
List Manager Reference
(Not Recommended)

Carbon > User Experience

2007-12-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
and QuickDraw are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

List Manager Reference (Not Recommended) 7

Overview 7
Functions by Task 7

Accessing and Manipulating Cell Data 7
Adding and Deleting Columns and Rows To and From a List 8
Changing the Size of Cells and Lists 8
Creating and Disposing of Lists 8
Creating and Managing Universal Procedure Pointers 8
Determining or Changing the Selection 9
Getting Information About Cells 9
Modifying a List’s Appearance 9
Responding to Events Affecting Lists 9
Searching a List for a Particular Item 10
Miscellaneous 10

Callbacks 11
ListClickLoopProcPtr 11
ListDefProcPtr 13
ListNotificationProcPtr 15
ListSearchProcPtr 15

Data Types 17
Cell 17
DataArray 17
DataHandle 17
DataPtr 17
ListBounds 18
ListClickLoopUPP 18
ListDefSpec 18
ListDefType 19
ListDefUPP 19
ListNotification 20
ListNotificationUPP 20
ListRec 20
ListRef 22
ListSearchUPP 23
StandardIconListCellDataRec 23

Constants 24
kListDefProcPtr 24
lDrawingModeOff 24
lDrawingModeOffBit 25
List Definition Constants 25
List Flags 26

3
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

listNotifyNothing 27
lOnlyOneBit 27
Selection Flags 28

Appendix A Deprecated List Manager Reference (Not Recommended) Functions 29

Deprecated in Mac OS X v10.5 29
CreateCustomList 29
DisposeListClickLoopUPP 30
DisposeListDefUPP 30
DisposeListSearchUPP 30
GetListActive 31
GetListCellIndent 31
GetListCellSize 32
GetListClickLocation 32
GetListClickLoop 32
GetListClickTime 33
GetListDataBounds 33
GetListDataHandle 34
GetListDefinition 34
GetListFlags 34
GetListHorizontalScrollBar 35
GetListMouseLocation 35
GetListPort 36
GetListRefCon 36
GetListSelectionFlags 36
GetListUserHandle 37
GetListVerticalScrollBar 37
GetListViewBounds 38
GetListVisibleCells 38
InvokeListClickLoopUPP 38
InvokeListDefUPP 39
InvokeListSearchUPP 40
LActivate 40
LAddColumn 41
LAddRow 42
LAddToCell 42
LAutoScroll 43
LCellSize 44
LClick 44
LClrCell 45
LDelColumn 45
LDelRow 46
LDispose 47
LDraw 48
LGetCell 48

4
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

LGetCellDataLocation 49
LGetSelect 50
LLastClick 51
LNew 51
LNextCell 52
LRect 53
LScroll 54
LSearch 55
LSetCell 55
LSetDrawingMode 56
LSetSelect 57
LSize 58
LUpdate 58
NewListClickLoopUPP 59
NewListDefUPP 59
NewListSearchUPP 60
RegisterListDefinition 60
SetListCellIndent 61
SetListClickLoop 61
SetListClickTime 62
SetListFlags 62
SetListLastClick 63
SetListPort 63
SetListRefCon 63
SetListSelectionFlags 64
SetListUserHandle 64
SetListViewBounds 65

Document Revision History 67

Index 69

5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

6
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in Lists.h

Overview

Important: The List Manager is deprecated in Mac OS X version 10.5 and later. The replacement API is the
Data Browser. For more information, see Data Browser Programming Guide.

In Mac OS 9 and earlier, the List Manager allowed applications to create, manipulate, and display scrolling
lists of data items in a window. The List Manager was included in Carbon to facilitate the porting of legacy
applications to Mac OS X. For Carbon applications, the Data Browser provides a more convenient way to
present data for browsing and to create easily customized lists whose columns can be sorted, moved, and
resized.

You should not use the List Manager in new application development.

Functions by Task

Accessing and Manipulating Cell Data

LAddToCell (page 42) Deprecated in Mac OS X v10.5
Appends data to the data already contained in a cell.

LClrCell (page 45) Deprecated in Mac OS X v10.5
Clears the data contained in a cell.

LGetCell (page 48) Deprecated in Mac OS X v10.5
Copies a cell’s data.

LGetCellDataLocation (page 49) Deprecated in Mac OS X v10.5
Finds the memory location of cell data.

LSetCell (page 55) Deprecated in Mac OS X v10.5
Changes the data contained in a cell.

Overview 7
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Adding and Deleting Columns and Rows To and From a List

LAddColumn (page 41) Deprecated in Mac OS X v10.5
Adds one or more columns to a list.

LAddRow (page 42) Deprecated in Mac OS X v10.5
Adds one or more rows to a list.

LDelColumn (page 45) Deprecated in Mac OS X v10.5
Deletes one or more columns from a list.

LDelRow (page 46) Deprecated in Mac OS X v10.5
Deletes one or more rows from a list.

Changing the Size of Cells and Lists

LCellSize (page 44) Deprecated in Mac OS X v10.5
Changes the size of cells in a list.

LSize (page 58) Deprecated in Mac OS X v10.5
Changes the size of a list.

Creating and Disposing of Lists

LDispose (page 47) Deprecated in Mac OS X v10.5
Disposes of the memory associated with a list.

LNew (page 51) Deprecated in Mac OS X v10.5
Creates a new list in a window.

Creating and Managing Universal Procedure Pointers

DisposeListClickLoopUPP (page 30) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a list click loop callback function.

DisposeListDefUPP (page 30) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a list definition callback function.

DisposeListSearchUPP (page 30) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a list search callback function.

InvokeListClickLoopUPP (page 38) Deprecated in Mac OS X v10.5
Calls your list click loop callback function.

InvokeListDefUPP (page 39) Deprecated in Mac OS X v10.5
Calls your list definition callback function.

InvokeListSearchUPP (page 40) Deprecated in Mac OS X v10.5
Calls your list search callback function

NewListClickLoopUPP (page 59) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a list click loop callback function.

NewListDefUPP (page 59) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a list definition callback function.

8 Functions by Task
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

NewListSearchUPP (page 60) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a list search callback function.

Determining or Changing the Selection

LGetSelect (page 50) Deprecated in Mac OS X v10.5
Gets information about which cells are selected.

LSetSelect (page 57) Deprecated in Mac OS X v10.5
Selects or deselects a cell.

Getting Information About Cells

LLastClick (page 51) Deprecated in Mac OS X v10.5
Determines the coordinates of the last cell clicked in a particular list.

LNextCell (page 52) Deprecated in Mac OS X v10.5
Finds the next cell in a given row, in a given column, or in an entire list.

LRect (page 53) Deprecated in Mac OS X v10.5
Finds a rectangle that encloses a cell.

Modifying a List’s Appearance

LAutoScroll (page 43) Deprecated in Mac OS X v10.5
Scrolls a list so that the first selected cell is in the upper-left corner of the list’s visible rectangle.

LDraw (page 48) Deprecated in Mac OS X v10.5
Draws a cell in a list.

LScroll (page 54) Deprecated in Mac OS X v10.5
Scrolls a list a specified number of rows and columns.

LSetDrawingMode (page 56) Deprecated in Mac OS X v10.5
Changes the automatic drawing mode specified when creating a list.

Responding to Events Affecting Lists

LActivate (page 40) Deprecated in Mac OS X v10.5
Activates or deactivates a list.

LClick (page 44) Deprecated in Mac OS X v10.5
Processes a mouse-down event in a list.

LUpdate (page 58) Deprecated in Mac OS X v10.5
Responds to an update event.

Functions by Task 9
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Searching a List for a Particular Item

LSearch (page 55) Deprecated in Mac OS X v10.5
Finds a cell whose data matches data that you specify.

Miscellaneous

CreateCustomList (page 29) Deprecated in Mac OS X v10.5

GetListActive (page 31) Deprecated in Mac OS X v10.5

GetListCellIndent (page 31) Deprecated in Mac OS X v10.5

GetListCellSize (page 32) Deprecated in Mac OS X v10.5

GetListClickLocation (page 32) Deprecated in Mac OS X v10.5

GetListClickLoop (page 32) Deprecated in Mac OS X v10.5

GetListClickTime (page 33) Deprecated in Mac OS X v10.5

GetListDataBounds (page 33) Deprecated in Mac OS X v10.5

GetListDataHandle (page 34) Deprecated in Mac OS X v10.5

GetListDefinition (page 34) Deprecated in Mac OS X v10.5

GetListFlags (page 34) Deprecated in Mac OS X v10.5

GetListHorizontalScrollBar (page 35) Deprecated in Mac OS X v10.5

GetListMouseLocation (page 35) Deprecated in Mac OS X v10.5

GetListPort (page 36) Deprecated in Mac OS X v10.5

GetListRefCon (page 36) Deprecated in Mac OS X v10.5

GetListSelectionFlags (page 36) Deprecated in Mac OS X v10.5

GetListUserHandle (page 37) Deprecated in Mac OS X v10.5

GetListVerticalScrollBar (page 37) Deprecated in Mac OS X v10.5

10 Functions by Task
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

GetListViewBounds (page 38) Deprecated in Mac OS X v10.5

GetListVisibleCells (page 38) Deprecated in Mac OS X v10.5

RegisterListDefinition (page 60) Deprecated in Mac OS X v10.5

SetListCellIndent (page 61) Deprecated in Mac OS X v10.5

SetListClickLoop (page 61) Deprecated in Mac OS X v10.5

SetListClickTime (page 62) Deprecated in Mac OS X v10.5

SetListFlags (page 62) Deprecated in Mac OS X v10.5

SetListLastClick (page 63) Deprecated in Mac OS X v10.5

SetListPort (page 63) Deprecated in Mac OS X v10.5

SetListRefCon (page 63) Deprecated in Mac OS X v10.5

SetListSelectionFlags (page 64) Deprecated in Mac OS X v10.5

SetListUserHandle (page 64) Deprecated in Mac OS X v10.5

SetListViewBounds (page 65) Deprecated in Mac OS X v10.5

Callbacks

ListClickLoopProcPtr
Defines a pointer to a list click loop callback function. Your list click loop callback function overrides the
standard click-loop function that is used to select cells and automatically scroll a list.

typedef Boolean (*ListClickLoopProcPtr)
(
);

If you name your function MyListClickLoopProc, you would declare it like this:

Boolean MyListClickLoopProc ();

Callbacks 11
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Parameters
Return Value
A value indicating whether the LClick function should continue tracking the mouse. Your function should
return TRUE if you wish LClick to continue to track the mouse, and FALSE if LClick should stop and return
immediately.

