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Framework: CoreServices/CoreServices.h

Declared in MixedMode.h

Overview

Mac OS X does not require the Mixed Mode Manager, and does not support its functions. These unsupported
functions are listed in the Appendix. The functions have been removed from the Mixed Mode Manager and
redefined as macros for the purpose of source compatibility with code ported to CFM. See the header file
MixedMode.h for details on these macros and their usage.

You do not need to remove Mixed Mode Manager calls from your application for compatibility with Mac OS
X, and may want to retain them for source code compatibility with previous versions of the Mac OS.

The Mixed Mode Manager managed the mixed-mode architecture of PowerPC processor-based computers
running 680x0-based code (including system software, applications, and stand-alone code modules). The
Mixed Mode Manager cooperated with the 68LC040 Emulator to provide a fast, efficient, and virtually
transparent method for code in one instruction set architecture to call code in another architecture. The
Mixed Mode Manager handled all the details of switching between architectures.

The Mixed Mode Manager was intended to operate transparently to most applications and other software.

Although Mac OS X does not run 68K code, Carbon supports universal procedure pointers (UPPs) transparently,
so you do not have to change them or remove them from your code. You may want to keep Mixed Mode
Manager calls in your application to maintain source code compatibility with the previous versions of the
Mac OS. Mixed Mode Manager calls from Carbon applications running on Mac OS 8 or 9 will function normally.

The Mixed Mode Manager was used by developers who

 ■ wanted to recompile their applications into PowerPC code and their applications passed the address of
some routines to the Mac OS using a reference of type ProcPtr

 ■ created applications–written in either PowerPC or 680x0 code–that support installable code modules
that might be written in a different architecture

 ■ wrote stand-alone code (for example, a VBL task or a component) that could be called from either the
PowerPC native environment or the 680x0 emulated environment

 ■ wrote debuggers or other software that needed to know about the structure of the stack at any time
(for example, during a mode switch)

Mac OS X will not run 68K code. Although Carbon supports universal procedure pointers (UPPs), applications
should use ProcPtrs for their own code and plug-ins and use the new system-supplied UPP creation functions
for Toolbox callback UPPs. You still need to dispose of those UPPs (using the corresponding disposal function),
so that any allocated memory can be cleaned up when your application is running on Mac OS 8 or 9.

Overview 7
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Data Types

MixedModeStateRecord
Contains mixed mode state information.

struct MixedModeStateRecord {
    UInt32 state1;
    UInt32 state2;
    UInt32 state3;
    UInt32 state4;
};
typedef struct MixedModeStateRecord MixedModeStateRecord;

Fields
state1
state2
state3
state4

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

ProcInfoType
Defines a data type used to encode a routine’s procedure information.

typedef unsigned long ProcInfoType;

Discussion
The Mixed Mode Manager uses a long word of type ProcInfoType to encode a routine’s procedure
information, which contains essential information about the calling conventions and other features of a
routine. These values specify

 ■ the routine’s calling conventions

 ■ the sizes and locations of the routine’s parameters, if any

 ■ the size and location of the routine’s result, if any

The Mixed Mode Manager provides a number of constants that you can use to specify the procedure
information. See “Procedure Information Size Constants” (page 17) , “ProcInfo Field Offset And Width
Constants” (page 18) , “Calling Convention Constants” (page 12) , “Special Case Calling Convention
Constants” (page 26) , and “Register Constants” (page 21).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

8 Data Types
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RDFlagsType
Defines a data type for routine descriptor flags.

typedef UInt8 RDFlagsType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineDescriptor
Contains information used by the Mixed Mode Manager to execute a routine.

struct RoutineDescriptor {
    UInt16 goMixedModeTrap;
    SInt8 version;
    RDFlagsType routineDescriptorFlags;
    UInt32 reserved1;
    UInt8 reserved2;
    UInt8 selectorInfo;
    UInt16 routineCount;
    RoutineRecord routineRecords[1];
};
typedef struct RoutineDescriptor RoutineDescriptor;
typedef RoutineDescriptor * RoutineDescriptorPtr;
typedef RoutineDescriptorPtr RoutineDescriptorHandle;

