deprecated in Mac OS X v10.4) 362
HIOParam structure 238
HOpen function (Deprecated in Mac OS X v10.4) 363
HOpenDF function (Deprecated in Mac OS X v10.4) 364
HOpenRF function (Deprecated in Mac OS X v10.4) 365
HParamBlockRec structure 240
HRename function (Deprecated in Mac OS X v10.4) 366
HRstFLock function (Deprecated in Mac OS X v10.4) 367
HSetFInfo function (Deprecated in Mac OS X v10.4) 368
HSetFLock function (Deprecated in Mac OS X v10.4) 368
HSetVol function (Deprecated in Mac OS X v10.4) 369
HVolumeParam structure 242

I

Icon Size Constants 304
Icon Type Constants 305
Invalid Volume Reference Constant 307
InvokeFNSubscriptionUPP function 105
InvokeFSVolumeEjectUPP function 105
InvokeFSVolumeMountUPP function 106
InvokeFSVolumeUnmountUPP function 106
InvokeIOCompletionUPP function 107
IOCompletionProcPtr callback 176
IOCompletionUPP data type 244
ioDirFlg constant 299
ioDirMask constant 299
ioErr constant 326
IOParam structure 245
Iterator Flags 307

K

kadministratorUser constant 313
kAFPExtendedFlagsAlternateAddressMask constant

286
kAFPTagLengthDDP constant 269
kAFPTagLengthIP constant 269

543
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

kAFPTagLengthIPPort constant 269
kAFPTagTypeDDP constant 269
kAFPTagTypeDNS constant 270
kAFPTagTypeIP constant 269
kAFPTagTypeIPPort constant 269
kAsyncEjectComplete constant 308
kAsyncEjectInProgress constant 308
kAsyncMountComplete constant 308
kAsyncMountInProgress 308
kAsyncMountInProgress constant 308
kAsyncUnmountComplete constant 308
kAsyncUnmountInProgress constant 308
kEncryptPassword constant 271
kFNDirectoryModifiedMessage constant 304
kFNNoImplicitAllSubscription constant 308
kFNNotifyInBackground constant 309
kFSAllocAllOrNothingMask constant 270
kFSAllocContiguousMask constant 270
kFSAllocDefaultFlags constant 270
kFSAllocNoRoundUpMask constant 270
kFSAllocReservedMask constant 271
kFSCatInfoAccessDate constant 275
kFSCatInfoAllDates constant 276
kFSCatInfoAttrMod constant 275
kFSCatInfoBackupDate constant 275
kFSCatInfoContentMod constant 275
kFSCatInfoCreateDate constant 275
kFSCatInfoDataSizes constant 276
kFSCatInfoFinderInfo constant 275
kFSCatInfoFinderXInfo constant 276
kFSCatInfoGettableInfo constant 276
kFSCatInfoNodeFlags constant 274
kFSCatInfoNodeID constant 275
kFSCatInfoNone constant 274
kFSCatInfoParentDirID constant 275
kFSCatInfoPermissions constant 275
kFSCatInfoReserved constant 277
kFSCatInfoRsrcSizes constant 276
kFSCatInfoSetOwnership constant 276
kFSCatInfoSettableInfo constant 277
kFSCatInfoSharingFlags constant 276
kFSCatInfoTextEncoding constant 274
kFSCatInfoUserAccess constant 276
kFSCatInfoUserPrivs constant 276
kFSCatInfoValence constant 276
kFSCatInfoVolume constant 275
kFSFileOperationDefaultOptions constant 300
kFSFileOperationDoNotMoveAcrossVolumes

constant 301
kFSFileOperationOverwrite constant 301
kFSFileOperationSkipPreflight constant 301
kFSFileOperationSkipSourcePermissionErrors

constant 301

kFSInvalidVolumeRefNum constant 307
kFSIterateDelete constant 307
kFSIterateFlat constant 307
kFSIterateReserved constant 307
kFSIterateSubtree constant 307
kFSNodeCopyProtectBit constant 278
kFSNodeCopyProtectMask constant 278
kFSNodeDataOpenBit constant 278
kFSNodeDataOpenMask constant 278
kFSNodeForkOpenBit constant 278
kFSNodeForkOpenMask constant 278
kFSNodeHardLinkBit constant 278
kFSNodeHardLinkMask constant 278
kFSNodeInSharedBit constant 279
kFSNodeInSharedMask constant 279
kFSNodeIsDirectoryBit constant 278
kFSNodeIsDirectoryMask constant 278
kFSNodeIsMountedBit constant 279
kFSNodeIsMountedMask constant 279
kFSNodeIsSharePointBit constant 279
kFSNodeIsSharePointMask constant 279
kFSNodeLockedBit constant 277
kFSNodeLockedMask constant 277
kFSNodeResOpenBit constant 277
kFSNodeResOpenMask constant 278
kFSOperationBytesCompleteKey constant 302
kFSOperationBytesRemainingKey constant 302
kFSOperationObjectsCompleteKey constant 303
kFSOperationObjectsRemainingKey constant 303
kFSOperationStageComplete constant 302
kFSOperationStagePreflighting constant 301
kFSOperationStageRunning constant 302
kFSOperationStageUndefined constant 301
kFSOperationThroughputKey constant 303
kFSOperationTotalBytesKey constant 302
kFSOperationTotalObjectsKey constant 303
kFSOperationTotalUserVisibleObjectsKey

constant 303
kFSOperationUserVisibleObjectsCompleteKey

constant 303
kFSOperationUserVisibleObjectsRemainingKey

constant 303
kFSPathMakeRefDefaultOptions constant 311
kFSPathMakeRefDoNotFollowLeafSymlink constant