Discussion
If your application defines a custom click-loop function, then the LClick (page 44) function repeatedly calls
the function until the user releases the mouse button. A click-loop function may perform any processing
desired when it is executed.

Because no parameters are passed to the click-loop function, your click-loop function probably needs to
access a global variable that contains a handle to the list record, which contains information about the
location of the cursor and other information potentially of interest to a click-loop function. You might also
create a global variable that stores the state of the modifier keys immediately before a call to the LClick
function. You would need to set these global variables immediately before calling LClick.

The pointer to your function, which you provide in the list record structure, should be a universal procedure
pointer (UPP). The definition of the UPP data type for your list click loop function is as follows:

typedef (ListClickLoopProcPtr) ListClickLoopUPP;

Before using your list click loop function, you must first create a new universal procedure pointer to it, using
the NewListClickLoopUPP (page 59) function, as shown here:

ListClickLoopUPP MyListClickLoopUPP;
MyListClickLoopUPP = NewListClickLoopUPP(&MyListClickLoopProc)

You then use MyListClickLoopUPP in the lClickLoop field of the ListRec (page 20) structure for your
list. The LClick (page 44) function calls your list click loop function while the user holds down the mouse
button. If you wish to call your own list click loop function, you can use the InvokeListClickLoopUPP (page
38) function:

continueTracking = InvokeListClickLoopUPP(MyListClickLoopUPP);

When you are finished using your list click loop callback function, you should dispose of the universal
procedure pointer associated with it, using the DisposeListClickLoopUPP (page 30) function.

DisposeListClickLoopUPP(MyListClickLoopUPP);

A click-loop function does not execute at interrupt time. Instead, it is called directly by the LClick function.
Thus, a click-loop function can allocate memory, and it does not need to adjust the value contained in the
A5 register.

Special Considerations

A click-loop function does not execute at interrupt time. Instead, it is called directly by the LClick function.
Thus, a click-loop function can allocate memory, and it does not need to adjust the value contained in the
A5 register.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

12 Callbacks
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

ListDefProcPtr
Defines a pointer to a list definition callback function. Your list definition callback function defines a custom
list display.

typedef void (*ListDefProcPtr) (
 SInt16 lMessage,
 Boolean lSelect,
 Rect *lRect,
 Cell lCell,
 SInt16 lDataOffset,
 SInt16 lDataLen,
 ListHandle lHandle
);

If you name your function MyListDefProc, you would declare it like this:

void MyListDefProc (
 SInt16 lMessage,
 Boolean lSelect,
 Rect * lRect,
 Cell lCell,
 SInt16 lDataOffset,
 SInt16 lDataLen,
 ListHandle lHandle
);

Parameters
lMessage

A value that identifies the operation to be performed. See “List Definition Constants” (page 25).

lSelect
Indicates whether the cell specified by the lCell parameter should be highlighted. This parameter
is defined only for the lDrawMessage and lHiliteMsg messages.

lRect
A pointer to the rectangle (in local coordinates of the list’s graphics port) that encloses the specified
cell. Although this parameter is defined as a pointer, your list definition function must not change
the coordinates of the rectangle. This parameter is defined only for the lDrawMessage and
lHiliteMsg messages.

lCell
The coordinates of the cell to be drawn or highlighted. This parameter is defined only for the
lDrawMessage and lHiliteMsg messages.

lDataOffset
The location of the cell data associated with the specified cell. The location is specified as an offset
from the beginning of the relocatable block referenced by the cells field of the list record. This
parameter is defined only for the lDrawMessage and lHiliteMsg messages.

lDataLen
The length in bytes of the cell data associated with the specified. This parameter is defined only for
the lDrawMessage and lHiliteMsg messages.

lHandle
A handle to the list for which a message is being sent. Your application can access the list’s list record,
or it can call List Manager functions to manipulate the list.

Callbacks 13
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Discussion
Your application can write a list definition function to customize list display. For example, you can write a
list definition function to support the display of color icons. A custom list definition function must be compiled
as a code resource of type 'LDEF' and added to the resource file of the application that needs to use it.

The List Manager calls your list definition function whenever an application using the function creates a new
list with the LNew (page 51) function, needs a cell to be drawn, needs a cell’s highlighting state to be reversed,
or has called the LDispose (page 47) function to dispose of a list.

The pointer to your list definition function should be a universal procedure pointer (UPP). The definition of
the UPP data type for your definition function is as follows:

typedef (ListDefProcPtr) ListDefUPP;

Before using your list definition function, you must first create a new universal procedure pointer to it, using
the NewListDefUPP (page 59) function, as shown here:

ListDefUPP MyListDefUPP;
MyListDefUPP = NewListDefUPP(&MyListDefProc)

The List Manager automatically invokes your list definition function when a new list is created. If you wish
to call your own list definition callback function, you can use the InvokeListDefUPP (page 39) function:

InvokeListDefUPP(lMessage, lSelect, &lRect, lCell, lDataOffset,
 lDataLen, lHandle, MyListDefUPP)

When you are finished with your list definition function, you should dispose of the universal procedure pointer
associated with it, using the DisposeListDefUPP (page 30) function.

DisposeListDefUPP(MyListDefUPP);

Because a list definition function is stored in a code resource, it cannot have its own global variables that it
accesses through the A5 register. (Some development systems, however, may allow code resources to access
global variables through some other register, such as A4. See your development system’s documentation
for more information.) If your list definition function needs access to global data, it might store a handle to
such data in the refCon or userHandle fields of the list record; however, applications would not then be
able to use these fields for their own purposes.

Special Considerations

Because a list definition function is stored in a code resource, it cannot have its own global variables that it
accesses through the A5 register. (Some development systems, however, may allow code resources to access
global variables through some other register, such as A4. See your development system’s documentation
for more information.) If your list definition function needs access to global data, it might store a handle to
such data in the refCon or userHandle fields of the list record; however, applications would not then be
able to use these fields for their own purposes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

14 Callbacks
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

ListNotificationProcPtr

typedef void (*ListNotificationProcPtr)
(
 ListHandle theList,
 ListNotification notification,
 SInt32 param
);

If you name your function MyListNotificationProc, you would declare it like this:

void MyListNotificationProc (
 ListHandle theList,
 ListNotification notification,
 SInt32 param
);

Parameters
theList
notification
param

ListSearchProcPtr
Defines a pointer to a list search callback function. Your list search callback function compares data in a search
field to the contents of a list cell.

typedef SInt16 (*ListSearchProcPtr) (
 Ptr aPtr,
 Ptr bPtr,
 SInt16 aLen,
 SInt16 bLen
);

If you name your function MyListSearchProc, you would declare it like this:

short MyListSearchProc (
 Ptr aPtr,
 Ptr bPtr,
 short aLen,
 short bLen
);

Parameters
aPtr

A pointer to the data contained in a cell.

bPtr
A pointer to the data for which you are searching.

aLen
The number of bytes of data contained in the cell.

bLen
The number of bytes of data for which you are searching.

Callbacks 15
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Return Value
If the cell data matches the search data, your function should return 0. Otherwise, your search function should
return 1.

Discussion
You can pass a pointer to your search function as the third parameter to the LSearch function. A search
function must compare the data defined by the aPtr and aLen parameters with the data defined by the
bPtr and bLen parameters. Your function can use any technique you choose to compare the data.

If you do not wish to create your own search function, your application can specify NULL as a parameter to
LSearch, in place of a pointer to your function. LSearch then uses the Text Utilities function IUMagIDString,
the default search function. The IUMagIDString function returns 0 if the search data exactly matches the
cell data, but IUMagIDString considers the strings 'Rose' and 'rosé' to be equivalent. If your application
simply needs a search function that works like IUMagIDString but considers 'Rose' to be different from
'rosé', the Text Utilities provides the case-sensitive comparison function IUMagString. Instead of writing
a custom function, your application can simply pass @IUMagString as the third parameter to the LSearch
function.