Fields
goMixedModeTrap

An A-line instruction that is used privately by the Mixed Mode Manager. When the emulator encounters
this instruction, it transfers control to the Mixed Mode Manager. This field contains the value $AAFE.

version
The version number of the RoutineDescriptor data type.

routineDescriptorFlags
A set of routine descriptor flags. Currently, all the bits in this field should be set to 0, unless you are
specifying a routine descriptor for a dispatched routine.

reserved1
Reserved. This field must initially be 0.

reserved2
Reserved. This field must be 0.

selectorInfo
Reserved. This field must be 0.

routineCount
The index of the final routine record in the following array, of routineRecords. Because the
routineRecords array is zero-based, this field does not contain an actual count of the routine records
contained in that array. Often, you will use a routine descriptor to describe a single procedure, in
which case this field should contain the value 0. You can, however, construct a routine descriptor that
contains pointers to both 680x0 and PowerPC code (known as a “fat” routine descriptor). In that case,
this field should contain the value 1.

Data Types 9
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routineRecords
An array of routine records for the routines described by this routine descriptor. See
“RoutineRecord” (page 10) for the structure of a routine record. This array is zero-based.

Discussion
A routine descriptor is a data structure used by the Mixed Mode Manager to execute a routine. The external
interface to a routine descriptor is through a universal procedure pointer, of type UniversalProcPtr, which
is defined as a procedure pointer (if the code is 680x0 code) or as a pointer to a routine descriptor (if the
code is PowerPC code). A routine descriptor is defined by the RoutineDescriptor data type.

Your application (or other software) should never attempt to guide its execution by inspecting the value in
the ISA field of a routine record and jumping to the address in the procDescriptor field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineFlagsType
Defines a data type for routine flags.

typedef unsigned short RoutineFlagsType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineRecord
Cntains information about a particular routine.

10 Data Types
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struct RoutineRecord {
    ProcInfoType procInfo;
    SInt8 reserved1;
    ISAType ISA;
    RoutineFlagsType routineFlags;
    ProcPtr procDescriptor;
    UInt32 reserved2;
    UInt32 selector;
};
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord * RoutineRecordPtr;
typedef RoutineRecordPtr RoutineRecordHandle;

Fields
procInfo

A value of type ProcInfoType that encodes essential information about the routine’s calling
conventions and parameters. See “Procedure Information Size Constants” (page 17), “ProcInfo Field
Offset And Width Constants” (page 18), “Calling Convention Constants” (page 12), “Special Case
Calling Convention Constants” (page 26), and “Register Constants” (page 21) for descriptions of the
constants you can use to set this field.

reserved1
Reserved. This field must be 0.

ISA
The instruction set architecture of the routine. See “Instruction Set Architectures” (page 14) for a
complete listing of the constants you can use to set this field.

routineFlags
A value of type RoutineFlagsType that contains a set of flags describing the routine. See “Routine
Entry Point Flags” (page 25), “Fragment Flags” (page 14), “ISA Flags” (page 15), “Routine Selector
Flags” (page 25), and “Default Routine Flags” (page 13) for descriptions of the constants you can use
to set this field.

procDescriptor
A pointer to the routine’s code. If the routine consists of 680x0 code and the
kProcDescriptorIsAbsolute flag is set in the routineFlags field, then this field contains the
address of the routine’s entry point. If the routine consists of 680x0 code and the
kProcDescriptorIsRelative flag is set, then this field contains the offset from the beginning of
the routine descriptor to the routine’s entry point. If the routine consists of PowerPC code, the
kFragmentIsPrepared flag is set, and the kProcDescriptorIsAbsolute flag is set, then this
field contains the address of the routine’s transition vector. If the routine consists of PowerPC code,
the kFragmentNeedsPreparing flag is set, and the kProcDescriptorIsRelative flag is set, then
this field contains the offset from the beginning of the routine descriptor to the routine’s entry point.

reserved2
Reserved. This field must be 0.

selector
Reserved. This field must be 0. For routines that are dispatched, this field contains the routine selector.

