
Memory Manager Reference
Carbon > Resource Management

2007-06-27

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Logic, Mac, Mac
OS, and Macintosh are trademarks of Apple
Inc., registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Memory Manager Reference 7

Overview 7
Functions by Task 7

Allocating and Releasing Nonrelocatable Blocks of Memory 7
Allocating and Releasing Relocatable Blocks of Memory 8
Allocating Temporary Memory 8
Assessing Memory Conditions 8
Changing the Sizes of Relocatable and Nonrelocatable Blocks 8
Managing Relocatable Blocks 9
Manipulating Blocks of Memory 9
Setting the Properties of Relocatable Blocks 9
Miscellaneous 10
Deprecated Functions 10

Functions 13
BlockMove 13
BlockMoveData 14
BlockMoveDataUncached 15
BlockMoveUncached 15
BlockZero 16
BlockZeroUncached 16
DisposeHandle 16
DisposePtr 17
EmptyHandle 18
GetHandleSize 19
GetPtrSize 19
HandAndHand 20
HandToHand 20
HClrRBit 21
HGetState 22
HLock 22
HLockHi 23
HSetRBit 23
HSetState 24
HUnlock 25
IsHandleValid 25
IsHeapValid 26
IsPointerValid 26
LMGetMemErr 26
LMSetMemErr 27
MemError 27
NewEmptyHandle 28

3
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

NewHandle 28
NewHandleClear 29
NewPtr 30
NewPtrClear 31
PtrAndHand 31
PtrToHand 32
PtrToXHand 33
ReallocateHandle 33
RecoverHandle 34
SetHandleSize 35
SetPtrSize 35
TempNewHandle 36

Callbacks 37
GrowZoneProcPtr 37
PurgeProcPtr 38
UserFnProcPtr 39

Data Types 40
BackingFileID 40
FileViewAccess 40
FileViewID 40
FileViewInformation 40
FileViewOptions 41
GrowZoneUPP 41
LogicalToPhysicalTable 41
MappedFileAttributes 42
MappedFileInformation 42
MappingPrivileges 42
MemoryBlock 42
PurgeUPP 43
StatusRegisterContents 43
UserFnUPP 44
VolumeVirtualMemoryInfo 44
Zone 44

Constants 45
Default Physical Entry Count Constant 45
k32BitHeap 45
kFileViewInformationVersion1 46
kHandleIsResourceBit 46
kHandleIsResourceMask 46
kMapEntireFork 46
kMappedFileInformationVersion1 46
kPageInMemory 47
kVolumeVirtualMemoryInfoVersion1 47
maxSize 47

Result Codes 47

4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Appendix A Deprecated Memory Manager Functions 49

Deprecated in Mac OS X v10.4 49
CheckAllHeaps 49
CompactMem 49
DisposeGrowZoneUPP 50
DisposePurgeUPP 50
DisposeUserFnUPP 51
FlushMemory 51
GetGrowZone 51
GZSaveHnd 52
HNoPurge 52
HoldMemory 53
HPurge 54
InvokeGrowZoneUPP 54
InvokePurgeUPP 55
InvokeUserFnUPP 55
LMGetApplZone 56
LMGetSysZone 56
LMSetApplZone 57
LMSetSysZone 57
MakeMemoryNonResident 57
MakeMemoryResident 58
MoreMasterPointers 58
MoreMasters 59
MoveHHi 60
NewGrowZoneUPP 61
NewPurgeUPP 61
NewUserFnUPP 61
PurgeMem 62
PurgeSpace 63
PurgeSpaceContiguous 63
PurgeSpaceTotal 63
ReleaseMemoryData 64
ReserveMem 64
SetGrowZone 65
TempFreeMem 66
TempHLock 66
TempHUnlock 67
TempMaxMem 67
TempTopMem 68
TopMem 68
UnholdMemory 69

Deprecated in Mac OS X v10.5 69
FreeMem 69
MaxBlock 70

5
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

MaxMem 71
StackSpace 71
TempDisposeHandle 72

Document Revision History 73

Index 75

6
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: CoreServices/CoreServices.h

Declared in MacMemory.h

Overview

The Memory Manager was the memory management solution for versions of the Macintosh operating system
prior to Mac OS X. It remains available for compatibility with legacy applications and for new applications
that must work with legacy Carbon code that requires handles.

In previous versions of the Macintosh operating system, developers used the Memory Manager to set up an
application’s memory partition at launch time, to manage an application’s heap, to minimize application
memory fragmentation, and to implement a scheme to avoid low-memory conditions. All of these operations
are now handled transparently by Mac OS X.

In the Mac OS X Memory Manager, many functions are deprecated, the callbacks are not functional, and the
data types and constants are not used. In Mac OS X there is no need to set up or manage an application
memory partition or to manage pointers. To allocate memory, in most cases you simply use the C functions
malloc or calloc. Mac OS X ensures that every application has access to as much memory as it needs—up
to 4 gigabytes of addressable space per 32-bit process.

Mac OS X does not support functions for accessing the system heap, as the system heap is unavailable to
applications in Mac OS X. Starting with Mac OS X v10.3, Memory Manager is thread safe, and the
MemError (page 27) function now returns error codes on a per-thread basis.

For information on memory management issues when porting a legacy Macintosh application to Mac OS X,
refer to the Carbon Porting Guide and to Technical Note 2130, Memory Allocation Recommendations on Mac
OS X.

Functions by Task

Allocating and Releasing Nonrelocatable Blocks of Memory

DisposePtr (page 17)
Releases memory occupied by a nonrelocatable block.

NewPtr (page 30)
Allocates a nonrelocatable block of memory of a specified size.

NewPtrClear (page 31)
Allocates a nonrelocatable block of memory of a specified size with all its bytes set to 0.

Overview 7
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

http://developer.apple.com/technotes/tn2005/tn2130.html
http://developer.apple.com/technotes/tn2005/tn2130.html

Allocating and Releasing Relocatable Blocks of Memory

DisposeHandle (page 16)
Releases memory occupied by a relocatable block.

NewEmptyHandle (page 28)
Initializes a new handle without allocating any memory for it to control.

NewHandle (page 28)
Allocates a new relocatable memory block of a specified size in the current heap zone.

NewHandleClear (page 29)
Allocates a relocatable block of memory of a specified size with all its bytes set to 0.

Allocating Temporary Memory

TempNewHandle (page 36)
Allocates a new relocatable block of temporary memory.

Assessing Memory Conditions

MemError (page 27)
Determines if an application’s last direct call to a Memory Manager function executed successfully.

LMGetMemErr (page 26)
Returns the result of the last Memory Manager function without clearing the value.

LMSetMemErr (page 27)
Sets the value which will be returned by the MemError function.

MaxBlock (page 70) Deprecated in Mac OS X v10.5
Returns a fixed value for block size that is compatible with most applications. (Deprecated. There is
no replacement function; you can assume that any reasonable memory allocation will succeed.)

StackSpace (page 71) Deprecated in Mac OS X v10.5
Returns the amount of space between the bottom of the stack and the top of the application heap.
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

Changing the Sizes of Relocatable and Nonrelocatable Blocks

GetHandleSize (page 19)
Returns the logical size of the relocatable block corresponding to a handle.

GetPtrSize (page 19)
Returns the logical size of the nonrelocatable block corresponding to a pointer.

SetHandleSize (page 35)
Changes the logical size of the relocatable block corresponding to the specified handle.

SetPtrSize (page 35)
Changes the logical size of the nonrelocatable block corresponding to a pointer.

8 Functions by Task
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Managing Relocatable Blocks

EmptyHandle (page 18)
Purges a relocatable block and sets the corresponding handle’s master pointer to NULL.

HLockHi (page 23)
Sets the lock bit on the block.

ReallocateHandle (page 33)
Allocates a new relocatable block of a specified size and sets a handle’s master pointer to point to
the new block.

RecoverHandle (page 34)
Returns a handle to a relocatable block pointed to by a specified pointer.

Manipulating Blocks of Memory

BlockMove (page 13)
Copies a sequence of bytes from one location in memory to another.

BlockMoveData (page 14)

BlockMoveDataUncached (page 15)

BlockMoveUncached (page 15)

BlockZero (page 16)

BlockZeroUncached (page 16)

HandAndHand (page 20)
Concatenates two relocatable blocks.

HandToHand (page 20)
Copies all of the data from one relocatable block to a new relocatable block.

PtrAndHand (page 31)
Concatenates part or all of a memory block to the end of a relocatable block.

PtrToHand (page 32)
Copies data referenced by a pointer to a new relocatable block.

PtrToXHand (page 33)
Copies data referenced by a pointer to an existing relocatable block.

Setting the Properties of Relocatable Blocks

HClrRBit (page 21)
Clears the resource flag of a relocatable block.

HGetState (page 22)
Returns a signed byte representing the current properties of a relocatable block.

Functions by Task 9
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

HLock (page 22)
Prevents a relocatable block from moving within its heap zone.

HSetRBit (page 23)
Sets the resource flag of a relocatable block.

HSetState (page 24)
Restores the properties of a relocatable block.

HUnlock (page 25)
Allows a relocatable block to move in its heap zone.

Miscellaneous

IsHandleValid (page 25)
Checks that a handle is valid.

IsHeapValid (page 26)
Always returns true in Mac OS X.

IsPointerValid (page 26)
Checks that a pointer is valid.

Deprecated Functions
You should avoid using the functions listed in this section.

FreeMem (page 69) Deprecated in Mac OS X v10.5
Returns the total amount of free space in the current heap zone. (Deprecated. There is no replacement
function; you can assume that any reasonable memory allocation will succeed.)

MaxMem (page 71) Deprecated in Mac OS X v10.5
Returns the size, in bytes, of the largest contiguous free block in the current heap zone. (Deprecated.
There is no replacement function; you can assume that any reasonable memory allocation will succeed.)

TempDisposeHandle (page 72) Deprecated in Mac OS X v10.5
Releases a relocatable block in the temporary heap. (Deprecated. Use DisposeHandle (page 16)
instead; Mac OS X does not have a separate temporary memory heap.)

CheckAllHeaps (page 49) Deprecated in Mac OS X v10.4
Checks all known heaps for validity. (Deprecated. There is no replacement function; an application
has access only to its own heap in Mac OS X.)

CompactMem (page 49) Deprecated in Mac OS X v10.4
Compacts the heap by moving relocatable blocks as needed. (Deprecated. There is no replacement
function; memory compaction is never needed and never performed in Mac OS X.)

DisposeGrowZoneUPP (page 50) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps never grow in Mac OS X, so the grow-zone
function is never called.)

DisposePurgeUPP (page 50) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps are never purged in Mac OS X, so the purge
function is never called.)

