
Icon Services and Utilities Reference
Carbon > User Experience

2007-04-06

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, AppleShare,
AppleTalk, Carbon, ColorSync, Mac, Mac OS,
Quartz, QuickDraw, and TrueType are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Icon Services and Utilities Reference 7

Overview 7
Functions by Task 7

Converting an Icon Mask to a Region 7
Creating an Icon Suite 8
Determining Whether a Point Is Within an Icon 8
Determining Whether a Rectangle Intersects an Icon 8
Disposing of Icon Suites 8
Disposing of Icons 8
Drawing Icons From an Icon Suite 9
Drawing Icons From Resources 9
Enabling and Disabling Custom Icons 9
Flushing IconRef Data 9
Getting and Setting the Label for an Icon Suite 10
Getting Label Information 10
Getting Icons From an Icon Suite 10
Getting Icons From Resources That Don’t Belong to an Icon Family 10
IconRef Reference Counting 10
Modifying IconRef Data 11
Obtaining Icon Data 11
Obtaining IconRef Values 11
Performing Operations on Icons in an Icon Suite 12
Reading, Copying, and Converting Icon Data 12
Registering and Unregistering IconRef Values 12
Using IconRef Data 13
Working With Icon Caches 13
Creating and Managing Universal Procedure Pointers 14

Functions 14
AcquireIconRef 14
CompositeIconRef 14
DisposeIconActionUPP 15
DisposeIconGetterUPP 15
GetCustomIconsEnabled 16
GetIconFamilyData 16
GetIconRef 17
GetIconRefFromComponent 18
GetIconRefFromFileInfo 18
GetIconRefFromFolder 19
GetIconRefFromIconFamilyPtr 20
GetIconRefFromTypeInfo 21
GetIconRefOwners 22

3
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

GetIconRefVariant 22
IconRefContainsCGPoint 23
IconRefIntersectsCGRect 24
IconRefToHIShape 25
IconRefToIconFamily 25
InvokeIconActionUPP 26
InvokeIconGetterUPP 26
IsDataAvailableInIconRef 27
IsIconRefComposite 27
IsIconRefMaskEmpty 28
IsValidIconRef 29
NewIconActionUPP 29
NewIconGetterUPP 29
OverrideIconRef 30
PlotIconRefInContext 30
ReadIconFromFSRef 31
RegisterIconRefFromFSRef 32
RegisterIconRefFromIconFamily 32
ReleaseIconRef 33
RemoveIconRefOverride 33
SetCustomIconsEnabled 34
SetIconFamilyData 34
UnregisterIconRef 35
UpdateIconRef 36

Callbacks 36
IconActionProcPtr 36
IconGetterProcPtr 37

Data Types 38
CIcon 38
IconRef 39
IconActionUPP 40
IconGetterUPP 40
IconCacheRef 40
IconSuiteRef 40

Constants 41
Icon Alignment Constants 41
Icon Transformation Constants 43
Icon Selector Constants 43
Catalog Information Bitmask 47
System Icon Constant 47
Icon Services Usage Flag 47
Alert Icon Constants 47
Filesharing Privilege Icon Constants 48
Folder Icon Constants 48
Internet Icon Constants 48
Toolbar Icons 49

4
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Miscellaneous Icon Constants 49
Networking Icon Constants 49
Special Folder Icon Constants 50
Standard Finder Icon Constants 51
Standard Icon Badge Constants 52
Users and Groups Icon Constants 53
genericDocumentIconResource 53
Standard Icon Resources 54
startupFolderIconResource 55
atNone 56
svLarge1Bit 56
ttNone 57

Result Codes 57
Gestalt Constants 58

Appendix A Deprecated Icon Services and Utilities Functions 59

Deprecated in Mac OS X v10.3 59
FlushIconRefs 59
FlushIconRefsByVolume 59
GetIconSizesFromIconRef 60

Deprecated in Mac OS X v10.5 61
AddIconToSuite 61
DisposeCIcon 62
DisposeIconSuite 62
ForEachIconDo 63
GetCIcon 64
GetIcon 65
GetIconCacheData 66
GetIconCacheProc 66
GetIconFromSuite 67
GetIconRefFromFile 68
GetIconSuite 69
GetLabel 70
GetSuiteLabel 71
IconFamilyToIconSuite 71
IconIDToRgn 72
IconMethodToRgn 73
IconRefToRgn 74
IconSuiteToIconFamily 75
IconSuiteToRgn 76
LoadIconCache 77
MakeIconCache 78
NewIconSuite 79
OverrideIconRefFromResource 79
PlotCIcon 80

5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

PlotCIconHandle 81
PlotIcon 82
PlotIconHandle 82
PlotIconID 83
PlotIconMethod 85
PlotIconRef 86
PlotIconSuite 86
PlotSICNHandle 88
PtInIconID 89
PtInIconMethod 89
PtInIconRef 91
PtInIconSuite 92
ReadIconFile 92
RectInIconID 93
RectInIconMethod 94
RectInIconRef 95
RectInIconSuite 96
RegisterIconRefFromIconFile 97
RegisterIconRefFromResource 98
SetIconCacheData 99
SetIconCacheProc 100
SetSuiteLabel 100
WriteIconFile 101

Document Revision History 103

Index 105

6
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in Icons.h
IconsCore.h

Overview

The Icon Utilities allow your application (and system software) to manipulate and draw icons of any standard
resource type in windows and if necessary in menus or dialog boxes. You need to use these routines only if
you wish to draw icons in your application’s windows or to draw icons whose resource types are not recognized
by the Menu Manager and Dialog Manager in menus and dialog boxes.

To display an icon most effectively at a variety of sizes and bit depths, you should provide an icon family.
You can then draw the appropriate member of the family for a given size and bit depth either by passing
the family’s resource ID to an Icon Utilities routine or by reading the family’s icon resources into memory as
an icon suite and passing the suite’s handle to Icon Utilities routines.

Icon Services provides icon data to multiple Mac OS clients, including the Finder, extensions and applications.
Using Icon Services to obtain icon data means you can provide efficient icon caching and release memory
when you don't need icon data any longer. Icon Services provides the appropriate icon for any file object
(file, folder, or volume), as well as other commonly used icons such as caution, note, or help icons in alert
boxes, for example. The icons provided by Icon Services support a much larger palette of colors: up to 24
bits per pixel and an eight-bit mask. Icons are Appearance-compliant and appropriate to the active theme.

Functions by Task

Converting an Icon Mask to a Region

IconIDToRgn (page 72) Deprecated in Mac OS X v10.5
Converts the icon mask in an icon family to a region. (Deprecated. Use Icon Services instead.)

IconMethodToRgn (page 73) Deprecated in Mac OS X v10.5
Converts, to a region, the mask for an icon that IconMethodToRgn obtains with the aid of your icon
getter callback function. (Deprecated. Use Icon Services instead.)

IconSuiteToRgn (page 76) Deprecated in Mac OS X v10.5
Converts the icon mask in an icon suite to a region. (Deprecated. Use Icon Services instead.)

Overview 7
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Creating an Icon Suite

AddIconToSuite (page 61) Deprecated in Mac OS X v10.5
Adds an icon to an icon suite. (Deprecated. Use Icon Services instead.)

GetIconSuite (page 69) Deprecated in Mac OS X v10.5
Creates an icon suite in memory that contains handles to a specified icon family’s resources.
(Deprecated. Use Icon Services instead.)

NewIconSuite (page 79) Deprecated in Mac OS X v10.5
Gets a handle to an empty icon suite. (Deprecated. Use Icon Services instead.)

Determining Whether a Point Is Within an Icon

PtInIconID (page 89) Deprecated in Mac OS X v10.5
Determines whether a specified point is within an icon. (Deprecated. Use Icon Services instead.)

PtInIconMethod (page 89) Deprecated in Mac OS X v10.5
Determines whether a specified point is within an icon obtained with the aid of your icon getter
callback function. (Deprecated. Use Icon Services instead.)

PtInIconSuite (page 92) Deprecated in Mac OS X v10.5
Determines whether a specified point is within an icon. (Deprecated. Use Icon Services instead.)

Determining Whether a Rectangle Intersects an Icon

RectInIconID (page 93) Deprecated in Mac OS X v10.5
Hit-tests a rectangle against the appropriate icon mask from an icon family for a specified destination
rectangle and alignment. (Deprecated. Use Icon Services instead.)

RectInIconMethod (page 94) Deprecated in Mac OS X v10.5
Hit-tests a rectangle against an icon obtained by your icon getter callback function for a specified
destination rectangle and alignment. (Deprecated. Use Icon Services instead.)

RectInIconSuite (page 96) Deprecated in Mac OS X v10.5
Hit-tests a rectangle against the appropriate icon mask from an icon suite for a specified destination
rectangle and alignment. (Deprecated. Use Icon Services instead.)

Disposing of Icon Suites

DisposeIconSuite (page 62) Deprecated in Mac OS X v10.5
Releases the memory occupied by an icon suite. (Deprecated. Use Icon Services instead.)

Disposing of Icons

DisposeCIcon (page 62) Deprecated in Mac OS X v10.5
Releases the memory occupied by a color icon structure. (Deprecated. Use Icon Services instead.)

8 Functions by Task
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Drawing Icons From an Icon Suite

PlotIconSuite (page 86) Deprecated in Mac OS X v10.5
Draws the icon described by an icon suite using the most appropriate icon in the suite for the current
bit depth of the display device and the rectangle in which the icon is to be drawn. (Deprecated. Use
Icon Services instead.)

Drawing Icons From Resources

PlotCIcon (page 80) Deprecated in Mac OS X v10.5
Draws a color icon of resource type 'cicn' to which you have a handle. (Deprecated. Use Icon Services
instead.)

PlotCIconHandle (page 81) Deprecated in Mac OS X v10.5
Draws an icon of resource type 'cicn' to which you have a handle. (Deprecated. Use Icon Services
instead.)

PlotIcon (page 82) Deprecated in Mac OS X v10.5
Draws an icon of resource type 'ICON' to which you have a handle. (Deprecated. Use Icon Services
instead.)

PlotIconHandle (page 82) Deprecated in Mac OS X v10.5
Draws an icon of resource type 'ICON' or 'ICN#' to which you have a handle. (Deprecated. Use
Icon Services instead.)

PlotIconID (page 83) Deprecated in Mac OS X v10.5
Draws the icon described by an icon family. (Deprecated. Use Icon Services instead.)

PlotIconMethod (page 85) Deprecated in Mac OS X v10.5
Draws an icon obtained with the aid of your icon getter callback function. (Deprecated. Use Icon
Services instead.)

PlotSICNHandle (page 88) Deprecated in Mac OS X v10.5
Draws a small icon of resource type 'SICN' to which you have a handle. (Deprecated. Use Icon
Services instead.)

Enabling and Disabling Custom Icons

GetCustomIconsEnabled (page 16)
Determines whether custom icons are enabled or disabled on a specified volume.

SetCustomIconsEnabled (page 34)
Enables or disables custom icons on a specified volume.

Flushing IconRef Data

FlushIconRefs (page 59) Deprecated in Mac OS X v10.3
Reclaims memory used by the specified icon if the memory is purgeable. (Deprecated. There is no
replacement; this function was included to facilitate porting classic applications to Carbon, but it
serves no useful purpose in Mac OS X.)

Functions by Task 9
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

FlushIconRefsByVolume (page 59) Deprecated in Mac OS X v10.3
On a given volume, reclaims memory used by purgeable icons. (Deprecated. There is no replacement;
this function was included to facilitate porting classic applications to Carbon, but it serves no useful
purpose in Mac OS X.)

Getting and Setting the Label for an Icon Suite

GetSuiteLabel (page 71) Deprecated in Mac OS X v10.5
Gets the default label setting associated with an icon suite. (Deprecated. Use Icon Services instead.)

SetSuiteLabel (page 100) Deprecated in Mac OS X v10.5
Specifies the default label associated with an icon suite. (Deprecated. Use Icon Services instead.)

Getting Label Information

GetLabel (page 70) Deprecated in Mac OS X v10.5
Gets the color and string used for a given label in the Label menu of the Finder and in the Labels
control panel. (Deprecated. Use Icon Services instead.)

Getting Icons From an Icon Suite

GetIconFromSuite (page 67) Deprecated in Mac OS X v10.5
Gets an icon from an icon suite. (Deprecated. Use Icon Services instead.)

Getting Icons From Resources That Don’t Belong to an Icon Family

GetCIcon (page 64) Deprecated in Mac OS X v10.5
Gets a handle to a color icon of resource type 'cicn'. (Deprecated. Use Icon Services instead.)

GetIcon (page 65) Deprecated in Mac OS X v10.5
Gets a handle to an icon resource of type 'ICON'. (Deprecated. Use Icon Services instead.)

IconRef Reference Counting

AcquireIconRef (page 14)
Increments the reference count for an IconRef.

GetIconRefOwners (page 22)
Provides the current reference count for an IconRef.

ReleaseIconRef (page 33)
Decrements the reference count for an IconRef.

10 Functions by Task
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Modifying IconRef Data

OverrideIconRef (page 30)
Replaces the bitmaps of one IconRef with those of another IconRef.

RemoveIconRefOverride (page 33)
Restores the original bitmaps of an overridden IconRef.

UpdateIconRef (page 36)
Forces an update of IconRef data.

OverrideIconRefFromResource (page 79) Deprecated in Mac OS X v10.5
Replaces the bitmaps in an IconRef with bitmaps from a specified resource file. (Deprecated. Use
OverrideIconRef (page 30) instead.)

Obtaining Icon Data

IsDataAvailableInIconRef (page 27)
Indicates whether an IconRef has the specified data.

IsIconRefComposite (page 27)
Reports whether a specified IconRef has been composited.

IsIconRefMaskEmpty (page 28)
Reports whether a specified mask is empty.

IsValidIconRef (page 29)
Reports whether a specified IconRef is valid.

GetIconSizesFromIconRef (page 60) Deprecated in Mac OS X v10.3
Provides an IconSelectorValue indicating the sizes and depths of icon data available for an
IconRef. (Deprecated. Use IsDataAvailableInIconRef (page 27) instead.)

Obtaining IconRef Values

GetIconRef (page 17)
Provides an IconRef object for an icon in the desktop database or for a registered icon.

GetIconRefFromFolder (page 19)
Provides an IconRef object for a folder with no custom icon.

GetIconRefFromFileInfo (page 18)
Provides an IconRef object for a file with minimal file I/O.

GetIconRefFromTypeInfo (page 21)
Provides an IconRef object with the specified type information.

GetIconRefFromIconFamilyPtr (page 20)
Provides an IconRef object from a specified icon family.

GetIconRefFromComponent (page 18)
Provides an IconRef object based on a specified component.

GetIconRefFromFile (page 68) Deprecated in Mac OS X v10.5
Provides an IconRef object for a file, folder or volume. (Deprecated. Use
GetIconRefFromFileInfo (page 18) instead.)

Functions by Task 11
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Performing Operations on Icons in an Icon Suite

ForEachIconDo (page 63) Deprecated in Mac OS X v10.5
Performs an action on one or more icons in an icon suite. (Deprecated. Use Icon Services instead.)

Reading, Copying, and Converting Icon Data

GetIconFamilyData (page 16)
Obtains a copy of the raw icon data for an individual element in an icon family.

IconRefToIconFamily (page 25)
Provides icon family data for a given IconRef.

ReadIconFromFSRef (page 31)
Reads an icon ('icns') file into memory.

SetIconFamilyData (page 34)
Provides new raw icon data for an individual element of an icon family.

IconFamilyToIconSuite (page 71) Deprecated in Mac OS X v10.5
Provides icon suite data for a given icon family. (Deprecated. Use Icon Services instead.)

IconSuiteToIconFamily (page 75) Deprecated in Mac OS X v10.5
Provides IconFamily data for a specified IconSuite. (Deprecated. Use Icon Services instead.)

ReadIconFile (page 92) Deprecated in Mac OS X v10.5
Copies data from a given file into an icon family. (Deprecated. Use ReadIconFromFSRef (page 31)
instead.)

WriteIconFile (page 101) Deprecated in Mac OS X v10.5
Copies data from a given icon family into a file. (Deprecated. Use the File Manager instead.)

Registering and Unregistering IconRef Values

RegisterIconRefFromFSRef (page 32)
Registers an IconRef from a .icns file and associates it with a creator and type pair.

RegisterIconRefFromIconFamily (page 32)
Adds an iconFamily-derived IconRef to the Icon Services registry.

UnregisterIconRef (page 35)
Removes the specified icon data from the icon registry.