Discussion
A routine record is a data structure that contains information about a particular routine. The routine descriptor
specifies, among other things, the instruction set architecture of the routine, the number and size of the
routine’s parameters, the routine’s calling conventions, and the routine’s location in memory. At least one
routine record is contained in the routineRecords field of a routine descriptor. A routine record is defined
by the RoutineRecord data type.

Data Types 11
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Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

Constants

Calling Convention Constants
Specify a routine’s calling conventions.

typedef unsigned short CallingConventionType;
enum {
    kPascalStackBased = 0,
    kCStackBased = 1,
    kRegisterBased = 2,
    kD0DispatchedPascalStackBased = 8,
    kD1DispatchedPascalStackBased = 12,
    kD0DispatchedCStackBased = 9,
    kStackDispatchedPascalStackBased = 14,
    kThinkCStackBased = 5
};

Constants
kPascalStackBased

The routine follows normal Pascal calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCStackBased
The routine follows the C calling conventions employed by the MPW development environment.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterBased
The parameters are passed in registers.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kD0DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal conventions, and the routine selector is
passed in register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kD1DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal conventions, and the routine selector is
passed in register D1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

12 Constants
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kD0DispatchedCStackBased
The parameters are passed on the stack according to C conventions, and the routine selector is passed
in register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackDispatchedPascalStackBased
The routine selector and the parameters are passed on the stack.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kThinkCStackBased
The routine follows the C calling conventions employed by the THINK C software development
environment. Arguments are passed on the stack from right to left, and a result is returned in register
D0. All arguments occupy an even number of bytes on the stack. An argument having the size of a
char is passed in the high-order byte. You should always provide function prototypes; failure to do
so may cause THINK C to generate code that is incompatible with this parameter-passing convention.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 8) type to specify a routine’s calling conventions.

Default Routine Flags
Specify defaults for a routine.

enum {
    kRoutineIsNotDispatchedDefaultRoutine = 0x00,
    kRoutineIsDispatchedDefaultRoutine = 0x10
};

Constants
kRoutineIsNotDispatchedDefaultRoutine

This routine is not the default routine for a set of routines that is dispatched using a routine selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRoutineIsDispatchedDefaultRoutine
This routine is the default routine for a set of routines that is dispatched using a routine selector. If a
set of routines is dispatched using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine must be able to accept the same
procedure information for all routines. If possible, it is passed the procedure information passed in a
call to CallUniversalProc.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Constants 13
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In general, you should use the constant kRoutineIsNotDispatchedDefaultRoutine. The constant and
kRoutineIsDispatchedDefaultRoutine is reserved for use with selector-based system software routines.

Fragment Flags
Used in the routineFlags field of a routine record.

enum {
    kFragmentIsPrepared = 0x00,
    kFragmentNeedsPreparing = 0x02
};

Constants
kFragmentIsPrepared

The fragment containing the code to be executed is already loaded into memory and prepared by
the Code Fragment Manager.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kFragmentNeedsPreparing
The fragment containing the code to be executed needs to be loaded into memory and prepared by
the Code Fragment Manager. If this flag is set, the kPowerPCISA and kProcDescriptorIsRelative
flags should also be set.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Instruction Set Architectures
Used in the ISA field of a routine record.

typedef SInt8 ISAType;
enum {
    kM68kISA = 0,
    kPowerPCISA = 1
};

Constants
kM68kISA

The routine consists of Motorola 680x0 code.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kPowerPCISA
The routine consists of PowerPC code.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

14 Constants
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Discussion
The ISA field of a routine record contains a flag that specifies the instruction set architecture of a routine.
You can use constants to specify the instruction set architecture.