The pointer which you pass to the LSearch function should be a universal procedure pointer (UPP). The
definition of the UPP data type for your search function is as follows:

typedef (ListSearchProcPtr) ListSearchUPP;

Before using your search function, you must first create a universal procedure pointer to it, using the
NewListSearchUPP NewListSearchUPP (page 60) function, as shown here:

ListSearchUPP MyListSearchUPP;
MyListSearchUPP = NewListSearchUPP(&MyListSearchProc)

You then pass MyListSearchUPP to the LSearch function, which will call your custom search function on
each cell it searches. If you wish to call your own list search function, use the InvokeListSearchUPP (page
40) function:

isMatch = InvokeListSearchUPP(aPtr, bPtr, aLen, bLen,
 MyListSearchUPP);

When you are finished with your list search callback function, you should dispose of the universal procedure
pointer associated with it, using the DisposeListSearchUPP (page 30) function:

DisposeListSearchUPP(MyListSearchUPP);

A search function does not execute at interrupt time. Instead, it is called directly by the LSearch function.
Thus, a search function can allocate memory, and it does not need to adjust the value contained in the A5
register.

Special Considerations

A search function does not execute at interrupt time. Instead, it is called directly by the LSearch function.
Thus, a search function can allocate memory, and it does not need to adjust the value contained in the A5
register.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

16 Callbacks
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Data Types

Cell

typedef Point Cell;

Discussion
The Cell data type defines a cell record. The functions LGetSelect (page 50) , LSetSelect (page 57) ,
LSetCell (page 55) , LAddToCell (page 42) , LClrCell (page 45) , LGetCellDataLocation (page 49)
, LGetCell (page 48) , LDraw (page 48) , LSearch (page 55) , LNextCell (page 52) , LRect (page 53) ,
and LLastClick (page 51) use the Cell data type to specify the coordinates of a cell in a list.

Note that column and row numbers are 0-based. Also note that this reference designates cells using the
notation (column–1, row–1), so that a cell with coordinates (2,5) is in the third column and sixth row of a list.
You specify a cell with coordinates (2,5) by setting the cell’s h field to 2 and its v field to 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

DataArray

typedef DataArray[32001];

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

DataHandle

typedef DataPtr * DataHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

DataPtr

typedef char * DataPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 17
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Declared In
Lists.h

ListBounds

typedef Rect ListBounds;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListClickLoopUPP

typedef ListClickLoopProcPtr ListClickLoopUPP;

Discussion
For more information, see the description of the ListClickLoopUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListDefSpec

struct ListDefSpec {
 ListDefType defType
 union {
 ListDefUPP userProc;
 } u;
};
typedef struct ListDefSpec ListDefSpec;
typedef ListDefSpec * ListDefSpecPtr;

Fields
defType
ListDefUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

18 Data Types
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

ListDefType

typedef UInt32 ListDefType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListDefUPP

typedef ListDefProcPtr ListDefUPP;

Discussion
For more information, see the description of the ListDefUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

Data Types 19
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

ListNotification

typedef SInt32 ListNotification;

ListNotificationUPP

typedef ListNotificationProcPtr ListNotificationUPP;

ListRec

struct ListRec {
 Rect rView;
 GrafPtr port;
 Point indent;
 Point cellSize;
 ListBounds visible;
 ControlRef vScroll;
 ControlRef hScroll;
 SInt8 selFlags;
 Boolean lActive;
 SInt8 lReserved;
 SInt8 listFlags;
 long clikTime;
 Point clikLoc;
 Point mouseLoc;
 ListClickLoopUPP lClickLoop;
 Cell lastClick;
 long refCon;
 Handle listDefProc;
 Handle userHandle;
 ListBounds dataBounds;
 DataHandle cells;
 short maxIndex;
 short cellArray[1];
};
typedef struct ListRec ListRec;
typedef ListRec * ListPtr;
typedef ListPtr * ListHandle

Fields
rView

The rectangle in which the list’s visible rectangle is located, in local coordinates of the graphics port
specified by the port field. Note that the list’s visible rectangle does not include the area needed for
the list’s scroll bars. The width of a vertical scroll bar (which equals the height of a horizontal scroll
bar) is 15 pixels.

port
The graphics port of the window containing the list.

indent
The location, relative to the upper-left corner of a cell, at which drawing should begin. List definition
functions should set this field to a value appropriate to the type of data that a cell in a list is to contain.

20 Data Types
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

cellSize
The size in pixels of each cell in the list. When your application creates a list, it can either specify the
cell size or let the List Manager calculate the cell size. You should not change the cellSize field
directly; if you need to change the cell size after creating a list, use the LCellSize (page 44) function.

visible
The cells in a list that are visible within the area specified by the rView field. The List Manager sets
the left and top fields of visible to the coordinates of the first visible cell; however, the List
Manager sets the right and bottom fields so that each is 1 greater than the horizontal and vertical
coordinates of the last visible cell. For example, if a list contains 4 columns and 10 rows but only the
first 2 columns and the first 5 rows are visible (that is, the last visible cell has coordinates (1,4)), the
List Manager sets the visible field to (0,0,2,5).

vScroll
A control handle for a list’s vertical scroll bar, or NULL if a list does not have a vertical scroll bar.

hScroll
A control handle for a list’s horizontal scroll bar, or NULL if a list does not have a horizontal scroll bar.

selFlags
Indicates the selection flags for a list. When your application creates a list, the List Manager clears the
selFlags field to 0. This defines the List Manager’s default selection algorithm. To change the default
behavior for a particular list, set the desired bits in the list’s selFlags field. See “Selection Flags” (page
28).

lActive
Indicates whether the list is active (TRUE if active, FALSE if inactive).

lReserved
Reserved.

listFlags
Indicates whether the List Manager should automatically scroll the list if the user clicks the list and
then drags the cursor outside the list display rectangle. See “List Flags” (page 26) for the values used
in this field.

By default, the List Manager enables horizontal autoscrolling for a list if the list includes a horizontal
scroll bar, and enables vertical autoscrolling for a list if the list includes a vertical scroll bar.

clikTime
The time in ticks of the last click in the list. If your application depends on the value contained in this
field, then your application should update the field if the application selects a list item in response
to keyboard input.

clikLoc
The location in local coordinates of the last click in the list.

mouseLoc
Indicates the current location of the cursor in local coordinates. This value is continuously updated
by the LClick function after the user clicks a list.

lClickLoop
A universal procedure pointer to your click loop callback function, which is repeatedly called by the
LClick (page 44) function, or NULL if the default click-loop function is to be used.

lastClick
The coordinates of the last cell in the list that was clicked. This may not be the same as the last cell
selected if the user selects a range of cells by Shift-dragging or Command-dragging. If your application
depends on the value contained in this field, then your application should update the field whenever
your application selects a list item in response to keyboard input.

Data Types 21
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

refCon
4 bytes for use by your application.

listDefProc
A handle to the code for the list definition function that defines how the list is drawn.

userHandle
4 bytes that your application can use as needed. For example, your application might use this field
to store a handle to additional storage associated with the list. However, the LDispose (page 47)
function does not automatically release this storage when disposing of the list.

dataBounds
The range of cells in a list. When your application creates a list, it specifies the initial bounds of the
list. As your application adds rows and columns, the List Manager updates this field. The List Manager
sets the left and top fields of dataBounds to the coordinates of the first cell in the list; the List
Manager sets the right and bottom fields so that each is 1 greater than the horizontal and vertical
coordinates of the last cell. For example, if a list contains 4 columns and 10 rows (that is, the last cell
in the list has coordinates (3,9)), the List Manager sets the dataBounds field to (0,0,4,10).

cells
A handle to a relocatable block used to store cell data. Your application should not change the contents
of this relocatable block directly.

maxIndex
Used internally.

cellArray
Offsets to data that indicate the location of different cells’ data within the data handle specified by
the cells parameter. Your application should not access this field directly.

Discussion
Functions in the List Manager interface use the ListHandle datatype to identify a list. The ListHandle
type uses a ListRec structure to maintain information about a list. The ListRec data type defines a list
record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListRef

typedef ListHandle ListRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

22 Data Types
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

ListSearchUPP

typedef ListSearchProcPtr ListSearchUPP;

Discussion
For more information, see the description of the ListSearchUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

StandardIconListCellDataRec

struct StandardIconListCellDataRec {
 Handle iconHandle;
 short font;
 short face;
 short size;
 Str255 name;
};
typedef struct StandardIconListCellDataRec StandardIconListCellDataRec;
typedef StandardIconListCellDataRec * StandardIconListCellDataPtr;

Fields
iconHandle
font
face
size
name

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

Data Types 23
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Constants

kListDefProcPtr

enum {
 kListDefProcPtr = 0,
 kListDefUserProcType = kListDefProcPtr,
 kListDefStandardTextType = 1,
 kListDefStandardIconType = 2
};

Constants
kListDefProcPtr

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

kListDefUserProcType
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

kListDefStandardTextType
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

kListDefStandardIconType
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDrawingModeOff

enum {
 lDrawingModeOff = 8,
 lDoVAutoscroll = 2,
 lDoHAutoscroll = 1
};

Constants
lDrawingModeOff

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoVAutoscroll
Set this bit to 1 if you wish to allow automatic vertical scrolling.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoHAutoscroll
Set this bit to 1 if you wish to allow automatic horizontal scrolling.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

24 Constants
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

lDrawingModeOffBit

enum {
 lDrawingModeOffBit = 3,
 lDoVAutoscrollBit = 1,
 lDoHAutoscrollBit = 0
};

Constants
lDrawingModeOffBit

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoVAutoscrollBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoHAutoscrollBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

List Definition Constants

enum {
 lInitMsg = 0,
 lDrawMsg = 1,
 lHiliteMsg = 2,
 lCloseMsg = 3
};