311
kFSVolFlagDefaultVolumeBit constant 324
kFSVolFlagDefaultVolumeMask constant 324
kFSVolFlagFilesOpenBit constant 324
kFSVolFlagFilesOpenMask constant 324
kFSVolFlagHardwareLockedBit constant 324
kFSVolFlagHardwareLockedMask constant 324
kFSVolFlagSoftwareLockedBit constant 324
kFSVolFlagSoftwareLockedMask constant 324

544
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

kFSVolInfoBackupDate constant 322
kFSVolInfoBlocks constant 322
kFSVolInfoCheckedDate constant 322
kFSVolInfoCreateDate constant 321
kFSVolInfoDataClump constant 322
kFSVolInfoDirCount constant 322
kFSVolInfoDriveInfo constant 323
kFSVolInfoFileCount constant 322
kFSVolInfoFinderInfo constant 323
kFSVolInfoFlags constant 323
kFSVolInfoFSInfo constant 323
kFSVolInfoGettableInfo constant 323
kFSVolInfoModDate constant 321
kFSVolInfoNextAlloc constant 322
kFSVolInfoNextID constant 322
kFSVolInfoNone constant 321
kFSVolInfoRsrcClump constant 322
kFSVolInfoSettableInfo constant 323
kFSVolInfoSizes constant 322
kfullPrivileges constant 297
kGroupID2Name constant 310
kGroupName2ID constant 310
kHFSCatalogNodeIDsReusedBit 309
kHFSCatalogNodeIDsReusedBit constant 309
kHFSCatalogNodeIDsReusedMask constant 309
kicnsIconFamily constant 306
kioACAccessBlankAccessBit constant 294
kioACAccessBlankAccessMask constant 294
kioACAccessEveryoneReadBit constant 295
kioACAccessEveryoneReadMask constant 295
kioACAccessEveryoneSearchBit constant 296
kioACAccessEveryoneSearchMask constant 296
kioACAccessEveryoneWriteBit constant 295
kioACAccessEveryoneWriteMask constant 295
kioACAccessGroupReadBit constant 296
kioACAccessGroupReadMask constant 296
kioACAccessGroupSearchBit constant 296
kioACAccessGroupSearchMask constant 296
kioACAccessGroupWriteBit constant 296
kioACAccessGroupWriteMask constant 296
kioACAccessOwnerBit constant 294
kioACAccessOwnerMask constant 294
kioACAccessOwnerReadBit constant 297
kioACAccessOwnerReadMask constant 297
kioACAccessOwnerSearchBit constant 297
kioACAccessOwnerSearchMask constant 297
kioACAccessOwnerWriteBit constant 296
kioACAccessOwnerWriteMask constant 296
kioACAccessUserReadBit constant 295
kioACAccessUserReadMask constant 295
kioACAccessUserSearchBit constant 295
kioACAccessUserSearchMask constant 295
kioACAccessUserWriteBit constant 295

kioACAccessUserWriteMask constant 295
kioACUserNoMakeChangesBit constant 313
kioACUserNoMakeChangesMask constant 313
kioACUserNoSeeFilesBit constant 313
kioACUserNoSeeFilesMask constant 313
kioACUserNoSeeFolderBit constant 313
kioACUserNoSeeFolderMask constant 313
kioACUserNotOwnerBit constant 314
kioACUserNotOwnerMask constant 314
kioFCBFileLockedBit constant 291
kioFCBFileLockedMask constant 291
kioFCBLargeFileBit constant 290
kioFCBLargeFileMask constant 291
kioFCBModifiedBit constant 291
kioFCBModifiedMask constant 291
kioFCBOwnClumpBit constant 291
kioFCBOwnClumpMask constant 291
kioFCBResourceBit constant 290
kioFCBResourceMask constant 290
kioFCBSharedWriteBit constant 291
kioFCBSharedWriteMask constant 291
kioFCBWriteBit constant 290
kioFCBWriteLockedBit constant 290
kioFCBWriteLockedMask constant 290
kioFCBWriteMask constant 290
kioFlAttribCopyProtBit constant 299
kioFlAttribCopyProtMask constant 299
kioFlAttribDataOpenBit constant 298
kioFlAttribDataOpenMask constant 299
kioFlAttribDirBit constant 299
kioFlAttribDirMask constant 299
kioFlAttribFileOpenBit constant 299
kioFlAttribFileOpenMask constant 299
kioFlAttribInSharedBit constant 299
kioFlAttribInSharedMask constant 300
kioFlAttribLockedBit constant 298
kioFlAttribLockedMask constant 298
kioFlAttribMountedBit constant 300
kioFlAttribMountedMask constant 300
kioFlAttribResOpenBit constant 298
kioFlAttribResOpenMask constant 298
kioFlAttribSharePointBit constant 300
kioFlAttribSharePointMask constant 300
kioVAtrbDefaultVolumeBit constant 320
kioVAtrbDefaultVolumeMask constant 320
kioVAtrbFilesOpenBit constant 320
kioVAtrbFilesOpenMask constant 320
kioVAtrbHardwareLockedBit constant 320
kioVAtrbHardwareLockedMask constant 320
kioVAtrbSoftwareLockedBit constant 320
kioVAtrbSoftwareLockedMask constant 321
kLarge4BitIcon constant 306
kLarge4BitIconSize constant 305

545
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

kLarge8BitIcon constant 306
kLarge8BitIconSize constant 305
kLargeIcon constant 306
kLargeIconSize constant 305
kMaximumBlocksIn4GB constant 309
knoGroup constant 304
knoUser constant 312
kNoUserAuthentication constant 271
kOwnerID2Name constant 310
kOwnerName2ID constant 310
kownerPrivileges constant 297
kPassword constant 271
kReturnNextGroup constant 310
kReturnNextUG constant 310
kReturnNextUser constant 310
kSmall4BitIcon constant 306
kSmall4BitIconSize constant 305
kSmall8BitIcon constant 306
kSmall8BitIconSize constant 305
kSmallIcon constant 306
kSmallIconSize constant 305
kTwoWayEncryptPassword constant 271
kUseWidePositioning constant 309
kVCBFlagsHardwareGoneBit constant 319
kVCBFlagsHardwareGoneMask constant 319
kVCBFlagsHFSPlusAPIsBit constant 319
kVCBFlagsHFSPlusAPIsMask constant 319
kVCBFlagsIdleFlushBit constant 319
kVCBFlagsIdleFlushMask constant 319
kVCBFlagsVolumeDirtyBit constant 319
kVCBFlagsVolumeDirtyMask constant 319
kWidePosOffsetBit constant 309