ISA Flags
Used in the routineFlags field of a routine record.

enum {
    kUseCurrentISA = 0x00,
    kUseNativeISA = 0x04
};

Constants
kUseCurrentISA

If possible, use the current instruction set architecture when executing a routine.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kUseNativeISA
Use the native instruction set architecture when executing a routine.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Current Mixed Mode State
Specifies the current version of the mixed-mode state record.

enum {
    kCurrentMixedModeStateRecord = 1
};

RTA Types

typedef SInt8 RTAType;
enum {
    kOld68kRTA = 0 << 4,
    kPowerPCRTA = 0 << 4,
    kCFM68kRTA = 1 << 4
};

Constants
kOld68kRTA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 15
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kPowerPCRTA
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCFM68kRTA
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Procedure Descriptors

enum {
    kProcDescriptorIsProcPtr = 0x00,
    kProcDescriptorIsIndex = 0x20
};

Constants
kProcDescriptorIsProcPtr

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kProcDescriptorIsIndex
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Routine Descriptor Version
Specifies the version of routine descriptor.

enum {
    kRoutineDescriptorVersion = 7
};

Special Case Constant
Used to specify a special case.

enum {
    kSpecialCase = 0x000F
};

Constants
kSpecialCase

The routine is a special case. You can use the following constants to specify a special case.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

16 Constants
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kX86ISA

enum {
    kX86ISA = 2
};

Constants
kX86ISA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kX86RTA

enum {
    kX86RTA = 2 << 4
};

Constants
kX86RTA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

_MixedModeMagic

enum {
    _MixedModeMagic = 0xAAFE
};

Constants
_MixedModeMagic

Procedure Information Size Constants
Specify the size (in bytes) of a value encoded in the procedure information for a routine.

enum {
    kNoByteCode = 0,
    kOneByteCode = 1,
    kTwoByteCode = 2,
    kFourByteCode = 3
};

Constants
kNoByteCode

The value occupies no bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 17
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kOneByteCode
The value occupies 1 byte.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kTwoByteCode
The value occupies 2 bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kFourByteCode
The value occupies 4 bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 8) to specify the size (in bytes) of a value encoded
in a routine’s procedure information.

ProcInfo Field Offset And Width Constants
Specify offsets to fields and the widths of the fields within a value.

18 Constants
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enum {
    kCallingConventionWidth = 4,
    kCallingConventionPhase = 0,
    kCallingConventionMask = 0x0F,
    kResultSizeWidth = 2,
    kResultSizePhase = kCallingConventionWidth,
    kResultSizeMask = 0x30,
    kStackParameterWidth = 2,
    kStackParameterPhase = (kCallingConventionWidth + kResultSizeWidth),
    kStackParameterMask = 0xFFFFFFC0,
    kRegisterResultLocationWidth = 5,
    kRegisterResultLocationPhase = (kCallingConventionWidth + kResultSizeWidth),
    kRegisterParameterWidth = 5,
    kRegisterParameterPhase = (kCallingConventionWidth + kResultSizeWidth
+ kRegisterResultLocationWidth),
    kRegisterParameterMask = 0x7FFFF800,
    kRegisterParameterSizePhase = 0,
    kRegisterParameterSizeWidth = 2,
    kRegisterParameterWhichPhase = kRegisterParameterSizeWidth,
    kRegisterParameterWhichWidth = 3,
    kDispatchedSelectorSizeWidth = 2,
    kDispatchedSelectorSizePhase = (kCallingConventionWidth + kResultSizeWidth),
    kDispatchedParameterPhase = (kCallingConventionWidth + kResultSizeWidth
+ kDispatchedSelectorSizeWidth),
    kSpecialCaseSelectorWidth = 6,
    kSpecialCaseSelectorPhase = kCallingConventionWidth,
    kSpecialCaseSelectorMask = 0x03F0
};

Constants
kCallingConventionWidth

The number of bits in the procedure information that encode the calling convention information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCallingConventionPhase
The offset from the least significant bit in the procedure information to the calling convention
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCallingConventionMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kResultSizeWidth
The number of bits in the procedure information that encode the function result size information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kResultSizePhase
The offset from the least significant bit in the procedure information to the function result size
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 19
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kResultSizeMask
A mask for the bits in the procedure information that encode the function result size information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterWidth
The number of bits in the procedure information that encode the size of a stack-based parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterPhase
The offset from the least significant bit in the procedure information to the stack parameter information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterResultLocationWidth
The number of bits in the procedure information that encode which register the result will be stored
in.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterResultLocationPhase
The offset from the least significant bit in the procedure information to the result register information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWidth
The number of bits in the procedure information that encode the information about a register-based
parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterPhase
The offset from the least significant bit in the procedure information to the register parameter
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterSizePhase
The offset from the beginning of a register parameter information field to the encoded size of the
parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