Constants
lInitMsg

In response to the lInitMsg message, your list definition function should perform any special
initialization needed for a list. For example, the function might set fields of the list record, such as the
cellSize and indent fields, to appropriate values. Your list definition function does not necessarily
need to do anything in response to the initialization message. If it does nothing, then memory is still
allocated for the list, and fields of the list record are set to the same values as they would be set to if
the default list definition function were being used.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDrawMsg
Your list definition function should draw the cell specified by the theCell parameter after receiving
an lDrawMsg message. The function must ensure that it does not draw anywhere but within the
rectangle specified by the cellRect parameter. If the selected parameter is TRUE, then your list
definition function should draw the cell in its highlighted state; otherwise, it should draw the cell
without highlighting. When drawing, your list definition function should take care not to permanently
change any characteristics of the drawing environment.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Constants 25
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

lHiliteMsg
Your list definition function should respond to the lHiliteMsg message by reversing the selection
status of the cell contained within the rectangle specified by the cellRect parameter. If a cell is
highlighted, your list definition function should remove the highlighting; if a cell is not highlighted,
your list definition function should highlight it.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lCloseMsg
The List Manager sends your list definition function an lCloseMsg message before it disposes of a
list and its data. Your list definition function need only respond to this message if additional memory
has been allocated for the list. For example, your list definition function might allocate a relocatable
block in response to the lInitMsg message. In this case, your list definition function would need to
dispose of this relocatable block in response to the lCloseMsg message. Or, if your list definition
function defines cells simply to contain pointers or handles to data stored elsewhere in memory, it
would need to dispose of that memory in response to the lCloseMsg message.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Discussion
The List Manager passes these values to your ListDefProcPtr (page 13) function to identify the operation
to be performed.

List Flags

Constants
Discussion
The following constants define bits in the listFlags field of the ListRec (page 20) structure that determine
whether horizontal autoscrolling and vertical autoscrolling are enabled:.

26 Constants
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

listNotifyNothing

enum {
 listNotifyNothing = 'nada',
 listNotifyClick = 'clik',
 listNotifyDoubleClick = 'dblc',
 listNotifyPreClick = 'pclk'
};

Constants
listNotifyNothing
listNotifyClick
listNotifyDoubleClick
listNotifyPreClick

lOnlyOneBit

enum {
 lOnlyOneBit = 7,
 lExtendDragBit = 6,
 lNoDisjointBit = 5,
 lNoExtendBit = 4,
 lNoRectBit = 3,
 lUseSenseBit = 2,
 lNoNilHiliteBit = 1
};

Constants
lOnlyOneBit

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lExtendDragBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoDisjointBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoExtendBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoRectBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lUseSenseBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoNilHiliteBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Constants 27
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

Selection Flags

enum {
 lOnlyOne = -128,
 lExtendDrag = 64,
 lNoDisjoint = 32,
 lNoExtend = 16,
 lNoRect = 8,
 lUseSense = 4,
 lNoNilHilite = 2
};

Constants
lOnlyOne

Specify this value if you wish to allow only one item to be selected at once.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lExtendDrag
Specify this value if you wish to enable selection of multiple items by dragging without the Shift key.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoDisjoint
Specify this value if you wish to prevent discontinuous selections using the Command key.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoExtend
Specify this value if you wish to prevent extending Shift key selections. All items are deselected before
responding to Shift-click.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoRect
Specify this value if you wish to select all items in the cursor’s path during Shift-drag.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lUseSense
Specify this value if you wish to allow the user to deselect one or more items using the Shift key

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoNilHilite
Specify this value if you wish to disable the highlighting of empty cells.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Discussion
The ListRec (page 20) structure uses these values in the selFlags field to indicate the List Manager’s
default selection algorithm. Use these values additively to select more than one selection option.

28 Constants
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

List Manager Reference (Not Recommended)

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

CreateCustomList
(Deprecated in Mac OS X v10.5.)

OSStatus CreateCustomList (
 const Rect *rView,
 const ListBounds *dataBounds,
 Point cellSize,
 const ListDefSpec *theSpec,
 WindowRef theWindow,
 Boolean drawIt,
 Boolean hasGrow,
 Boolean scrollHoriz,
 Boolean scrollVert,
 ListHandle *outList
);

Parameters
rView
dataBounds
cellSize
theSpec
theWindow
drawIt
hasGrow
scrollHoriz
scrollVert
outList

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

Deprecated in Mac OS X v10.5 29
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not
Recommended) Functions

DisposeListClickLoopUPP
Disposes of the universal procedure pointer (UPP) to a list click loop callback function. (Deprecated in Mac
OS X v10.5.)

void DisposeListClickLoopUPP (
 ListClickLoopUPP userUPP
);

Parameters
userUPP

Discussion
See the ListClickLoopProcPtr (page 11) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

DisposeListDefUPP
Disposes of the universal procedure pointer (UPP) to a list definition callback function. (Deprecated in Mac
OS X v10.5.)

void DisposeListDefUPP (
 ListDefUPP userUPP
);

Parameters
userUPP

Discussion
See the ListDefProcPtr (page 13) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

DisposeListSearchUPP
Disposes of the universal procedure pointer (UPP) to a list search callback function. (Deprecated in Mac OS
X v10.5.)

30 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void DisposeListSearchUPP (
 ListSearchUPP userUPP
);

Parameters
userUPP

Discussion
See the ListSearchProcPtr (page 15) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

GetListActive
(Deprecated in Mac OS X v10.5.)

Boolean GetListActive (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListCellIndent
(Deprecated in Mac OS X v10.5.)

Point * GetListCellIndent (
 ListHandle list,
 Point *indent
);

Parameters
list
indent

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 31
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Declared In
Lists.h

GetListCellSize
(Deprecated in Mac OS X v10.5.)

Point * GetListCellSize (
 ListHandle list,
 Point *size
);

Parameters
list
size

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListClickLocation
(Deprecated in Mac OS X v10.5.)

Point * GetListClickLocation (
 ListHandle list,
 Point *click
);

Parameters
list
click

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListClickLoop
(Deprecated in Mac OS X v10.5.)

32 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

ListClickLoopUPP GetListClickLoop (
 ListHandle list
);

Parameters
list

Return Value
See the description of the ListClickLoopUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListClickTime
(Deprecated in Mac OS X v10.5.)

SInt32 GetListClickTime (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListDataBounds
(Deprecated in Mac OS X v10.5.)

ListBounds * GetListDataBounds (
 ListHandle list,
 ListBounds *bounds
);

Parameters
list
bounds

Return Value
See the description of the ListBounds data type.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5 33
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListDataHandle
(Deprecated in Mac OS X v10.5.)

DataHandle GetListDataHandle (
 ListHandle list
);

Parameters
list

Return Value
See the description of the DataHandle data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListDefinition
(Deprecated in Mac OS X v10.5.)

Handle GetListDefinition (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListFlags
(Deprecated in Mac OS X v10.5.)

34 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

OptionBits GetListFlags (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListHorizontalScrollBar
(Deprecated in Mac OS X v10.5.)

ControlRef GetListHorizontalScrollBar (
 ListHandle list
);

Parameters
list

Return Value
See the Control Manager documentation for a description of the ControlRef data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListMouseLocation
(Deprecated in Mac OS X v10.5.)

Point * GetListMouseLocation (
 ListHandle list,
 Point *mouse
);

Parameters
list
mouse

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 35
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Declared In
Lists.h

GetListPort
(Deprecated in Mac OS X v10.5.)

CGrafPtr GetListPort (
 ListHandle list
);

Parameters
list

Return Value
See the QuickDraw Manager documentation for a description of the CGrafPtr data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListRefCon
(Deprecated in Mac OS X v10.5.)

SInt32 GetListRefCon (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListSelectionFlags
(Deprecated in Mac OS X v10.5.)

36 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

OptionBits GetListSelectionFlags (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListUserHandle
(Deprecated in Mac OS X v10.5.)

Handle GetListUserHandle (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListVerticalScrollBar
(Deprecated in Mac OS X v10.5.)

ControlRef GetListVerticalScrollBar (
 ListHandle list
);

Parameters
list

Return Value
See the Control Manager documentation for a description of the ControlRef data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 37
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Declared In
Lists.h

GetListViewBounds
(Deprecated in Mac OS X v10.5.)

Rect * GetListViewBounds (
 ListHandle list,
 Rect *view
);

Parameters
list
view

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListVisibleCells
(Deprecated in Mac OS X v10.5.)

ListBounds * GetListVisibleCells (
 ListHandle list,
 ListBounds *visible
);

Parameters
list
visible

Return Value
See the description of the ListBounds data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

InvokeListClickLoopUPP
Calls your list click loop callback function. (Deprecated in Mac OS X v10.5.)

38 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Boolean InvokeListClickLoopUPP (
 ListClickLoopUPP userUPP
);

Parameters
userUPP

Discussion
See the ListClickLoopProcPtr (page 11) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

InvokeListDefUPP
Calls your list definition callback function. (Deprecated in Mac OS X v10.5.)

void InvokeListDefUPP (
 short lMessage,
 Boolean lSelect,
 Rect *lRect,
 Cell lCell,
 short lDataOffset,
 short lDataLen,
 ListHandle lHandle,
 ListDefUPP userUPP
);

Parameters
lMessage
lSelect
lRect
lCell
lDataOffset
lDataLen
lHandle
userUPP

Discussion
See the ListDefProcPtr (page 13) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

Deprecated in Mac OS X v10.5 39
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

InvokeListSearchUPP
Calls your list search callback function (Deprecated in Mac OS X v10.5.)

short InvokeListSearchUPP (
 Ptr aPtr,
 Ptr bPtr,
 short aLen,
 short bLen,
 ListSearchUPP userUPP
);

Parameters
aPtr
bPtr
aLen
bLen
userUPP

Return Value
Discussion
See the ListSearchProcPtr (page 15) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

LActivate
Activates or deactivates a list. (Deprecated in Mac OS X v10.5.)

void LActivate (
 Boolean act,
 ListHandle lHandle
);

Parameters
act

Indicates whether the list should be activated. Specify TRUE to activate the list. Specify FALSE to
deactivate the list.

lHandle
The list to be activated or deactivated.