L

Large Volume Constants 309
lastDskErr constant 328

M

Mapping Code Constants 309
mFulErr constant 327
MultiDevParam structure 246

N

NewFNSubscriptionUPP function 107
NewFSVolumeEjectUPP function 108
NewFSVolumeMountUPP function 108

NewFSVolumeUnmountUPP function 108
NewIOCompletionUPP function 109
newLineBit constant 273
newLineCharMask constant 273
newLineMask constant 273
noCacheBit constant 272
noCacheMask constant 272
noDriveErr constant 328
noMacDskErr constant 328
notAFileErr constant 330
notARemountErr constant 330
Notification Subscription Options 308
nsDrvErr constant 328
nsvErr constant 326

O

ObjParam structure 248
opWrErr constant 327

P

ParamBlockRec structure 249
paramErr constant 327
Path Conversion Options 311
PBAllocateAsync function (Deprecated in Mac OS X

v10.4) 370
PBAllocateForkAsync function 109
PBAllocateForkSync function 110
PBAllocateSync function (Deprecated in Mac OS X

v10.4) 372
PBAllocContigAsync function (Deprecated in Mac OS

X v10.4) 373
PBAllocContigSync function (Deprecated in Mac OS X

v10.4) 374
PBCatalogSearchAsync function 111
PBCatalogSearchSync function 113
PBCatMoveAsync function (Deprecated in Mac OS X

v10.4) 376
PBCatMoveSync function (Deprecated in Mac OS X v10.4)

377
PBCatSearchAsync function (Deprecated in Mac OS X

v10.4) 378
PBCatSearchSync function (Deprecated in Mac OS X

v10.4) 380
PBCloseAsync function (Deprecated in Mac OS X v10.5)

499
PBCloseForkAsync function 115
PBCloseForkSync function 115
PBCloseIteratorAsync function 116

546
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

PBCloseIteratorSync function 117
PBCloseSync function (Deprecated in Mac OS X v10.5)

500
PBCompareFSRefsAsync function 117
PBCompareFSRefsSync function 118
PBCreateDirectoryUnicodeAsync function 119
PBCreateDirectoryUnicodeSync function 120
PBCreateFileIDRefAsync function (Deprecated in Mac

OS X v10.5) 501
PBCreateFileIDRefSync function (Deprecated in Mac

OS X v10.5) 502
PBCreateFileUnicodeAsync function 121
PBCreateFileUnicodeSync function 123
PBCreateForkAsync function 124
PBCreateForkSync function 125
PBDeleteFileIDRefAsync function (Deprecated in Mac

OS X v10.5) 502
PBDeleteFileIDRefSync function (Deprecated in Mac

OS X v10.5) 503
PBDeleteForkAsync function 126
PBDeleteForkSync function 126
PBDeleteObjectAsync function 127
PBDeleteObjectSync function 128
PBDirCreateAsync function (Deprecated in Mac OS X

v10.4) 382
PBDirCreateSync function (Deprecated in Mac OS X

v10.4) 383
PBDTAddAPPLAsync function (Deprecated in Mac OS X

v10.4) 384
PBDTAddAPPLSync function (Deprecated in Mac OS X

v10.4) 385
PBDTAddIconAsync function (Deprecated in Mac OS X

v10.4) 386
PBDTAddIconSync function (Deprecated in Mac OS X

v10.4) 387
PBDTCloseDown function (Deprecated in Mac OS X v10.4)

389
PBDTDeleteAsync function (Deprecated in Mac OS X

v10.4) 389
PBDTDeleteSync function (Deprecated in Mac OS X

v10.4) 390
PBDTFlushAsync function (Deprecated in Mac OS X

v10.4) 391
PBDTFlushSync function (Deprecated in Mac OS X v10.4)

392
PBDTGetAPPLAsync function (Deprecated in Mac OS X

v10.4) 394
PBDTGetAPPLSync function (Deprecated in Mac OS X

v10.4) 395
PBDTGetCommentAsync function (Deprecated in Mac OS

X v10.4) 396
PBDTGetCommentSync function (Deprecated in Mac OS

X v10.4) 397

PBDTGetIconAsync function (Deprecated in Mac OS X
v10.4) 398

PBDTGetIconInfoAsync function (Deprecated in Mac
OS X v10.4) 399

PBDTGetIconInfoSync function (Deprecated in Mac OS
X v10.4) 400

PBDTGetIconSync function (Deprecated in Mac OS X
v10.4) 401

PBDTGetInfoAsync function (Deprecated in Mac OS X
v10.4) 402

PBDTGetInfoSync function (Deprecated in Mac OS X
v10.4) 404

PBDTGetPath function (Deprecated in Mac OS X v10.4)
404

PBDTOpenInform function (Deprecated in Mac OS X
v10.4) 405

PBDTRemoveAPPLAsync function (Deprecated in Mac OS
X v10.4) 406

PBDTRemoveAPPLSync function (Deprecated in Mac OS
X v10.4) 407

PBDTRemoveCommentAsync function (Deprecated in Mac
OS X v10.4) 408

PBDTRemoveCommentSync function (Deprecated in Mac
OS X v10.4) 409

PBDTResetAsync function (Deprecated in Mac OS X
v10.4) 410

PBDTResetSync function (Deprecated in Mac OS X v10.4)
411

PBDTSetCommentAsync function (Deprecated in Mac OS
X v10.4) 412

PBDTSetCommentSync function (Deprecated in Mac OS
X v10.4) 413

PBExchangeFilesAsync function (Deprecated in Mac
OS X v10.4) 414

PBExchangeFilesSync function (Deprecated in Mac OS
X v10.4) 416

PBExchangeObjectsAsync function 128
PBExchangeObjectsSync function 129
PBFlushFileAsync function (Deprecated in Mac OS X