20 Constants
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kRegisterParameterSizeWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWhichPhase
The offset from the beginning of a register parameter information field to the encoded register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWhichWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedSelectorSizeWidth
The number of bits in the procedure information that encode the size of a routine-dispatching selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedSelectorSizePhase
The offset from the least significant bit in the procedure information to the selector size information
of a routine that is dispatched though a selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedParameterPhase
The offset from the least significant bit in the procedure information to the parameter information
of a routine that is dispatched though a selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorPhase
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The offsets to fields and the widths of the fields within a value of type ProcInfoType (page 8) are defined
by constants.

Register Constants
Specify registers that are encoded in the procedure information for a routine.

Constants 21
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enum {
    kRegisterD0 = 0,
    kRegisterD1 = 1,
    kRegisterD2 = 2,
    kRegisterD3 = 3,
    kRegisterD4 = 8,
    kRegisterD5 = 9,
    kRegisterD6 = 10,
    kRegisterD7 = 11,
    kRegisterA0 = 4,
    kRegisterA1 = 5,
    kRegisterA2 = 6,
    kRegisterA3 = 7,
    kRegisterA4 = 12,
    kRegisterA5 = 13,
    kRegisterA6 = 14,
    kCCRegisterCBit = 16,
    kCCRegisterVBit = 17,
    kCCRegisterZBit = 18,
    kCCRegisterNBit = 19,
    kCCRegisterXBit = 20
};
typedef unsigned short registerSelectorType;

Constants
kRegisterD0

Register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD1
Register D1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD2
Register D2.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD3
Register D3.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD4
Register D4.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD5
Register D5.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.
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kRegisterD6
Register D6.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD7
Register D7.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA0
Register A0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA1
Register A1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA2
Register A2.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA3
Register A3.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA4
Register A4.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA5
Register A5.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA6
Register A6.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterCBit
The C (carry) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.
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kCCRegisterVBit
The V (overflow) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterZBit
The Z (zero) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterNBit
The N (negative) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterXBit
The X (extend) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
For register-based routines, the registers are encoded in the routine’s procedure information using these
constants.

Routine Descriptor Flags
Specify attributes of the described routine.

enum {
    kSelectorsAreNotIndexable = 0x00,
    kSelectorsAreIndexable = 0x01
};

Constants
kSelectorsAreNotIndexable

For dispatched routines, the recognized routine selectors are not contiguous.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSelectorsAreIndexable
For dispatched routines, the recognized routine selectors are contiguous and therefore indexable.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineDescriptorFlags field of a routine descriptor contains a set of routine descriptor flags that
specify attributes of the described routine. You can use constants to specify the routine descriptor flags. In
general, you should use the constant kSelectorsAreNotIndexable when constructing your own routine
descriptors; the value kSelectorsAreIndexable is reserved for use by Apple.
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Routine Entry Point Flags
Specify information about the entry point for a routine.

enum {
    kProcDescriptorIsAbsolute = 0x00,
    kProcDescriptorIsRelative = 0x01
};

Constants
kProcDescriptorIsAbsolute

The address of the routine’s entry point specified in the procDescriptor field of a routine record
is an absolute address.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kProcDescriptorIsRelative
The address of the routine’s entry point specified in the procDescriptor field of a routine record
is relative to the beginning of the routine descriptor. If the code is contained in a resource and its
absolute location is not known until run time, you should set this flag.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Routine Selector Flags
Specify whether or not to pass a selector to a routine.

enum {
    kPassSelector = 0x00,
    kDontPassSelector = 0x08
};

Constants
kPassSelector

Pass the routine selector to the target routine as a parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDontPassSelector
Do not pass the routine selector to the target routine as a parameter. You should not use this flag for
680x0 routines.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.
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In general, you should use the constant kPassSelector. The constant kDontPassSelector is reserved
for use with selector-based system software routines.