RegisterIconRefFromIconFile (page 97) Deprecated in Mac OS X v10.5
Adds a file-derived IconRef to the Icon Services registry. (Deprecated. Use
RegisterIconRefFromFSRef (page 32) instead.)

RegisterIconRefFromResource (page 98) Deprecated in Mac OS X v10.5
Adds a resource-derived IconRef to the Icon Services registry. (Deprecated. Use
RegisterIconRefFromFSRef (page 32) instead.)

12 Functions by Task
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Using IconRef Data

CompositeIconRef (page 14)
Superimposes one IconRef onto another.

GetIconRefVariant (page 22)
Specifies a transformation for a given IconRef.

IconRefContainsCGPoint (page 23)
Returns a Boolean value indicating whether an icon contains a specified point.

IconRefIntersectsCGRect (page 24)
Returns a Boolean value indicating whether an icon intersects a specified rectangle.

IconRefToHIShape (page 25)
Converts an icon into an HIShape object.

PlotIconRefInContext (page 30)
Plots an IconRef using Quartz.

IconRefToRgn (page 74) Deprecated in Mac OS X v10.5
Converts an Icon Services icon into a QuickDraw region. (Deprecated. Use IconRefToHIShape (page
25) instead.)

PlotIconRef (page 86) Deprecated in Mac OS X v10.5
Draws an icon using appropriate size and depth data from an IconRef. (Deprecated. Use
PlotIconRefInContext (page 30) instead.)

PtInIconRef (page 91) Deprecated in Mac OS X v10.5
Tests whether a specified point falls within an icon’s mask. (Deprecated. Use
IconRefContainsCGPoint (page 23) instead.)

RectInIconRef (page 95) Deprecated in Mac OS X v10.5
Tests whether a specified rectangle falls within an icon’s mask. (Deprecated. Use
IconRefIntersectsCGRect (page 24) instead.)

Working With Icon Caches

GetIconCacheData (page 66) Deprecated in Mac OS X v10.5
Gets the data associated with an icon cache. (Deprecated. Use Icon Services instead.)

GetIconCacheProc (page 66) Deprecated in Mac OS X v10.5
Gets the icon getter function associated with an icon cache. (Deprecated. Use Icon Services instead.)

LoadIconCache (page 77) Deprecated in Mac OS X v10.5
Loads into an icon cache a handle to the appropriate icon data for a specified destination rectangle
and the current bit depth, for drawing later with a specified alignment and transform. (Deprecated.
Use Icon Services instead.)

MakeIconCache (page 78) Deprecated in Mac OS X v10.5
Gets a handle to an empty icon cache. (Deprecated. Use Icon Services instead.)

SetIconCacheData (page 99) Deprecated in Mac OS X v10.5
Sets the data associated with an icon cache. (Deprecated. Use Icon Services instead.)

SetIconCacheProc (page 100) Deprecated in Mac OS X v10.5
Sets the icon getter callback function associated with an icon cache. (Deprecated. Use Icon Services
instead.)

Functions by Task 13
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Creating and Managing Universal Procedure Pointers

NewIconActionUPP (page 29)
Creates a new universal procedure pointer (UPP) to an icon action callback function.

NewIconGetterUPP (page 29)
Creates a new universal procedure pointer (UPP) to an icon getter callback function.

DisposeIconActionUPP (page 15)
Disposes of the universal procedure pointer (UPP) to your icon action callback function.

DisposeIconGetterUPP (page 15)
Disposes of the universal procedure pointer (UPP) to your icon getter callback function.

InvokeIconActionUPP (page 26)
Calls your icon action callback function.

InvokeIconGetterUPP (page 26)
Calls your icon getter callback function.

Functions

AcquireIconRef
Increments the reference count for an IconRef.

OSErr AcquireIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef whose reference count you wish to increment.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

CompositeIconRef
Superimposes one IconRef onto another.

14 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr CompositeIconRef (
 IconRef backgroundIconRef,
 IconRef foregroundIconRef,
 IconRef *compositeIconRef
);

Parameters
backgroundIconRef

A value to use as the background for the composite IconRef.

foregroundIconRef
A value to use as the foregound for the composite IconRef.

compositeIconRef
On completion, this points to an IconRef that is a composite of the specified background and
foreground IconRefs.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
This function provides an alternative to badging when you need to indicate a change of state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

DisposeIconActionUPP
Disposes of the universal procedure pointer (UPP) to your icon action callback function.

void DisposeIconActionUPP (
 IconActionUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
See the IconActionProcPtr (page 36) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

DisposeIconGetterUPP
Disposes of the universal procedure pointer (UPP) to your icon getter callback function.

Functions 15
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

void DisposeIconGetterUPP (
 IconGetterUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
See the IconGetterProcPtr (page 37) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

GetCustomIconsEnabled
Determines whether custom icons are enabled or disabled on a specified volume.

OSErr GetCustomIconsEnabled (
 SInt16 vRefNum,
 Boolean *customIconsEnabled
);

Parameters
vRefNum

The volume whose status you are querying.

customIconsEnabled
On return, customIconsEnabled points to the value true if custom icons are enabled on the volume
specified or false if custom icons are disabled on the volume specified.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconFamilyData
Obtains a copy of the raw icon data for an individual element in an icon family.

16 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr GetIconFamilyData (
 IconFamilyHandle iconFamily,
 OSType iconType,
 Handle h
);

Parameters
iconFamily

A handle to an iconFamily data structure to use as a source for icon data.

iconType
The format of the icon data you want to obtain.You may specify one of the icon types (as defined in
IconStorage.h in the CoreServices/OSServices framework) or 'PICT' in this parameter. For example,
you can pass kThumbnail32BitData ('it32'), to obtain 65,536 bytes of raw bitmap data.

h
A handle to the icon data being returned. Icon Services resizes this handle as needed. If no data is
available for the specified icon family, Icon Services sets the handle to 0.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

GetIconRef
Provides an IconRef object for an icon in the desktop database or for a registered icon.

OSErr GetIconRef (
 SInt16 vRefNum,
 OSType creator,
 OSType iconType,
 IconRef *theIconRef
);

Parameters
vRefNum

The volume where Icon Services should start to search for the desired icon. Pass the kOnSystemDisk
constant if you are not sure which value to specify in this parameter.

creator
The creator code of the desired icon.

iconType
The type code of the desired icon.

theIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 33).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Functions 17
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Discussion
Icon Services defines constants for commonly-used system icons. You can pass one of these constants in the
iconType parameter if you specify kSystemIconsCreator in the creator parameter. See “Folder Icon
Constants” (page 48) for a list of these constants.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconRefFromComponent
Provides an IconRef object based on a specified component.

OSStatus GetIconRefFromComponent (
 Component inComponent,
 IconRef *outIconRef
);

Parameters
inComponent

The component whose icon data you want to obtain.

outIconRef
On return, a pointer to an IconRef object based on the componentIconFamily field of the specified
component's 'thng' resource. You are responsible for releasing the object by calling
ReleaseIconRef (page 33).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
This function obtains an IconRef object based on the resource ID of an icon family. A component can provide
an icon family in addition to the icon provided in the componentIcon field. Note that members of this icon
family are not used by the Finder; you supply an icon family only so that other components or applications
can display your component's icon in their user interfaces if needed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
IconsCore.h

GetIconRefFromFileInfo
Provides an IconRef object for a file with minimal file I/O.

18 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSStatus GetIconRefFromFileInfo (
 const FSRef *inRef,
 UniCharCount inFileNameLength,
 const UniChar *inFileName,
 FSCatalogInfoBitmap inWhichInfo,
 const FSCatalogInfo *inCatalogInfo,
 IconServicesUsageFlags inUsageFlags,
 IconRef *outIconRef,
 SInt16 *outLabel
);

Parameters
inRef

A pointer to an FSRef for the target file.

inFileNameLength
The length of the name of the target file.

inFileName
A pointer to the name of the target file.

inWhichInfo
The mask of the file information contained in the inCatalogInfo parameter.

inCatalogInfo
A pointer to the catalog information.

inUsageFlags
The usage flags for this call; use kIconServicesNormalUsageFlag.

outIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 33).

outLabel
On return, a pointer to the output label for the icon/file.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
To minimize file operations, FSGetCatalogInfo should be called prior to calling this function. The information
in the FSCatalogInfo structure should correspond to that specified by kIconServicesCatalogInfoMask.
The name should be fetched and passed in. If either the name or the correct catalog information is not passed
in, this function will do file operations for this information instead.

Availability
Available in Mac OS X v10.1 and later.

Declared In
IconsCore.h

GetIconRefFromFolder
Provides an IconRef object for a folder with no custom icon.

Functions 19
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr GetIconRefFromFolder (
 SInt16 vRefNum,
 SInt32 parentFolderID,
 SInt32 folderID,
 SInt8 attributes,
 SInt8 accessPrivileges,
 IconRef *theIconRef
);

Parameters
vRefNum

The volume where the folder is located.

parentFolderID
The ID of the desired folder’s parent folder.

folderID
The ID of the desired folder.

attributes
The attributes of the desired folder. You can obtain this data from the
CInfoPBRec.dirInfo.ioFlAttrib field of the folder’s catalog information record.

accessPrivileges
The access privileges of the specified folder. You can obtain this data from the
CInfoPBRec.dirInfo.ioACUser field of the folder’s catalog information record.

theIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 33).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
If you do not have the catalog information for a folder, use the function GetIconRefFromFileInfo (page
18).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconRefFromIconFamilyPtr
Provides an IconRef object from a specified icon family.

OSStatus GetIconRefFromIconFamilyPtr (
 const IconFamilyResource *inIconFamilyPtr,
 Size inSize,
 IconRef *outIconRef
);

Parameters
inIconFamilyPtr

A pointer to an icon family. See IconStorage.h for more information.

20 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

inSize
The size of the resource buffer containing the icon family.

outIconRef
On return, a pointer to an IconRef object that matches the specified inputs. You are responsible for
releasing the object by calling ReleaseIconRef (page 33).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Typically, you do not need to use this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
IconsCore.h

GetIconRefFromTypeInfo
Provides an IconRef object with the specified type information.

OSErr GetIconRefFromTypeInfo (
 OSType inCreator,
 OSType inType,
 CFStringRef inExtension,
 CFStringRef inMIMEType,
 IconServicesUsageFlags inUsageFlags,
 IconRef *outIconRef
);

Parameters
inCreator

The creator code of the desired IconRef. You may pass 0 if the creator code is unknown.

inType
The type code of the desired IconRef. You may pass 0 if the type code is unknown.

inExtension
The file name extension of the desired IconRef. You may pass NULL if the extension is unknown.

inMIMEType
The MIME type of the desired IconRef. You may pass NULL if the MIME type is unknown.

inUsageFlags
The usage flags; use kIconServicesNormalUsageFlag.

outIconRef
On return, a pointer to an IconRef object that most closely matches the specified inputs. You are
responsible for releasing the object by calling ReleaseIconRef (page 33).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Functions 21
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Discussion
This function serves as a more versatile version of GetIconRef (page 17). If you specify creator and type
codes and do not specify the extension and MIME type, calling this function is equivalent to calling
GetIconRef (kOnSystemDisk, inCreator, inType). If none of the input parameters is specified or
if no match is found, this function returns the generic document icon.

Availability
Available in Mac OS X v10.3 and later.

Declared In
IconsCore.h

GetIconRefOwners
Provides the current reference count for an IconRef.

OSErr GetIconRefOwners (
 IconRef theIconRef,
 UInt16 *owners
);

Parameters
theIconRef

An IconRef whose reference count you wish to obtain.

owners
On return, a pointer to the value which represents the current reference count.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
When an IconRef’s reference count reaches 0, all memory allocated for the IconRef is marked as disposable.
Any subsequent attempt to use the IconRef returns a result code of -2580 (invalidIconRefErr).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconRefVariant
Specifies a transformation for a given IconRef.

IconRef GetIconRefVariant (
 IconRef inIconRef,
 OSType inVariant,
 IconTransformType *outTransform
);

Parameters
inIconRef

A value to be tested.

22 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

inVariant
A four-character value. You specify a variant by passing one of the following constants:

kTileIconVariant specifies a tiled icon.

kRolloverIconVariant specifies a rollover icon.

kDropIconVariant specifies a drop target icon.

kOpenIconVariant specifies an open icon.

kOpenDropIconVariant specifies a open drop target icon.

outTransform
On completion, this points to a transformation type that you pass to the function PlotIconRef (page
86) for purposes of hit-testing.

Return Value
An IconRef value that you pass to the function PlotIconRef (page 86) for purposes of hit-testing.

Discussion
Icon variants give you a simple way to indicate a temporary change of state by changing an icon’s appearance.
For example, if you specify the kDropIconVariant value when the user drags over a valid drop target, the
GetIconVariant function provides the appropriate data for you to plot the variant with the function
PlotIconRef (page 86).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconRefContainsCGPoint
Returns a Boolean value indicating whether an icon contains a specified point.

Boolean IconRefContainsCGPoint (
 const CGPoint *testPt,
 const CGRect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testPt

A pointer to the point to be tested. The point should be specified in the coordinate system of the
rectangle specified in the iconRect parameter.

iconRect
A pointer to the rectangle in which the icon appears. The rectangle you specify should be the same
rectangle that you last used to draw the icon.

align
Specifies how the icon is aligned within the rectangle specified in the iconRect parameter. The
alignment you specify should be the same alignment that you last used to draw the icon. See “Icon
Alignment Constants” (page 41) for a description of the values you can use in this parameter.

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

Functions 23
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

theIconRef
The icon to test.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Discussion
This function uses the size of the rectangle you specify to determine the optimal icon mask to represent the
icon. The function uses the alignment information you specify to adjust the position of the mask inside its
bounding rectangle, and then determines whether the specified point is within the mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Icons.h

IconRefIntersectsCGRect
Returns a Boolean value indicating whether an icon intersects a specified rectangle.

Boolean IconRefIntersectsCGRect (
 const CGRect *testRect,
 const CGRect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testRect

A pointer to the rectangle to be tested. The rectangle should be specified in the coordinate system
of the rectangle specified in the iconRect parameter.

iconRect
A pointer to the rectangle in which the icon appears. The rectangle you specify should be the same
rectangle that you last used to draw the icon.

align
Specifies how the icon is aligned within the rectangle specified by the iconRect parameter. The
alignment you specify should be the same alignment that you last used to draw the icon. See “Icon
Alignment Constants” (page 41) for a description of the values you can use in this parameter.

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to test.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Discussion
This function uses the size of the rectangle you specify in the iconRect parameter to determine the optimal
icon mask to represent the icon. The function uses the alignment information you specify to adjust the
position of the mask inside its bounding rectangle, and then determines whether the rectangle you specify
in the testRect parameter intersects the mask.

24 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
Icons.h

IconRefToHIShape
Converts an icon into an HIShape object.

HIShapeRef IconRefToHIShape (
 const CGRect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
iconRect

A pointer to the rectangle defining the area that Icon Services uses as the bounding box of the shape.

align
A value which determines how Icon Services aligns the shape within the rectangle. For a description
of possible values, see “Icon Alignment Constants” (page 41).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to be converted.

Return Value
An HIShape object, or NULL if the icon could not be converted.

Discussion
This function uses the size of the rectangle you specify to determine the optimal icon mask to represent the
icon. The function uses the alignment information you specify to adjust the position of the mask inside its
bounding rectangle, and then returns the shape of the mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Icons.h

IconRefToIconFamily
Provides icon family data for a given IconRef.

Functions 25
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr IconRefToIconFamily (
 IconRef theIconRef,
 IconSelectorValue whichIcons,
 IconFamilyHandle *iconFamily
);

Parameters
theIconRef

An IconRef to use as a source for icon data.

whichIcons
The depths and sizes of icons in the iconFamily data structure. For a description of the possible
values, see “Icon Selector Constants” (page 43).

iconFamily
On return, a pointer to a handle to the data structure which contains icon data as specified in the
IconRef and whichIcons parameters. Icon Services returns NULL if no appropriate icon data is
found. For more information on the IconFamily data structure, see 'icns'.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

InvokeIconActionUPP
Calls your icon action callback function.

OSErr InvokeIconActionUPP (
 ResType theType,
 Handle *theIcon,
 void *yourDataPtr,
 IconActionUPP userUPP
);

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
You should not need to use the function InvokeIconActionUPP, as the system calls your icon action callback
function for you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

InvokeIconGetterUPP
Calls your icon getter callback function.

26 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Handle InvokeIconGetterUPP (
 ResType theType,
 void *yourDataPtr,
 IconGetterUPP userUPP
);

Discussion
You should not need to use the function InvokeIconGetterUPP, as the system calls your icon getter callback
function for you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IsDataAvailableInIconRef
Indicates whether an IconRef has the specified data.