DisposeUserFnUPP (page 51) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

10 Functions by Task
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

FlushMemory (page 51) Deprecated in Mac OS X v10.4
Makes a portion of the address space clean. (Deprecated. There is no replacement; this function does
nothing in Mac OS X.)

GetGrowZone (page 51) Deprecated in Mac OS X v10.4
Returns the current heap zone’s grow-zone function. (Deprecated. There is no replacement function;
heaps never grow in Mac OS X, so the grow-zone function is never used.)

GZSaveHnd (page 52) Deprecated in Mac OS X v10.4
Returns a relocatable block to be protected during grow-zone operations. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

HNoPurge (page 52) Deprecated in Mac OS X v10.4
Marks a relocatable block as unpurgeable. (Deprecated. There is no replacement function; heaps are
never purged in Mac OS X.)

HoldMemory (page 53) Deprecated in Mac OS X v10.4
Makes a portion of the address space resident in physical memory and ineligible for paging.
(Deprecated. There is no replacement; this function does nothing in Mac OS X.)

HPurge (page 54) Deprecated in Mac OS X v10.4
Marks a relocatable block as purgeable. (Deprecated. There is no replacement function; heaps are
never purged in Mac OS X.)

InvokeGrowZoneUPP (page 54) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps never grow in Mac OS X, so the grow-zone
function is never called.)

InvokePurgeUPP (page 55) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps are never purged in Mac OS X, so the purge
function is never called.)

InvokeUserFnUPP (page 55) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMGetApplZone (page 56) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMGetSysZone (page 56) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMSetApplZone (page 57) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMSetSysZone (page 57) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

MakeMemoryNonResident (page 57) Deprecated in Mac OS X v10.4
Makes pages in the specified range immediately available for reuse. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

MakeMemoryResident (page 58) Deprecated in Mac OS X v10.4
Makes a portion of the address space resident in physical memory. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

Functions by Task 11
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

MoreMasterPointers (page 58) Deprecated in Mac OS X v10.4
Allocates a specified number of master pointers in the current heap zone. (Deprecated. There is no
replacement function; master pointers do not need to be pre-allocated in Mac OS X.)

MoreMasters (page 59) Deprecated in Mac OS X v10.4
Allocates a block of master pointers in the current heap zone. (Deprecated. There is no replacement
function; master pointers do not need to be pre-allocated in Mac OS X.)

MoveHHi (page 60) Deprecated in Mac OS X v10.4
Moves a relocatable block as high in memory as possible. (Deprecated. There is no replacement
function; there is no benefit to moving handles high in memory in Mac OS X.)

NewGrowZoneUPP (page 61) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps never grow in Mac OS X, so the grow-zone
function is never called.)

NewPurgeUPP (page 61) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps are never purged in Mac OS X, so the purge
function is never called.)

NewUserFnUPP (page 61) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

PurgeMem (page 62) Deprecated in Mac OS X v10.4
Purges the current heap zone until the specified number of bytes are available. (Deprecated. There
is no replacement; heaps are never purged in Mac OS X, so this function does nothing.)

PurgeSpace (page 63) Deprecated in Mac OS X v10.4
Determines the total amount of free memory and the size of the largest allocatable block in the current
heap zone if it were purged. (Deprecated. There is no replacement; heaps are never purged in Mac
OS X.)

PurgeSpaceContiguous (page 63) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; heaps are never purged in Mac OS X.)

PurgeSpaceTotal (page 63) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; heaps are never purged in Mac OS X.)

ReleaseMemoryData (page 64) Deprecated in Mac OS X v10.4
Releases the data of a portion of the address space. (Deprecated. There is no replacement; this function
does nothing in Mac OS X.)

ReserveMem (page 64) Deprecated in Mac OS X v10.4
Reserves space for a block of memory as close to the bottom of the current heap zone as possible.
(Deprecated. There is no replacement; this function does nothing in Mac OS X.)

SetGrowZone (page 65) Deprecated in Mac OS X v10.4
Specifies the current heap zone’s grow-zone function. (Deprecated. There is no replacement function;
heaps never grow in Mac OS X, so the grow-zone function is never called.)

TempFreeMem (page 66) Deprecated in Mac OS X v10.4
Returns the maximum amount of free memory in the temporary heap. (Deprecated. There is no
replacement function; Mac OS X does not have a separate temporary memory heap.)

TempHLock (page 66) Deprecated in Mac OS X v10.4
Locks a relocatable block in the temporary heap. (Deprecated. Use HLock (page 22) instead; Mac OS
X does not have a separate temporary memory heap.)

TempHUnlock (page 67) Deprecated in Mac OS X v10.4
Unlocks a relocatable block in the temporary heap. (Deprecated. Use HUnlock (page 25) instead;
Mac OS X does not have a separate temporary memory heap.)

12 Functions by Task
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

TempMaxMem (page 67) Deprecated in Mac OS X v10.4
Returns the maximum amount of temporary memory available. (Deprecated. There is no replacement
function; Mac OS X does not have a separate temporary memory heap.)

TempTopMem (page 68) Deprecated in Mac OS X v10.4
Returns the location of the top of the temporary heap. (Deprecated. There is no replacement function;
Mac OS X does not have a separate temporary memory heap.)

TopMem (page 68) Deprecated in Mac OS X v10.4
Returns a pointer to the byte at the top of an application’s partition. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

UnholdMemory (page 69) Deprecated in Mac OS X v10.4
Makes a currently held range of memory eligible for paging again. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

Functions

BlockMove
Copies a sequence of bytes from one location in memory to another.

static void BlockMove (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr

The address of the first byte to copy.

destPtr
The destination address.

byteCount
The number of bytes to copy. If the value of byteCount is 0, BlockMove does nothing.

Discussion
The BlockMove function copies the specified number of bytes from the address designated by srcPtr to that
designated by destPtr. It updates no pointers.

The BlockMove function works correctly even if the source and destination blocks overlap.

You can safely call BlockMove at interrupt time. Even though it moves memory, BlockMove does not move
relocatable blocks, but simply copies bytes.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

The BlockMove function currently flushes the processor caches whenever it moves more than 12 bytes. This
behavior can adversely affect your application’s performance. You might want to avoid calling BlockMove
to move small amounts of data in memory if there is no possibility of moving stale data or instructions. For
more information about stale data and instructions, see the discussion of the processor caches in the chapter
“Memory Management Utilities” in Inside Macintosh: Memory.

Functions 13
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Special Considerations

Beginning in Mac OS X v10.4, the BlockMove function is inlined to a direct call to the POSIX memmove function.
For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

BlockMoveData

static void BlockMoveData (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr
destPtr
byteCount

Discussion
You should not make any assumptions about the state of the destination memory while BlockMoveData is
executing. In the intermediate state, values may be present that are neither the original nor the final ones.
For example, this function may use the 'dcbz' instruction. If the underlying memory is not cacheable, if the
memory is write-through instead of copy-back, or if the cache block is flushed for some reason, the 'dcbz'
instruction will write zeros to the destination. You can avoid the use of the 'dcbz' instruction by calling
BlockMoveDataUncached, but even that function makes no other guarantees about the memory block's
intermediate state.

Special Considerations

Beginning in Mac OS X v10.4, the BlockMoveData function is inlined to a direct call to the POSIX memmove
function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
MacMemory.h

14 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

BlockMoveDataUncached

static void BlockMoveDataUncached (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr
destPtr
byteCount

Discussion
You should not make any assumptions about the state of the destination memory while
BlockMoveDataUncached is executing. In the intermediate state, values may be present that are neither
the original nor the final ones.

Special Considerations

Beginning in Mac OS X v10.4, the BlockMoveDataUncached function is inlined to a direct call to the POSIX
memmove function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

BlockMoveUncached

static void BlockMoveUncached (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr
destPtr
byteCount

Special Considerations

Beginning in Mac OS X v10.4, the BlockMoveUncached function is inlined to a direct call to the POSIX
memmove function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Functions 15
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

BlockZero

static void BlockZero (
 void *destPtr,
 Size byteCount
);

Parameters
destPtr
byteCount

Special Considerations

Beginning in Mac OS X v10.4, the BlockZero function is inlined to a direct call to the POSIX bzero function.
For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
MacMemory.h

BlockZeroUncached

static void BlockZeroUncached (
 void *destPtr,
 Size byteCount
);

Parameters
destPtr
byteCount

Special Considerations

Beginning in Mac OS X v10.4, the BlockZeroUncached function is inlined to a direct call to the POSIX bzero
function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

DisposeHandle
Releases memory occupied by a relocatable block.

16 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

void DisposeHandle (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The DisposeHandle function releases the memory occupied by the relocatable block whose handle is h. It
also frees the handle’s master pointer for other uses.

Do not use DisposeHandle to dispose of a handle obtained from the Resource Manager (for example, by
a previous call to GetResource), use ReleaseResource instead. If, however, you have called
DetachResource on a resource handle, you should dispose of the storage by calling DisposeHandle.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Special Considerations

After a call to DisposeHandle, all handles to the released block become invalid and should not be used
again. Any subsequent calls to DisposeHandle using an invalid handle might crash your application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
Gamma Filter for FxPlug and AE
QTCarbonShell
QTMetaData
WhackedTV

Declared In
MacMemory.h

DisposePtr
Releases memory occupied by a nonrelocatable block.

void DisposePtr (
 Ptr p
);

Parameters
p

A pointer to the nonrelocatable block you want to dispose of.

Discussion
When you no longer need a nonrelocatable block, call the DisposePtr function to free it for other uses.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Functions 17
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

After a call to DisposePtr, all pointers to the released block become invalid and should not be used again.
Any subsequent use of a pointer to the released block might cause a system error.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch
SoftVDigX

Declared In
MacMemory.h

EmptyHandle
Purges a relocatable block and sets the corresponding handle’s master pointer to NULL.

void EmptyHandle (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The EmptyHandle function purges the relocatable block whose handle is h and sets the handle’s master
pointer to NULL. The EmptyHandle function allows you to free memory taken by a relocatable block without
freeing the relocatable block’s master pointer for other uses. The block whose handle is h must be unlocked
but need not be purgeable.

Note that if there are multiple handles to the relocatable block, then calling the EmptyHandle function
empties them all, because all of the handles share a common master pointer. When you later use
ReallocateHandle to reallocate space for the block, the master pointer is updated, and all of the handles
reference the new block correctly.

To purge all of the blocks in a heap zone that are marked purgeable, use the PurgeMem (page 62) function.

To free the memory taken up by a relocatable block and release the block’s master pointer for other uses,
use the DisposeHandle (page 16) function.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

18 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

GetHandleSize
Returns the logical size of the relocatable block corresponding to a handle.

Size GetHandleSize (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Return Value
The logical size, in bytes, of the relocatable block whose handle is h. In case of error, the function return 0.