v10.4) 417
PBFlushFileSync function (Deprecated in Mac OS X

v10.4) 418
PBFlushForkAsync function 130
PBFlushForkSync function 131
PBFlushVolAsync function (Deprecated in Mac OS X

v10.5) 504
PBFlushVolSync function (Deprecated in Mac OS X

v10.5) 505
PBFlushVolumeAsync function 131
PBFlushVolumeSync function 132
PBFSCopyFileAsync function 132
PBFSCopyFileSync function 133
PBGetCatalogInfoAsync function 133

547
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

PBGetCatalogInfoBulkAsync function 134
PBGetCatalogInfoBulkSync function 135
PBGetCatalogInfoSync function 137
PBGetCatInfoAsync function (Deprecated in Mac OS X

v10.4) 419
PBGetCatInfoSync function (Deprecated in Mac OS X

v10.4) 423
PBGetEOFAsync function (Deprecated in Mac OS X v10.4)

426
PBGetEOFSync function (Deprecated in Mac OS X v10.4)

426
PBGetFCBInfoAsync function (Deprecated in Mac OS X

v10.4) 427
PBGetFCBInfoSync function (Deprecated in Mac OS X

v10.4) 429
PBGetForeignPrivsAsync function (Deprecated in Mac

OS X v10.4) 430
PBGetForeignPrivsSync function (Deprecated in Mac

OS X v10.4) 431
PBGetForkCBInfoAsync function 138
PBGetForkCBInfoSync function 139
PBGetForkPositionAsync function 140
PBGetForkPositionSync function 141
PBGetForkSizeAsync function 142
PBGetForkSizeSync function 143
PBGetFPosAsync function (Deprecated in Mac OS X

v10.4) 431
PBGetFPosSync function (Deprecated in Mac OS X v10.4)

432
PBGetUGEntryAsync function (Deprecated in Mac OS X

v10.4) 433
PBGetUGEntrySync function (Deprecated in Mac OS X

v10.4) 433
PBGetVolMountInfo function (Deprecated in Mac OS X

v10.5) 506
PBGetVolMountInfoSize function (Deprecated in Mac

OS X v10.5) 507
PBGetVolumeInfoAsync function 143
PBGetVolumeInfoSync function 145
PBGetXCatInfoAsync function (Deprecated in Mac OS

X v10.4) 434
PBGetXCatInfoSync function (Deprecated in Mac OS X

v10.4) 434
PBHCopyFileAsync function (Deprecated in Mac OS X

v10.5) 508
PBHCopyFileSync function (Deprecated in Mac OS X

v10.5) 509
PBHCreateAsync function (Deprecated in Mac OS X

v10.4) 434
PBHCreateSync function (Deprecated in Mac OS X v10.4)