Boolean IsDataAvailableInIconRef (
 OSType inIconKind,
 IconRef inIconRef
);

Parameters
inIconKind

The icon data kind. See IconStorage.h for more information.

inIconRef
The icon reference whose data you want to check.

Return Value
True if the icon reference contains the indicated data, False otherwise.

Discussion
This function can be used to determine the optimal icon size if you plan to cache a bitmap image of the icon.

Availability
Available in Mac OS X v10.3 and later.

Declared In
IconsCore.h

IsIconRefComposite
Reports whether a specified IconRef has been composited.

Functions 27
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr IsIconRefComposite (
 IconRef compositeIconRef,
 IconRef *backgroundIconRef,
 IconRef *foregroundIconRef
);

Parameters
compositeIconRef

An IconRef that you wish to test to determine whether it has been composited.

backgroundIconRef
On return, this points to the IconRef value that forms the background of the IconRef specified in
the compositeIconRef parameter. If the IconRef specified in the compositeIconRef parameter
is not a composite, the return value is 0.

foregroundIconRef
On return, this points to the IconRef value that forms the foreground of the IconRef specified in
the compositeIconRef parameter. If the IconRef specified in the compositeIconRef parameter
is not a composite, the return value is 0.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
The function CompositeIconRef (page 14) allows the creation of a composite IconRef from a given
background IconRef and a given foreground IconRef. The IsIconRefComposite function checks a
specified IconRef to determine whether it is a composite and, if so, provides the background and foreground
IconRef values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

IsIconRefMaskEmpty
Reports whether a specified mask is empty.

Boolean IsIconRefMaskEmpty (
 IconRef iconRef
);

Parameters
iconRef

An IconRef whose mask you wish to test.

Return Value
true if the mask associated with the given IconRef is empty, false otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

28 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

IsValidIconRef
Reports whether a specified IconRef is valid.

Boolean IsValidIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef.

Return Value
true if the specified IconRef is valid, false otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

NewIconActionUPP
Creates a new universal procedure pointer (UPP) to an icon action callback function.

IconActionUPP NewIconActionUPP (
 IconActionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your icon action function.

Return Value
A UPP to the icon action function.

Discussion
See the IconActionProcPtr (page 36) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

NewIconGetterUPP
Creates a new universal procedure pointer (UPP) to an icon getter callback function.

Functions 29
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

IconGetterUPP NewIconGetterUPP (
 IconGetterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your icon getter function.

Return Value
A UPP to the icon getter function.

Discussion
See the IconGetterProcPtr (page 37) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

OverrideIconRef
Replaces the bitmaps of one IconRef with those of another IconRef.

OSErr OverrideIconRef (
 IconRef oldIconRef,
 IconRef newIconRef
);

Parameters
oldIconRef

A pointer to a value of type IconRef whose bitmaps are to be replaced.

newIconRef
A pointer to a value of typeIconRef containing the replacement bitmaps.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

PlotIconRefInContext
Plots an IconRef using Quartz.

30 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSStatus PlotIconRefInContext (
 CGContextRef inContext,
 const CGRect *inRect,
 IconAlignmentType inAlign,
 IconTransformType inTransform,
 const RGBColor *inLabelColor,
 PlotIconRefFlags inFlags,
 IconRef inIconRef
);

Parameters
inContext

The graphics context to use.

inRect
A pointer to the rectangle to plot the icon in.

inAlign
The icon alignment. See “Icon Alignment Constants” (page 41).

inTransform
The icon transform. See “Icon Transformation Constants” (page 43).

inLabelColor
A pointer to the icon label color.

inFlags
The drawing flags to use; this is usually kPlotIconRefNormalFlags.

inIconRef
The IconRef to plot.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Icons.h

ReadIconFromFSRef
Reads an icon ('icns') file into memory.

OSStatus ReadIconFromFSRef (
 const FSRef *ref,
 IconFamilyHandle *iconFamily
);

Parameters
ref

A pointer to the FSRef for the icon file.

iconFamily
A pointer to the handle for the icon family.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Functions 31
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Availability
Available in Mac OS X v10.1 and later.

Declared In
IconsCore.h

RegisterIconRefFromFSRef
Registers an IconRef from a .icns file and associates it with a creator and type pair.

OSStatus RegisterIconRefFromFSRef (
 OSType creator,
 OSType iconType,
 const FSRef *iconFile,
 IconRef *theIconRef
);

Parameters
creator

The creator code for the .icns file.

iconType
The type code for the .icns file.

iconFile
A pointer to the FSRef of the .icns file.

theIconRef
A pointer to an IconRef. On return, this contains the registered IconRef.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.1 and later.

Declared In
IconsCore.h

RegisterIconRefFromIconFamily
Adds an iconFamily-derived IconRef to the Icon Services registry.

OSErr RegisterIconRefFromIconFamily (
 OSType creator,
 OSType iconType,
 IconFamilyHandle iconFamily,
 IconRef *theIconRef
);

Parameters
creator

The creator code of the desired icon. You can use your application’s creator code, for example.
Lower-case creator codes are reserved for the System.

32 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

iconType
The type code of the desired icon.

iconFamily
A handle to the iconFamily data structure to register.

theIconRef
On return, a pointer to the desired icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Consider using the function RegisterIconRefFromIconFile (page 97), since the data registered using
the RegisterIconRefFromIconFamily function cannot be purged. You are responsible for disposing of
the IconRef by using the function ReleaseIconRef (page 33).

Calling this function increments the reference count of the IconRef.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

ReleaseIconRef
Decrements the reference count for an IconRef.

OSErr ReleaseIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef whose reference count you wish to decrement.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
When an IconRef’s reference count reaches 0, all memory allocated for the IconRef is marked as disposable.
Any subsequent attempt to use the IconRef returns a result code of - 2580 (invalidIconRefErr).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

RemoveIconRefOverride
Restores the original bitmaps of an overridden IconRef.

Functions 33
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr RemoveIconRefOverride (
 IconRef theIconRef
);

Parameters
theIconRef

A pointer to a value of type IconRef whose bitmaps are to be restored.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

SetCustomIconsEnabled
Enables or disables custom icons on a specified volume.

OSErr SetCustomIconsEnabled (
 SInt16 vRefNum,
 Boolean enableCustomIcons
);

Parameters
vRefNum

The volume where custom icons are to be enabled or disabled.

enableCustomIcons
If you pass true, custom icons are enabled on the volume specified. Passing false disables custom
icons on the volume specified.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
If you use the SetCustomIconsEnabled function to enable or disable custom icons, the setting remains in
effect only as long as the specified volume remains mounted during the current session.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

SetIconFamilyData
Provides new raw icon data for an individual element of an icon family.

34 Functions
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

OSErr SetIconFamilyData (
 IconFamilyHandle iconFamily,
 OSType iconType,
 Handle h
);

Parameters
iconFamily

A handle to an iconFamily data structure to be used as the target.

iconType
The format of the icon data you provide.You may specify one of the icon types (as defined in
IconStorage.h in the CoreServices/OSServices framework) or 'PICT' in this parameter. For a
thumbnail icon, for example, you specify kThumbnail32BitData in this parameter. For a thumbnail
mask, you specify kThumbnail8BitMask.

h
A handle to the icon data you provide. For a thumbnail icon, the handle contains raw image data in
the form of 128x128, four bytes per pixel, RGB data. For a thumbnail mask, the data is in the same
format except that it is one byte per pixel.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

UnregisterIconRef
Removes the specified icon data from the icon registry.

OSErr UnregisterIconRef (
 OSType creator,
 OSType iconType
);

Parameters
creator

The creator code of the icon data to be unregistered.

iconType
The type code of the icon data to be unregistered.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
The specified icon data is not unregistered until all its users have called the function ReleaseIconRef (page
33).

You should not unregister an icon that you have not registered.

Availability
Available in Mac OS X v10.0 and later.

Functions 35
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Declared In
IconsCore.h

UpdateIconRef
Forces an update of IconRef data.

OSErr UpdateIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef to be updated.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
This function is useful after you have changed a file or folder’s custom icon, for example. Do not call the
UpdateIconRef function if you have not already obtained an IconRef for a particular icon; call the function
GetIconRefFromFile (page 68) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

Callbacks

IconActionProcPtr
Defines a pointer to an icon action callback function, which performs an action on a single icon.

typedef OSErr (*IconActionProcPtr) (
 ResType theType,
 Handle *theIcon,
 void *yourDataPtr
);

If you name your function MyIconActionProc, you would declare it like this:

OSErr MyIconActionProc (
 ResType theType,
 Handle *theIcon,
 void *yourDataPtr
);

36 Callbacks
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Parameters
theType

The resource type of the icon.

theIcon
A pointer to the handle to the icon on which to perform the operation.

yourDataPtr
A pointer to data as specified in the yourDataPtr parameter of the ForEachIconDo function. When
your application calls ForEachIconDo, it typically provides in the yourDataPtr parameter a value
that identifies the action your function should perform.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
You can perform operations on every icon in an icon suite by providing a pointer to an icon action function
as a parameter to the ForEachIconDo (page 63) function. The ForEachIconDo function calls your icon
action function for specified icon resource types. Your icon action function should return a result code
indicating whether it successfully performed the action on the icon.

Before using your icon action function, you must first create a new universal procedure pointer to it, using
the NewIconActionUPP (page 29) function, as shown here:

IconActionUPP MyIconActionUPP;
MyIconActionUPP = NewIconActionUPP(&MyIconActionProc)

You then pass MyIconActionUPP to the ForEachIconDo function. When you are finished with your icon
action callback function, you should dispose of the universal procedure pointer associated with it:

DisposeIconActionUPP(MyIconActionUPP);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconGetterProcPtr
Defines a pointer to an icon getter callback function, which retrieves a handle to an icon of the requested
type.

typedef Handle (*IconGetterProcPtr) (
 ResType theType,
 void *yourDataPtr
);

If you name your function MyIconGetterProc, you would declare it like this:

Handle MyIconGetterProc (
 ResType theType,
 void *yourDataPtr
);

Callbacks 37
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Parameters
theType

The resource type of the icon. In general, you should specify your icon resources as purgeable.

yourDataPtr
If your icon getter function was called by an icon cache function, this parameter contains, on return,
a pointer to the data associated with the icon cache. Otherwise, this parameter contains the value
your application specified in the yourDataPtr parameter. For icon caches, you initially set this value
when you first create a cache using the MakeIconCache (page 78) function. You can change this
value using the SetIconCacheData (page 99) function. The icon getter function can use this data
as needed.

Return Value
An icon getter function should return as its function result a handle to the requested icon’s data.

Discussion
If you use icon caches, you must provide at least one icon getter function. The MakeIconCache function
takes a pointer to an icon getter function for use with a new icon cache. Subsequent calls to Icon Utilities
functions that use icon types not present in the icon cache use the icon getter function associated with the
icon cache to return a handle to the icon data. To get and set an existing icon cache’s icon getter function,
use the GetIconCacheProc (page 66) and SetIconCacheProc (page 100) functions.

You can also specify an icon getter function for use by the PlotIconMethod (page 85),
IconMethodToRgn (page 73), PtInIconMethod (page 89), and RectInIconMethod (page 94) functions.
Like Icon Utilities functions that work with icon caches, the icon getter function that you provide as a parameter
to PlotIconMethod should return a handle to the requested icon’s data. Note that the icon getter function
that you provide as a parameter to IconMethodToRgn, PtInIconMethod, and RectInIconMethod should
also return a handle to the requested icon; these three functions then extract the icon mask from the icon
data your icon getter function returns.

Before using your icon getter function, you must first create a new universal procedure pointer to it, using
the NewIconGetterUPP (page 29) function, as shown here:

IconGetterUPP MyIconGetterUPP;
MyIconGetterUPP = NewIconGetterUPP(&MyIconGetterProc)

You can then pass MyIconGetterUPP to any of the Icon Utilities functions which use custom icon getter
functions. When you are finished with your icon getter callback function, you should dispose of the universal
procedure pointer associated with it, using the DisposeIconGetterUPP (page 15) function:

DisposeIconGetterUPP(MyIconGetterUPP);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

Data Types

CIcon
Defines a color icon structure.

38 Data Types
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

struct CIcon {
 PixMap iconPMap;
 BitMap iconMask;
 BitMap iconBMap;
 Handle iconData;
 SInt16 iconMaskData[1];
};
typedef struct CIcon CIcon;
typedef CIcon * CIconPtr;

Fields
iconPMap

The pixel map describing the icon. Note that this is a pixel map record, not a handle to a pixel map
record.

iconMask
A bitmap of the icon’s mask.

iconBMap
A bitmap of the icon.

iconData
A handle to the icon’s pixel image.

iconMaskData
An array containing the icon’s mask data followed by the icon’s bitmap data. This is used only when
the icon is stored as a resource.

Discussion
The PlotCIcon (page 80), PlotCIconHandle (page 81), GetCIcon (page 64), and DisposeCIcon (page
62) functions all use the CIconHandle data type to refer to a color icon structure. A color icon structure
contains information about a color icon.

All color icon resources should be marked purgeable. You can use icons of resource type 'cicn' in menus
the same way that you use resources of type 'ICON'. If a menu item specifies an icon number, the menu
definition function first tries to load in a 'cicn' resource with the specified resource ID. If it doesn’t find
one, the menu definition function tries to load in an 'ICON' resource with the same ID. The Dialog Manager
also uses a 'cicn' resource instead of an 'ICON' resource if it finds one with the same resource ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Icons.h

IconRef
Defines an icon reference.

typedef struct OpaqueIconRef * IconRef;

Discussion
An IconRef is a 32–bit values identifying cached icon data. IconRef 0 is invalid.

Availability
Available in Mac OS X v10.0 and later.

Data Types 39
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Declared In
IconsCore.h

IconActionUPP
Defines a universal procedure pointer (UPP) to an icon action callback function.

typedef IconActionProcPtr IconActionUPP;

Discussion
For more information, see the description of the IconActionProcPtr (page 36) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconGetterUPP
Defines a universal procedure pointer to an icon getter callback function.

typedef IconGetterProcPtr IconGetterUPP;

Discussion
For more information, see the description of the IconGetterProcPtr (page 37) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconCacheRef
Defines a reference to an icon cache.

typedef Handle IconCacheRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Icons.h

IconSuiteRef
Defines a reference to an icon suite.

40 Data Types
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

typedef Handle IconSuiteRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Icons.h

Constants

Icon Alignment Constants
Define constants that allow you to specify how to align an icon within its rectangle.

enum {
 kAlignNone = 0x00,
 kAlignVerticalCenter = 0x01,
 kAlignTop = 0x02,
 kAlignBottom = 0x03,
 kAlignHorizontalCenter = 0x04,
 kAlignAbsoluteCenter = kAlignVerticalCenter | kAlignHorizontalCenter,
 kAlignCenterTop = kAlignTop | kAlignHorizontalCenter,
 kAlignCenterBottom = kAlignBottom | kAlignHorizontalCenter,
 kAlignLeft = 0x08,
 kAlignCenterLeft = kAlignVerticalCenter | kAlignLeft,
 kAlignTopLeft = kAlignTop | kAlignLeft,
 kAlignBottomLeft = kAlignBottom | kAlignLeft,
 kAlignRight = 0x0C,
 kAlignCenterRight = kAlignVerticalCenter | kAlignRight,
 kAlignTopRight = kAlignTop | kAlignRight,
 kAlignBottomRight = kAlignBottom | kAlignRight
};
typedef SInt16 IconAlignmentType;

Constants
kAlignNone

Use this value if you do not wish to specify a particular alignment.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignVerticalCenter
Use this value to center the icon vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignTop
Use this value to top align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Constants 41
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

kAlignBottom
Use this value to bottom align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignHorizontalCenter
Use this value to center the icon horizontally within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignAbsoluteCenter
Use this value to center the icon horizontally and vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterTop
Use this value to top align the icon and center it horizontally within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterBottom
Use this value to bottom align the icon and center it horizontally within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignLeft
Use this value to left align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterLeft
Use this value to left align the icon and center it vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignTopLeft
Use this value to left and top align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignBottomLeft
Use this value to left and bottom align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignRight
Use this value to right align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

42 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

kAlignCenterRight
Use this value to right align the icon and center it vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignTopRight
Use this value to right and top align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignBottomRight
Use this value to right and bottom align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Discussion
Icon Services and Utilities functions use the IconAlignmentType constants to determine how an icon is
aligned within its bounding rectangle.