Discussion
If a list is being deactivated, this function removes highlighting from selected cells and hides the scroll bars.
If a list is being activated, the function highlights selected cells and shows the scroll bars.

This function has no effect on a list’s size box, if one exists.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

40 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Not available to 64-bit applications.

Declared In
Lists.h

LAddColumn
Adds one or more columns to a list. (Deprecated in Mac OS X v10.5.)

short LAddColumn (
 short count,
 short colNum,
 ListHandle lHandle
);

Parameters
count

The number of columns to add.

colNum
The column number of the first column to add.

lHandle
The list to which to add the columns.

Return Value
The column number of the first column added, which is equal to the value specified by the colNum parameter
if that value is a valid column number. If the column number specified by colNum is not already in the list,
then new last columns are added. The value returned by this function thus has significance only in this case.

Discussion
This function inserts columns starting at the column specified by the colNum parameter. If there is insufficient
memory in the heap to add the new columns, this function may fail to add the new columns although it
returns a positive function result. Be sure there is enough memory in the heap to allocate the new columns
before calling LAddColumn.

Columns whose column numbers are initially greater than colNum have their column numbers increased by
count.

If the automatic drawing mode is enabled and the columns added by the function are visible, then the list
(including its scroll bars) is updated. New cells created by a call to this function are initially empty.

You may add columns to a list that does not yet have rows. The dataBounds field of the list record reflects
that the list has columns, but you can only access cells when both rows and columns have been added.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

Deprecated in Mac OS X v10.5 41
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

LAddRow
Adds one or more rows to a list. (Deprecated in Mac OS X v10.5.)

short LAddRow (
 short count,
 short rowNum,
 ListHandle lHandle
);

Parameters
count

The number of rows to add.

rowNum
The row number of the first row to add.

lHandle
The list to add the rows to.

Return Value
The row number of the first row added, which is equal to the value specified by the rowNum parameter if
that value is a valid row number. If the row number specified by rowNum is not already in the list, then new
last rows are added. The value returned by this function thus has significance only in this case.

Discussion
This function inserts rows starting at the row specified by the rowNum parameter. If there is insufficient
memory in the heap to add the new rows, the function may fail to add the new rows although it returns a
positive function result. Be sure there is enough memory in the heap to allocate the new rows before calling
this function.

Rows whose row numbers are initially greater than rowNum have their row numbers increased by count.

If the automatic drawing mode is enabled and the rows added by this function are visible, then the list
(including its scroll bars) is updated. New cells created by a call to this function are initially empty.

You may add rows to a list that does not yet have columns. The dataBounds field of the list record reflects
that the list has rows, but you can only access cells when both rows and columns have been added.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LAddToCell
Appends data to the data already contained in a cell. (Deprecated in Mac OS X v10.5.)

42 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void LAddToCell (
 const void *dataPtr,
 short dataLen,
 Cell theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the data to be appended.

dataLen
The length in bytes of the data to be appended.

theCell
The coordinates of the cell to which the data should be appended.

lHandle
The list containing the cell given in the theCell parameter.

Discussion
If the cell coordinates specified by the parameter theCell are invalid, then this function does nothing.

If the data of a visible cell is changed and the automatic drawing mode is enabled, the function updates the
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LAutoScroll
Scrolls a list so that the first selected cell is in the upper-left corner of the list’s visible rectangle. (Deprecated
in Mac OS X v10.5.)

void LAutoScroll (
 ListHandle lHandle
);

Parameters
lHandle

The list to be scrolled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

Deprecated in Mac OS X v10.5 43
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

LCellSize
Changes the size of cells in a list. (Deprecated in Mac OS X v10.5.)

void LCellSize (
 Point cSize,
 ListHandle lHandle
);

Parameters
cSize

The new size of each cell in the list. This function sets the cellSize field of the list record of the list
to the value of the cSize parameter. That is, the list’s new cells will be of width cSize.h and of
height cSize.v.

All cells in a list must be the same size.

lHandle
The list whose cells’ size is being changed.

Discussion
The function updates the list’s visible rectangle to contain cells of the specified size. However, it does not
redraw any cells.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LClick
Processes a mouse-down event in a list. (Deprecated in Mac OS X v10.5.)

Boolean LClick (
 Point pt,
 EventModifiers modifiers,
 ListHandle lHandle
);

Parameters
pt

The location in local coordinates of the mouse-down event. Your application can simply call
GlobalToLocal(myEvent.where) and then pass myEvent.where in this parameter.

If the pt parameter specifies a portion of the list’s visible rectangle, then cells are selected with an
algorithm that depends on the list’s selection flags and on the modifiers parameter. If the user
drags the cursor above or below the list’s visible rectangle and vertical autoscrolling is enabled, then
the List Manager vertically autoscrolls the list. If the user drags the cursor to the right or the left of
the list’s visible rectangle and horizontal autoscrolling is enabled, then the List Manager horizontally
autoscrolls the list.

If the pt parameter specifies a point within the list’s scroll bar, then the List Manager calls the scroll
bar’s control definition function to track the cursor and it scrolls the list appropriately.

44 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

modifiers
An integer value corresponding to the modifiers field of the event record.

lHandle
The list in which the mouse-down event occurred.

Return Value
TRUE if the click was a double-click, or FALSE otherwise.

Discussion
The LClick function handles all user interaction until the user releases the mouse button.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LClrCell
Clears the data contained in a cell. (Deprecated in Mac OS X v10.5.)

void LClrCell (
 Cell theCell,
 ListHandle lHandle
);

Parameters
theCell

The coordinates of the cell to be cleared.

lHandle
The list containing the cell given in the theCell parameter.

Discussion
If the cell coordinates specified by the theCell parameter are invalid, then the function does nothing.

If the data of a visible cell is cleared and the automatic drawing mode is enabled, the function updates the
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LDelColumn
Deletes one or more columns from a list. (Deprecated in Mac OS X v10.5.)

Deprecated in Mac OS X v10.5 45
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void LDelColumn (
 short count,
 short colNum,
 ListHandle lHandle
);

Parameters
count

The number of columns to delete, or 0 to delete all columns.

colNum
The column number of the first column to delete.

lHandle
The list from which to delete the columns.

Discussion
This function deletes columns starting at the column specified by the colNum parameter. If the column
specified by colNum is invalid, then nothing is done.

Your application can quickly delete all columns from a list (and thus delete all cell data) simply by setting
the count parameter to 0. The number of rows is left unchanged. Your application can achieve the same
effect by setting the colNum parameter to (**lHandle).dataBounds.left and setting the count
parameter to a value greater than(**lHandle).dataBounds.right – (**lHandle).dataBounds.left.

Columns whose column numbers are initially greater than colNum have their column numbers decreased
by count.

If the automatic drawing mode is enabled and one or more of the columns deleted by this function are
visible, then the list (including its scroll bars) is updated.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LDelRow
Deletes one or more rows from a list. (Deprecated in Mac OS X v10.5.)

void LDelRow (
 short count,
 short rowNum,
 ListHandle lHandle
);

Parameters
count

The number of rows to delete, or 0 to delete all rows.

rowNum
The row number of the first row to delete.

46 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

lHandle
The list from which to delete the rows.

Discussion
This function deletes rows starting at the row specified by the rowNum parameter. If the row specified by
rowNum is invalid, then nothing is done.

Your application can quickly delete all rows from a list (and thus delete all cell data) simply by setting the
count parameter to 0. The number of columns is left unchanged. Your application can achieve the same
effect by setting the rowNumparameter to (**lHandle).dataBounds.top and setting the countparameter
to a value greater than (**lHandle).dataBounds.bottom – (**lHandle).dataBounds.top.

Rows whose row numbers are initially greater than rowNum have their row numbers decreased by count.

If the automatic drawing mode is enabled and one or more of the rows deleted by the function are visible,
then the list (including its scroll bars) is updated.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LDispose
Disposes of the memory associated with a list. (Deprecated in Mac OS X v10.5.)

void LDispose (
 ListHandle lHandle
);

Parameters
lHandle

The list to be disposed of.

Discussion
This function releases all memory allocated by the List Manager in creating a list. First, it issues a close request
to the list definition function and calls the Control Manager function DisposeControl for the list’s scroll
bars (if any). The function then uses the Memory Manager to free the memory referenced by the cells field,
then disposes of the list record itself.

Because it disposes of data associated with cells in your list, there is no need to clear the data from list cells
or to delete individual rows and columns before calling this function.

This function does not dispose of any memory associated with a list that the List Manager has not allocated.
In particular, it does not dispose of any memory referenced by the userHandle field of the list record. Your
application is responsible for deallocating any memory it has allocated through the userHandle field before
calling this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 47
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Declared In
Lists.h

LDraw
Draws a cell in a list. (Deprecated in Mac OS X v10.5.)

void LDraw (
 Cell theCell,
 ListHandle lHandle
);

Parameters
theCell

The cell to draw.

lHandle
The list containing the cell identified by the parameter theCell.