436
PBHDeleteAsync function (Deprecated in Mac OS X

v10.4) 437

PBHDeleteSync function (Deprecated in Mac OS X v10.4)
438

PBHGetDirAccessAsync function (Deprecated in Mac
OS X v10.5) 511

PBHGetDirAccessSync function (Deprecated in Mac OS
X v10.5) 512

PBHGetFInfoAsync function (Deprecated in Mac OS X
v10.4) 438

PBHGetFInfoSync function (Deprecated in Mac OS X
v10.4) 440

PBHGetLogInInfoAsync function (Deprecated in Mac
OS X v10.4) 442

PBHGetLogInInfoSync function (Deprecated in Mac OS
X v10.4) 443

PBHGetVInfoAsync function (Deprecated in Mac OS X
v10.4) 443

PBHGetVInfoSync function (Deprecated in Mac OS X
v10.4) 446

PBHGetVolAsync function (Deprecated in Mac OS X
v10.4) 449

PBHGetVolParmsAsync function (Deprecated in Mac OS
X v10.5) 512

PBHGetVolParmsSync function (Deprecated in Mac OS
X v10.5) 514

PBHGetVolSync function (Deprecated in Mac OS X v10.4)
450

PBHMapIDAsync function (Deprecated in Mac OS X v10.5)
514

PBHMapIDSync function (Deprecated in Mac OS X v10.5)
516

PBHMapNameAsync function (Deprecated in Mac OS X
v10.5) 516

PBHMapNameSync function (Deprecated in Mac OS X
v10.5) 518

PBHMoveRenameAsync function (Deprecated in Mac OS
X v10.4) 451

PBHMoveRenameSync function (Deprecated in Mac OS X
v10.4) 452

PBHOpenAsync function (Deprecated in Mac OS X v10.4)
453

PBHOpenDenyAsync function (Deprecated in Mac OS X
v10.5) 519

PBHOpenDenySync function (Deprecated in Mac OS X
v10.5) 520

PBHOpenDFAsync function (Deprecated in Mac OS X
v10.4) 454

PBHOpenDFSync function (Deprecated in Mac OS X v10.4)
456

PBHOpenRFAsync function (Deprecated in Mac OS X
v10.4) 457

PBHOpenRFDenyAsync function (Deprecated in Mac OS
X v10.5) 521

548
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

PBHOpenRFDenySync function (Deprecated in Mac OS X
v10.5) 522

PBHOpenRFSync function (Deprecated in Mac OS X v10.4)
458

PBHOpenSync function (Deprecated in Mac OS X v10.4)
459

PBHRenameAsync function (Deprecated in Mac OS X
v10.4) 461

PBHRenameSync function (Deprecated in Mac OS X v10.4)
462

PBHRstFLockAsync function (Deprecated in Mac OS X
v10.4) 463

PBHRstFLockSync function (Deprecated in Mac OS X
v10.4) 464

PBHSetDirAccessAsync function (Deprecated in Mac
OS X v10.5) 523

PBHSetDirAccessSync function (Deprecated in Mac OS
X v10.5) 525

PBHSetFInfoAsync function (Deprecated in Mac OS X
v10.4) 465

PBHSetFInfoSync function (Deprecated in Mac OS X
v10.4) 466

PBHSetFLockAsync function (Deprecated in Mac OS X
v10.4) 466

PBHSetFLockSync function (Deprecated in Mac OS X
v10.4) 467

PBHSetVolAsync function (Deprecated in Mac OS X
v10.4) 468

PBHSetVolSync function (Deprecated in Mac OS X v10.4)
469

PBIterateForksAsync function 146
PBIterateForksSync function 147
PBLockRangeAsync function (Deprecated in Mac OS X

v10.4) 470
PBLockRangeSync function (Deprecated in Mac OS X

v10.4) 472
PBMakeFSRefAsync function (Deprecated in Mac OS X

v10.5) 526
PBMakeFSRefSync function (Deprecated in Mac OS X

v10.5) 526
PBMakeFSRefUnicodeAsync function 148
PBMakeFSRefUnicodeSync function 149
PBMakeFSSpecAsync function (Deprecated in Mac OS X

v10.4) 473
PBMakeFSSpecSync function (Deprecated in Mac OS X

v10.4) 474
PBMoveObjectAsync function 149
PBMoveObjectSync function 150
PBOpenForkAsync function 151
PBOpenForkSync function 152
PBOpenIteratorAsync function 153
PBOpenIteratorSync function 154

PBReadAsync function (Deprecated in Mac OS X v10.5)
527

PBReadForkAsync function 155
PBReadForkSync function 156
PBReadSync function (Deprecated in Mac OS X v10.5)

529
PBRenameUnicodeAsync function 158
PBRenameUnicodeSync function 159
PBResolveFileIDRefAsync function (Deprecated in

Mac OS X v10.5) 530
PBResolveFileIDRefSync function (Deprecated in Mac

OS X v10.5) 531
PBSetCatalogInfoAsync function 159
PBSetCatalogInfoSync function 161
PBSetCatInfoAsync function (Deprecated in Mac OS X

v10.4) 476
PBSetCatInfoSync function (Deprecated in Mac OS X

v10.4) 477
PBSetEOFAsync function (Deprecated in Mac OS X v10.4)

479
PBSetEOFSync function (Deprecated in Mac OS X v10.4)

480
PBSetForeignPrivsAsync function (Deprecated in Mac

OS X v10.4) 481
PBSetForeignPrivsSync function (Deprecated in Mac

OS X v10.4) 481
PBSetForkPositionAsync function 162
PBSetForkPositionSync function 162
PBSetForkSizeAsync function 163
PBSetForkSizeSync function 164
PBSetFPosAsync function (Deprecated in Mac OS X

v10.4) 481
PBSetFPosSync function (Deprecated in Mac OS X v10.4)

482
PBSetVInfoAsync function (Deprecated in Mac OS X

v10.4) 483
PBSetVInfoSync function (Deprecated in Mac OS X

v10.4) 484
PBSetVolumeInfoAsync function 165
PBSetVolumeInfoSync function 166
PBShareAsync function (Deprecated in Mac OS X v10.4)

485
PBShareSync function (Deprecated in Mac OS X v10.4)

486
PBUnlockRangeAsync function (Deprecated in Mac OS

X v10.4) 486
PBUnlockRangeSync function (Deprecated in Mac OS X

v10.4) 487
PBUnmountVol function (Deprecated in Mac OS X v10.4)

488
PBUnshareAsync function (Deprecated in Mac OS X

v10.4) 489

549
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

PBUnshareSync function (Deprecated in Mac OS X v10.4)
490

PBVolumeMount function (Deprecated in Mac OS X v10.5)
532

PBWaitIOComplete function (Deprecated in Mac OS X
v10.5) 533

PBWriteAsync function (Deprecated in Mac OS X v10.5)
533

PBWriteForkAsync function 167
PBWriteForkSync function 168
PBWriteSync function (Deprecated in Mac OS X v10.5)

534
PBXGetVolInfoAsync function (Deprecated in Mac OS

X v10.4) 490
PBXGetVolInfoSync function (Deprecated in Mac OS X

v10.4) 493
PBXLockRangeAsync function 169
PBXLockRangeSync function 170
PBXUnlockRangeAsync function 170
PBXUnlockRangeSync function 170
permErr constant 328
pleaseCacheBit constant 272
pleaseCacheMask constant 272
posErr constant 327
Position Mode Constants 311

R

rdVerify constant 273
rdVerifyBit constant 272
rdVerifyMask constant 273
rfNumErr constant 328
Root Directory Constants 312

S

sameFileErr constant 330
SetEOF function (Deprecated in Mac OS X v10.4) 495
SetFPos function (Deprecated in Mac OS X v10.4) 496
SlotDevParam structure 250