Discussion
Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

You should not call GetHandleSize at interrupt time because the heap might be in an inconsistent state.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
SoftVDigX

Declared In
MacMemory.h

GetPtrSize
Returns the logical size of the nonrelocatable block corresponding to a pointer.

Size GetPtrSize (
 Ptr p
);

Parameters
p

A pointer to a nonrelocatable block.

Return Value
The logical size, in bytes, of the nonrelocatable block pointed to by p. In case of error, the function returns
0.

Discussion
Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

Functions 19
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

HandAndHand
Concatenates two relocatable blocks.

OSErr HandAndHand (
 Handle hand1,
 Handle hand2
);

Parameters
hand1

A handle to the first relocatable block, whose contents do not change but are concatenated to the
end of the second relocatable block.

hand2
A handle to the second relocatable block, whose size the Memory Manager expands so that it can
concatenate the information from handl to the end of the contents of this block.

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Discussion
The HandAndHand function concatenates the information from the relocatable block specified by handl
onto the end of the relocatable block specified by hand2. The handl variable remains unchanged.

Because the HandAndHand function dereferences the handle handl, you must call the HLock function to
lock the block before calling HandAndHand. Afterward, you can call the HUnlock function to unlock it.
Alternatively, you can save the block’s original state by calling the HGetState function, lock the block by
calling HLock, and then restore the original settings by calling HSetState.

Because HandAndHand moves memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HandToHand
Copies all of the data from one relocatable block to a new relocatable block.

OSErr HandToHand (
 Handle *theHndl
);

Parameters
theHndl

A handle to the relocatable block whose data HandToHand will copy. On return, theHndl contains
a handle to a new relocatable block whose data duplicates the original.

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Discussion
The HandToHand function attempts to copy the information in the relocatable block to which theHndl is a
handle; if successful, HandToHand sets theHndl to a handle pointing to the new relocatable block.

20 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

If successful in creating a new relocatable block, the HandToHand function does not duplicate the properties
of the original block. The new block is unlocked, unpurgeable, and not a resource. Call HLock, HPurge, or
HSetRBit (or the combination of HGetState and HSetState) to adjust the properties of the new block.

To copy only part of a relocatable block into a new relocatable block, use the PtrToHand (page 32) function.
Before calling PtrToHand, lock and dereference the handle pointing to the relocatable block you want to
copy.

Because HandToHand replaces its parameter with the new handle, you should retain the original parameter
value somewhere else, otherwise you will not be able to access it. Here is an example:

Handle original, copy;
OSErr myErr;
...
copy = original;
 /*both handles access same block*/
myErr = HandToHand(copy);
 /*copy now points to copy of block*/

Because HandToHand allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HClrRBit
Clears the resource flag of a relocatable block.

void HClrRBit (
 Handle h
);

Parameters
h

A handle to a relocatable block. HClrRBit does nothing if the flag for the relocatable block pointed to
by h is already cleared.

Discussion
The Resource Manager uses this function extensively, but you probably will not need to use it.

To disassociate the data in a resource handle from the resource file, you should use the Resource Manager
function DetachResource instead of this function.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

Functions 21
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

HGetState
Returns a signed byte representing the current properties of a relocatable block.

SInt8 HGetState (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Return Value
A signed byte (char) containing the flags of the master pointer for the given handle. In case of error, the value
returned is meaningless.

Discussion
The HGetState function returns a signed byte (char) containing the flags of the master pointer for the given
handle. You can save this byte, change the state of any of the flags using the functions described in this
section, and then restore their original states by passing the byte to the HSetState function.

You can use bit-manipulation functions on the returned signed byte to determine the value of a given
attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable block, HGetState
returns the low-order byte of the result code as its function result. For example, if the handle h points to a
master pointer whose value is NULL, then the signed byte returned by HGetState will contain the value
–109.

You may also call the function MemError (page 27) to get the result code. See “Memory Manager Result
Codes” (page 47).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

HLock
Prevents a relocatable block from moving within its heap zone.

void HLock (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
If you plan to dereference a handle and then allocate, move, or purge memory (or call a function that does
so), then you should lock the handle before using the dereferenced handle.

22 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

If the block is already locked, HLock does nothing.

If you plan to lock a relocatable block for long periods of time, you can prevent fragmentation by ensuring
that the block is as low as possible in the heap zone. To do this, see the description of the ReserveMem (page
64) function.

If you plan to lock a relocatable block for short periods of time, you can prevent heap fragmentation by
moving the block to the top of the heap zone before locking. For more information, see the description of
the MoveHHi (page 60) function.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData
SoftVDigX

Declared In
MacMemory.h

HLockHi
Sets the lock bit on the block.

void HLockHi (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HLockHi function is an alternative to using the two functions MoveHHi (deprecated in Mac OS X) and
HLock. Because the MoveHHi function does not move memory in Mac OS X, there is no benefit to using this
function.

This function will not return a meaningful error code. If you call HLockHi on a locked handle, it will return
noErr (not memLockedErr) because it is not an error to call HLock on a locked handle.

Do not call HLockHi on blocks in the system heap. Do not call HLockHi from a desk accessory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HSetRBit
Sets the resource flag of a relocatable block.

Functions 23
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

void HSetRBit (
 Handle h
);

Parameters
h

A handle to a relocatable block. HSetRBit does nothing if the flag for the relocatable block pointed
to by h is already set.

Discussion
The Resource Manager uses this function extensively, but you probably will not need to use it.

When the resource flag is set, the Resource Manager identifies the associated relocatable block as belonging
to a resource. This can cause problems if that block wasn’t actually read from a resource.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HSetState
Restores the properties of a relocatable block.

void HSetState (
 Handle h,
 SInt8 flags
);

Parameters
h

A handle to a relocatable block.

flags
A signed byte (char) specifying the properties to which you want to set the relocatable block.

Discussion
You can use HSetState to restore properties of a block after a call to HGetState. See the description of the
HGetState function for a list of the currently used bits in the flags byte. Because additional bits of the flags
byte could become significant in future versions of system software, use HSetState only with a byte returned
by HGetState. If you need to set two or three properties of a relocatable block at once, it is better to use
the functions that set individual properties than to manipulate the bits returned by HGetState and then
call HSetState.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

24 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Declared In
MacMemory.h

HUnlock
Allows a relocatable block to move in its heap zone.

void HUnlock (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HUnlock function unlocks the relocatable block to which h is a handle, allowing the block to move within
its heap zone. If the block is already unlocked, HUnlock does nothing.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData
SoftVDigX

Declared In
MacMemory.h

IsHandleValid
Checks that a handle is valid.

Boolean IsHandleValid (
 Handle h
);

Parameters
h

The handle to check.

Return Value
Returns true if the specified handle is valid. If the handle is NULL or if the handle refers to memory which
was not properly allocated, IsHandleValid returns false. In Mac OS 8 and 9, IsHandleValid also returns
false if the given handle is empty. In Mac OS X, however, zero-length blocks are considered valid and
IsHandleValid returns true for an empty handle.

Availability
Available in Mac OS X v10.0 and later.

Functions 25
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Declared In
MacMemory.h

IsHeapValid
Always returns true in Mac OS X.

Boolean IsHeapValid (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

IsPointerValid
Checks that a pointer is valid.

Boolean IsPointerValid (
 Ptr p
);

Parameters
p

The pointer to check.

Return Value
Returns true if the specified pointer is valid. If the pointer is NULL or if the pointer points to memory which
was not properly allocated, IsPointerValid returns false. In Mac OS 8 and 9, IsPointerValid also
returns false if the given pointer points to a zero-length block in memory. In Mac OS X, however, zero-length
blocks are considered valid and IsPointerValid returns true.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

LMGetMemErr
Returns the result of the last Memory Manager function without clearing the value.

SInt16 LMGetMemErr (
 void
);

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

26 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

LMSetMemErr
Sets the value which will be returned by the MemError function.

void LMSetMemErr (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

MemError
Determines if an application’s last direct call to a Memory Manager function executed successfully.

OSErr MemError (
 void
);

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Discussion
For each thread, MemError yields the result code produced by the last Memory Manager function your
application called directly.

MemError is useful during application debugging. You might also use MemError as one part of a
memory-management scheme to identify instances in which the Memory Manager rejects overly large
memory requests by returning the error code memFullErr.

To view the result codes that MemError can produce, see “Memory Manager Result Codes” (page 47).

Do not rely on MemError as the only component of a memory-management scheme. For example, suppose
you call NewHandle or NewPtr and receive the result code noErr, indicating that the Memory Manager was
able to allocate sufficient memory. In this case, you have no guarantee that the allocation did not deplete
your application’s memory reserves to levels so low that simple operations might cause your application to
crash. Instead of relying on MemError, check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations.

Version Notes
Starting with Mac OS X v10.3, the MemError function provides error codes on a per-thread basis.

Availability
Available in Mac OS X v10.0 and later.

Functions 27
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Related Sample Code
QTCarbonShell
SoftVDigX

Declared In
MacMemory.h

NewEmptyHandle
Initializes a new handle without allocating any memory for it to control.

Handle NewEmptyHandle (
 void
);

Return Value
A handle with its master pointer set to NULL.

Discussion
The Resource Manager uses this function extensively, but you probably will not need to use it.

When you want to allocate memory for the empty handle, use the ReallocateHandle (page 33) function.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

NewHandle
Allocates a new relocatable memory block of a specified size in the current heap zone.

Handle NewHandle (
 Size byteCount
);

Parameters
byteCount

The requested size, in bytes, of the relocatable block. Maximum size is 2 GB, the maximum size for
variables of type Size.

Return Value
A handle to the new block. If NewHandle cannot allocate a block of the requested size, it returns NULL.

Discussion
The NewHandle function pursues all available avenues to create a block of the requested size, including
compacting the heap zone, increasing its size, and purging blocks from it. If all of these techniques fail and
the heap zone has a grow-zone function installed, NewHandle calls the function. Then NewHandle

28 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

tries again to free the necessary amount of memory, once more compacting and purging the heap zone if
necessary. If NewHandle still cannot allocate memory, NewHandle calls the grow-zone function again, unless
that function had returned 0, in which case NewHandle gives up and returns NULL.

If the NewHandle function succeeds in creating the requested block, this new block is unlocked and
unpurgeable.

If you allocate a relocatable block that you plan to lock for long periods of time, you can prevent heap
fragmentation by allocating the block as low as possible in the heap zone. To do this, see the description of
the function ReserveMem (page 64).

If you plan to lock a relocatable block for short periods of time, you might want to move it to the top of the
heap zone to prevent heap fragmentation. For more information, see the description of the function
MoveHHi (page 60).

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because NewHandle allocates memory, you should not call it at interrupt time.