Icon Transformation Constants
Define values that Icon Services uses to report how an icon has been transformed after you call the function
GetIconRefVariant.

enum {
 kTransformNone = 0x00,
 kTransformDisabled = 0x01,
 kTransformOffline = 0x02,
 kTransformOpen = 0x03,
 kTransformLabel1 = 0x0100,
 kTransformLabel2 = 0x0200,
 kTransformLabel3 = 0x0300,
 kTransformLabel4 = 0x0400,
 kTransformLabel5 = 0x0500,
 kTransformLabel6 = 0x0600,
 kTransformLabel7 = 0x0700,
 kTransformSelected = 0x4000,
 kTransformSelectedDisabled = kTransformSelected | kTransformDisabled,
 kTransformSelectedOffline = kTransformSelected | kTransformOffline,
 kTransformSelectedOpen = kTransformSelected | kTransformOpen
};
typedef SInt16 IconTransformType;

Discussion
The functions PlotIconID (page 83)PlotIconMethod (page 85), PlotIconHandle (page 82),
PlotCIconHandle (page 81), PlotIconSuite (page 86), LoadIconCache (page 77) and
PlotSICNHandle (page 88) use these constants to specify how an icon should be modified, if at all, when
plotted.

Icon Selector Constants
Describe values that you can use to obtain information about the sizes and depths of icons available in a
given icon family.

Constants 43
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 kSelectorLarge1Bit = 0x00000001,
 kSelectorLarge4Bit = 0x00000002,
 kSelectorLarge8Bit = 0x00000004,
 kSelectorLarge32Bit = 0x00000008,
 kSelectorLarge8BitMask = 0x00000010,
 kSelectorSmall1Bit = 0x00000100,
 kSelectorSmall4Bit = 0x00000200,
 kSelectorSmall8Bit = 0x00000400,
 kSelectorSmall32Bit = 0x00000800,
 kSelectorSmall8BitMask = 0x00001000,
 kSelectorMini1Bit = 0x00010000,
 kSelectorMini4Bit = 0x00020000,
 kSelectorMini8Bit = 0x00040000,
 kSelectorHuge1Bit = 0x01000000,
 kSelectorHuge4Bit = 0x02000000,
 kSelectorHuge8Bit = 0x04000000,
 kSelectorHuge32Bit = 0x08000000,
 kSelectorHuge8BitMask = 0x10000000,
 kSelectorAllLargeData = 0x000000FF,
 kSelectorAllSmallData = 0x0000FF00,
 kSelectorAllMiniData = 0x00FF0000,
 kSelectorAllHugeData = 0xFF000000,
 kSelectorAll1BitData = kSelectorLarge1Bit | kSelectorSmall1Bit
| kSelectorMini1Bit | kSelectorHuge1Bit,
 kSelectorAll4BitData = kSelectorLarge4Bit | kSelectorSmall4Bit
| kSelectorMini4Bit | kSelectorHuge4Bit,
 kSelectorAll8BitData = kSelectorLarge8Bit | kSelectorSmall8Bit
| kSelectorMini8Bit | kSelectorHuge8Bit,
 kSelectorAll32BitData = kSelectorLarge32Bit | kSelectorSmall32Bit
| kSelectorHuge32Bit,
 kSelectorAllAvailableData = 0xFFFFFFFF
};
typedef UInt32 IconSelectorValue;

Constants
kSelectorLarge1Bit

Specify to include 'ICN#' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorLarge4Bit
Specify to include 'icl4' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorLarge8Bit
Specify to include 'icl8' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorLarge32Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

44 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

kSelectorLarge8BitMask
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall1Bit
Specify to include 'ics#' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall4Bit
Specify to include 'ics4' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall8Bit
Specify to include 'ics8' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall32Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall8BitMask
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorMini1Bit
Specify to include 'icm#' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorMini4Bit
Specify to include 'icm4' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorMini8Bit
Specify to include 'icm8' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge1Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge4Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge8Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Constants 45
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

kSelectorHuge32Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge8BitMask
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllLargeData
Specify to include 'ICN#', 'icl4', and 'icl8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllSmallData
Specify to include 'ics#', 'ics4', and 'ics8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllMiniData
Specify to include 'icm#', 'icm4', and 'icm8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllHugeData
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll1BitData
Specify to include 'ICN#', 'ics#', and 'icm#' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll4BitData
Specify to include 'icl4', 'ics4', and 'icm4' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll8BitData
Specify to include 'icl8', 'ics8', and 'icm8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll32BitData
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllAvailableData
Specify to include all resources of given ID.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Discussion
The functions GetIconSuite (page 69) and ForEachIconDo (page 63) use these constants in the selector
parameter to specify which members of the family to include in the icon suite.

46 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Catalog Information Bitmask
Defines a minimal bitmask for use with the GetIconRefFromFileInfo function.

enum {
 kIconServicesCatalogInfoMask =
 (kFSCatInfoNodeID | kFSCatInfoParentDirID | kFSCatInfoVolume
 | kFSCatInfoNodeFlags | kFSCatInfoFinderInfo |
 kFSCatInfoFinderXInfo | kFSCatInfoUserAccess)
};

Constants
kIconServicesCatalogInfoMask

Use this mask with the File Manager function FSGetCatalogInfo before calling
GetIconRefFromFileInfo.

Available in Mac OS X v10.1 and later.

Declared in IconsCore.h.

System Icon Constant
Defines a creator type for all system–defined icons.

enum {
 kSystemIconsCreator = 'macs'
};

Discussion
You can use the kSystemIconsCreator constant to obtain System icons that are not associated with a file,
such as the help icon.

Icon Services Usage Flag

typedef UInt32 IconServicesUsageFlags;
enum {
 kIconServicesNormalUsageFlag = 0
};

Alert Icon Constants
Specify standard alert icons.

enum {
 kAlertNoteIcon = 'note',
 kAlertCautionIcon = 'caut',
 kAlertStopIcon = 'stop'
};

Discussion
Icon Services defines constants for a number of standard alert icons. You can pass one of these constants in
the iconType parameter of the function GetIconRef (page 17), for example.

Constants 47
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Filesharing Privilege Icon Constants
Identify standard filesharing privilege icons.

enum {
 kSharingPrivsNotApplicableIcon = 'shna',
 kSharingPrivsReadOnlyIcon = 'shro',
 kSharingPrivsReadWriteIcon = 'shrw',
 kSharingPrivsUnknownIcon = 'shuk',
 kSharingPrivsWritableIcon = 'writ'
};

Discussion
Icon Services defines constants for a number of standard filesharing privilege icons. You can pass one of
these constants in the iconType parameter of the function GetIconRef (page 17), for example.

Folder Icon Constants
Identify standard folder icons.

enum {
 kGenericFolderIcon = 'fldr',
 kDropFolderIcon = 'dbox',
 kMountedFolderIcon = 'mntd',
 kOpenFolderIcon = 'ofld',
 kOwnedFolderIcon = 'ownd',
 kPrivateFolderIcon = 'prvf',
 kSharedFolderIcon = 'shfl'
};

Discussion
Icon Services defines constants for a number of standard folder icons. You can pass one of these constants
in the iconType parameter of the function GetIconRef (page 17), for example.

Internet Icon Constants
Identify standard Internet icons.

enum {
 kInternetLocationHTTPIcon = 'ilht',
 kInternetLocationFTPIcon = 'ilft',
 kInternetLocationAppleShareIcon = 'ilaf',
 kInternetLocationAppleTalkZoneIcon = 'ilat',
 kInternetLocationFileIcon = 'ilfi',
 kInternetLocationMailIcon = 'ilma',
 kInternetLocationNewsIcon = 'ilnw',
 kInternetLocationNSLNeighborhoodIcon = 'ilns',
 kInternetLocationGenericIcon = 'ilge'
};

Discussion
Icon Services defines constants for a number of standard Internet icons. You can pass one of these constants
in the iconType parameter of the function GetIconRef (page 17), for example.

48 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

Toolbar Icons
Identify standard toolbar icons.

enum {
 kToolbarCustomizeIcon = 'tcus',
 kToolbarDeleteIcon = 'tdel',
 kToolbarFavoritesIcon = 'tfav',
 kToolbarHomeIcon = 'thom'
};

Miscellaneous Icon Constants
Identify miscellaneous icons.

enum {
 kAppleLogoIcon = 'capl',
 kAppleMenuIcon = 'sapl',
 kBackwardArrowIcon = 'baro',
 kFavoriteItemsIcon = 'favr',
 kForwardArrowIcon = 'faro',
 kGridIcon = 'grid',
 kHelpIcon = 'help',
 kKeepArrangedIcon = 'arng',
 kLockedIcon = 'lock',
 kNoFilesIcon = 'nfil',
 kNoFolderIcon = 'nfld',
 kNoWriteIcon = 'nwrt',
 kProtectedApplicationFolderIcon = 'papp',
 kProtectedSystemFolderIcon = 'psys',
 kRecentItemsIcon = 'rcnt',
 kShortcutIcon = 'shrt',
 kSortAscendingIcon = 'asnd',
 kSortDescendingIcon = 'dsnd',
 kUnlockedIcon = 'ulck',
 kConnectToIcon = 'cnct',
 kGenericWindowIcon = 'gwin',
 kQuestionMarkIcon = 'ques',
 kDeleteAliasIcon = 'dali',
 kEjectMediaIcon = 'ejec',
 kBurningIcon = 'burn',
 kRightContainerArrowIcon = 'rcar'
};

Discussion
Icon Services defines constants for a number of miscellaneous icons. You can pass one of these constants in
the iconType parameter of the function GetIconRef (page 17), for example.

Networking Icon Constants
Identify standard networking icons.

Constants 49
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 kAppleTalkIcon = 'atlk',
 kAppleTalkZoneIcon = 'atzn',
 kAFPServerIcon = 'afps',
 kFTPServerIcon = 'ftps',
 kHTTPServerIcon = 'htps',
 kGenericNetworkIcon = 'gnet',
 kIPFileServerIcon = 'isrv'
};

Discussion
Icon Services defines constants for a number of standard networking icons. You can pass one of these
constants in the iconType parameter of the function GetIconRef (page 17), for example.

Special Folder Icon Constants
Identify special folder icons.

50 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 kAppearanceFolderIcon = 'appr',
 kAppleExtrasFolderIcon = 'aexƒ',
 kAppleMenuFolderIcon = 'amnu',
 kApplicationsFolderIcon = 'apps',
 kApplicationSupportFolderIcon = 'asup',
 kAssistantsFolderIcon = 'astƒ',
 kColorSyncFolderIcon = 'prof',
 kContextualMenuItemsFolderIcon = 'cmnu',
 kControlPanelDisabledFolderIcon = 'ctrD',
 kControlPanelFolderIcon = 'ctrl',
 kControlStripModulesFolderIcon = 'sdvƒ',
 kDocumentsFolderIcon = 'docs',
 kExtensionsDisabledFolderIcon = 'extD',
 kExtensionsFolderIcon = 'extn',
 kFavoritesFolderIcon = 'favs',
 kFontsFolderIcon = 'font',
 kHelpFolderIcon = 'ƒhlp',
 kInternetFolderIcon = 'intƒ',
 kInternetPlugInFolderIcon = 'ƒnet',
 kInternetSearchSitesFolderIcon = 'issf',
 kLocalesFolderIcon = 'ƒloc',
 kMacOSReadMeFolderIcon = 'morƒ',
 kPublicFolderIcon = 'pubf',
 kPreferencesFolderIcon = 'prfƒ',
 kPrinterDescriptionFolderIcon = 'ppdf',
 kPrinterDriverFolderIcon = 'ƒprd',
 kPrintMonitorFolderIcon = 'prnt',
 kRecentApplicationsFolderIcon = 'rapp',
 kRecentDocumentsFolderIcon = 'rdoc',
 kRecentServersFolderIcon = 'rsrv',
 kScriptingAdditionsFolderIcon = 'ƒscr',
 kSharedLibrariesFolderIcon = 'ƒlib',
 kScriptsFolderIcon = 'scrƒ',
 kShutdownItemsDisabledFolderIcon = 'shdD',
 kShutdownItemsFolderIcon = 'shdf',
 kSpeakableItemsFolder = 'spki',
 kStartupItemsDisabledFolderIcon = 'strD',
 kStartupItemsFolderIcon = 'strt',
 kSystemExtensionDisabledFolderIcon = 'macD',
 kSystemFolderIcon = 'macs',
 kTextEncodingsFolderIcon = 'ƒtex',
 kUsersFolderIcon = 'usrƒ',
 kUtilitiesFolderIcon = 'utiƒ',
 kVoicesFolderIcon = 'fvoc'
};

Discussion
Icon Services defines constants for a number of special folder icons. You can pass one of these constants in
the iconType parameter of the function GetIconRef (page 17), for example.

Standard Finder Icon Constants
Identify standard Finder icons.

Constants 51
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 kClipboardIcon = 'CLIP',
 kClippingUnknownTypeIcon = 'clpu',
 kClippingPictureTypeIcon = 'clpp',
 kClippingTextTypeIcon = 'clpt',
 kClippingSoundTypeIcon = 'clps',
 kDesktopIcon = 'desk',
 kFinderIcon = 'FNDR',
 kFontSuitcaseIcon = 'FFIL',
 kFullTrashIcon = 'ftrh',
 kGenericApplicationIcon = 'APPL',
 kGenericCDROMIcon = 'cddr',
 kGenericControlPanelIcon = 'APPC',
 kGenericControlStripModuleIcon = 'sdev',
 kGenericComponentIcon = 'thng',
 kGenericDeskAccessoryIcon = 'APPD',
 kGenericDocumentIcon = 'docu',
 kGenericEditionFileIcon = 'edtf',
 kGenericExtensionIcon = 'INIT',
 kGenericFileServerIcon = 'srvr',
 kGenericFontIcon = 'ffil',
 kGenericFontScalerIcon = 'sclr',
 kGenericFloppyIcon = 'flpy',
 kGenericHardDiskIcon = 'hdsk',
 kGenericIDiskIcon = 'idsk',
 kGenericRemovableMediaIcon = 'rmov',
 kGenericMoverObjectIcon = 'movr',
 kGenericPCCardIcon = 'pcmc',
 kGenericPreferencesIcon = 'pref',
 kGenericQueryDocumentIcon = 'qery',
 kGenericRAMDiskIcon = 'ramd',
 kGenericSharedLibaryIcon = 'shlb',
 kGenericStationeryIcon = 'sdoc',
 kGenericSuitcaseIcon = 'suit',
 kGenericURLIcon = 'gurl',
 kGenericWORMIcon = 'worm',
 kInternationalResourcesIcon = 'ifil',
 kKeyboardLayoutIcon = 'kfil',
 kSoundFileIcon = 'sfil',
 kSystemSuitcaseIcon = 'zsys',
 kTrashIcon = 'trsh',
 kTrueTypeFontIcon = 'tfil',
 kTrueTypeFlatFontIcon = 'sfnt',
 kTrueTypeMultiFlatFontIcon = 'ttcf',
 kUserIDiskIcon = 'udsk',
 kUnknownFSObjectIcon = 'unfs',
 kInternationResourcesIcon = kInternationalResourcesIcon
};

Discussion
Icon Services defines constants for a number of standard Finder icons. You can pass one of these constants
in the iconType parameter of the function GetIconRef (page 17), for example.

Standard Icon Badge Constants
Identify standard badges.

52 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 kAppleScriptBadgeIcon = 'scrp',
 kLockedBadgeIcon = 'lbdg',
 kMountedBadgeIcon = 'mbdg',
 kSharedBadgeIcon = 'sbdg',
 kAliasBadgeIcon = 'abdg',
 kAlertCautionBadgeIcon = 'cbdg'
};

Discussion
Icon Services defines constants for a number of standard badges. You can pass one of these constants in the
iconType parameter of the function GetIconRef (page 17), for example.

Users and Groups Icon Constants
Identify icons used in the Users and Groups control panel.

enum {
 kUserFolderIcon = 'ufld',
 kWorkgroupFolderIcon = 'wfld',
 kGuestUserIcon = 'gusr',
 kUserIcon = 'user',
 kOwnerIcon = 'susr',
 kGroupIcon = 'grup'
};

Discussion
Icon Services defines constants for a number of icons used in the Users and Groups control panel. You can
pass one of these constants in the iconType parameter of the function GetIconRef (page 17), for example.

genericDocumentIconResource
Use the constants listed in "Standard Icon Resources" instead.