T

tmfoErr constant 327
tmwdoErr constant 328

U

UnmountVol function (Deprecated in Mac OS X v10.4)
497

User ID Constants 312
User Privileges Constants 313

V

VCB structure 251
vLckdErr constant 327
volGoneErr constant 329
volMountChangedBit constant 326
volMountChangedMask constant 326
volMountExtendedFlagsBit constant 325
volMountExtendedFlagsMask constant 325
volMountFSReservedMask constant 326
VolMountInfoHeader structure 255
volMountInteractBit constant 325
volMountInteractMask constant 325
volMountNoLoginMsgFlagBit constant 325
volMountNoLoginMsgFlagMask constant 325
volMountSysReservedMask constant 326
volOffLinErr constant 328
volOnLinErr constant 328
Volume Attribute Constants 314
Volume Control Block Flags 318
Volume Information Attribute Constants 320
Volume Information Bitmap Constants 321
Volume Information Flags 323
Volume Mount Flags 325
VolumeMountInfoHeader structure 256
VolumeParam structure 256
VolumeType data type 258
volVMBusyErr constant 330

W

WDParam structure 259
WDPBRec structure 260
wPrErr constant 327
wrgVolTypErr constant 329
wrPermErr constant 328

X

XCInfoPBRec structure 262
XIOParam structure 263

550
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

XVolumeParam structure 265

551
2007-07-13 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

	File Manager Reference
	Contents
	File Manager Reference
	Overview
	Functions by Task
	Accessing Information About Files and Directories
	Accessing the Desktop Database
	Allocating Storage for Files
	Closing Files
	Comparing File System References
	Controlling Directory Access
	Controlling Login Access
	Converting Between Paths and FSRef Structures
	Copying and Moving Files
	Copying and Moving Objects Using Asynchronous High-Level File Operations
	Copying and Moving Objects Using Synchronous High-Level File Operations
	Creating a File System Reference (FSRef)
	Creating and Deleting File ID References
	Creating and Deleting Named Forks
	Creating Directories
	Creating File System Specifications
	Creating Files
	Creating, Calling, and Deleting Universal Procedure Pointers
	Deleting Files and Directories
	Determining the Unicode Names of the Data and Resource Forks
	Exchanging the Contents of Two Files
	Getting and Setting Volume Information
	Getting Volume Attributes
	Iterating Over Named Forks
	Locking and Unlocking File Ranges
	Locking and Unlocking Files and Directories
	Manipulating File and Fork Size
	Manipulating File Position
	Manipulating the Default Volume
	Mounting and Unmounting Volumes
	Mounting Remote Volumes
	Moving and Renaming Files or Directories
	Obtaining File and Directory Information Using a Catalog Iterator on HFS Plus Volumes
	Obtaining File Control Block Information
	Obtaining Fork Control Block Information
	Opening Files
	Opening Files While Denying Access
	Reading and Writing Files
	Resolving File ID References
	Searching a Volume
	Searching a Volume Using a Catalog Iterator
	Updating Files
	Updating Volumes
	Using Change Notifications
	Not Recommended

	Functions
	DisposeFNSubscriptionUPP
	DisposeFSVolumeEjectUPP
	DisposeFSVolumeMountUPP
	DisposeFSVolumeUnmountUPP
	DisposeIOCompletionUPP
	FNGetDirectoryForSubscription
	FNNotify
	FNNotifyAll
	FNNotifyByPath
	FNSubscribe
	FNSubscribeByPath
	FNUnsubscribe
	FSAllocateFork
	FSCancelVolumeOperation
	FSCatalogSearch
	FSCloseFork
	FSCloseIterator
	FSCompareFSRefs
	FSCopyDiskIDForVolume
	FSCopyObjectAsync
	FSCopyObjectSync
	FSCopyURLForVolume
	FSCreateDirectoryUnicode
	FSCreateFileUnicode
	FSCreateFork
	FSCreateVolumeOperation
	FSDeleteFork
	FSDeleteObject
	FSDisposeVolumeOperation
	FSEjectVolumeAsync
	FSEjectVolumeSync
	FSExchangeObjects
	FSFileOperationCancel
	FSFileOperationCopyStatus
	FSFileOperationCreate
	FSFileOperationGetTypeID
	FSFileOperationScheduleWithRunLoop
	FSFileOperationUnscheduleFromRunLoop
	FSFlushFork
	FSFlushVolume
	FSGetAsyncEjectStatus
	FSGetAsyncMountStatus
	FSGetAsyncUnmountStatus
	FSGetCatalogInfo
	FSGetCatalogInfoBulk
	FSGetDataForkName
	FSGetForkCBInfo
	FSGetForkPosition
	FSGetForkSize
	FSGetResourceForkName
	FSGetVolumeInfo
	FSGetVolumeMountInfo
	FSGetVolumeMountInfoSize
	FSGetVolumeParms
	FSIterateForks
	FSLockRange
	FSMakeFSRefUnicode
	FSMountLocalVolumeAsync
	FSMountLocalVolumeSync
	FSMountServerVolumeAsync
	FSMountServerVolumeSync
	FSMoveObject
	FSMoveObjectAsync
	FSMoveObjectSync
	FSMoveObjectToTrashAsync
	FSMoveObjectToTrashSync
	FSOpenFork
	FSOpenIterator
	FSPathCopyObjectAsync
	FSPathCopyObjectSync
	FSPathFileOperationCopyStatus
	FSPathMakeRef
	FSPathMakeRefWithOptions
	FSPathMoveObjectAsync
	FSPathMoveObjectSync
	FSPathMoveObjectToTrashAsync
	FSPathMoveObjectToTrashSync
	FSReadFork
	FSRefMakePath
	FSRenameUnicode
	FSSetCatalogInfo
	FSSetForkPosition
	FSSetForkSize
	FSSetVolumeInfo
	FSUnlockRange
	FSUnmountVolumeAsync
	FSUnmountVolumeSync
	FSVolumeMount
	FSWriteFork
	InvokeFNSubscriptionUPP
	InvokeFSVolumeEjectUPP
	InvokeFSVolumeMountUPP
	InvokeFSVolumeUnmountUPP
	InvokeIOCompletionUPP
	NewFNSubscriptionUPP
	NewFSVolumeEjectUPP
	NewFSVolumeMountUPP
	NewFSVolumeUnmountUPP
	NewIOCompletionUPP
	PBAllocateForkAsync
	PBAllocateForkSync
	PBCatalogSearchAsync
	PBCatalogSearchSync
	PBCloseForkAsync
	PBCloseForkSync
	PBCloseIteratorAsync
	PBCloseIteratorSync
	PBCompareFSRefsAsync
	PBCompareFSRefsSync
	PBCreateDirectoryUnicodeAsync
	PBCreateDirectoryUnicodeSync
	PBCreateFileUnicodeAsync
	PBCreateFileUnicodeSync
	PBCreateForkAsync
	PBCreateForkSync
	PBDeleteForkAsync
	PBDeleteForkSync
	PBDeleteObjectAsync
	PBDeleteObjectSync
	PBExchangeObjectsAsync
	PBExchangeObjectsSync
	PBFlushForkAsync
	PBFlushForkSync
	PBFlushVolumeAsync
	PBFlushVolumeSync
	PBFSCopyFileAsync
	PBFSCopyFileSync
	PBGetCatalogInfoAsync
	PBGetCatalogInfoBulkAsync
	PBGetCatalogInfoBulkSync
	PBGetCatalogInfoSync
	PBGetForkCBInfoAsync
	PBGetForkCBInfoSync
	PBGetForkPositionAsync
	PBGetForkPositionSync
	PBGetForkSizeAsync
	PBGetForkSizeSync
	PBGetVolumeInfoAsync
	PBGetVolumeInfoSync
	PBIterateForksAsync
	PBIterateForksSync
	PBMakeFSRefUnicodeAsync
	PBMakeFSRefUnicodeSync
	PBMoveObjectAsync
	PBMoveObjectSync
	PBOpenForkAsync
	PBOpenForkSync
	PBOpenIteratorAsync
	PBOpenIteratorSync
	PBReadForkAsync
	PBReadForkSync
	PBRenameUnicodeAsync
	PBRenameUnicodeSync
	PBSetCatalogInfoAsync
	PBSetCatalogInfoSync
	PBSetForkPositionAsync
	PBSetForkPositionSync
	PBSetForkSizeAsync
	PBSetForkSizeSync
	PBSetVolumeInfoAsync
	PBSetVolumeInfoSync
	PBWriteForkAsync
	PBWriteForkSync
	PBXLockRangeAsync
	PBXLockRangeSync
	PBXUnlockRangeAsync
	PBXUnlockRangeSync