Do not try to manufacture your own handles without this function by simply assigning the address of a
variable of type Ptr to a variable of type Handle. The resulting “fake handle” would not reference a relocatable
block and could cause a system crash.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Gamma Filter for FxPlug and AE
QTCarbonShell
QTMetaData
WhackedTV

Declared In
MacMemory.h

NewHandleClear
Allocates a relocatable block of memory of a specified size with all its bytes set to 0.

Handle NewHandleClear (
 Size byteCount
);

Parameters
byteCount

The requested size (in bytes) of the relocatable block. The NewHandleClear function sets each of
these bytes to 0.

Return Value
A handle to the new block. If NewHandleClear cannot allocate a block of the requested size, it returns NULL.

Functions 29
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Discussion
The NewHandleClear function works like the NewHandle function, but sets all bytes in the new block to 0
instead of leaving the contents of the block undefined.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because NewHandleClear allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
LiveVideoMixer2
SoftVDigX

Declared In
MacMemory.h

NewPtr
Allocates a nonrelocatable block of memory of a specified size.

Ptr NewPtr (
 Size byteCount
);

Parameters
byteCount

The requested size (in bytes) of the nonrelocatable block. In Mac OS X, if you pass a value of zero, this
function returns NULL, and MemError is set to paramErr. In Mac OS 9 and earlier, if you pass a value
of zero, this function returns a valid zero length pointer.

Return Value
A pointer to the new block. If NewPtr fails to allocate a block of the requested size, it returns NULL.

Discussion
The NewPtr function attempts to reserve space as low in the heap zone as possible for the new block. If it
is able to reserve the requested amount of space, NewPtr allocates the nonrelocatable block in the gap
ReserveMem creates. Otherwise, NewPtr returns NULL and generates a memFullErr error.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because NewPtr allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

30 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

NewPtrClear
Allocates a nonrelocatable block of memory of a specified size with all its bytes set to 0.

Ptr NewPtrClear (
 Size byteCount
);

Parameters
byteCount

The requested size (in bytes) of the nonrelocatable block.

Return Value
A pointer to the new block. If NewPtrClear fails to allocate a block of the requested size, it returns NULL.

Discussion
The NewPtrClear function works much as the NewPtr function does, but sets all bytes in the new block to
0 instead of leaving the contents of the block undefined.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because NewPtrClear allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch
SoftVDigX

Declared In
MacMemory.h

PtrAndHand
Concatenates part or all of a memory block to the end of a relocatable block.

OSErr PtrAndHand (
 const void *ptr1,
 Handle hand2,
 long size
);

Parameters
ptr1

A pointer to the beginning of the data that the Memory Manager is to concatenate onto the end of
the relocatable block.

hand2
A handle to the relocatable block, whose size the Memory Manager expands so that it can concatenate
the information from ptr1 onto the end of this block.

size
The number of bytes of the block referenced by ptr1 to copy.

Functions 31
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Discussion
The PtrAndHand function takes the number of bytes specified by the size parameter, beginning at the
location specified by ptr1, and concatenates them onto the end of the relocatable block to which hand2 is
a handle. The contents of the source block remain unchanged.

Because PtrAndHand allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
MacMemory.h

PtrToHand
Copies data referenced by a pointer to a new relocatable block.

OSErr PtrToHand (
 const void *srcPtr,
 Handle *dstHndl,
 long size
);

Parameters
srcPtr

The address of the first byte to copy.

dstHndl
A handle for which you have not yet allocated any memory. The PtrToHand function allocates memory
for the handle and copies the specified number of bytes beginning at srcPtr into it. The dstHndl
parameter is an output parameter that will hold the result. Its value on entry is ignored. If no error
occurs, on exit it points to an unlocked, non-purgeable Handle of the requested size.

size
The number of bytes to copy.

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Discussion
If you dereference and lock a handle, the PtrToHand function can copy its data to a new handle. However,
for copying data from one handle to another, the HandToHand (page 20) function is more efficient.

Because PtrToHand allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

32 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

PtrToXHand
Copies data referenced by a pointer to an existing relocatable block.

OSErr PtrToXHand (
 const void *srcPtr,
 Handle dstHndl,
 long size
);

Parameters
srcPtr

The address of the first byte to copy.

dstHndl
A handle to an existing relocatable block.

size
The number of bytes to copy.

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Discussion
The PtrToXHand function copies the specified number of bytes from the location specified by srcPtr to
the handle specified by dstHndl.

Because PtrToXHand affects memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

ReallocateHandle
Allocates a new relocatable block of a specified size and sets a handle’s master pointer to point to the new
block.

void ReallocateHandle (
 Handle h,
 Size byteCount
);

Parameters
h

A handle to a relocatable block.

byteCount
The desired new logical size (in bytes) of the relocatable block. The new block is unlocked and
unpurgeable.

Discussion
Usually you use ReallocateHandle to reallocate space for a block that you have emptied or the Memory
Manager has purged. If the handle references an existing block, ReallocateHandle releases that block
before creating a new one.

Functions 33
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

If many handles reference a single purged, relocatable block, you need to call ReallocateHandle on just
one of them.

To reallocate space for a resource that has been purged, you should call LoadResource, not
ReallocateHandle. To resize relocatable blocks, you should call the SetHandleSize (page 35) function.

Currently in Mac OS 8 and 9, the ReallocateHandle function releases any existing relocatable block
referenced by the handle h before allocating a new one. This behavior means that if an error occurs when
calling ReallocateHandle, the handle h will be set to NULL. This behavior does not occur in the Mac OS X
implementation.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because ReallocateHandle might purge and allocate memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

RecoverHandle
Returns a handle to a relocatable block pointed to by a specified pointer.

Handle RecoverHandle (
 Ptr p
);

Parameters
p

The master pointer to a relocatable block.

Return Value
A handle to a relocatable block point to by p. If p does not point to a valid block, the results of RecoverHandle
are undefined.

Discussion
The Memory Manager does not allow you to change relocatable blocks into nonrelocatable blocks, or
vice-versa. However, if you no longer have access to a handle but still have access to its master pointer p,
you can use the RecoverHandle function to recreate a handle to the relocatable block referenced by p.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Even though RecoverHandle does not move or purge memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

34 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

SetHandleSize
Changes the logical size of the relocatable block corresponding to the specified handle.

void SetHandleSize (
 Handle h,
 Size newSize
);

Parameters
h

A handle to a relocatable block.

newSize
The desired new logical size, in bytes, of the relocatable block.

Discussion
SetHandleSize tries to change the size of the allocation to newSize. If there is not enough room to enlarge
the memory allocation pointed to by h, SetHandleSize creates a new allocation, copies as much of the old
data pointed to by h as will fit to the new allocation, and frees the old allocation. SetHandleSize might
need to move the relocatable block to obtain enough space for the resized block. Thus, for best results you
should unlock a block before resizing it.

An attempt to increase the size of a locked block might fail, because of blocks above and below it that are
either nonrelocatable or locked. You should be prepared for this possibility.

Instead of using the SetHandleSize function to set the size of a handle to 0, you can use the
EmptyHandle (page 18) function.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because SetHandleSize allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

SetPtrSize
Changes the logical size of the nonrelocatable block corresponding to a pointer.

void SetPtrSize (
 Ptr p,
 Size newSize
);

Parameters
p

A pointer to a nonrelocatable block.

Functions 35
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

newSize
The desired new logical size, in bytes, of the nonrelocatable block.

Discussion
An attempt to increase the size of a nonrelocatable block might fail because of a block above it that is either
nonrelocatable or locked. You should be prepared for this possibility.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because SetPtrSize allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

TempNewHandle
Allocates a new relocatable block of temporary memory.

Handle TempNewHandle (
 Size logicalSize,
 OSErr *resultCode
);

Parameters
logicalSize

The requested logical size, in bytes, of the new temporary block of memory.

resultCode
On return, the result code from the function call. See “Memory Manager Result Codes” (page 47).

Return Value
A handle to a block of size logicalSize. If it cannot allocate a block of that size, the function returns NULL.

Discussion
Before calling TempNewHandle, you should call TempFreeMem or TempMaxMem to make sure that there is
enough free space to satisfy the request.

Because TempNewHandle might allocate memory, you should not call it at interrupt time.

Carbon Porting Notes

Temporary memory allocations will actually come from the applications’s address space in Mac OS X. However,
Carbon applications running under Mac OS 8.x will be able to get true temporary memory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

36 Functions
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Callbacks

All Memory Manager callbacks are deprecated in Mac OS X. They are non-functional.

GrowZoneProcPtr
Deprecated.

typedef long (*GrowZoneProcPtr) (
 Size cbNeeded
);

If you name your function MyGrowZoneProc, you would declare it like this:

long MyGrowZoneProc (
 Size cbNeeded
);

Parameters
cbNeeded

The physical size, in bytes, of the needed block, including the block header. The grow-zone function
should attempt to create a free block of at least this size.

Return Value
The number of bytes of memory the function has freed.

Discussion
User-defined function that creates free space in the heap.

Whenever the Memory Manager has exhausted all available means of creating space within your application
heap—including purging, compacting, and (if possible) expanding the heap—it calls your application-defined
grow-zone function. The grow-zone function can do whatever is necessary to create free space in the heap.
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an emergency memory
reserve maintained by your application.

The grow-zone function should return a nonzero value equal to the number of bytes of memory it has freed,
or zero if it is unable to free any. When the function returns a nonzero value, the Memory Manager once
again purges and compacts the heap zone and tries to reallocate memory. If there is still insufficient memory,
the Memory Manager calls the grow-zone function again (but only if the function returned a nonzero value
the previous time it was called). This mechanism allows your grow-zone function to release just a little bit of
memory at a time. If the amount it releases at any time is not enough, the Memory Manager calls it again
and gives it the opportunity to take more drastic measures.

The Memory Manager might designate a particular relocatable block in the heap as protected; your grow-zone
function should not move or purge that block. You can determine which block, if any, the Memory Manager
has protected by calling the GZSaveHnd function in your grow-zone function.

Remember that the Memory Manager calls a grow-zone function while attempting to allocate memory. As
a result, your grow-zone function should not allocate memory itself or perform any other actions that might
indirectly cause memory allocation (such as calling functions in unloaded code segments or displaying dialog
boxes).

Callbacks 37
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

You install a grow-zone function by passing its address to the InitZone function when you create a new
heap zone or by calling the SetGrowZone function at any other time.

Your grow-zone function might be called at a time when the system is attempting to allocate memory and
the value in the A5 register is not correct. If your function accesses your application’s A5 world or makes any
trap calls, you need to set up and later restore the A5 register by calling SetCurrentA5 and SetA5. See the
chapter “Memory Management Utilities” in this book for a description of these two functions.

Because of the optimizations performed by some compilers, the actual work of the grow-zone function and
the setting and restoring of the A5 register might have to be placed in separate functions.