Constants 53
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 genericDocumentIconResource = kGenericDocumentIconResource,
 genericStationeryIconResource = kGenericStationeryIconResource,
 genericEditionFileIconResource = kGenericEditionFileIconResource,
 genericApplicationIconResource = kGenericApplicationIconResource,
 genericDeskAccessoryIconResource = kGenericDeskAccessoryIconResource,
 genericFolderIconResource = kGenericFolderIconResource,
 privateFolderIconResource = kPrivateFolderIconResource,
 floppyIconResource = kFloppyIconResource,
 trashIconResource = kTrashIconResource,
 genericRAMDiskIconResource = kGenericRAMDiskIconResource,
 genericCDROMIconResource = kGenericCDROMIconResource,
 desktopIconResource = kDesktopIconResource,
 openFolderIconResource = kOpenFolderIconResource,
 genericHardDiskIconResource = kGenericHardDiskIconResource,
 genericFileServerIconResource = kGenericFileServerIconResource,
 genericSuitcaseIconResource = kGenericSuitcaseIconResource,
 genericMoverObjectIconResource = kGenericMoverObjectIconResource,
 genericPreferencesIconResource = kGenericPreferencesIconResource,
 genericQueryDocumentIconResource = kGenericQueryDocumentIconResource,
 genericExtensionIconResource = kGenericExtensionIconResource,
 systemFolderIconResource = kSystemFolderIconResource,
 appleMenuFolderIconResource = kAppleMenuFolderIconResource
};

Standard Icon Resources
Identify standard icon resources.

54 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

/*Icons for which both icon suites and 'SICN' resources exist*/
enum {
 kGenericDocumentIconResource = -4000,
 kGenericStationeryIconResource = -3985,
 kGenericEditionFileIconResource = -3989,
 kGenericApplicationIconResource = -3996,
 kGenericDeskAccessoryIconResource = -3991,
 kGenericFolderIconResource = -3999,
 kPrivateFolderIconResource = -3994,
 kFloppyIconResource = -3998,
 kTrashIconResource = -3993,
 kGenericRAMDiskIconResource = -3988,
 kGenericCDROMIconResource = -3987
};
/* Icons for which only 'SICN' resources exist*/
enum {
 kDesktopIconResource = -3992,
 kOpenFolderIconResource = -3997,
 kGenericHardDiskIconResource = -3995,
 kGenericFileServerIconResource = -3972,
 kGenericSuitcaseIconResource = -3970,
 kGenericMoverObjectIconResource = -3969
};
/*Icons for which only icon suites exist*/
enum {
 kGenericPreferencesIconResource = -3971,
 kGenericQueryDocumentIconResource = -16506,
 kGenericExtensionIconResource = -16415,
 kSystemFolderIconResource = -3983,
 kHelpIconResource = -20271,
 kAppleMenuFolderIconResource = -3982
};
enum {
 kStartupFolderIconResource = -3981,
 kOwnedFolderIconResource = -3980,
 kDropFolderIconResource = -3979,
 kSharedFolderIconResource = -3978,
 kMountedFolderIconResource = -3977,
 kControlPanelFolderIconResource = -3976,
 kPrintMonitorFolderIconResource = -3975,
 kPreferencesFolderIconResource = -3974,
 kExtensionsFolderIconResource = -3973,
 kFontsFolderIconResource = -3968,
 kFullTrashIconResource = -3984
};

startupFolderIconResource
Use the constants described in "Standard Icon Resources" instead.

Constants 55
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 startupFolderIconResource = kStartupFolderIconResource,
 ownedFolderIconResource = kOwnedFolderIconResource,
 dropFolderIconResource = kDropFolderIconResource,
 sharedFolderIconResource = kSharedFolderIconResource,
 mountedFolderIconResource = kMountedFolderIconResource,
 controlPanelFolderIconResource = kControlPanelFolderIconResource,
 printMonitorFolderIconResource = kPrintMonitorFolderIconResource,
 preferencesFolderIconResource = kPreferencesFolderIconResource,
 extensionsFolderIconResource = kExtensionsFolderIconResource,
 fontsFolderIconResource = kFontsFolderIconResource,
 fullTrashIconResource = kFullTrashIconResource
};

atNone
Use the constants described in "Icon Alignment Constants" instead.

enum {
 atNone = kAlignNone,
 atVerticalCenter = kAlignVerticalCenter,
 atTop = kAlignTop,
 atBottom = kAlignBottom,
 atHorizontalCenter = kAlignHorizontalCenter,
 atAbsoluteCenter = kAlignAbsoluteCenter,
 atCenterTop = kAlignCenterTop,
 atCenterBottom = kAlignCenterBottom,
 atLeft = kAlignLeft,
 atCenterLeft = kAlignCenterLeft,
 atTopLeft = kAlignTopLeft,
 atBottomLeft = kAlignBottomLeft,
 atRight = kAlignRight,
 atCenterRight = kAlignCenterRight,
 atTopRight = kAlignTopRight,
 atBottomRight = kAlignBottomRight
};

svLarge1Bit
Use the constants described in "Icon Selector Constants" instead.

56 Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

enum {
 svLarge1Bit = kSelectorLarge1Bit,
 svLarge4Bit = kSelectorLarge4Bit,
 svLarge8Bit = kSelectorLarge8Bit,
 svSmall1Bit = kSelectorSmall1Bit,
 svSmall4Bit = kSelectorSmall4Bit,
 svSmall8Bit = kSelectorSmall8Bit,
 svMini1Bit = kSelectorMini1Bit,
 svMini4Bit = kSelectorMini4Bit,
 svMini8Bit = kSelectorMini8Bit,
 svAllLargeData = kSelectorAllLargeData,
 svAllSmallData = kSelectorAllSmallData,
 svAllMiniData = kSelectorAllMiniData,
 svAll1BitData = kSelectorAll1BitData,
 svAll4BitData = kSelectorAll4BitData,
 svAll8BitData = kSelectorAll8BitData,
 svAllAvailableData = kSelectorAllAvailableData
};

ttNone
Use the constants described in "Icon Transformation Constants" instead.

enum {
 ttNone = kTransformNone,
 ttDisabled = kTransformDisabled,
 ttOffline = kTransformOffline,
 ttOpen = kTransformOpen,
 ttLabel1 = kTransformLabel1,
 ttLabel2 = kTransformLabel2,
 ttLabel3 = kTransformLabel3,
 ttLabel4 = kTransformLabel4,
 ttLabel5 = kTransformLabel5,
 ttLabel6 = kTransformLabel6,
 ttLabel7 = kTransformLabel7,
 ttSelected = kTransformSelected,
 ttSelectedDisabled = kTransformSelectedDisabled,
 ttSelectedOffline = kTransformSelectedOffline,
 ttSelectedOpen = kTransformSelectedOpen
};

Result Codes

The table below shows the most common result codes returned by Icon Services and Utilities.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-1000noMaskFoundErr

The IconRef is not valid.-2580invalidIconRefErr

Available in Mac OS X v10.0 and later.

Result Codes 57
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

DescriptionValueResult Code

The requested icon could not be found.-2581noSuchIconErr

Available in Mac OS X v10.0 and later.

The necessary icon data is not available.-2582noIconDataAvailableErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Icon Services selectors defined
in the Gestalt Manager. For more information, see Gestalt Manager Reference.

58 Gestalt Constants
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Icon Services and Utilities Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.3

FlushIconRefs
Reclaims memory used by the specified icon if the memory is purgeable. (Deprecated in Mac OS X v10.3.
There is no replacement; this function was included to facilitate porting classic applications to Carbon, but
it serves no useful purpose in Mac OS X.)

OSErr FlushIconRefs (
 OSType creator,
 OSType iconType
);

Parameters
creator

The creator code of the file whose icon data is to be flushed.

iconType
The type code of the file whose icon data is to be flushed.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
IconsCore.h

FlushIconRefsByVolume
On a given volume, reclaims memory used by purgeable icons. (Deprecated in Mac OS X v10.3. There is no
replacement; this function was included to facilitate porting classic applications to Carbon, but it serves no
useful purpose in Mac OS X.)

Deprecated in Mac OS X v10.3 59
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities
Functions

OSErr FlushIconRefsByVolume (
 SInt16 vRefNum
);

Parameters
vRefNum

The volume whose icon cache is to be flushed.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Calling this function locks the bitmap data of all IconRefs with non-zero reference counts (that is, all
IconRefs that are in use) on the volume. The Finder normally maintains a number of IconRefswith non-zero
reference counts, so you should use the function FlushIconRefs (page 59) instead of the
FlushIconRefsByVolume function whenever feasible.

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
IconsCore.h

GetIconSizesFromIconRef
Provides an IconSelectorValue indicating the sizes and depths of icon data available for an IconRef.
(Deprecated in Mac OS X v10.3. Use IsDataAvailableInIconRef (page 27) instead.)

OSErr GetIconSizesFromIconRef (
 IconSelectorValue iconSelectorInput,
 IconSelectorValue *iconSelectorOutputPtr,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
iconSelectorInput

The icon sizes and depths you are requesting from the IconRef. For a description of the possible
values, see “Icon Selector Constants” (page 43).

iconSelectorOutputPtr
On return, this points to a value describing the icon sizes and depths available for the specified
IconRef. For a description of the possible values, see “Icon Selector Constants” (page 43).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon family to query.

60 Deprecated in Mac OS X v10.3
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Note that this function may be very time-consuming, as Icon Services may have to search disks or even the
network to obtain the requested data.

Special Considerations

Because this function is so time-consuming, it is more efficient to simply query the icon for particular data
using the function IsDataAvailableInIconRef (page 27).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Icons.h

Deprecated in Mac OS X v10.5

AddIconToSuite
Adds an icon to an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr AddIconToSuite (
 Handle theIconData,
 IconSuiteRef theSuite,
 ResType theType
);

Parameters
theIconData

A handle to the data for the new icon to be added to the icon suite. You can obtain a handle to icon
data using various functions, such as GetIcon (page 65) or GetResource.

The handle to the icon data is added at the location reserved for icon data of the type specified by
theType. If the icon suite already includes a handle to icon data for that type, this function replaces
the handle to the old data without disposing of it. In this case you may want to call the
GetIconFromSuite (page 67) function first to obtain the old handle so that you can dispose of it.

The handles that you add to the suite do not have to be associated with a resource fork. For example,
your application might get icon data from the desktop database rather than reading it from a resource,
or your application might read icon data from a resource and then detach it.

theSuite
A handle to the icon suite to which to add the icon.

theType
The resource type of the new icon. The resource type should be that of an icon family member.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Deprecated in Mac OS X v10.5 61
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Discussion
This function is most often used to read icons into an empty icon suite created with the NewIconSuite (page
79) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

DisposeCIcon
Releases the memory occupied by a color icon structure. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

void DisposeCIcon (
 CIconHandle theIcon
);

Parameters
theIcon

A handle to the color icon structure to dispose of, previously obtained from the GetCIcon (page 64)
function.

Discussion
To dispose of a handle obtained from GetIcon or GetResource, use the ReleaseResource function to
release the memory occupied by the icon resource data.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

DisposeIconSuite
Releases the memory occupied by an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

62 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

OSErr DisposeIconSuite (
 IconSuiteRef theIconSuite,
 Boolean disposeData
);

Parameters
theIconSuite

A handle to the icon suite to be disposed of.

disposeData
A Boolean value indicating whether or not to dispose of handles in the icon suite that are not associated
with a resource fork.

Set this value to TRUE to automatically release icon data that is associated with the specified icon
suite but not explicitly associated with a resource fork. If you set this value to FALSE, the function
does not dispose of any icon data that is associated with the specified icon suite.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
This function does not release the memory of any icons explicitly associated with an open resource fork, that
is, any handles to icon resource data that your application added to the suite using the functions
GetIconSuite (page 69) or AddIconToSuite (page 61). For handles to icon data that your application
added to the icon suite using AddIconToSuite (for example, if your application read in an icon resource,
detached it, then added the handle to the suite), you can request that AddIconToSuite release the memory
associated with the handles.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

ForEachIconDo
Performs an action on one or more icons in an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr ForEachIconDo (
 IconSuiteRef theSuite,
 IconSelectorValue selector,
 IconActionUPP action,
 void *yourDataPtr
);

Parameters
theSuite

A handle to an icon suite.

Deprecated in Mac OS X v10.5 63
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

selector
Indicates which icons in the suite to perform the operation on. See “Icon Selector Constants” (page
43) for a description of the values you can use in this parameter.

action
A universal procedure pointer to your icon action callback function. The ForEachIconDo function
uses this icon action function to perform an action on the specified icons in the icon suite.

ForEachIconDo calls your icon action function once for each type of icon specified in the selector
parameter. ForEachIconDo passes to your icon action function a handle to the icon to perform the
action on. Your icon action function should perform any action as indicated by the yourDataPtr
parameter and return a result code.

See the IconActionProcPtr (page 36) callback for more information about icon action functions.

yourDataPtr
A pointer to data or other information required by your icon action function that is passed to your
icon action function. Typically, you use this parameter to specify which action your icon action function
should perform.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57). The result code returned by your icon
action function. If your icon action function returns a nonzero function result, ForEachIconDo immediately
returns to the application.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetCIcon
Gets a handle to a color icon of resource type 'cicn'. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

CIconHandle GetCIcon (
 SInt16 iconID
);

Parameters
iconID

The resource ID for an icon of resource type 'cicn'. In general, you should specify your icon resources
as purgeable.

Return Value
A handle to the CIcon (page 38) structure for the icon, or NULL if the function could not find the resource.

64 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Discussion
The function searches the current resource chain for the resource. If it finds the resource, it reads the resource,
creates a color icon structure for the icon, and initializes the fields of the structure according to the information
contained in the 'cicn' resource.

To draw an icon obtained from this function in a specified rectangle, you can use either the PlotCIcon (page
80) function, or the PlotCIconHandle (page 81) function. The latter function allows you to specify transforms
and alignments.

When you are finished with a handle obtained from this function, use the DisposeCIcon (page 62) function
to release the memory occupied by the color icon structure.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIcon
Gets a handle to an icon resource of type 'ICON'. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Handle GetIcon (
 SInt16 iconID
);

Parameters
iconID

The resource ID for an icon of resource type 'ICON'. The function searches the current resource chain
for the resource. In general, you should specify your icon resources as purgeable.

Return Value
A handle to the icon with the specified ID or NULL if the function could not find the resource.

Discussion
To draw an icon obtained from this function in a specified rectangle, you can use either the PlotIcon (page
82) function, or the PlotIconHandle (page 82) function. The latter function allows you to specify transforms
and alignments.

When you are finished using a handle obtained from this function, use the ReleaseResource function to
release the memory occupied by the icon resource data.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5 65
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconCacheData
Gets the data associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr GetIconCacheData (
 IconCacheRef theCache,
 void **theData
);

Parameters
theCache

A handle to the icon cache whose data is desired.

theData
On return, a pointer to a pointer to the data associated with the icon cache.

You associate data with an icon cache when you first create the cache using the MakeIconCache (page
78) function. You can also set this data using the SetIconCacheData (page 99) function.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconCacheProc
Gets the icon getter function associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

66 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

OSErr GetIconCacheProc (
 IconCacheRef theCache,
 IconGetterUPP *theProc
);

Parameters
theCache

A handle to the icon cache whose associated icon getter function is desired.

theProc
On return, a pointer to the universal procedure pointer to the icon getter callback function associated
with the specified cache. See the IconGetterProcPtr (page 37) callback for more information on
icon getter functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache. An
icon cache is like an icon suite except that it also contains a pointer to an icon getter callback function and
a pointer to data that can be used as a reference constant. An icon cache typically does not contain handles
to the icon resources for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities functions call your application’s icon getter function
to retrieve the data for that icon type.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconFromSuite
Gets an icon from an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Deprecated in Mac OS X v10.5 67
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

OSErr GetIconFromSuite (
 Handle *theIconData,
 IconSuiteRef theSuite,
 ResType theType
);

Parameters
theIconData

On return, a pointer to a handle to the data for the requested icon. If an icon of the specified type
does not exist in the given icon suite, this parameter is NULL.

If you intend to dispose of the handle, pass a NULL handle to the AddIconToSuite (page 61) function
to delete the corresponding entry in the suite.

You can use the handle returned by this function to manipulate the icon data, for example, to alter
its color or add three-dimensional shading. However, you should not use the returned handle to draw
the icon with other Icon Utilities functions.

To plot an icon from an icon suite, you should normally use the PlotIconSuite (page 86) function.
The PlotIconHandle (page 82) function may not draw the icon correctly if you pass it the handle
returned in this parameter.

theSuite
A handle to the icon suite from which to get the icon.

theType
The resource type of the desired icon.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconRefFromFile
Provides an IconRef object for a file, folder or volume. (Deprecated in Mac OS X v10.5. Use
GetIconRefFromFileInfo (page 18) instead.)