Discussion
The List Manager makes the list’s graphics port the current port, sets the clipping region to the cell’s rectangle,
and calls the list definition function to draw the cell. It restores the clipping region and port before exiting.

Ordinarily, you should only need to use this function when the automatic drawing mode has been disabled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LGetCell
Copies a cell’s data. (Deprecated in Mac OS X v10.5.)

void LGetCell (
 void *dataPtr,
 short *dataLen,
 Cell theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the location to which to copy the cell’s data.

dataLen
On input, a pointer to the maximum number of bytes to copy. On return, a pointer to the number of
bytes actually copied.

theCell
The cell whose data is to be copied.

48 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

lHandle
The list containing the cell specified by the parameter theCell.

Discussion
If the cell data is longer than dataLen, only dataLen bytes are copied and the dataLen parameter is
unchanged. If the cell data is shorter than dataLen, then the function sets dataLen to the length in bytes
of the cell’s data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LGetCellDataLocation
Finds the memory location of cell data. (Deprecated in Mac OS X v10.5.)

void LGetCellDataLocation (
 short *offset,
 short *len,
 Cell theCell,
 ListHandle lHandle
);

Parameters
offset

On return, a pointer to the offset of the cell’s data, specified from the beginning of the data handle
referenced by the cells field of the list record.

len
On return, a pointer to the length of the cell’s data in bytes.

theCell
The cell whose data’s location is sought.

lHandle
The list containing the cell specified by the parameter theCell.

Discussion
Your application can use this function to read cell data. The cells field of the list record contains a handle
to a relocatable block used to store all cell data. When this function returns, the offset parameter contains
the offset of the specified cell’s data in this relocatable block, and the len parameter specifies the length in
bytes of the cell’s data. In other words, the first byte of cell data is located at Ptr(ORD4(lHandle^^.cells^)
+ offset), and the last byte of cell data is located at Ptr(ORD4(lHandle^^.cells^) + offset +
len). Your application should not modify the contents of the cells field directly. To change a cell’s data,
use the LSetCell (page 55) function or the LAddToCell (page 42) function.

If the cell coordinates specified by the parameter theCell are invalid, then the function sets the offset
and len parameters to –1.

This function is also available as the LFind function.

Deprecated in Mac OS X v10.5 49
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LGetSelect
Gets information about which cells are selected. (Deprecated in Mac OS X v10.5.)

Boolean LGetSelect (
 Boolean next,
 Cell *theCell,
 ListHandle lHandle
);

Parameters
next

Indicates whether the function should check only the cell specified by the parameter theCell, or
whether it should try to find the next selected cell. If next is TRUE, then the function searches the
list for the first selected cell beginning at the cell specified by theCell. (In particular, it first checks
cells in row theCell.v, and then cells in the next row, and so on.)

If next is FALSE, then the function checks only the cell specified by the parameter theCell.

theCell
On input, a pointer to the first cell whose selection status should be checked. If next is TRUE, then,
on return this parameter is a pointer to the next selected cell greater than or equal to the cell specified
on input. Otherwise, this parameter remains unchanged.

lHandle
The list in which the selection is being checked.

Return Value
TRUE if next is TRUE and the function finds a selected cell, or if next is FALSE and the cell specified by
theCell is selected. If this function does not find a selected cell, FALSE.

Special Considerations

This function is contained in a resource of resource type 'PACK'. Calling it could result in the loading of the
package resource and the allocation of memory. Thus, your application should not call this function from
within an interrupt, such as in a completion function or VBL task.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

50 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

LLastClick
Determines the coordinates of the last cell clicked in a particular list. (Deprecated in Mac OS X v10.5.)

Cell LLastClick (
 ListHandle lHandle
);

Parameters
lHandle

The list to be checked for the last cell clicked.

Return Value
The cell coordinates of the last cell clicked. If the user has not clicked a cell since the creation of the list, then
both the h and v fields of the cell returned contain negative numbers. See the description of the Cell data
type.

Discussion
Note that the last cell clicked is not necessarily the last cell selected. The user could Shift-click in one cell and
then drag the cursor to select other cells.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LNew
Creates a new list in a window. (Deprecated in Mac OS X v10.5.)

ListHandle LNew (
 const Rect *rView,
 const ListBounds *dataBounds,
 Point cSize,
 short theProc,
 WindowRef theWindow,
 Boolean drawIt,
 Boolean hasGrow,
 Boolean scrollHoriz,
 Boolean scrollVert
);

Parameters
rView

A pointer to the rectangle in which to display the list, in local coordinates of the window specified
by the theWindow parameter. This rectangle does not include the area to be taken up by the list’s
scroll bars.

dataBounds
A pointer to the initial data bounds for the list. By setting the left and top fields of this rectangle
to (0,0) and the right and bottom fields to (kMyInitialColumns, kMyInitialRows), your
application can create a list that has kMyInitialColumns columns and kMyInitialRows rows.

Deprecated in Mac OS X v10.5 51
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

cSize
The size of each cell in the list. If your application specifies (0,0) and is using the default list definition
function, the List Manager sets the v coordinate of this parameter to the sum of the ascent, descent,
and leading of the current font, and it sets the h coordinate using the following formula:

cSize.h = (rView.right - rView.left) / (dataBounds.right – dataBounds.left).

theProc
The resource ID of the list definition function to use for the list. To use the default list definition
function, which supports the display of unstyled text, specify a resource ID of 0.

theWindow
A pointer to the window in which to install the list.

drawIt
Indicates whether the List Manager should initially enable the automatic drawing mode. When the
automatic drawing mode is enabled, the List Manager automatically redraws the list whenever a
change is made to it. You can later change this setting using the LSetDrawingMode (page 56)
function. Your application should leave the automatic drawing mode disabled only for short periods
of time when making changes to a list (by, for example, adding rows and columns).

hasGrow
Indicates whether the List Manager should leave room for a size box. The List Manager does not
actually draw the grow icon. Usually, your application can draw it with the Window Manager’s
DrawGrowIcon function.

scrollHoriz
Indicates whether the list should contain a horizontal scroll bar. Specify TRUE if your list requires a
horizontal scroll bar; specify FALSE otherwise.

scrollVert
Indicates whether the list should contain a vertical scroll bar. Specify TRUE if your list requires a vertical
scroll bar; specify FALSE otherwise.

Return Value
A handle to the newly created list, or if the function cannot allocate the list, NULL. This might happen if there
is not enough memory available or if the function cannot load the resource specified by the theProc
parameter. If it returns successfully, then all of the fields of the list record referenced by the returned handle
are correctly set. See the description of the ListHandle data type.

Discussion
If the list contains a horizontal or vertical scroll bar and the window specified by the parameter theWindow
is visible, this function draws the scroll bar for the new list in the window just outside the list’s visible rectangle
specified by the rView parameter. This function does not, however, draw a 1-pixel border around the list’s
visible rectangle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LNextCell
Finds the next cell in a given row, in a given column, or in an entire list. (Deprecated in Mac OS X v10.5.)

52 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Boolean LNextCell (
 Boolean hNext,
 Boolean vNext,
 Cell *theCell,
 ListHandle lHandle
);

Parameters
hNext

Indicates whether the function should check columns other than the current column. To get the next
cell in a row, set this parameter to TRUE and set vNext to FALSE. The function then tries to find a cell
whose coordinates are greater than those of the cell specified in theCell parameter but that is in
the same row as theCell.

To get the next cell in a column, set this parameter to FALSE and set vNext to TRUE. The function
then tries to find a cell whose coordinates are greater than those of the cell specified in theCell but
that is in the same column as theCell.

To get the next cell in a list, set both this parameter and vNext to TRUE. This function then tries to
find a cell whose coordinates are greater than those of the cell specified in the parameter theCell.

vNext
Indicates whether the function should check rows other than the current row. To get the next cell in
a row, set this parameter to FALSE and set hNext to TRUE. The function then tries to find a cell whose
coordinates are greater than those of the cell specified in theCell parameter but that is in the same
row as theCell.

To get the next cell in a column, set this parameter to TRUE and set hNext to FALSE. The function
then tries to find a cell whose coordinates are greater than those of the cell specified in theCell but
that is in the same column as theCell.

To get the next cell in a list, set both this parameter and hNext to TRUE. This function then tries to
find a cell whose coordinates are greater than those of the cell specified in the parameter theCell.

theCell
A pointer to the coordinates of the current cell. On return, a pointer to the next cell in the list, column
or row being searched. If there are no more cells in the list, column or row, this parameter remains
unchanged.

lHandle
The list in which to find the next cell.

Return Value
TRUE, if the function finds the next cell in the list, column or row being searched. FALSE, if the cell initially
specified by theCell is the last in the row, column or list being searched. Also FALSE when both hNext
and vNext are FALSE.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LRect
Finds a rectangle that encloses a cell. (Deprecated in Mac OS X v10.5.)

Deprecated in Mac OS X v10.5 53
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void LRect (
 Rect *cellRect,
 Cell theCell,
 ListHandle lHandle
);

Parameters
cellRect

On return, a pointer to the rectangle enclosing the cell, specified in local coordinates of the list’s
graphics port. This rectangle is not necessarily within the list’s rectangle.

theCell
The cell for which an enclosing rectangle is sought. This function does not check whether the cell is
actually contained within the list’s visible rectangle.