See the chapter “Introduction to Memory Management” for a definition of a sample grow-zone function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeProcPtr
Deprecated.

typedef void (*PurgeProcPtr) (
 Handle blockToPurge
);

If you name your function MyPurgeProc, you would declare it like this:

void MyPurgeProc (
 Handle blockToPurge
);

Parameters
blockToPurge

A handle to the block that is about to be purged.

Discussion
User-defined function called when the Memory Manager needs to purge a block or allocate memory.

Whenever the Memory Manager needs to purge a block from the application heap, it first calls any
application-defined purge-warning function that you have installed. The purge-warning function can, if
necessary, save the contents of that block or otherwise respond to the warning.

Your purge-warning function is called during a memory-allocation request. As a result, you should not call
any functions that might cause memory to be moved or purged. In particular, if you save the data of the
block in a file, the file should already be open when your purge-warning function is called, and you should
write the data synchronously.

You should not dispose of or change the purgeable status of the block whose handle is passed to your
function.

38 Callbacks
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

To install a purge-warning function, you need to assign its address to the purgeProc field of the associated
zone header.

Note that if you call the Resource Manager function SetResPurge with the parameter TRUE, any existing
purge-warning function is replaced by a purge-warning function installed by the Resource Manager. You
can execute both warning functions by calling SetResPurge, saving the existing value of the purgeProc
field of the zone header, and then reinstalling your purge-warning function. Your purge-warning function
should call the Resource Manager’s purge-warning function internally.

Your purge-warning function might be called at a time when the system is attempting to allocate memory
and the value in the A5 register is not correct. If your function accesses your application’s A5 world or makes
any trap calls, you need to set up and later restore the A5 register by calling SetCurrentA5 and SetA5.

Because of the optimizations performed by some compilers, the actual work of the purge-warning function
and the setting and restoring of the A5 register might have to be placed in separate functions.

The Memory Manager calls your purge-warning function for every handle that is about to be purged (not
necessarily for every purgeable handle in your heap, however). Your function should be able to determine
quickly whether the handle that the Memory Manager is about to purge points to data you need to save or
otherwise process.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

UserFnProcPtr
Deprecated.

typedef void (*UserFnProcPtr) (
 void *parameter
);

If you name your function MyUserFnProc, you would declare it like this:

void MyUserFnProc (
 void * parameter
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Callbacks 39
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Data Types

All Memory Manager data types are deprecated in Mac OS X. They are not used.

BackingFileID
Deprecated.

typedef struct * BackingFileID;

Special Considerations

FileViewAccess
Deprecated.

typedef UInt32 FileViewAccess;
enum {
 kFileViewAccessReadBit = 0,
 kFileViewAccessWriteBit = 1,
 kFileViewAccessExecuteBit = 2,
 kFileViewAccessReadMask = 1,
 kFileViewAccessWriteMask = 2,
 kFileViewAccessExecuteMask = 4,
 kFileViewAccessExcluded = 0,
 kFileViewAccessReadOnly = 5,
 kFileViewAccessReadWrite = 7
};

Special Considerations

FileViewID
Deprecated.

typedef struct * FileViewID;

Special Considerations

FileViewInformation
Deprecated.

40 Data Types
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

struct FileViewInformation {
 ProcessSerialNumber owningProcess;
 LogicalAddress viewBase;
 ByteCount viewLength;
 BackingFileID backingFile;
 UInt64 backingBase;
 FileViewAccess access;
 ByteCount guardLength;
 FileViewOptions options;
};

FileViewOptions
Deprecated.

typedef OptionBits FileViewOptions;

GrowZoneUPP
Deprecated.

typedef GrowZoneProcPtr GrowZoneUPP;

Discussion
For more information, see the description of the GrowZoneUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

LogicalToPhysicalTable
Deprecated.

struct LogicalToPhysicalTable {
 MemoryBlock logical;
 MemoryBlock physical[8];
};
typedef struct LogicalToPhysicalTable LogicalToPhysicalTable;

Fields
logical

A logical block of memory whose corresponding physical blocks are to be determined.

physical
A physical translation table that identifies the blocks of physical memory corresponding to the logical
block identified in the logical field.

Discussion
The GetPhysical function uses a translation table to hold information about a logical address range and
its corresponding physical addresses. A translation table is defined by the data type LogicalToPhysicalTable.

Data Types 41
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

Special Considerations
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

MappedFileAttributes
Deprecated.

typedef UInt32 MappedFileAttributes;
enum {
 kIsMappedScratchFile = 1
};

MappedFileInformation
Deprecated.

struct MappedFileInformation {
 ProcessSerialNumber owningProcess;
 FSRef *ref;
 HFSUniStr255 *forkName;
 MappingPrivileges privileges;
 UInt64 currentSize;
 MappedFileAttributes attributes;
};

MappingPrivileges
Deprecated.

typedef UInt32 MappingPrivileges;
enum {
 kInvalidMappedPrivileges = 0,
 kCanReadMappedFile = 1,
 kCanWriteMappedFile = 2,
 kNoProcessMappedFile = -2147483648,
 kValidMappingPrivilegesMask = -2147483645
};

Special Considerations

MemoryBlock
Deprecated.

42 Data Types
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

struct MemoryBlock {
 void * address;
 unsigned long count;
};
typedef struct MemoryBlock MemoryBlock;

Fields
address

A pointer to the beginning of a block of memory.

count
The number of bytes in the block of memory.

Discussion
The GetPhysical function uses a structure of type MemoryBlock to hold information about a block of
memory, either logical or physical.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeUPP
Deprecated.

typedef PurgeProcPtr PurgeUPP;

Discussion
For more information, see the description of the PurgeUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

StatusRegisterContents
Deprecated.

typedef StatusRegisterContents;

Special Considerations
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Data Types 43
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

UserFnUPP
Deprecated.

typedef UserFnProcPtr UserFnUPP;

Discussion
For more information, see the description of the UserFnUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

VolumeVirtualMemoryInfo
Deprecated.

struct VolumeVirtualMemoryInfo {
 PBVersion version;
 SInt16 volumeRefNum;
 Boolean inUse;
 UInt8 _fill;
 UInt32 vmOptions;
};
typedef struct VolumeVirtualMemoryInfo VolumeVirtualMemoryInfo;
typedef VolumeVirtualMemoryInfo * VolumeVirtualMemoryInfoPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Zone
Deprecated.

44 Data Types
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

struct Zone {
 Ptr bkLim;
 Ptr purgePtr;
 Ptr hFstFree;
 long zcbFree;
 GrowZoneUPP gzProc;
 short moreMast;
 short flags;
 short cntRel;
 short maxRel;
 short cntNRel;
 SInt8 heapType;
 SInt8 unused;
 short cntEmpty;
 short cntHandles;
 long minCBFree;
 PurgeUPP purgeProc;
 Ptr sparePtr;
 Ptr allocPtr;
 short heapData;
};
typedef struct Zone Zone;
typedef Zone * THz;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Constants

All Memory Manager constants are deprecated in Mac OS X. They are not used.

Default Physical Entry Count Constant
Deprecated.

enum {
 defaultPhysicalEntryCount = 8
};

Discussion
The defaultPhysicalEntryCount constant represents the default number of physical blocks in a table.

k32BitHeap
Deprecated.

Constants 45
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

enum {
 k32BitHeap = 1,
 kNewStyleHeap = 2,
 kNewDebugHeap = 4
};

kFileViewInformationVersion1
Deprecated.

enum {
 kFileViewInformationVersion1 = 1
};

kHandleIsResourceBit
Deprecated.

enum {
 kHandleIsResourceBit = 5,
 kHandlePurgeableBit = 6,
 kHandleLockedBit = 7
};

kHandleIsResourceMask
Deprecated.

enum {
 kHandleIsResourceMask = 0x20,
 kHandlePurgeableMask = 0x40,
 kHandleLockedMask = 0x80
};

kMapEntireFork
Deprecated.

enum {
 kMapEntireFork = -1
};

Constants
kMapEntireFork

kMappedFileInformationVersion1
Deprecated.

46 Constants
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

enum {
 kMappedFileInformationVersion1 = 1
};

kPageInMemory
Deprecated.

typedef short PageState;
enum {
 kPageInMemory = 0,
 kPageOnDisk = 1,
 kNotPaged = 2
};

Discussion
The GetPageState function obtains the state value of a page of logical memory. The PageState data type
defines constants that represent these possible state values.

Debuggers need a way to display the contents of memory without paging or to display the contents of pages
currently on disk. The GetPageState function obtains a constant from the PageState data type to specify
the state of a page containing a virtual address. A debugger can use this information to determine whether
certain memory addresses should be referenced. Note that ROM and I/O space are not pageable and therefore
are considered not paged.

kVolumeVirtualMemoryInfoVersion1
Deprecated.

enum {
 kVolumeVirtualMemoryInfoVersion1 = 1
};

maxSize
Deprecated.

enum {
 maxSize = 0x7FFFFFF0
};

Result Codes

The most common result codes returned by the Memory Manager are listed below.

DescriptionValueResult Code

A menu was purged.84menuPrgErr

Available in Mac OS X v10.0 and later.

Result Codes 47
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

DescriptionValueResult Code

A heap has been corrupted.33negZcbFreeErr

Available in Mac OS X v10.0 and later.

Operation on a read-only zone. This result code is not relevant in Mac OS X.-99memROZErr

Available in Mac OS X v10.0 and later.

Not enough memory in heap.-108memFullErr

Available in Mac OS X v10.0 and later.

Handle argument is NULL.-109nilHandleErr

Available in Mac OS X v10.0 and later.

Address is odd or out of range.-110memAdrErr

Available in Mac OS X v10.0 and later.

Attempt to operate on a free block.-111memWZErr

Available in Mac OS X v10.0 and later.

Attempt to purge a locked or unpurgeable block.-112memPurErr

Available in Mac OS X v10.0 and later.

Address in zone check failed.-113memAZErr

Available in Mac OS X v10.0 and later.

Pointer check failed.-114memPCErr

Available in Mac OS X v10.0 and later.

Block check failed.-115memBCErr

Available in Mac OS X v10.0 and later.

Size check failed.-116memSCErr

Available in Mac OS X v10.0 and later.

Block is locked.-117memLockedErr

Available in Mac OS X v10.0 and later.

48 Result Codes
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Memory Manager Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

CheckAllHeaps
Checks all known heaps for validity. (Deprecated in Mac OS X v10.4. There is no replacement function; an
application has access only to its own heap in Mac OS X.)

Boolean CheckAllHeaps (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

CompactMem
Compacts the heap by moving relocatable blocks as needed. (Deprecated in Mac OS X v10.4. There is no
replacement function; memory compaction is never needed and never performed in Mac OS X.)

Size CompactMem (
 Size cbNeeded
);

Parameters
cbNeeded

The size, in bytes, of the block for which CompactMem should attempt to make room.