	Callbacks by Task
	File Operation Callbacks
	Miscellaneous Callbacks

	Callbacks
	FNSubscriptionProcPtr
	FSFileOperationStatusProcPtr
	FSPathFileOperationStatusProcPtr
	FSVolumeEjectProcPtr
	FSVolumeMountProcPtr
	FSVolumeUnmountProcPtr
	IOCompletionProcPtr

	Data Types
	AccessParam
	AFPAlternateAddress
	AFPTagData
	AFPVolMountInfo
	AFPXVolMountInfo
	CatPositionRec
	CInfoPBRec
	CMovePBRec
	CntrlParam
	ConstFSSpecPtr
	ConstHFSUniStr255Param
	CopyParam
	CSParam
	DirInfo
	DrvQEl
	DTPBRec
	FCBPBRec
	FIDParam
	FileParam
	FNSubscriptionRef
	FNSubscriptionUPP
	ForeignPrivParam
	FSCatalogBulkParam
	FSCatalogInfo
	FSCatalogInfoBitmap
	FSEjectStatus
	FSFileOperationClientContext
	FSFileOperationRef
	FSForkCBInfoParam
	FSForkInfo
	FSForkIOParam
	FSIterator
	FSMountStatus
	FSPermissionInfo
	FSRangeLockParam
	FSRangeLockParamPtr
	FSRef
	FSRefParam
	FSSearchParams
	FSSpec
	FSSpecArrayPtr
	FSUnmountStatus
	FSVolumeEjectUPP
	FSVolumeInfo
	FSVolumeInfoBitmap
	FSVolumeInfoParam
	FSVolumeMountUPP
	FSVolumeOperation
	FSVolumeRefNum
	FSVolumeUnmountUPP
	GetVolParmsInfoBuffer
	HFileInfo
	HFileParam
	HFSUniStr255
	HIOParam
	HParamBlockRec
	HVolumeParam
	IOCompletionUPP
	IOParam
	MultiDevParam
	ObjParam
	ParamBlockRec
	SlotDevParam
	VCB
	VolMountInfoHeader
	VolumeMountInfoHeader
	VolumeParam
	VolumeType
	WDParam
	WDPBRec
	XCInfoPBRec
	XIOParam
	XVolumeParam

	Constants
	AFP Tag Length Constants
	AFP Tag Type Constants
	Allocation Flags
	AppleShare Volume Signature
	Authentication Method Constants
	Cache Constants
	Catalog Information Bitmap Constants
	Catalog Information Node Flags
	Catalog Information Sharing Flags
	Catalog Search Bits
	Catalog Search Constants
	Catalog Search Masks
	Extended AFP Volume Mounting Information Flag
	Extended Volume Attributes
	FCB Flags
	File Access Permission Constants
	File and Folder Access Privilege Constants
	File Attribute Constants
	File Operation Options
	File Operation Stages
	File Operation Status Dictionary Keys
	FNMessage
	Foreign Privilege Model Constant
	Group ID Constant
	Icon Size Constants
	Icon Type Constants
	Invalid Volume Reference Constant
	Iterator Flags
	kAsyncMountInProgress
	Notification Subscription Options
	kHFSCatalogNodeIDsReusedBit
	Large Volume Constants
	Mapping Code Constants
	Path Conversion Options
	Position Mode Constants
	Root Directory Constants
	User ID Constants
	User Privileges Constants
	Volume Attribute Constants
	Volume Control Block Flags
	Volume Information Attribute Constants
	Volume Information Bitmap Constants
	Volume Information Flags
	Volume Mount Flags