If this parameter specifies cell coordinates not contained within the list, this function sets the cellRect
parameter to (0,0,0,0).

lHandle
The list containing the cell specified by the parameter theCell.

Discussion
Because the List Manager automatically draws cells, few applications need to call this function directly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LScroll
Scrolls a list a specified number of rows and columns. (Deprecated in Mac OS X v10.5.)

void LScroll (
 short dCols,
 short dRows,
 ListHandle lHandle
);

Parameters
dCols

The number of columns to scroll. Specify a positive number to scroll down (that is, each cell moves
up), and a negative number to scroll up.

dRows
The number of rows to scroll. Specify a positive number to scroll right (that is, each cell moves left),
and a negative number to scroll left.

lHandle
The list to be scrolled.

Discussion
The List Manager will not scroll beyond the data bounds of the list. If the automatic drawing mode is enabled,
this function does all necessary updating of the list.

54 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSearch
Finds a cell whose data matches data that you specify. (Deprecated in Mac OS X v10.5.)

Boolean LSearch (
 const void *dataPtr,
 short dataLen,
 ListSearchUPP searchProc,
 Cell *theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the data being searched for.

dataLen
The length in bytes of the data being searched for.

searchProc
A pointer to a function to be used to compare the data being searched for with cell data. If NULL, the
Text Utilities Package function IUMagIDString is used.

If either the function pointed to by searchProc or IUMagIDString returns 0, LSearch has found
a match; otherwise, it checks the next cell in the list.

theCell
A pointer to the first cell to be searched. If the function finds a match, this parameter is, on return, a
pointer to the coordinates of the first cell whose data matches the data being searched for.

lHandle
The list to be searched.

Return Value
If the function finds a match, TRUE. Otherwise, FALSE.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSetCell
Changes the data contained in a cell. (Deprecated in Mac OS X v10.5.)

Deprecated in Mac OS X v10.5 55
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void LSetCell (
 const void *dataPtr,
 short dataLen,
 Cell theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the new data for a cell.

dataLen
The length in bytes of the new data.

theCell
The coordinates of the cell to hold the new data.

lHandle
The list containing the cell given in the theCell parameter.

Discussion
Any previous cell data in theCell is replaced. If there is insufficient memory in the heap, the function may
fail to set the cell’s data. If the cell coordinates specified by the theCell parameter are invalid, the function
does nothing.

If the data of a visible cell is changed and the automatic drawing mode is enabled, the function updates the
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSetDrawingMode
Changes the automatic drawing mode specified when creating a list. (Deprecated in Mac OS X v10.5.)

void LSetDrawingMode (
 Boolean drawIt,
 ListHandle lHandle
);

Parameters
drawIt

Indicates whether the List Manager should enable the automatic drawing mode. Specify TRUE to
enable the automatic drawing mode. Specify FALSE to disable the automatic drawing mode.

lHandle
The list whose drawing mode is being changed.

56 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Discussion
Your application can use the LSetDrawingMode function to enable or disable automatic drawing of lists. If
your application uses LSetDrawingMode to temporarily disable list drawing, then it must call the LDraw (page
48) function to draw a cell when its appearance changes, or when new rows or columns are added to the
list. .

While the automatic drawing mode is turned off, all cell drawing and highlighting are disabled, and the scroll
bar does not function properly. Thus, your application should disable the automatic drawing mode only for
short periods of time. After enabling it, your application should ensure that the list is redrawn.

This function is also available as the LDoDraw function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSetSelect
Selects or deselects a cell. (Deprecated in Mac OS X v10.5.)

void LSetSelect (
 Boolean setIt,
 Cell theCell,
 ListHandle lHandle
);

Parameters
setIt

Indicates whether the function should select or deselect the specified cell. Specify TRUE to select the
cell. If the cell is already selected, the function does nothing. Specify FALSE to deselect the cell. If the
cell is already deselected, the function does nothing.

theCell
The cell to be selected or deselected.

lHandle
The list containing the cell to be selected or deselected.

Discussion
If a cell’s selection status is changed and the cell is visible, LSetSelect redraws the cell.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

Deprecated in Mac OS X v10.5 57
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

LSize
Changes the size of a list. (Deprecated in Mac OS X v10.5.)

void LSize (
 short listWidth,
 short listHeight,
 ListHandle lHandle
);

Parameters
listWidth

The new width (in pixels) of the list’s visible rectangle.

listHeight
The new height (in pixels) of the list’s visible rectangle.

lHandle
The list whose size is being changed.

Discussion
This function adjusts the lower-right side of the list so that the list’s visible rectangle is the width and height
specified by the listWidth and listHeight parameters.

Because the list’s visible rectangle does not include room for the scroll bars, your application should make
listWidth 15 pixels less than the desired width of the list if it contains a vertical scroll bar, and it should
make listHeight 15 pixels less than the desired height of the list if it contains a horizontal scroll bar.

The contents of the list and the scroll bars are adjusted and redrawn as necessary. However, this function
does not draw a border around the list’s rectangle. Also, it does not erase any portions of the old list that
may still be visible. This approach should not be a problem if your application only calls LSize after the user
resizes a window containing a list in its lower-right corner.

Usually, you need to call this function only after calling the Window Manager function SizeWindow.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LUpdate
Responds to an update event. (Deprecated in Mac OS X v10.5.)

void LUpdate (
 RgnHandle theRgn,
 ListHandle lHandle
);

Parameters
theRgn

The visible region of the list’s port after a call to the Window Manager’s BeginUpdate function.

58 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

lHandle
The list to be updated.

Discussion
This function redraws all visible cells in the list specified by the lHandle parameter that intersect the region
specified by the parameter theRgn. It also redraws the scroll bars if they intersect the region.

You should bracket calls to LUpdateby calls to the Window Manager functions BeginUpdate and EndUpdate.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

NewListClickLoopUPP
Creates a new universal procedure pointer (UPP) to a list click loop callback function. (Deprecated in Mac OS
X v10.5.)

ListClickLoopUPP NewListClickLoopUPP (
 ListClickLoopProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ListClickLoopUPP data type.

Discussion
See the ListClickLoopProcPtr (page 11) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

NewListDefUPP
Creates a new universal procedure pointer (UPP) to a list definition callback function. (Deprecated in Mac OS
X v10.5.)

Deprecated in Mac OS X v10.5 59
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

ListDefUPP NewListDefUPP (
 ListDefProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ListDefUPP data type.

Discussion
See the ListDefProcPtr (page 13) callback for more information.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

NewListSearchUPP
Creates a new universal procedure pointer (UPP) to a list search callback function. (Deprecated in Mac OS X
v10.5.)

ListSearchUPP NewListSearchUPP (
 ListSearchProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ListSearchUPP data type.

Discussion
See the ListSearchProcPtr (page 15) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

RegisterListDefinition
(Deprecated in Mac OS X v10.5.)

60 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

OSStatus RegisterListDefinition (
 SInt16 inResID,
 ListDefSpecPtr inDefSpec
);

Parameters
inResID
inDefSpec

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListCellIndent
(Deprecated in Mac OS X v10.5.)

void SetListCellIndent (
 ListHandle list,
 Point *indent
);

Parameters
list
indent

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListClickLoop
(Deprecated in Mac OS X v10.5.)

Deprecated in Mac OS X v10.5 61
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void SetListClickLoop (
 ListHandle list,
 ListClickLoopUPP clickLoop
);

Parameters
list
clickLoop

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListClickTime
(Deprecated in Mac OS X v10.5.)

void SetListClickTime (
 ListHandle list,
 SInt32 time
);

Parameters
list
time

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListFlags
(Deprecated in Mac OS X v10.5.)

void SetListFlags (
 ListHandle list,
 OptionBits listFlags
);

Parameters
list
listFlags

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

62 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Not available to 64-bit applications.

Declared In
Lists.h

SetListLastClick
(Deprecated in Mac OS X v10.5.)

void SetListLastClick (
 ListHandle list,
 Cell *lastClick
);

Parameters
list
lastClick

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListPort
(Deprecated in Mac OS X v10.5.)

void SetListPort (
 ListHandle list,
 CGrafPtr port
);

Parameters
list
port

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListRefCon
(Deprecated in Mac OS X v10.5.)

Deprecated in Mac OS X v10.5 63
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

void SetListRefCon (
 ListHandle list,
 SInt32 refCon
);

Parameters
list
refCon

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListSelectionFlags
(Deprecated in Mac OS X v10.5.)

void SetListSelectionFlags (
 ListHandle list,
 OptionBits selectionFlags
);

Parameters
list
selectionFlags

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListUserHandle
(Deprecated in Mac OS X v10.5.)

void SetListUserHandle (
 ListHandle list,
 Handle userHandle
);

Parameters
list
userHandle

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

64 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

Not available to 64-bit applications.

Declared In
Lists.h

SetListViewBounds
(Deprecated in Mac OS X v10.5.)

void SetListViewBounds (
 ListHandle list,
 const Rect *view
);

Parameters
list
view

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

Deprecated in Mac OS X v10.5 65
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

66 Deprecated in Mac OS X v10.5
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated List Manager Reference (Not Recommended) Functions

This table describes the changes to List Manager Reference.