Special Case Calling Convention Constants
Specify the calling conventions for a routine.

enum {
    kSpecialCaseHighHook = 0,
    kSpecialCaseCaretHook = 0,
    kSpecialCaseEOLHook = 1,
    kSpecialCaseWidthHook = 2,
    kSpecialCaseTextWidthHook = 2,
    kSpecialCaseNWidthHook = 3,
    kSpecialCaseDrawHook = 4,
    kSpecialCaseHitTestHook = 5,
    kSpecialCaseTEFindWord = 6,
    kSpecialCaseProtocolHandler = 7,
    kSpecialCaseSocketListener = 8,
    kSpecialCaseTERecalc = 9,
    kSpecialCaseTEDoText = 10,
    kSpecialCaseGNEFilterProc = 11,
    kSpecialCaseMBarHook = 12
};

Constants
kSpecialCaseHighHook

The routine follows the calling conventions documented in Inside Macintosh: Text; a rectangle is on
the stack and a pointer is in register A3; no result is returned.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseCaretHook
The routine follows the calling conventions documented in Inside Macintosh: Text; a rectangle is on
the stack and a pointer is in register A3; no result is returned.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseEOLHook
Parameters are passed to the routine in registers A3, A4, and D0, and output is returned in the Z flag
of the Status Register. An EOLHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and output is returned in
register D1. A WIDTHHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.
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kSpecialCaseTextWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and output is returned in
register D1. A TextWidthHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseNWidthHook
Parameters are passed to the routine in registers A0, A2, A3, A4, D0, and D1, and output is returned
in register D1. An nWIDTHHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseDrawHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and no result is returned. A
DRAWHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseHitTestHook
Parameters are passed to the routine in registers A0, A3, A4, D0, D1, and D2, and output is returned
in registers D0, D1, and D2. A HITTESTHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseTEFindWord
Parameters are passed to the routine in registers A3, A4, D0, and D2, and output is returned in registers
D0 and D1. A TEFindWord hook has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseProtocolHandler
Parameters are passed to the routine in registers A0, A1, A2, A3, A4, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A protocol handler has these calling
conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSocketListener
Parameters are passed to the routine in registers A0, A1, A2, A3, A4, in the low-order byte of register
D0, and in the low-order word of register D1; output is returned in the Z flag of the Status Register.
A socket listener has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseTERecalc
Parameters are passed to the routine in registers A3 and D7, and output is returned in registers D2,
D3, and D4. A TextEdit line-start recalculation routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.
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kSpecialCaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and D7, and output is returned in registers
A0 and D0. A TextEdit text-display, hit-test, and caret-positioning routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseGNEFilterProc
Parameters are passed to the routine in registers A1 and D0 and on the stack, and output is returned
on the stack. A GetNextEvent filter procedure has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseMBarHook
Parameters are passed to the routine on the stack, and output is returned in register D0. A menu bar
hook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 8) type to specify a routine’s calling conventions.

Result Codes

The most common result codes returned by the Mixed Mode Manager are listed below.

DescriptionValueResult Code

An internal error has occurred.-2526mmInternalError

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availabilty information by using the Mixed Mode Manager selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.
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Table A-1 (page 29) lists functions that are unsupported and you should no longer use. These functions have
been removed from the Mixed Mode Manager and redefined as macros for the purpose of source compatibility
with code ported to CFM. See header file MixedMode.h for details.

Table A-1 Porting notes for unsupported Mixed Mode Manager functions

Porting notesUnsupported functions

See the header file MixedMode.h for information.CallOSTrapUniversalProc

See the header file MixedMode.h for information.CallUniversalProc

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

DisposeRoutineDescriptor

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewFatRoutineDescriptor

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewRoutineDescriptor

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

DisposeRoutineDescriptorTrap

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewFatRoutineDescriptorTrap

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewRoutineDescriptorTrap

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

RestoreMixedModeState

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

SaveMixedModeState
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This table describes the changes to Mixed Mode Manager Reference.

NotesDate

Move unsupported functions to the Appendix.2003-04-01

Added information to the introduction.

Added abstracts to many data types and constants.

Updated formatting, linking, and introduction.2003-02-01
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