OSErr GetIconRefFromFile (
 const FSSpec *theFile,
 IconRef *theIconRef,
 SInt16 *theLabel
);

Parameters
theFile

A pointer to the FSSpec structure specifying the file, folder or volume for the IconRef.

68 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

theIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 33).

theLabel
On return, a pointer to the file or folder’s label.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Use this function if you have no information about the file object passed in the theFile parameter. If you
have already called the File System Manager function PBGetCatInfo, you can use the function
GetIconRefFromFolder (page 19) if the object is a folder without custom icons or the function
GetIconRef (page 17) if the object is a file without custom icons.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

GetIconSuite
Creates an icon suite in memory that contains handles to a specified icon family’s resources. (Deprecated in
Mac OS X v10.5. Use Icon Services instead.)

OSErr GetIconSuite (
 IconSuiteRef *theIconSuite,
 SInt16 theResID,
 IconSelectorValue selector
);

Parameters
theIconSuite

On return, a pointer to a handle to an icon suite for the requested icon family, for which this function
allocates the memory. To release the memory occupied by an icon suite, you must use the
DisposeIconSuite function.

theResID
The resource ID of the icons in the icon family to be read into memory. In general, you should specify
your icon resources as purgeable.

selector
Indicates which icons from the icon family to include in the icon suite. See “Icon Selector
Constants” (page 43) for a description of the values you can use in this parameter.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
When you create an icon suite from icon family resources, the associated resource file should remain open
while you use Icon Utilities functions. If you call the SetResLoad function with the load parameter set to
FALSE before you call this function, the suite is filled with unloaded resource handles.

Deprecated in Mac OS X v10.5 69
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

When you create an icon suite using this function, it sets the default label for the suite to none. To set a new
default label for an icon suite, use the SetSuiteLabel (page 100) function. To perform operations on one
or more icons in an icon suite, use the ForEachIconDo (page 63) function. To draw the icon described by
the icon suite using the icon family member that is most suitable for the current bit depth of the display
device, use the PlotIconSuite (page 86) function.

As an alternative to this function, you can also create an empty icon suite using the NewIconSuite (page
79) function and then add icons to it one at a time using the AddIconToSuite (page 61) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetLabel
Gets the color and string used for a given label in the Label menu of the Finder and in the Labels control
panel. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr GetLabel (
 SInt16 labelNumber,
 RGBColor *labelColor,
 Str255 labelString
);

Parameters
labelNumber

An integer from 1 to 7 indicating which label’s information is requested.

labelColor
On return, a pointer to the color of the specified label.

labelString
On return, the string associated with the specified label.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

70 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Declared In
Icons.h

GetSuiteLabel
Gets the default label setting associated with an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

SInt16 GetSuiteLabel (
 IconSuiteRef theSuite
);

Parameters
theSuite

A handle to an icon suite.

Return Value
The default label setting associated with the specified icon suite. The default label setting is an integer from
1 to 7 that specifies which of the label colors shown in the Finder’s Label menu is applied to icons of that
suite when your application displays them. The function returns 0 if the suite doesn’t have a label. You can
override the default label setting for a suite by specifying a label in the transform parameter of the
PlotIconSuite (page 86) function. To get information about the color and string for a specific label, you
can use the GetLabel (page 70) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconFamilyToIconSuite
Provides icon suite data for a given icon family. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconFamilyToIconSuite (
 IconFamilyHandle iconFamily,
 IconSelectorValue whichIcons,
 IconSuiteRef *iconSuite
);

Parameters
iconFamily

A handle to an iconFamily data structure to use as a source for icon data. For more information on
the IconFamily data structure, see 'icns'.

Deprecated in Mac OS X v10.5 71
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

whichIcons
The depths and sizes of icons to extract from the IconFamily data structure. For a description of the
possible values, see “Icon Selector Constants” (page 43).

iconSuite
On return, a pointer to the structure which contains icon data as specified in the iconFamily and
whichIcons parameters. Icon Services returns NULL if no appropriate icon data is found.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconIDToRgn
Converts the icon mask in an icon family to a region. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconIDToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 SInt16 iconID
);

Parameters
theRgn

On return, a handle to the requested region. You must allocate memory for the region handle before
calling this function.

The returned region corresponds to the icon’s mask (the mask defined by either an 'ICN#' or 'ics#'
resource in an icon family, according to the rectangle and alignment specified in the iconRect and
align parameters).

Once you have a region that describes the icon mask for a given icon, you can use it to perform
accurate hit-testing and outline dragging of the icon in your application.

iconRect
A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port. The function uses this rectangle as the bounding box of the region. The function
determines, from the size of the rectangle specified here, which icon mask to use from the specified
icon family.

align
Specifies how the function should align the mask within the rectangle. See “Icon Alignment
Constants” (page 41) for a description of the values you can use in this parameter.

iconID
The resource ID of the icon for which to create a region. In general, you should specify your icon
resources as purgeable.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

72 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconMethodToRgn
Converts, to a region, the mask for an icon that IconMethodToRgn obtains with the aid of your icon getter
callback function. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconMethodToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
theRgn

On return, a handle to the requested region. You must allocate memory for the region handle before
calling this function. Once you have a region that describes the icon mask for a given icon, you can
use it to perform accurate hit-testing and outline dragging of the icon in your application.

iconRect
A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port. The function obtains the data for the icon mask from your icon getter function and
then converts the icon mask to a region. The function uses the rectangle specified in this parameter
as the bounding box of the region.

align
Specifies how the function should align the mask within the rectangle. See “Icon Alignment
Constants” (page 41) for a description of the values you can use in this parameter.

Deprecated in Mac OS X v10.5 73
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

theMethod
A universal procedure pointer to your icon getter callback function. IconMethodToRgn passes to
your icon getter function the type of the icon to get and the value specified in the yourDataPtr
parameter. The IconMethodToRgn function examines the size of the rectangle and requests the
appropriate icon from your icon getter function—an icon of icon type 'ICN#' or 'ics#'. Your icon
getter function should return a handle to the data of the requested icon type. The IconMethodToRgn
function extracts the mask from the icon data that your icon getter function returns. If your icon getter
function returns data that does not correspond to an icon of type 'ICN#' or type 'ics#',
IconMethodToRgn attempts to generate a mask from the returned data.

Your icon getter function can get the data for the icon and its mask using whatever method is
appropriate to your application. For example, your application might maintain its own cache of icons
(and pass a pointer to it in the yourDataPtr parameter) or use its icon getter function to get an icon
from the desktop database.

See the IconGetterProcPtr (page 37) callback for more information on creating an icon getter
function.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconRefToRgn
Converts an Icon Services icon into a QuickDraw region. (Deprecated in Mac OS X v10.5. Use
IconRefToHIShape (page 25) instead.)

OSErr IconRefToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
theRgn

A handle to the requested region. You must call the QuickDraw function NewRegion to allocate
memory for the region handle before calling the IconRefToRgn function.

iconRect
A pointer to the rectangle defining the area that Icon Services uses as the bounding box of the region.

74 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

align
The value which determines how Icon Services aligns the region within the rectangle. For a description
of possible return values, see “Icon Alignment Constants” (page 41).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The IconRef for the icon family to use for drawing the requested region.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Icon Services uses the rectangle and alignment values to automatically select the icon used to generate the
region data.

This function is similar to the Icon Utilities function IconSuiteToRegion.

Icon Services uses the icon’s black-and-white mask to determine the region data, even if you provide a deep
mask.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconSuiteToIconFamily
Provides IconFamily data for a specified IconSuite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr IconSuiteToIconFamily (
 IconSuiteRef iconSuite,
 IconSelectorValue whichIcons,
 IconFamilyHandle *iconFamily
);

Parameters
iconSuite

The IconSuiteRef to use as a source for icon data.

whichIcons
The depths and sizes of icons to extract from the iconFamily data structure. For a description of
the possible values, see “Icon Selector Constants” (page 43).

iconFamily
On return, a pointer to a handle to the structure which contains icon data as specified in the iconSuite
and whichIcons parameters. Icon Services returns NULL if no appropriate icon data is found. For
more information on the IconFamily data structure, see 'icns'.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Deprecated in Mac OS X v10.5 75
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconSuiteToRgn
Converts the icon mask in an icon suite to a region. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconSuiteToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 IconSuiteRef theIconSuite
);

Parameters
theRgn

On return, a handle to the requested region. You must allocate memory for the region handle before
calling this function.

The returned region corresponds to the icon’s mask (the mask defined by either an 'ICN#' or 'ics#'
entry in an icon suite, according to the rectangle and alignment specified in the iconRect and align
parameters).

Once you have a region that describes the icon mask for a given icon, you can use it to perform
accurate hit-testing and outline dragging of the icon in your application.

iconRect
A pointer to the rectangle in which the icon is to be drawn, specified in local coordinates of the current
graphics port. The function uses this rectangle as the bounding box of the region. The function
determines, from the size of the rectangle specified here, which icon mask to use from the icon suite.

align
Specifies how the function should align the region within the rectangle. See “Icon Alignment
Constants” (page 41) for a description of the values you can use in this parameter.

theIconSuite
A handle to an icon suite.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

76 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Declared In
Icons.h

LoadIconCache
Loads into an icon cache a handle to the appropriate icon data for a specified destination rectangle and the
current bit depth, for drawing later with a specified alignment and transform. (Deprecated in Mac OS X v10.5.
Use Icon Services instead.)

OSErr LoadIconCache (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconCacheRef theIconCache
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port. The function uses the rectangle specified in this parameter and the bit depth of the
display device to determine which icon type to load into the cache.

align
Specifies how to align the icon within the rectangle. See “Icon Alignment Constants” (page 41) for a
description of the values you can use in this parameter.

transform
Specifies how to modify the appearance of the icon. See “Icon Transformation Constants” (page 43)
for a description of the values you can use in this parameter.

theIconCache
A reference to the icon cache into which to load the icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
This function can be useful, for example, if you suspect that the icon may be drawn at a time not convenient
for loading resource data (for instance, when the resource fork isn’t in the current resource chain). The function
uses the same criteria as the PlotIconSuite (page 86) function to select the icon to load.

This function uses the icon getter callback function associated with the icon cache to get the appropriate
icon. The icon getter function returns a handle to the requested icon data, and LoadIconCache adds the
returned handle to the entry for that icon in the icon cache.

After calling this function, you can pass the same parameters to PlotIconSuite to plot the icon data. Note
that if you specify an alignment when you call LoadIconCache, then call PlotIconSuite and specify no
alignment, PlotIconSuite draws the icon using the alignment that you originally specified to
LoadIconCache.

All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Deprecated in Mac OS X v10.5 77
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

MakeIconCache
Gets a handle to an empty icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr MakeIconCache (
 IconCacheRef *theCache,
 IconGetterUPP makeIcon,
 void *yourDataPtr
);

Parameters
theCache

On return, a pointer to a handle to the new, empty icon cache. The function allocates the necessary
memory. You can add icon data to the new cache using the LoadIconCache (page 77) function.

makeIcon
A universal procedure pointer to the icon getter callback function to associate with the icon cache.
See the IconGetterProcPtr (page 37) callback for more information on icon getter callback
functions.

yourDataPtr
A pointer to the data to associate with the icon cache.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache. An
icon cache is like an icon suite except that it also contains a pointer to an icon getter callback function and
a pointer to data that can be used as a reference constant. An icon cache typically does not contain handles
to the icon resources for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities functions call your application’s icon getter function
to retrieve the data for that icon type.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

78 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

NewIconSuite
Gets a handle to an empty icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr NewIconSuite (
 IconSuiteRef *theIconSuite
);

Parameters
theIconSuite

On return, a pointer to a handle to a new, empty icon suite. Use the AddIconToSuite (page 61)
function to add handles to icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
When you create an icon suite using this function, it sets the default label for the suite to none. To set a new
default label for an icon suite, use the SetSuiteLabel (page 100) function. NewIconSuite allocates the
memory for the icon suite handle. To release the memory occupied by an icon suite, you must use the
DisposeIconSuite (page 62) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

OverrideIconRefFromResource
Replaces the bitmaps in an IconRef with bitmaps from a specified resource file. (Deprecated in Mac OS X
v10.5. Use OverrideIconRef (page 30) instead.)

OSErr OverrideIconRefFromResource (
 IconRef theIconRef,
 const FSSpec *resourceFile,
 SInt16 resourceID
);

Parameters
theIconRef

An IconRef to be updated.

resourceFile
A pointer to the file system specification structure for the resource file containing the replacement
bitmaps.

Deprecated in Mac OS X v10.5 79
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

resourceID
The resource ID containing the replacement bitmaps. This value must be non-zero. You should provide
a resource of type 'icns' if possible. If an 'icns' resource is not available, Icon Services uses standard
icon suite resources, such as 'ICN#', instead.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

PlotCIcon
Draws a color icon of resource type 'cicn' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

void PlotCIcon (
 const Rect *theRect,
 CIconHandle theIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

theIcon
A handle to the color icon structure of the color icon to draw. You can obtain a handle to the icon
using the GetCIcon (page 64) function, or GetResource or other Resource Manager functions.

Discussion
The iconMask field of the CIcon (page 38) structure determines which pixels in the iconPMap field are
drawn and which are not. Only pixels with 1s in corresponding positions in the iconMask field are drawn.
If the screen depth is 1 or 2 bits per pixel, this function uses the iconBMap field instead of the iconPMap
field (unless the rowBytes field of IconBMap contains 0, indicating that there is no bitmap for the icon).

When this function draws the icon, it uses the bounds field of iconPMap as the source rectangle of the image.
If the destination rectangle is not the same size as the icon or its mask, the function stretches or shrinks the
icon to fit. The icon’s pixels are remapped to the current depth and color table, if necessary. The bounds
fields of iconPMap, iconBMap, and iconMask are expected to be equal in size.

Unlike PlotCIconHandle (page 81), this function does not allow you to specify any transforms or alignment.
This function uses the QuickDraw function CopyMask and doesn’t send any of its drawing commands through
QuickDraw bottleneck functions. Therefore, calls to this function are not recorded as pictures.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

80 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotCIconHandle
Draws an icon of resource type 'cicn' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

OSErr PlotCIconHandle (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 CIconHandle theCIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how the function should align the icon within the rectangle. See “Icon Alignment
Constants” (page 41) for a description of the values you can use in this parameter.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 43) for a description of the values you can use in this parameter.

theCIcon
A handle to the color icon structure of the icon to draw. You can obtain a handle to the icon using
the GetCIcon (page 64) function or GetResource or other Resource Manager functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Unlike PlotCIcon (page 80), this function doesn’t honor the current foreground and background colors.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Deprecated in Mac OS X v10.5 81
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

PlotIcon
Draws an icon of resource type 'ICON' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

void PlotIcon (
 const Rect *theRect,
 Handle theIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

theIcon
A handle to the icon to draw. You must have previously obtained this handle using the GetIcon (page
65) function, or GetResource or other Resource Manager functions.

Discussion
This function does not allow you to specify any transforms or alignment. The PlotIcon function uses the
QuickDraw function CopyBits with the srcCopy transfer mode. To plot an icon of resource type 'ICON'
with a specified transform and alignment, use the PlotIconHandle (page 82) function.

If the destination rectangle is not 32 by 32 pixels, the function stretches or shrinks the icon to fit.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotIconHandle
Draws an icon of resource type 'ICON' or 'ICN#' to which you have a handle. (Deprecated in Mac OS X
v10.5. Use Icon Services instead.)

OSErr PlotIconHandle (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 Handle theIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

82 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

align
Specifies how the function should align the icon within the rectangle. See “Icon Alignment
Constants” (page 41) for a description of the values you can use in this parameter.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 43) for a description of the values you can use in this parameter.

theIcon
A handle to the icon to draw. You must have previously obtained a handle to the icon using the
GetIcon (page 65) function, or GetResource or other Resource Manager functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
To plot an icon from an icon suite, you should normally use PlotIconSuite (page 86). This function may
not draw the icon correctly if you pass it the handle returned in the theIconData parameter of
GetIconFromSuite (page 67).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotIconID
Draws the icon described by an icon family. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Deprecated in Mac OS X v10.5 83
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

OSErr PlotIconID (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 SInt16 theResID
);

Parameters
theRect

A pointer to the rectangle, specified in local coordinates of the current graphics port, in which to draw
the icon.

You cannot determine which icon from the family specified by theResID the function will draw. The
function determines, from the size of the specified destination rectangle and the current bit depth
of the display device, which icon of a given size to draw from an icon family. For example, if the
destination rectangle has the coordinates (100,100,116,116) and the display device is set to 4-bit color,
the function draws the icon of type 'ics4' if that icon is available in the icon family.