NotesDate

Added deprecation information.2007-12-11

Updated formatting and linking.2003-02-01

67
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

Cell data type 17
CreateCustomList function (Deprecated in Mac OS X

v10.5) 29

D

DataArray data type 17
DataHandle data type 17
DataPtr data type 17
DisposeListClickLoopUPP function (Deprecated in

Mac OS X v10.5) 30
DisposeListDefUPP function (Deprecated in Mac OS X

v10.5) 30
DisposeListSearchUPP function (Deprecated in Mac

OS X v10.5) 30

G

GetListActive function (Deprecated in Mac OS X v10.5)
31

GetListCellIndent function (Deprecated in Mac OS X
v10.5) 31

GetListCellSize function (Deprecated in Mac OS X
v10.5) 32

GetListClickLocation function (Deprecated in Mac
OS X v10.5) 32

GetListClickLoop function (Deprecated in Mac OS X
v10.5) 32

GetListClickTime function (Deprecated in Mac OS X
v10.5) 33

GetListDataBounds function (Deprecated in Mac OS X
v10.5) 33

GetListDataHandle function (Deprecated in Mac OS X
v10.5) 34

GetListDefinition function (Deprecated in Mac OS X
v10.5) 34

GetListFlags function (Deprecated in Mac OS X v10.5)
34

GetListHorizontalScrollBar function (Deprecated
in Mac OS X v10.5) 35

GetListMouseLocation function (Deprecated in Mac
OS X v10.5) 35

GetListPort function (Deprecated in Mac OS X v10.5)
36

GetListRefCon function (Deprecated in Mac OS X v10.5)
36

GetListSelectionFlags function (Deprecated in Mac
OS X v10.5) 36

GetListUserHandle function (Deprecated in Mac OS X
v10.5) 37

GetListVerticalScrollBar function (Deprecated in
Mac OS X v10.5) 37

GetListViewBounds function (Deprecated in Mac OS X
v10.5) 38

GetListVisibleCells function (Deprecated in Mac OS
X v10.5) 38

I

InvokeListClickLoopUPP function (Deprecated in Mac
OS X v10.5) 38

InvokeListDefUPP function (Deprecated in Mac OS X
v10.5) 39

InvokeListSearchUPP function (Deprecated in Mac OS
X v10.5) 40

K

kListDefProcPtr 24
kListDefProcPtr constant 24
kListDefStandardIconType constant 24
kListDefStandardTextType constant 24
kListDefUserProcType constant 24

69
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

Index

L

LActivate function (Deprecated in Mac OS X v10.5) 40
LAddColumn function (Deprecated in Mac OS X v10.5) 41
LAddRow function (Deprecated in Mac OS X v10.5) 42
LAddToCell function (Deprecated in Mac OS X v10.5) 42
LAutoScroll function (Deprecated in Mac OS X v10.5)

43
LCellSize function (Deprecated in Mac OS X v10.5) 44
LClick function (Deprecated in Mac OS X v10.5) 44
lCloseMsg constant 26
LClrCell function (Deprecated in Mac OS X v10.5) 45
LDelColumn function (Deprecated in Mac OS X v10.5) 45
LDelRow function (Deprecated in Mac OS X v10.5) 46
LDispose function (Deprecated in Mac OS X v10.5) 47
lDoHAutoscroll constant 24
lDoHAutoscrollBit constant 25
lDoVAutoscroll constant 24
lDoVAutoscrollBit constant 25
LDraw function (Deprecated in Mac OS X v10.5) 48
lDrawingModeOff 24
lDrawingModeOff constant 24
lDrawingModeOffBit 25
lDrawingModeOffBit constant 25
lDrawMsg constant 25
lExtendDrag constant 28
lExtendDragBit constant 27
LGetCell function (Deprecated in Mac OS X v10.5) 48
LGetCellDataLocation function (Deprecated in Mac

OS X v10.5) 49
LGetSelect function (Deprecated in Mac OS X v10.5) 50
lHiliteMsg constant 26
lInitMsg constant 25
List Definition Constants 25
List Flags 26
ListBounds data type 18
ListClickLoopProcPtr callback 11
ListClickLoopUPP data type 18
ListDefProcPtr callback 13
ListDefSpec structure 18
ListDefType data type 19
ListDefUPP data type 19
ListNotification data type 20
ListNotificationProcPtr callback 15
ListNotificationUPP data type 20
listNotifyClick constant 27
listNotifyDoubleClick constant 27
listNotifyNothing 27
listNotifyNothing constant 27
listNotifyPreClick constant 27
ListRec structure 20
ListRef data type 22
ListSearchProcPtr callback 15

ListSearchUPP data type 23
LLastClick function (Deprecated in Mac OS X v10.5) 51
LNew function (Deprecated in Mac OS X v10.5) 51
LNextCell function (Deprecated in Mac OS X v10.5) 52
lNoDisjoint constant 28
lNoDisjointBit constant 27
lNoExtend constant 28
lNoExtendBit constant 27
lNoNilHilite constant 28
lNoNilHiliteBit constant 27
lNoRect constant 28
lNoRectBit constant 27
lOnlyOne constant 28
lOnlyOneBit 27
lOnlyOneBit constant 27
LRect function (Deprecated in Mac OS X v10.5) 53
LScroll function (Deprecated in Mac OS X v10.5) 54
LSearch function (Deprecated in Mac OS X v10.5) 55
LSetCell function (Deprecated in Mac OS X v10.5) 55
LSetDrawingMode function (Deprecated in Mac OS X

v10.5) 56
LSetSelect function (Deprecated in Mac OS X v10.5) 57
LSize function (Deprecated in Mac OS X v10.5) 58
LUpdate function (Deprecated in Mac OS X v10.5) 58
lUseSense constant 28
lUseSenseBit constant 27

N

NewListClickLoopUPP function (Deprecated in Mac OS
X v10.5) 59

NewListDefUPP function (Deprecated in Mac OS X v10.5)
59

NewListSearchUPP function (Deprecated in Mac OS X
v10.5) 60

R

RegisterListDefinition function (Deprecated in Mac
OS X v10.5) 60

S

Selection Flags 28
SetListCellIndent function (Deprecated in Mac OS X

v10.5) 61
SetListClickLoop function (Deprecated in Mac OS X

v10.5) 61

70
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SetListClickTime function (Deprecated in Mac OS X
v10.5) 62

SetListFlags function (Deprecated in Mac OS X v10.5)
62

SetListLastClick function (Deprecated in Mac OS X
v10.5) 63

SetListPort function (Deprecated in Mac OS X v10.5)
63

SetListRefCon function (Deprecated in Mac OS X v10.5)
63

SetListSelectionFlags function (Deprecated in Mac
OS X v10.5) 64

SetListUserHandle function (Deprecated in Mac OS X
v10.5) 64

SetListViewBounds function (Deprecated in Mac OS X
v10.5) 65

StandardIconListCellDataRec structure 23

71
Legacy Document | 2007-12-11 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	List Manager Reference
	Contents
	List Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Accessing and Manipulating Cell Data
	Adding and Deleting Columns and Rows To and From a List
	Changing the Size of Cells and Lists
	Creating and Disposing of Lists
	Creating and Managing Universal Procedure Pointers
	Determining or Changing the Selection
	Getting Information About Cells
	Modifying a List’s Appearance
	Responding to Events Affecting Lists
	Searching a List for a Particular Item
	Miscellaneous

	Callbacks
	ListClickLoopProcPtr
	ListDefProcPtr
	ListNotificationProcPtr
	ListSearchProcPtr

	Data Types
	Cell
	DataArray
	DataHandle
	DataPtr
	ListBounds
	ListClickLoopUPP
	ListDefSpec
	ListDefType
	ListDefUPP
	ListNotification
	ListNotificationUPP
	ListRec
	ListRef
	ListSearchUPP
	StandardIconListCellDataRec

	Constants
	kListDefProcPtr
	lDrawingModeOff
	lDrawingModeOffBit
	List Definition Constants
	List Flags
	listNotifyNothing
	lOnlyOneBit
	Selection Flags

	Appendix A: Deprecated List Manager Reference (Not Recommended) Functions
	Deprecated in Mac OS X v10.5
	CreateCustomList
	DisposeListClickLoopUPP
	DisposeListDefUPP
	DisposeListSearchUPP
	GetListActive
	GetListCellIndent
	GetListCellSize
	GetListClickLocation
	GetListClickLoop
	GetListClickTime
	GetListDataBounds
	GetListDataHandle
	GetListDefinition
	GetListFlags
	GetListHorizontalScrollBar
	GetListMouseLocation
	GetListPort
	GetListRefCon
	GetListSelectionFlags
	GetListUserHandle
	GetListVerticalScrollBar
	GetListViewBounds
	GetListVisibleCells
	InvokeListClickLoopUPP
	InvokeListDefUPP
	InvokeListSearchUPP
	LActivate
	LAddColumn
	LAddRow
	LAddToCell
	LAutoScroll
	LCellSize
	LClick
	LClrCell
	LDelColumn
	LDelRow
	LDispose
	LDraw
	LGetCell
	LGetCellDataLocation
	LGetSelect
	LLastClick
	LNew
	LNextCell
	LRect
	LScroll
	LSearch
	LSetCell
	LSetDrawingMode
	LSetSelect
	LSize
	LUpdate
	NewListClickLoopUPP
	NewListDefUPP
	NewListSearchUPP
	RegisterListDefinition
	SetListCellIndent
	SetListClickLoop
	SetListClickTime
	SetListFlags
	SetListLastClick
	SetListPort
	SetListRefCon
	SetListSelectionFlags
	SetListUserHandle
	SetListViewBounds

	Revision History
	Index
	C
	D
	G
	I
	K
	L
	N
	R
	S