Return Value
The size, in bytes, of the largest contiguous free block available after compacting the heap zone. CompactMem
does not actually allocate that block.

Discussion
The Memory Manager automatically compacts the heap when a memory request fails. However, you can use
the CompactMem function to compact the current heap zone manually.

Deprecated in Mac OS X v10.4 49
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

CompactMem compacts the current heap zone not by purging blocks, but rather by moving unlocked,
relocatable blocks down until they encounter nonrelocatable blocks or locked, relocatable blocks. CompactMem
continues compacting until it either finds a contiguous block of at least cbNeeded free bytes or compacts
the entire zone.

To compact the entire heap zone, call CompactMem(maxSize).

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because CompactMem moves memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

DisposeGrowZoneUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps never grow in Mac OS X, so the
grow-zone function is never called.)

void DisposeGrowZoneUPP (
 GrowZoneUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

DisposePurgeUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps are never purged in Mac OS X, so
the purge function is never called.)

void DisposePurgeUPP (
 PurgeUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

50 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

DisposeUserFnUPP
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void DisposeUserFnUPP (
 UserFnUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

FlushMemory
Makes a portion of the address space clean. (Deprecated in Mac OS X v10.4. There is no replacement; this
function does nothing in Mac OS X.)

OSErr FlushMemory (
 void *address,
 unsigned long count
);

Return Value
This function always returns a value of noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

GetGrowZone
Returns the current heap zone’s grow-zone function. (Deprecated in Mac OS X v10.4. There is no replacement
function; heaps never grow in Mac OS X, so the grow-zone function is never used.)

Deprecated in Mac OS X v10.4 51
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

GrowZoneUPP GetGrowZone (
 void
);

Return Value
See the description of the GrowZoneUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

GZSaveHnd
Returns a relocatable block to be protected during grow-zone operations. (Deprecated in Mac OS X v10.4.
There is no replacement; this function does nothing in Mac OS X.)

Handle GZSaveHnd (
 void
);

Return Value
A handle to a block of memory that the Memory Manager reserves during grow-zone operations. Your
grow-zone function must not move, purge, or delete this block. This function returns NULL if there is no such
block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

HNoPurge
Marks a relocatable block as unpurgeable. (Deprecated in Mac OS X v10.4. There is no replacement function;
heaps are never purged in Mac OS X.)

void HNoPurge (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HNoPurge function marks the relocatable block, to which h is a handle, as unpurgeable. If the block is
already unpurgeable, HNoPurge does nothing.

52 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

The HNoPurge function does not reallocate memory for a handle if it has already been purged.

If you want to reallocate memory for a relocatable block that has already been purged, you can use the
ReallocateHandle (page 33) function.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

HoldMemory
Makes a portion of the address space resident in physical memory and ineligible for paging. (Deprecated in
Mac OS X v10.4. There is no replacement; this function does nothing in Mac OS X.)

OSErr HoldMemory (
 void *address,
 unsigned long count
);

Parameters
address

A pointer indicating the starting address of the range of memory to be held in RAM.

count
The size, in bytes, of the range of memory to be held in RAM.

Return Value
This function always returns a value of noErr.

Discussion
If the starting address you supply to the HoldMemory function is not on a page boundary, then HoldMemory
rounds down to the nearest page boundary. Similarly, if the specified range does not end on a page boundary,
HoldMemory rounds up the value you pass in the count parameter so that the entire range of memory is
held.

Even though HoldMemory does not move or purge memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

Deprecated in Mac OS X v10.4 53
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

HPurge
Marks a relocatable block as purgeable. (Deprecated in Mac OS X v10.4. There is no replacement function;
heaps are never purged in Mac OS X.)

void HPurge (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HPurge function marks the relocatable block, to which h is a handle, as purgeable. If the block is already
purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone containing the block to
satisfy a memory request. A direct call to the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to the block are not
empty before you access the block. If they are empty, you must reallocate space for the block and recopy
the block’s data from another source, such as a resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does mark it as purgeable.
If you later call HUnlock on h, the block is subject to purging.

If the Memory Manager has purged a block, you can reallocate space for it by using the
ReallocateHandle (page 33) function.

You can immediately free the space taken by a handle without disposing of it by calling the function
EmptyHandle (page 18). This function does not require that the block be purgeable.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

InvokeGrowZoneUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps never grow in Mac OS X, so the
grow-zone function is never called.)

54 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

long InvokeGrowZoneUPP (
 Size cbNeeded,
 GrowZoneUPP userUPP
);

Parameters
cbNeeded
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

InvokePurgeUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps are never purged in Mac OS X, so
the purge function is never called.)

void InvokePurgeUPP (
 Handle blockToPurge,
 PurgeUPP userUPP
);

Parameters
blockToPurge
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

InvokeUserFnUPP
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Deprecated in Mac OS X v10.4 55
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

void InvokeUserFnUPP (
 void *parameter,
 UserFnUPP userUPP
);

Parameters
parameter
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

LMGetApplZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

THz LMGetApplZone (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

LMGetSysZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

THz LMGetSysZone (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

56 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

LMSetApplZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetApplZone (
 THz value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

LMSetSysZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetSysZone (
 THz value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

MakeMemoryNonResident
Makes pages in the specified range immediately available for reuse. (Deprecated in Mac OS X v10.4. There
is no replacement; this function does nothing in Mac OS X.)

OSErr MakeMemoryNonResident (
 void *address,
 unsigned long count
);

Return Value
This function always returns a value of noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 57
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

Declared In
MacMemory.h

MakeMemoryResident
Makes a portion of the address space resident in physical memory. (Deprecated in Mac OS X v10.4. There is
no replacement; this function does nothing in Mac OS X.)

OSErr MakeMemoryResident (
 void *address,
 unsigned long count
);

Return Value
A result code. See “Memory Manager Result Codes” (page 47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

MoreMasterPointers
Allocates a specified number of master pointers in the current heap zone. (Deprecated in Mac OS X v10.4.
There is no replacement function; master pointers do not need to be pre-allocated in Mac OS X.)

void MoreMasterPointers (
 UInt32 inCount
);

Parameters
inCount

The number of master pointers you want to allocate in a single nonrelocatable block.

Carbon Porting Notes

Carbon applications should use this function instead of MoreMasters to allocate a nonrelocatable block of
master pointers in the current heap zone.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

58 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

MoreMasters
Allocates a block of master pointers in the current heap zone. (Deprecated in Mac OS X v10.4. There is no
replacement function; master pointers do not need to be pre-allocated in Mac OS X.)

void MoreMasters (
 void
);

Discussion
In the application heap, a block of master pointers consists of 64 master pointers, and in the system heap, a
block consists of 32 master pointers. (These values are likely to increase in future versions of system software.)
When you initialize additional heap zones, you can specify the number of master pointers you want to have
in a block of master pointers.

The Memory Manager automatically calls the MoreMasters function once for every new heap zone, including
the application heap zone.

Call MoreMasters several times at the beginning of your program to prevent the Memory Manager from
running out of master pointers in the middle of application execution. If it does run out, it allocates more,
possibly causing heap fragmentation.

You should call MoreMasters at the beginning of your program enough times to ensure that the Memory
Manager never needs to call it for you. For example, if your application never allocates more than 300
relocatable blocks in its heap zone, then five calls to the MoreMasters should be enough. It’s better to call
MoreMasters too many times than too few. For instance, if your application usually allocates about 100
relocatable blocks but might allocate 1000 in a particularly busy session, call MoreMasters enough times
to accommodate the largest amount.

If you initialize a new zone, you can specify the number of master pointers that a master pointer block should
contain.

Call the MemError (page 27) function to get the result code. See “Memory Manager Result Codes” (page
47).

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main code segment of your
application or in a segment that the main segment never unloads.

Carbon Porting Notes

You should instead use MoreMasterPointers (page 58).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
MacMemory.h

Deprecated in Mac OS X v10.4 59
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

MoveHHi
Moves a relocatable block as high in memory as possible. (Deprecated in Mac OS X v10.4. There is no
replacement function; there is no benefit to moving handles high in memory in Mac OS X.)

void MoveHHi (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
This function moves a relocatable block as high in memory as possible to help prevent heap fragmentation.
The MoveHHi function attempts to move the relocatable block referenced by the handle h upward until it
reaches a nonrelocatable block, a locked relocatable block, or the top of the heap.

If you plan to lock a relocatable block for a short period of time, use the MoveHHi function, which moves the
block to the top of the heap and thus helps prevent heap fragmentation.

If you call MoveHHi to move a handle to a resource that has its resChanged bit set, the Resource Manager
updates the resource by using the WriteResource function to write the contents of the block to disk. If you
want to avoid this behavior, call the Resource Manager function SetResPurge(FALSE) before you call
MoveHHi, and then call SetResPurge(TRUE) to restore the default setting.

By using the MoveHHi function on relocatable blocks you plan to allocate for short periods of time, you help
prevent islands of immovable memory from accumulating in (and thus fragmenting) the heap.

Do not use the MoveHHi function to move blocks you plan to lock for long periods of time. The MoveHHi
function moves such blocks to the top of the heap, perhaps preventing other blocks already at the top of
the heap from moving down once they are unlocked. Instead, use the ReserveMem function before allocating
such blocks, thus keeping them in the bottom partition of the heap, where they do not prevent relocatable
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi each time slows down
your application, you might consider leaving the block always locked and calling the ReserveMem function
before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the Memory Manager to
move it back to the middle partition as soon as it can. (The MoveHHi function cannot move locked blocks;
be sure to lock blocks after, not before, calling MoveHHi.)

Using the MoveHHi function without taking other precautionary measures to prevent heap fragmentation
is useless, because even one small nonrelocatable or locked relocatable block in the middle of the heap
might prevent MoveHHi from moving blocks to the top of the heap.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

60 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

Declared In
MacMemory.h

NewGrowZoneUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps never grow in Mac OS X, so the
grow-zone function is never called.)

GrowZoneUPP NewGrowZoneUPP (
 GrowZoneProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the GrowZoneUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

NewPurgeUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps are never purged in Mac OS X, so
the purge function is never called.)

PurgeUPP NewPurgeUPP (
 PurgeProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the PurgeUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

NewUserFnUPP
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Deprecated in Mac OS X v10.4 61
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

UserFnUPP NewUserFnUPP (
 UserFnProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the UserFnUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeMem
Purges the current heap zone until the specified number of bytes are available. (Deprecated in Mac OS X
v10.4. There is no replacement; heaps are never purged in Mac OS X, so this function does nothing.)

void PurgeMem (
 Size cbNeeded
);

Parameters
cbNeeded

The size, in bytes, of the block for which PurgeMem should attempt to make room.

Discussion
The Memory Manager purges the heap automatically when a memory request fails. However, you can use
PurgeMem to purge the current heap zone manually.