	Result Codes

	Appendix A: Deprecated File Manager Functions
	Deprecated in Mac OS X v10.4
	Allocate
	AllocContig
	CatMove
	DirCreate
	FSClose
	FSMakeFSSpec
	FSpCatMove
	FSpCreate
	FSpDelete
	FSpDirCreate
	FSpExchangeFiles
	FSpGetFInfo
	FSpOpenDF
	FSpOpenRF
	FSpRename
	FSpRstFLock
	FSpSetFInfo
	FSpSetFLock
	FSRead
	FSWrite
	GetEOF
	GetFPos
	GetVRefNum
	HCreate
	HDelete
	HGetFInfo
	HGetVol
	HOpen
	HOpenDF
	HOpenRF
	HRename
	HRstFLock
	HSetFInfo
	HSetFLock
	HSetVol
	PBAllocateAsync
	PBAllocateSync
	PBAllocContigAsync
	PBAllocContigSync
	PBCatMoveAsync
	PBCatMoveSync
	PBCatSearchAsync
	PBCatSearchSync
	PBDirCreateAsync
	PBDirCreateSync
	PBDTAddAPPLAsync
	PBDTAddAPPLSync
	PBDTAddIconAsync
	PBDTAddIconSync
	PBDTCloseDown
	PBDTDeleteAsync
	PBDTDeleteSync
	PBDTFlushAsync
	PBDTFlushSync
	PBDTGetAPPLAsync
	PBDTGetAPPLSync
	PBDTGetCommentAsync
	PBDTGetCommentSync
	PBDTGetIconAsync
	PBDTGetIconInfoAsync
	PBDTGetIconInfoSync
	PBDTGetIconSync
	PBDTGetInfoAsync
	PBDTGetInfoSync
	PBDTGetPath
	PBDTOpenInform
	PBDTRemoveAPPLAsync
	PBDTRemoveAPPLSync
	PBDTRemoveCommentAsync
	PBDTRemoveCommentSync
	PBDTResetAsync
	PBDTResetSync
	PBDTSetCommentAsync
	PBDTSetCommentSync
	PBExchangeFilesAsync
	PBExchangeFilesSync
	PBFlushFileAsync
	PBFlushFileSync
	PBGetCatInfoAsync
	PBGetCatInfoSync
	PBGetEOFAsync
	PBGetEOFSync
	PBGetFCBInfoAsync
	PBGetFCBInfoSync
	PBGetForeignPrivsAsync
	PBGetForeignPrivsSync
	PBGetFPosAsync
	PBGetFPosSync
	PBGetUGEntryAsync
	PBGetUGEntrySync
	PBGetXCatInfoAsync
	PBGetXCatInfoSync
	PBHCreateAsync
	PBHCreateSync
	PBHDeleteAsync
	PBHDeleteSync
	PBHGetFInfoAsync
	PBHGetFInfoSync
	PBHGetLogInInfoAsync
	PBHGetLogInInfoSync
	PBHGetVInfoAsync
	PBHGetVInfoSync
	PBHGetVolAsync
	PBHGetVolSync
	PBHMoveRenameAsync
	PBHMoveRenameSync
	PBHOpenAsync
	PBHOpenDFAsync
	PBHOpenDFSync
	PBHOpenRFAsync
	PBHOpenRFSync
	PBHOpenSync
	PBHRenameAsync
	PBHRenameSync
	PBHRstFLockAsync
	PBHRstFLockSync
	PBHSetFInfoAsync
	PBHSetFInfoSync
	PBHSetFLockAsync
	PBHSetFLockSync
	PBHSetVolAsync
	PBHSetVolSync
	PBLockRangeAsync
	PBLockRangeSync
	PBMakeFSSpecAsync
	PBMakeFSSpecSync
	PBSetCatInfoAsync
	PBSetCatInfoSync
	PBSetEOFAsync
	PBSetEOFSync
	PBSetForeignPrivsAsync
	PBSetForeignPrivsSync
	PBSetFPosAsync
	PBSetFPosSync
	PBSetVInfoAsync
	PBSetVInfoSync
	PBShareAsync
	PBShareSync
	PBUnlockRangeAsync
	PBUnlockRangeSync
	PBUnmountVol
	PBUnshareAsync
	PBUnshareSync
	PBXGetVolInfoAsync
	PBXGetVolInfoSync
	SetEOF
	SetFPos
	UnmountVol

	Deprecated in Mac OS X v10.5
	FlushVol
	FSpMakeFSRef
	PBCloseAsync
	PBCloseSync
	PBCreateFileIDRefAsync
	PBCreateFileIDRefSync
	PBDeleteFileIDRefAsync
	PBDeleteFileIDRefSync
	PBFlushVolAsync
	PBFlushVolSync
	PBGetVolMountInfo
	PBGetVolMountInfoSize
	PBHCopyFileAsync
	PBHCopyFileSync
	PBHGetDirAccessAsync
	PBHGetDirAccessSync
	PBHGetVolParmsAsync
	PBHGetVolParmsSync
	PBHMapIDAsync
	PBHMapIDSync
	PBHMapNameAsync
	PBHMapNameSync
	PBHOpenDenyAsync
	PBHOpenDenySync
	PBHOpenRFDenyAsync
	PBHOpenRFDenySync
	PBHSetDirAccessAsync
	PBHSetDirAccessSync
	PBMakeFSRefAsync
	PBMakeFSRefSync
	PBReadAsync
	PBReadSync
	PBResolveFileIDRefAsync
	PBResolveFileIDRefSync
	PBVolumeMount
	PBWaitIOComplete
	PBWriteAsync
	PBWriteSync

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