If the width or height of a destination rectangle is greater than or equal to 32, the function uses the
32-by-32 pixel icon with the appropriate bit depth for the display device. If the destination rectangle
is less than 32 by 32 pixels and greater than 16 pixels wide or 12 pixels high, PlotIconID uses the
16-by-16 pixel icon with the appropriate bit depth. If the destination rectangle’s height is less than
or equal to 12 pixels or its width is less than or equal to 16 pixels, PlotIconID uses the 12-by-16
pixel icon with the appropriate bit depth. (Typically only the Finder and Standard File Package use
12-by-16 pixel icons.)

The destination rectangle must be exactly 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels for the
function to draw the icon without stretching it. If the destination rectangle is not one of these standard
sizes, the function expands or shrinks the icon to fit.

align
Specifies how the function should align the icon within the rectangle. For example, you can specify
that it center the icon within the rectangle or align it at one side or the other. The function moves
the icon so that the edges of its mask align with the specified side or direction. See “Icon Alignment
Constants” (page 41) for a description of the values you can use here.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 43) for a description of the values you can use here.

theResID
The resource ID of the icon to draw. The icon resource must be of resource type 'ICN#', 'ics#',
'icl4', 'icl8', 'ics4', or 'ics8'. In general, you should specify your icon resources as purgeable.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. Your application should not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

84 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

PlotIconMethod
Draws an icon obtained with the aid of your icon getter callback function. (Deprecated in Mac OS X v10.5.
Use Icon Services instead.)

OSErr PlotIconMethod (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how to align the icon within the specified rectangle. See “Icon Alignment Constants” (page
41) for a description of the values you can use here.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 43) for a description of the values you can use here.

theMethod
A universal procedure pointer to your icon getter callback function. PlotIconMethod uses your icon
getter function to obtain the icon to draw.

PlotIconMethod passes to your icon getter function the type of the icon to draw and the value
specified in the yourDataPtr parameter. The PlotIconMethod function examines the current bit
depth of the display devices and calls your icon getter function once for each display device that
intersects the rectangle specified in the parameter theRect. Your icon getter function should return
a handle to the requested icon’s data. Your icon getter function can get the icon data using whatever
method is appropriate to your application. For example, your application might maintain its own
cache of icons or use its icon getter function to get an icon from the desktop database.

For more information see the IconGetterProcPtr (page 37) callback.

yourDataPtr
A pointer to data that is passed to your icon getter callback function.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Deprecated in Mac OS X v10.5 85
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

PlotIconRef
Draws an icon using appropriate size and depth data from an IconRef. (Deprecated in Mac OS X v10.5. Use
PlotIconRefInContext (page 30) instead.)

OSErr PlotIconRef (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconServicesUsageFlags theIconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
theRect

A pointer to the rectangle where the icon is to be drawn.

align
A value specifying how Icon Services should align the icon within the rectangle.

transform
A value specifying how Icon Services should modify the appearance of the icon.

theIconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The IconRef for the icon to draw.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
This function is similar to the Icon Utilities function PlotIconSuite.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotIconSuite
Draws the icon described by an icon suite using the most appropriate icon in the suite for the current bit
depth of the display device and the rectangle in which the icon is to be drawn. (Deprecated in Mac OS X
v10.5. Use Icon Services instead.)

86 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

OSErr PlotIconSuite (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconSuiteRef theIconSuite
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon.

The function plots a single icon from the icon suite in the current graphics port. You cannot determine
which icon from a given suite it will draw; the function bases this decision on the size of the specified
destination rectangle and the current bit depth of the display device. For example, if the destination
rectangle has the coordinates (100,100,116,116) and the display device is set to 4-bit color, the function
draws the icon of type 'ics4' if that icon is available in the icon suite.

If the width or height of a destination rectangle is greater than or equal to 32 pixels, the function uses
the 32-by-32 pixel icon with the appropriate bit depth for the display device. If the destination rectangle
is less than 32 by 32 pixels and greater than 16 pixels wide or 12 pixels high, the function uses the
16-by-16 pixel icon with the appropriate bit depth. If the destination rectangle’s height is less than
or equal to 12 pixels or its width is less than or equal to 16 pixels, the function uses the 12-by-16 pixel
icon with the appropriate bit depth. (Typically, only the Finder and Standard File Package use 12-by-16
pixel icons.)

The destination rectangle passed in the theRect parameter must be exactly 32 by 32 pixels, 16 by
16 pixels, or 12 by 16 pixels for the function to draw the icon without stretching it. If the destination
rectangle is not one of these standard sizes, the function expands or shrinks the icon to fit.

align
Specifies how the function should align the icon within the rectangle. For example, you can specify
that the function center the icon within the rectangle or align it at one side or the other. See “Icon
Alignment Constants” (page 41) for a description of the values you can use here.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 43) for a description of the values you can use here.

If you don’t specify a label constant in this parameter, the function displays the icon using the default
label for that icon suite. When you create an icon suite using the GetIconSuite (page 69) function
or the NewIconSuite (page 79) function, these functions set the default label for the suite to none.
To set a new default label for an icon suite, use the SetSuiteLabel (page 100) function.

theIconSuite
A handle to the icon suite from which the function gets the icon to draw. You can get a handle to an
icon suite using the GetIconSuite or NewIconSuite functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 87
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Declared In
Icons.h

PlotSICNHandle
Draws a small icon of resource type 'SICN' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

OSErr PlotSICNHandle (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 Handle theSICN
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how the function should align the icon within the rectangle. See “Icon Alignment
Constants” (page 41) for a description of the values you can use in this parameter.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 43) for a description of the values you can use in this parameter.

theSICN
A handle to the icon to draw. You can obtain a handle to the icon using GetResource or other
Resource Manager functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
Only 'SICN' resources with a single member—or with two members, the second of which is a mask for the
first—plot correctly.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

88 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

PtInIconID
Determines whether a specified point is within an icon. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

Boolean PtInIconID (
 Point testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 SInt16 iconID
);

Parameters
testPt

The point to be tested, specified in local coordinates of the current graphics port. A point is considered
to be within an icon if the point is within the icon’s mask.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The function determines, from the size of the rectangle specified in this parameter,
which icon mask from the given icon family to test the point against. The rectangle which you specify
here should be the same rectangle that you last used to draw the icon. The function then uses the
location of this rectangle (and the alignment of the icon in the rectangle) to determine whether the
specified point is within the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by the
iconRect parameter. The alignment which you specify here should be the same alignment that you
last used to draw the icon. See “Icon Alignment Constants” (page 41) for a description of the values
you can use in this parameter.

iconID
A resource ID for an icon family. In general, you should specify your icon resources as purgeable.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PtInIconMethod
Determines whether a specified point is within an icon obtained with the aid of your icon getter callback
function. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Deprecated in Mac OS X v10.5 89
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Boolean PtInIconMethod (
 Point testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
testPt

The point to be tested, specified in local coordinates of the current graphics port. A point is considered
to be within an icon if the point is within the icon’s mask.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by the
iconRect parameter. The alignment which you specify here should be the same alignment that you
last used to draw the icon. See “Icon Alignment Constants” (page 41) for a description of the values
you can use in this parameter.

theMethod
A universal procedure pointer to your icon getter callback function. PtInIconMethod passes to your
icon getter function the type of icon your function should retrieve (either 'ICN#' or 'ics#') and
also passes the value specified in the yourDataPtr parameter. The PtInIconMethod function
examines the size of the specified rectangle and requests the appropriate icon from your icon getter
function. Your icon getter function should return a handle to the requested icon’s data. The
PtInIconMethod function extracts the mask from the icon data that your icon getter function returns.
If your icon getter function returns data that does not correspond to an icon of type 'ICN#' or type
'ics#', PtInIconMethod attempts to generate a mask from the returned data.

Your icon getter function can get the icon’s data using whatever method is appropriate to your
application. For example, your application might maintain its own cache of icons (and pass a pointer
to it in the yourDataPtr parameter) or use its icon getter function to get an icon from the desktop
database.

See the IconGetterProcPtr (page 37) callback for more information on creating an icon getter
function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

90 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Declared In
Icons.h

PtInIconRef
Tests whether a specified point falls within an icon’s mask. (Deprecated in Mac OS X v10.5. Use
IconRefContainsCGPoint (page 23) instead.)

Boolean PtInIconRef (
 const Point *testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags theIconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testPt

A pointer to the location, specified in local coordinates of the current graphics port, that Icon Services
tests to see whether it falls within the mask of the indicated icon.

iconRect
A pointer to the rectangle defining the area that Icon Services uses to determine which icon is
hit-tested. Use the same Rect value as when the icon was last drawn.

align
A value that specifies how the indicated icon is aligned within the rectangle specified in the iconRect
parameter. Use the same IconAlignmentType value as when the icon was last drawn. for a description
of possible return values, see “Icon Alignment Constants” (page 41).

theIconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to be tested.

Return Value
true if the point specified in the testPt parameter falls within the appropriate icon mask, false otherwise.

Discussion
This function is similar to the Icon Utilities function PtInIconSuite. The function is useful when you want
to determine whether a user has clicked on a particular icon, for example.

Icon Services uses the icon’s black-and-white mask for hit-testing, even if you provide a deep mask.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Deprecated in Mac OS X v10.5 91
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

PtInIconSuite
Determines whether a specified point is within an icon. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

Boolean PtInIconSuite (
 Point testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 IconSuiteRef theIconSuite
);

Parameters
testPt

The point to be tested, specified in local coordinates of the current graphics port. A point is considered
to be within an icon if the point is within the icon’s mask.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The function determines, from the size of the rectangle specified in this parameter,
which icon mask ('ICN#' or 'ics#') from the specified icon suite to test the point against. The
function then uses the location of this rectangle (and the location of the icon in the rectangle) to
determine whether the given point is within the icon. The rectangle which you specify here should
be the same rectangle that you last used to draw the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by the
iconRect parameter. The alignment which you specify here should be the same alignment that you
last used to draw the icon. See “Icon Alignment Constants” (page 41) for a description of the values
you can use in this parameter.

theIconSuite
A handle to an icon suite.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

ReadIconFile
Copies data from a given file into an icon family. (Deprecated in Mac OS X v10.5. Use
ReadIconFromFSRef (page 31) instead.)

92 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

OSErr ReadIconFile (
 const FSSpec *iconFile,
 IconFamilyHandle *iconFamily
);

Parameters
iconFile

A pointer to the file specification structure for the source file for icon data.

iconFamily
A handle to an iconFamily data structure to be used as the target data structure. Icon Services
resizes the handle as needed. For more information on the IconFamily data structure, see 'icns'.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

RectInIconID
Hit-tests a rectangle against the appropriate icon mask from an icon family for a specified destination rectangle
and alignment. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Boolean RectInIconID (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 SInt16 iconID
);

Parameters
testRect

A pointer to the rectangle to be tested, specified in local coordinates of the current graphics port.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon. Like the PtInIconID (page 89) function, this function determines, from the size
of the rectangle specified in this parameter, which icon mask from the icon family to test the testRect
parameter against.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by iconRect.
The alignment which you specify here should be the same alignment that you last used to draw the
icon. See “Icon Alignment Constants” (page 41) for a description of the values you can use in this
parameter.

iconID
A resource ID for an icon family. In general, you should specify your icon resources as purgeable.

Deprecated in Mac OS X v10.5 93
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Return Value
TRUE if the rectangle intersects the icon and FALSE if it doesn’t.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RectInIconMethod
Hit-tests a rectangle against an icon obtained by your icon getter callback function for a specified destination
rectangle and alignment. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Boolean RectInIconMethod (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
testRect

A pointer to the rectangle to be tested, specified in local coordinates of the current graphics port.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by iconRect.
The alignment which you specify here should be the same alignment that you last used to draw the
icon. See “Icon Alignment Constants” (page 41) for a description of the values you can use in this
parameter.

94 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

theMethod
A universal procedure pointer to your icon getter callback function. RectInIconMethod passes to
your icon getter function the type of the icon your function should retrieve and the value specified
in the yourDataPtr parameter. The RectInIconMethod function examines the size of the rectangle
and requests the appropriate icon from your icon getter function—an icon of icon type 'ICN#' or
'ics#'. Your icon getter function should return a handle to the data of the requested icon type. The
RectInIconMethod function extracts the mask from the icon data that your icon getter function
returns. If your icon getter function returns data that does not correspond to an icon of type 'ICN#'
or type 'ics#', RectInIconMethod attempts to generate a mask from the returned data.

Your icon getter function can get the data for the icon and its mask using whatever method is
appropriate to your application. For example, your application might maintain its own cache of icons
(and pass a pointer to it in the yourDataPtr parameter) or use its icon getter function to get an icon
from the desktop database.

See the IconGetterProcPtr (page 37) callback for more information on creating an icon getter
function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

Return Value
TRUE if the rectangle intersects the icon and FALSE if it doesn’t.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RectInIconRef
Tests whether a specified rectangle falls within an icon’s mask. (Deprecated in Mac OS X v10.5. Use
IconRefIntersectsCGRect (page 24) instead.)

Boolean RectInIconRef (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testRect

A pointer to the rectangle, specified in local coordinates of the current graphics port, that Icon Services
tests to see whether it falls within the mask of the indicated icon.

Deprecated in Mac OS X v10.5 95
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

iconRect
A pointer to the area that Icon Services uses to determine which icon is hit-tested. Use the same Rect
value as when the icon was last drawn.

align
A value that specifies how the indicated icon is aligned within the rectangle specified in the iconRect
parameter. Use the same IconAlignmentType value as when the icon was last drawn. for a description
of possible return values, see “Icon Alignment Constants” (page 41).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
A pointer to a value of type IconRef specifying the icon family to use for drawing the requested
icon.

Return Value
true if the rectangle specified in the testRect parameter intersects the appropriate icon mask, false
otherwise.

Discussion
This function is similar to the Icon Utilities function RectInIconSuite. The function is useful when you
want to determine whether a user selection intersects a particular icon, for example.

Icon Services uses the icon’s black-and-white mask for hit-testing, even if you provide a deep mask.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RectInIconSuite
Hit-tests a rectangle against the appropriate icon mask from an icon suite for a specified destination rectangle
and alignment. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Boolean RectInIconSuite (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 IconSuiteRef theIconSuite
);

Parameters
testRect

A pointer to the rectangle to be tested, specified in local coordinates of the current graphics port.

96 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon. Like the PtInIconSuite (page 92) function, this function determines, from the
size of the rectangle specified in this parameter, which icon mask from the icon suite specified by
theIconSuite to test the test rectangle against. For example, if the coordinates of the iconRect
parameter are (100,100,116,116) and the icon cache contains entries for each icon family member,
RectInIconSuite uses the icon mask defined by the 'ics#' entry.

The function then intersects the rectangle specified by testRectwith the icon mask in the iconRect
rectangle.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by iconRect.
The alignment which you specify here should be the same alignment that you last used to draw the
icon. See “Icon Alignment Constants” (page 41) for a description of the values you can use in this
parameter.

theIconSuite
A handle to an icon suite.

Return Value
TRUE if the rectangle intersects the icon and FALSE if it doesn’t.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RegisterIconRefFromIconFile
Adds a file-derived IconRef to the Icon Services registry. (Deprecated in Mac OS X v10.5. Use
RegisterIconRefFromFSRef (page 32) instead.)

OSErr RegisterIconRefFromIconFile (
 OSType creator,
 OSType iconType,
 const FSSpec *iconFile,
 IconRef *theIconRef
);

Parameters
creator

The creator code of the icon data you wish to register. You can use your application’s creator code,
for example. Lower-case creator codes are reserved for the system.

iconType
The type code of the icon data you wish to register.

Deprecated in Mac OS X v10.5 97
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

iconFile
A pointer to the file system specification structure for the file to use as the icon data source.

theIconRef
On return, a pointer to the desired icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

RegisterIconRefFromResource
Adds a resource-derived IconRef to the Icon Services registry. (Deprecated in Mac OS X v10.5. Use
RegisterIconRefFromFSRef (page 32) instead.)

OSErr RegisterIconRefFromResource (
 OSType creator,
 OSType iconType,
 const FSSpec *resourceFile,
 SInt16 resourceID,
 IconRef *theIconRef
);

Parameters
creator

The creator code of the icon data you wish to register. You can use your application’s creator code,
for example. Lower-case creator codes are reserved for the system.

iconType
The type code of the icon data you wish to register.

resourceFile
A pointer to the file system specification structure for the resource file from which to read the icon
data.

resourceID
The resource ID of the icon data to be registered. This value must be non-zero.