The PurgeMem function sequentially purges blocks from the current heap zone until it either allocates a
contiguous block of the specified size or purges the entire zone. If PurgeMem purges the entire zone without
creating a contiguous block of the specified size, PurgeMem generates the result code memFullErr.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

The PurgeMem function purges only relocatable, unlocked, purgeable blocks. The function does not actually
attempt to allocate the memory.

To purge the entire heap zone, call PurgeMem(maxSize).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

62 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

PurgeSpace
Determines the total amount of free memory and the size of the largest allocatable block in the current heap
zone if it were purged. (Deprecated in Mac OS X v10.4. There is no replacement; heaps are never purged in
Mac OS X.)

void PurgeSpace (
 long *total,
 long *contig
);

Parameters
total

On return, the total amount of free memory, in bytes, in the current heap zone if it were purged. This
amount includes space that is already free.

contig
On return, the size of the largest contiguous block of free memory in the current heap zone if it were
purged.

Discussion
The PurgeSpace function does not actually purge the current heap zone.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeSpaceContiguous
(Deprecated in Mac OS X v10.4. There is no replacement; heaps are never purged in Mac OS X.)

long PurgeSpaceContiguous (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeSpaceTotal
(Deprecated in Mac OS X v10.4. There is no replacement; heaps are never purged in Mac OS X.)

Deprecated in Mac OS X v10.4 63
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

long PurgeSpaceTotal (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

ReleaseMemoryData
Releases the data of a portion of the address space. (Deprecated in Mac OS X v10.4. There is no replacement;
this function does nothing in Mac OS X.)

OSErr ReleaseMemoryData (
 void *address,
 unsigned long count
);

Return Value
This function always returns a value of noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

ReserveMem
Reserves space for a block of memory as close to the bottom of the current heap zone as possible. (Deprecated
in Mac OS X v10.4. There is no replacement; this function does nothing in Mac OS X.)

void ReserveMem (
 Size cbNeeded
);

Parameters
cbNeeded

The number of bytes to reserve near the bottom of the heap.

Discussion
The ReserveMem function attempts to create free space for the specified number of contiguous logical bytes
at the lowest possible position in the current heap zone. It pursues every available means of placing the
block as close as possible to the bottom of the zone, including moving other relocatable blocks upward,
expanding the zone (if possible), and purging blocks from it.

64 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

Use the ReserveMem function when allocating a relocatable block that you intend to lock for long periods
of time. This helps prevent heap fragmentation because it reserves space for the block as close to the bottom
of the heap as possible. Consistent use of ReserveMem for this purpose ensures that all locked, relocatable
blocks and nonrelocatable blocks are together at the bottom of the heap zone and thus do not prevent
unlocked relocatable blocks from moving about the zone.

Because ReserveMem does not actually allocate the block, you must combine calls to ReserveMemwith calls
to the NewHandle function.

Do not use the ReserveMem function for a relocatable block you intend to lock for only a short period of
time. If you do so and then allocate a nonrelocatable block above it, the relocatable block becomes trapped
under the nonrelocatable block when you unlock that relocatable block.

It isn’t necessary to call ReserveMem to reserve space for a nonrelocatable block, because the NewPtr function
calls it automatically.

Also, you do not need to call ReserveMem to reserve memory before you load a locked resource into memory,
because the Resource Manager calls ReserveMem automatically.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Because the ReserveMem function could move and purge memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

SetGrowZone
Specifies the current heap zone’s grow-zone function. (Deprecated in Mac OS X v10.4. There is no replacement
function; heaps never grow in Mac OS X, so the grow-zone function is never called.)

void SetGrowZone (
 GrowZoneUPP growZone
);

Parameters
growZone

A pointer to the grow-zone function. A NULL value removes any previous grow-zone function from
the zone.

Discussion
To specify a grow-zone function for the current heap zone, pass a pointer to that function to the SetGrowZone
function. Usually you call this function early in the execution of your application.

If you initialize your own heap zones besides the application and system zones, you can alternatively specify
a grow-zone function as a parameter to the InitZone function.

Deprecated in Mac OS X v10.4 65
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

The Memory Manager calls the grow-zone function only after exhausting all other avenues of satisfying a
memory request, including compacting the zone, increasing its size (if it is the original application zone and
is not yet at its maximum size), and purging blocks from it.

See “Grow-Zone Operations” for a complete description of a grow-zone function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempFreeMem
Returns the maximum amount of free memory in the temporary heap. (Deprecated in Mac OS X v10.4. There
is no replacement function; Mac OS X does not have a separate temporary memory heap.)

long TempFreeMem (
 void
);

Return Value
The total amount of free temporary memory, in bytes, that you could allocate by calling TempNewHandle.
Because these bytes might be dispersed throughout memory, it is ordinarily not possible to allocate a single
relocatable block of that size.

Discussion
Returns the total amount of memory available for temporary allocation.

Special Considerations

In Mac OS X, there is no separate temporary memory heap. This function always returns a large value, because
virtual memory is always available to fulfill any request for memory. You can assume that any reasonable
memory allocation request will succeed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempHLock
Locks a relocatable block in the temporary heap. (Deprecated in Mac OS X v10.4. Use HLock (page 22) instead;
Mac OS X does not have a separate temporary memory heap.)

66 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

void TempHLock (
 Handle h,
 OSErr *resultCode
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempHUnlock
Unlocks a relocatable block in the temporary heap. (Deprecated in Mac OS X v10.4. Use HUnlock (page 25)
instead; Mac OS X does not have a separate temporary memory heap.)

void TempHUnlock (
 Handle h,
 OSErr *resultCode
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempMaxMem
Returns the maximum amount of temporary memory available. (Deprecated in Mac OS X v10.4. There is no
replacement function; Mac OS X does not have a separate temporary memory heap.)

Size TempMaxMem (
 Size *grow
);

Parameters
grow

On return, this parameter always contains 0 after the function call because temporary memory does
not come from the application’s heap zone, and only that zone can grow. Ignore this parameter.

Return Value
The size of the largest contiguous block available for temporary allocation.

Discussion
Compacts the current heap zone and returns the size of the largest contiguous block available for temporary
allocation.

Deprecated in Mac OS X v10.4 67
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

Special Considerations

In Mac OS X, there is no separate temporary memory heap. This function always returns a large value, because
virtual memory is always available to fulfill any request for memory. You can assume that any reasonable
memory allocation request will succeed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempTopMem
Returns the location of the top of the temporary heap. (Deprecated in Mac OS X v10.4. There is no replacement
function; Mac OS X does not have a separate temporary memory heap.)

Ptr TempTopMem (
 void
);

Discussion
In Mac OS X, this function always returns NULL.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TopMem
Returns a pointer to the byte at the top of an application’s partition. (Deprecated in Mac OS X v10.4. There
is no replacement; this function does nothing in Mac OS X.)

Ptr TopMem (
 void
);

Discussion
Deprecated. Refer to MacMemory.h for information on replacement functions.

TopMem obtains a pointer to the byte at the top of an application’s partition, directly above the jump table.
TopMem does this to maintain compatibility with programs that check TopMem to find out how much memory
is installed in a computer. The preferred method of obtaining this information is with the Gestalt function.

The function exhibits special behavior at startup time, and the value it returns controls the amount by which
an extension can lower the value of the global variable BufPtr at startup time. If you are writing a system
extension, you should not lower the value of BufPtr by more than MemTop DIV 2 + 1024. If you do lower
BufPtr too far, the startup process generates an out-of-memory system error.

68 Deprecated in Mac OS X v10.4
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

You should never need to call TopMem except during the startup process.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

UnholdMemory
Makes a currently held range of memory eligible for paging again. (Deprecated in Mac OS X v10.4. There is
no replacement; this function does nothing in Mac OS X.)

OSErr UnholdMemory (
 void *address,
 unsigned long count
);

Parameters
address

A pointer indicating the starting address of the range of memory to be released.

count
The size, in bytes, of the range of memory to be released.

Return Value
This function always returns a value of noErr.

Discussion
If the starting address you supply to the UnholdMemory function is not on a page boundary, then
UnholdMemory rounds down to the nearest page boundary. Similarly, if the specified range does not end
on a page boundary, UnholdMemory rounds up the value you pass in the count parameter so that the entire
range of memory is released.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

Deprecated in Mac OS X v10.5

FreeMem
Returns the total amount of free space in the current heap zone. (Deprecated in Mac OS X v10.5. There is no
replacement function; you can assume that any reasonable memory allocation will succeed.)

Deprecated in Mac OS X v10.5 69
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

long FreeMem (
 void
);

Return Value
Returns a fixed value for heap size that is compatible with most applications.

Discussion
In Mac OS 8 and 9, this function returns the total amount of free space in the current heap zone. In Mac OS
X, this function always returns a large fixed value because applications run in a large, protected memory
space.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Special Considerations

Even though FreeMem does not move or purge memory, you should not call it at interrupt time because the
heap might be in an inconsistent state.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

MaxBlock
Returns a fixed value for block size that is compatible with most applications. (Deprecated in Mac OS X v10.5.
There is no replacement function; you can assume that any reasonable memory allocation will succeed.)

long MaxBlock (
 void
);

Return Value
The maximum contiguous space, in bytes, that you could obtain after compacting the current heap zone.
MaxBlock does not actually do the compaction.

Discussion
In Mac OS X, this function always returns a large value because virtual memory is always available to fulfill
any request for memory.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

70 Deprecated in Mac OS X v10.5
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

MaxMem
Returns the size, in bytes, of the largest contiguous free block in the current heap zone. (Deprecated in Mac
OS X v10.5. There is no replacement function; you can assume that any reasonable memory allocation will
succeed.)

Size MaxMem (
 Size *grow
);

Parameters
grow

On return, the maximum number of bytes by which the current heap zone can grow. After a call to
MaxApplZone, MaxMem always sets this parameter to 0.

Return Value
The size, in bytes, of the largest contiguous free block in the zone after the compacting and purging.

Discussion
In Mac OS 8 and 9, the MaxMem function compacts the current heap zone and purges all relocatable, unlocked,
and purgeable blocks from the zone. If the current zone is the original application zone, the grow parameter
is set to the maximum number of bytes by which the zone can grow. For any other heap zone, grow is set
to 0. MaxMem does not actually expand the zone or call the zone’s grow-zone function.

In Mac OS X, the MaxMem function returns a large fixed value because applications run in a large, protected
memory space.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

StackSpace
Returns the amount of space between the bottom of the stack and the top of the application heap. (Deprecated
in Mac OS X v10.5. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

long StackSpace (
 void
);

Return Value
The current amount of stack space, in bytes, between the current stack pointer and the application heap.