You should provide a resource of type 'icns' if possible. If an 'icns' resource is not available, Icon
Services uses standard icon suite resources, such as 'ICN#', instead.

theIconRef
On return, a pointer to the desired icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
You can use the RegisterIconRefFromResource function to register icons from 'icns' resources or
“classic” custom icon resources ('ics#' , 'ICN#' , etc.). Icon Services searches 'icns' resources before
searching other icon resources.

98 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Calling this function increments the reference count of the IconRef.

Remember to call the function ReleaseIconRef (page 33) when you're done with an IconRef.

Special Considerations

Before using the recommended replacement function, you need to move the contents of the icon resource
into an icon family .icns file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

SetIconCacheData
Sets the data associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr SetIconCacheData (
 IconCacheRef theCache,
 void *theData
);

Parameters
theCache

A reference to the icon cache whose data is to be set.

theData
A pointer to the data to set.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Deprecated in Mac OS X v10.5 99
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

SetIconCacheProc
Sets the icon getter callback function associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon
Services instead.)

OSErr SetIconCacheProc (
 IconCacheRef theCache,
 IconGetterUPP theProc
);

Parameters
theCache

A reference to the icon cache whose icon getter function is to be set.

theProc
A universal procedure pointer to the icon getter callback function to associate with the specified
cache. See the IconGetterProcPtr (page 37) callback for more information on icon getter functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache. An
icon cache is like an icon suite except that it also contains a pointer to an icon getter callback function and
a pointer to data that can be used as a reference constant. An icon cache typically does not contain handles
to the icon resources for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities functions call your application’s icon getter function
to retrieve the data for that icon type.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

SetSuiteLabel
Specifies the default label associated with an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr SetSuiteLabel (
 IconSuiteRef theSuite,
 SInt16 theLabel
);

Parameters
theSuite

A handle to an icon suite.

100 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

theLabel
An integer from 1 to 7 that specifies a label for the icon suite, or 0 to set the icon suite’s label to none.
The default label setting helps to determine which of the label colors shown in the Finder’s Label
menu is applied to icons of that suite when your application displays them.

You can override the default label setting for a suite by specifying a label in the transform parameter
of the PlotIconSuite (page 86) function. For example, suppose the color currently set for the third
label displayed in the Finder’s Label menu is red, and the color for the fourth label is green. If you set
the default label for a suite using SetSuiteLabel(theSuite,3), then draw an icon from the same
suite using PlotIconSuite and specifying kTransformNone in the transform parameter, the
label color red is applied to the icon. However, if you specify kTransformLabel4 in the transform
parameter of the PlotIconSuite function, the label color green is applied to the icon.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

WriteIconFile
Copies data from a given icon family into a file. (Deprecated in Mac OS X v10.5. Use the File Manager instead.)

OSErr WriteIconFile (
 IconFamilyHandle iconFamily,
 const FSSpec *iconFile
);

Parameters
iconFamily

A handle to an iconFamily data structure to be used as a source for icon data. For more information
on the IconFamily data structure, see 'icns'.

iconFile
A pointer to the file specification structure for the file to use as the target for icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 57).

Special Considerations

Icon Services is designed to read icon data from a file and cache the data, but not to write out icon data. You
can use File Manager functions to write your icon data to a file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Deprecated in Mac OS X v10.5 101
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

Not available to 64-bit applications.

Declared In
IconsCore.h

102 Deprecated in Mac OS X v10.5
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Icon Services and Utilities Functions

This table describes the changes to Icon Services and Utilities Reference.

NotesDate

Updated for Mac OS X v10.5.2007-04-06

Added information about three new functions: IconRefToHIShape (page 25),
IconRefContainsCGPoint (page 23), andIconRefIntersectsCGRect (page
24).

Added information about deprecated functions.2006-03-08

Fixed typographical error. Clarified usage of GetIconFamilyData and
SetIconFamilyData.

2005-07-07

Added result codes.2003-02-19

Updated formatting.

Fixed typographical errors.

103
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

104
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AcquireIconRef function 14
AddIconToSuite function (Deprecated in Mac OS X

v10.5) 61
Alert Icon Constants 47
atNone 56

C

Catalog Information Bitmask 47
CIcon structure 38
CompositeIconRef function 14

D

DisposeCIcon function (Deprecated in Mac OS X v10.5)
62

DisposeIconActionUPP function 15
DisposeIconGetterUPP function 15
DisposeIconSuite function (Deprecated in Mac OS X

v10.5) 62

F

Filesharing Privilege Icon Constants 48
FlushIconRefs function (Deprecated in Mac OS X v10.3)

59
FlushIconRefsByVolume function (Deprecated in Mac

OS X v10.3) 59
Folder Icon Constants 48
ForEachIconDo function (Deprecated in Mac OS X v10.5)

63

G

genericDocumentIconResource 53
GetCIcon function (Deprecated in Mac OS X v10.5) 64
GetCustomIconsEnabled function 16
GetIcon function (Deprecated in Mac OS X v10.5) 65
GetIconCacheData function (Deprecated in Mac OS X

v10.5) 66
GetIconCacheProc function (Deprecated in Mac OS X

v10.5) 66
GetIconFamilyData function 16
GetIconFromSuite function (Deprecated in Mac OS X

v10.5) 67
GetIconRef function 17
GetIconRefFromComponent function 18
GetIconRefFromFile function (Deprecated in Mac OS

X v10.5) 68
GetIconRefFromFileInfo function 18
GetIconRefFromFolder function 19
GetIconRefFromIconFamilyPtr function 20
GetIconRefFromTypeInfo function 21
GetIconRefOwners function 22
GetIconRefVariant function 22
GetIconSizesFromIconRef function (Deprecated in

Mac OS X v10.3) 60
GetIconSuite function (Deprecated in Mac OS X v10.5)

69
GetLabel function (Deprecated in Mac OS X v10.5) 70
GetSuiteLabel function (Deprecated in Mac OS X v10.5)

71

I

Icon Alignment Constants 41
Icon Selector Constants 43
Icon Services Usage Flag 47
Icon Transformation Constants 43
IconActionProcPtr callback 36
IconActionUPP data type 40
IconCacheRef data type 40

105
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

Index

IconFamilyToIconSuite function (Deprecated in Mac
OS X v10.5) 71

IconGetterProcPtr callback 37
IconGetterUPP data type 40
IconIDToRgn function (Deprecated in Mac OS X v10.5)

72
IconMethodToRgn function (Deprecated in Mac OS X

v10.5) 73
IconRef data type 39
IconRefContainsCGPoint function 23
IconRefIntersectsCGRect function 24
IconRefToHIShape function 25
IconRefToIconFamily function 25
IconRefToRgn function (Deprecated in Mac OS X v10.5)

74
IconSuiteRef data type 40
IconSuiteToIconFamily function (Deprecated in Mac

OS X v10.5) 75
IconSuiteToRgn function (Deprecated in Mac OS X

v10.5) 76
Internet Icon Constants 48
invalidIconRefErr constant 57
InvokeIconActionUPP function 26
InvokeIconGetterUPP function 26
IsDataAvailableInIconRef function 27
IsIconRefComposite function 27
IsIconRefMaskEmpty function 28
IsValidIconRef function 29

K

kAlignAbsoluteCenter constant 42
kAlignBottom constant 42
kAlignBottomLeft constant 42
kAlignBottomRight constant 43
kAlignCenterBottom constant 42
kAlignCenterLeft constant 42
kAlignCenterRight constant 43
kAlignCenterTop constant 42
kAlignHorizontalCenter constant 42
kAlignLeft constant 42
kAlignNone constant 41
kAlignRight constant 42
kAlignTop constant 41
kAlignTopLeft constant 42
kAlignTopRight constant 43
kAlignVerticalCenter constant 41
kIconServicesCatalogInfoMask constant 47
kSelectorAll1BitData constant 46
kSelectorAll32BitData constant 46
kSelectorAll4BitData constant 46
kSelectorAll8BitData constant 46

kSelectorAllAvailableData constant 46
kSelectorAllHugeData constant 46
kSelectorAllLargeData constant 46
kSelectorAllMiniData constant 46
kSelectorAllSmallData constant 46
kSelectorHuge1Bit constant 45
kSelectorHuge32Bit constant 46
kSelectorHuge4Bit constant 45
kSelectorHuge8Bit constant 45
kSelectorHuge8BitMask constant 46
kSelectorLarge1Bit constant 44
kSelectorLarge32Bit constant 44
kSelectorLarge4Bit constant 44
kSelectorLarge8Bit constant 44
kSelectorLarge8BitMask constant 45
kSelectorMini1Bit constant 45
kSelectorMini4Bit constant 45
kSelectorMini8Bit constant 45
kSelectorSmall1Bit constant 45
kSelectorSmall32Bit constant 45
kSelectorSmall4Bit constant 45
kSelectorSmall8Bit constant 45
kSelectorSmall8BitMask constant 45

L

LoadIconCache function (Deprecated in Mac OS X v10.5)
77

M

MakeIconCache function (Deprecated in Mac OS X v10.5)
78

Miscellaneous Icon Constants 49

N

Networking Icon Constants 49
NewIconActionUPP function 29
NewIconGetterUPP function 29
NewIconSuite function (Deprecated in Mac OS X v10.5)

79
noIconDataAvailableErr constant 58
noMaskFoundErr constant 57
noSuchIconErr constant 58

106
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

INDEX

O

OverrideIconRef function 30
OverrideIconRefFromResource function (Deprecated

in Mac OS X v10.5) 79

P

PlotCIcon function (Deprecated in Mac OS X v10.5) 80
PlotCIconHandle function (Deprecated in Mac OS X

v10.5) 81
PlotIcon function (Deprecated in Mac OS X v10.5) 82
PlotIconHandle function (Deprecated in Mac OS X

v10.5) 82
PlotIconID function (Deprecated in Mac OS X v10.5) 83
PlotIconMethod function (Deprecated in Mac OS X

v10.5) 85
PlotIconRef function (Deprecated in Mac OS X v10.5)

86
PlotIconRefInContext function 30
PlotIconSuite function (Deprecated in Mac OS X v10.5)

86
PlotSICNHandle function (Deprecated in Mac OS X

v10.5) 88
PtInIconID function (Deprecated in Mac OS X v10.5) 89
PtInIconMethod function (Deprecated in Mac OS X

v10.5) 89
PtInIconRef function (Deprecated in Mac OS X v10.5)

91
PtInIconSuite function (Deprecated in Mac OS X v10.5)

92

R

ReadIconFile function (Deprecated in Mac OS X v10.5)
92

ReadIconFromFSRef function 31
RectInIconID function (Deprecated in Mac OS X v10.5)

93
RectInIconMethod function (Deprecated in Mac OS X

v10.5) 94
RectInIconRef function (Deprecated in Mac OS X v10.5)

95
RectInIconSuite function (Deprecated in Mac OS X

v10.5) 96
RegisterIconRefFromFSRef function 32
RegisterIconRefFromIconFamily function 32
RegisterIconRefFromIconFile function (Deprecated

in Mac OS X v10.5) 97

RegisterIconRefFromResource function (Deprecated
in Mac OS X v10.5) 98

ReleaseIconRef function 33
RemoveIconRefOverride function 33

S

SetCustomIconsEnabled function 34
SetIconCacheData function (Deprecated in Mac OS X

v10.5) 99
SetIconCacheProc function (Deprecated in Mac OS X

v10.5) 100
SetIconFamilyData function 34
SetSuiteLabel function (Deprecated in Mac OS X v10.5)

100
Special Folder Icon Constants 50
Standard Finder Icon Constants 51
Standard Icon Badge Constants 52
Standard Icon Resources 54
startupFolderIconResource 55
svLarge1Bit 56
System Icon Constant 47

T

Toolbar Icons 49
ttNone 57

U

UnregisterIconRef function 35
UpdateIconRef function 36
Users and Groups Icon Constants 53

W

WriteIconFile function (Deprecated in Mac OS X v10.5)
101

107
2007-04-06 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Icon Services and Utilities Reference
	Contents
	Icon Services and Utilities Reference
	Overview
	Functions by Task
	Converting an Icon Mask to a Region
	Creating an Icon Suite
	Determining Whether a Point Is Within an Icon
	Determining Whether a Rectangle Intersects an Icon
	Disposing of Icon Suites
	Disposing of Icons
	Drawing Icons From an Icon Suite
	Drawing Icons From Resources
	Enabling and Disabling Custom Icons
	Flushing IconRef Data
	Getting and Setting the Label for an Icon Suite
	Getting Label Information
	Getting Icons From an Icon Suite
	Getting Icons From Resources That Don’t Belong to an Icon Family
	IconRef Reference Counting
	Modifying IconRef Data
	Obtaining Icon Data
	Obtaining IconRef Values
	Performing Operations on Icons in an Icon Suite
	Reading, Copying, and Converting Icon Data
	Registering and Unregistering IconRef Values
	Using IconRef Data
	Working With Icon Caches
	Creating and Managing Universal Procedure Pointers

	Functions
	AcquireIconRef
	CompositeIconRef
	DisposeIconActionUPP
	DisposeIconGetterUPP
	GetCustomIconsEnabled
	GetIconFamilyData
	GetIconRef
	GetIconRefFromComponent
	GetIconRefFromFileInfo
	GetIconRefFromFolder
	GetIconRefFromIconFamilyPtr
	GetIconRefFromTypeInfo
	GetIconRefOwners
	GetIconRefVariant
	IconRefContainsCGPoint
	IconRefIntersectsCGRect
	IconRefToHIShape
	IconRefToIconFamily
	InvokeIconActionUPP
	InvokeIconGetterUPP
	IsDataAvailableInIconRef
	IsIconRefComposite
	IsIconRefMaskEmpty
	IsValidIconRef
	NewIconActionUPP
	NewIconGetterUPP
	OverrideIconRef
	PlotIconRefInContext
	ReadIconFromFSRef
	RegisterIconRefFromFSRef
	RegisterIconRefFromIconFamily
	ReleaseIconRef
	RemoveIconRefOverride
	SetCustomIconsEnabled
	SetIconFamilyData
	UnregisterIconRef
	UpdateIconRef

	Callbacks
	IconActionProcPtr
	IconGetterProcPtr

	Data Types
	CIcon
	IconRef
	IconActionUPP
	IconGetterUPP
	IconCacheRef
	IconSuiteRef

	Constants
	Icon Alignment Constants
	Icon Transformation Constants
	Icon Selector Constants
	Catalog Information Bitmask
	System Icon Constant
	Icon Services Usage Flag
	Alert Icon Constants
	Filesharing Privilege Icon Constants
	Folder Icon Constants
	Internet Icon Constants
	Toolbar Icons
	Miscellaneous Icon Constants
	Networking Icon Constants
	Special Folder Icon Constants
	Standard Finder Icon Constants
	Standard Icon Badge Constants
	Users and Groups Icon Constants
	genericDocumentIconResource
	Standard Icon Resources
	startupFolderIconResource
	atNone
	svLarge1Bit
	ttNone

	Result Codes
	Gestalt Constants

	Appendix A: Deprecated Icon Services and Utilities Functions
	Deprecated in Mac OS X v10.3
	FlushIconRefs
	FlushIconRefsByVolume
	GetIconSizesFromIconRef

	Deprecated in Mac OS X v10.5
	AddIconToSuite
	DisposeCIcon
	DisposeIconSuite
	ForEachIconDo
	GetCIcon
	GetIcon
	GetIconCacheData
	GetIconCacheProc
	GetIconFromSuite
	GetIconRefFromFile
	GetIconSuite
	GetLabel
	GetSuiteLabel
	IconFamilyToIconSuite
	IconIDToRgn
	IconMethodToRgn
	IconRefToRgn
	IconSuiteToIconFamily
	IconSuiteToRgn
	LoadIconCache
	MakeIconCache
	NewIconSuite
	OverrideIconRefFromResource
	PlotCIcon
	PlotCIconHandle
	PlotIcon
	PlotIconHandle
	PlotIconID
	PlotIconMethod
	PlotIconRef
	PlotIconSuite
	PlotSICNHandle
	PtInIconID
	PtInIconMethod
	PtInIconRef
	PtInIconSuite
	ReadIconFile
	RectInIconID
	RectInIconMethod
	RectInIconRef
	RectInIconSuite
	RegisterIconRefFromIconFile
	RegisterIconRefFromResource
	SetIconCacheData
	SetIconCacheProc
	SetSuiteLabel
	WriteIconFile

	Revision History
	Index
	A
	C
	D
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