Deprecated in Mac OS X v10.5 71
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

Discussion
Usually you determine the maximum amount of stack space needed before you ship your application. Thus
this function is generally useful only during debugging to determine how big to make the stack. However,
if your application calls a recursive function that conceivably could call itself many times, that function should
keep track of the stack space and take appropriate action if it becomes too low.

Call the function MemError (page 27) to get the result code. See “Memory Manager Result Codes” (page
47).

Special Considerations

StackSpace must not be called at interrupt time, as it may alter location MemErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempDisposeHandle
Releases a relocatable block in the temporary heap. (Deprecated in Mac OS X v10.5. Use DisposeHandle (page
16) instead; Mac OS X does not have a separate temporary memory heap.)

void TempDisposeHandle (
 Handle h,
 OSErr *resultCode
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

72 Deprecated in Mac OS X v10.5
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Memory Manager Functions

This table describes the changes to Memory Manager Reference.

NotesDate

Added information in Result Codes chapter that the “memROZErr” (page 48)
value is not relevant in Mac OS X. Clarified discussion for the
SetHandleSize (page 35) function.

2007-06-27

Added information about deprecated functions.2006-07-24

Updated the Introduction to reflect the use of Memory Manager in Mac OS X.
Moved deprecated functions to a separate group. Revised the descriptions of
several functions to reflect their behavior in Mac OS X. Added text to the
callbacks, data types, and constants sections indicating that they are not
functional or used in Mac OS X.

2005-08-11

Updated formatting and linking. Moved unsupported functions to Appendix A.2003-02-01

73
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

74
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

BackingFileID data type 40
BlockMove function 13
BlockMoveData function 14
BlockMoveDataUncached function 15
BlockMoveUncached function 15
BlockZero function 16
BlockZeroUncached function 16

C

CheckAllHeaps function (Deprecated in Mac OS X v10.4)
49

CompactMem function (Deprecated in Mac OS X v10.4) 49

D

Default Physical Entry Count Constant 45
DisposeGrowZoneUPP function (Deprecated in Mac OS

X v10.4) 50
DisposeHandle function 16
DisposePtr function 17
DisposePurgeUPP function (Deprecated in Mac OS X

v10.4) 50
DisposeUserFnUPP function (Deprecated in Mac OS X

v10.4) 51

E

EmptyHandle function 18

F

FileViewAccess data type 40

FileViewID data type 40
FileViewInformation structure 40
FileViewOptions data type 41
FlushMemory function (Deprecated in Mac OS X v10.4)

51
FreeMem function (Deprecated in Mac OS X v10.5) 69

G

GetGrowZone function (Deprecated in Mac OS X v10.4)
51

GetHandleSize function 19
GetPtrSize function 19
GrowZoneProcPtr callback 37
GrowZoneUPP data type 41
GZSaveHnd function (Deprecated in Mac OS X v10.4) 52

H

HandAndHand function 20
HandToHand function 20
HClrRBit function 21
HGetState function 22
HLock function 22
HLockHi function 23
HNoPurge function (Deprecated in Mac OS X v10.4) 52
HoldMemory function (Deprecated in Mac OS X v10.4) 53
HPurge function (Deprecated in Mac OS X v10.4) 54
HSetRBit function 23
HSetState function 24
HUnlock function 25

I

InvokeGrowZoneUPP function (Deprecated in Mac OS X
v10.4) 54

InvokePurgeUPP function (Deprecated in Mac OS X
v10.4) 55

75
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

Index

InvokeUserFnUPP function (Deprecated in Mac OS X
v10.4) 55

IsHandleValid function 25
IsHeapValid function 26
IsPointerValid function 26

K

k32BitHeap 45
kFileViewInformationVersion1 46
kHandleIsResourceBit 46
kHandleIsResourceMask 46
kMapEntireFork 46
kMapEntireFork constant 46
kMappedFileInformationVersion1 46
kPageInMemory 47
kVolumeVirtualMemoryInfoVersion1 47

L

LMGetApplZone function (Deprecated in Mac OS X v10.4)
56

LMGetMemErr function 26
LMGetSysZone function (Deprecated in Mac OS X v10.4)

56
LMSetApplZone function (Deprecated in Mac OS X v10.4)

57
LMSetMemErr function 27
LMSetSysZone function (Deprecated in Mac OS X v10.4)

57
LogicalToPhysicalTable structure 41

M

MakeMemoryNonResident function (Deprecated in Mac
OS X v10.4) 57

MakeMemoryResident function (Deprecated in Mac OS
X v10.4) 58

MappedFileAttributes data type 42
MappedFileInformation structure 42
MappingPrivileges data type 42
MaxBlock function (Deprecated in Mac OS X v10.5) 70
MaxMem function (Deprecated in Mac OS X v10.5) 71
maxSize 47
memAdrErr constant 48
memAZErr constant 48
memBCErr constant 48
MemError function 27
memFullErr constant 48

memLockedErr constant 48
MemoryBlock structure 42
memPCErr constant 48
memPurErr constant 48
memROZErr constant 48
memSCErr constant 48
memWZErr constant 48
menuPrgErr constant 47
MoreMasterPointers function (Deprecated in Mac OS

X v10.4) 58
MoreMasters function (Deprecated in Mac OS X v10.4)

59
MoveHHi function (Deprecated in Mac OS X v10.4) 60

N

negZcbFreeErr constant 48
NewEmptyHandle function 28
NewGrowZoneUPP function (Deprecated in Mac OS X

v10.4) 61
NewHandle function 28
NewHandleClear function 29
NewPtr function 30
NewPtrClear function 31
NewPurgeUPP function (Deprecated in Mac OS X v10.4)

61
NewUserFnUPP function (Deprecated in Mac OS X v10.4)

61
nilHandleErr constant 48

P

PtrAndHand function 31
PtrToHand function 32
PtrToXHand function 33
PurgeMem function (Deprecated in Mac OS X v10.4) 62
PurgeProcPtr callback 38
PurgeSpace function (Deprecated in Mac OS X v10.4) 63
PurgeSpaceContiguous function (Deprecated in Mac

OS X v10.4) 63
PurgeSpaceTotal function (Deprecated in Mac OS X

v10.4) 63
PurgeUPP data type 43

R

ReallocateHandle function 33
RecoverHandle function 34

76
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

ReleaseMemoryData function (Deprecated in Mac OS X
v10.4) 64

ReserveMem function (Deprecated in Mac OS X v10.4) 64

S

SetGrowZone function (Deprecated in Mac OS X v10.4)
65

SetHandleSize function 35
SetPtrSize function 35
StackSpace function (Deprecated in Mac OS X v10.5) 71
StatusRegisterContents data type 43

T

TempDisposeHandle function (Deprecated in Mac OS X
v10.5) 72

TempFreeMem function (Deprecated in Mac OS X v10.4)
66

TempHLock function (Deprecated in Mac OS X v10.4) 66
TempHUnlock function (Deprecated in Mac OS X v10.4)

67
TempMaxMem function (Deprecated in Mac OS X v10.4) 67
TempNewHandle function 36
TempTopMem function (Deprecated in Mac OS X v10.4) 68
TopMem function (Deprecated in Mac OS X v10.4) 68

U

UnholdMemory function (Deprecated in Mac OS X v10.4)
69

UserFnProcPtr callback 39
UserFnUPP data type 44

V

VolumeVirtualMemoryInfo structure 44

Z

Zone structure 44

77
2007-06-27 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

	Memory Manager Reference
	Contents
	Memory Manager Reference
	Overview
	Functions by Task
	Allocating and Releasing Nonrelocatable Blocks of Memory
	Allocating and Releasing Relocatable Blocks of Memory
	Allocating Temporary Memory
	Assessing Memory Conditions
	Changing the Sizes of Relocatable and Nonrelocatable Blocks
	Managing Relocatable Blocks
	Manipulating Blocks of Memory
	Setting the Properties of Relocatable Blocks
	Miscellaneous
	Deprecated Functions

	Functions
	BlockMove
	BlockMoveData
	BlockMoveDataUncached
	BlockMoveUncached
	BlockZero
	BlockZeroUncached
	DisposeHandle
	DisposePtr
	EmptyHandle
	GetHandleSize
	GetPtrSize
	HandAndHand
	HandToHand
	HClrRBit
	HGetState
	HLock
	HLockHi
	HSetRBit
	HSetState
	HUnlock
	IsHandleValid
	IsHeapValid
	IsPointerValid
	LMGetMemErr
	LMSetMemErr
	MemError
	NewEmptyHandle
	NewHandle
	NewHandleClear
	NewPtr
	NewPtrClear
	PtrAndHand
	PtrToHand
	PtrToXHand
	ReallocateHandle
	RecoverHandle
	SetHandleSize
	SetPtrSize
	TempNewHandle

	Callbacks
	GrowZoneProcPtr
	PurgeProcPtr
	UserFnProcPtr

	Data Types
	BackingFileID
	FileViewAccess
	FileViewID
	FileViewInformation
	FileViewOptions
	GrowZoneUPP
	LogicalToPhysicalTable
	MappedFileAttributes
	MappedFileInformation
	MappingPrivileges
	MemoryBlock
	PurgeUPP
	StatusRegisterContents
	UserFnUPP
	VolumeVirtualMemoryInfo
	Zone

	Constants
	Default Physical Entry Count Constant
	k32BitHeap
	kFileViewInformationVersion1
	kHandleIsResourceBit
	kHandleIsResourceMask
	kMapEntireFork
	kMappedFileInformationVersion1
	kPageInMemory
	kVolumeVirtualMemoryInfoVersion1
	maxSize

	Result Codes

	Appendix A: Deprecated Memory Manager Functions
	Deprecated in Mac OS X v10.4
	CheckAllHeaps
	CompactMem
	DisposeGrowZoneUPP
	DisposePurgeUPP
	DisposeUserFnUPP
	FlushMemory
	GetGrowZone
	GZSaveHnd
	HNoPurge
	HoldMemory
	HPurge
	InvokeGrowZoneUPP
	InvokePurgeUPP
	InvokeUserFnUPP
	LMGetApplZone
	LMGetSysZone
	LMSetApplZone
	LMSetSysZone
	MakeMemoryNonResident
	MakeMemoryResident
	MoreMasterPointers
	MoreMasters
	MoveHHi
	NewGrowZoneUPP
	NewPurgeUPP
	NewUserFnUPP
	PurgeMem
	PurgeSpace
	PurgeSpaceContiguous
	PurgeSpaceTotal
	ReleaseMemoryData
	ReserveMem
	SetGrowZone
	TempFreeMem
	TempHLock
	TempHUnlock
	TempMaxMem
	TempTopMem
	TopMem
	UnholdMemory

	Deprecated in Mac OS X v10.5
	FreeMem
	MaxBlock
	MaxMem
	StackSpace
	TempDisposeHandle

	Revision History
	Index
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	Z

