
Mixed Mode Manager Reference
Carbon > Runtime Architecture

2003-04-01

Apple Inc.
© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, and MPW are trademarks of Apple
Inc., registered in the United States and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Mixed Mode Manager Reference 7

Overview 7
Data Types 8

MixedModeStateRecord 8
ProcInfoType 8
RDFlagsType 9
RoutineDescriptor 9
RoutineFlagsType 10
RoutineRecord 10

Constants 12
Calling Convention Constants 12
Default Routine Flags 13
Fragment Flags 14
Instruction Set Architectures 14
ISA Flags 15
Current Mixed Mode State 15
RTA Types 15
Procedure Descriptors 16
Routine Descriptor Version 16
Special Case Constant 16
kX86ISA 17
kX86RTA 17
_MixedModeMagic 17
Procedure Information Size Constants 17
ProcInfo Field Offset And Width Constants 18
Register Constants 21
Routine Descriptor Flags 24
Routine Entry Point Flags 25
Routine Selector Flags 25
Special Case Calling Convention Constants 26

Result Codes 28
Gestalt Constants 28

Appendix A Unsupported Functions 29

Document Revision History 31

Index 33

3
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

4
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tables

Appendix A Unsupported Functions 29

Table A-1 Porting notes for unsupported Mixed Mode Manager functions 29

5
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

6
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

TABLES

Framework: CoreServices/CoreServices.h

Declared in MixedMode.h

Overview

Mac OS X does not require the Mixed Mode Manager, and does not support its functions. These unsupported
functions are listed in the Appendix. The functions have been removed from the Mixed Mode Manager and
redefined as macros for the purpose of source compatibility with code ported to CFM. See the header file
MixedMode.h for details on these macros and their usage.

You do not need to remove Mixed Mode Manager calls from your application for compatibility with Mac OS
X, and may want to retain them for source code compatibility with previous versions of the Mac OS.

The Mixed Mode Manager managed the mixed-mode architecture of PowerPC processor-based computers
running 680x0-based code (including system software, applications, and stand-alone code modules). The
Mixed Mode Manager cooperated with the 68LC040 Emulator to provide a fast, efficient, and virtually
transparent method for code in one instruction set architecture to call code in another architecture. The
Mixed Mode Manager handled all the details of switching between architectures.

The Mixed Mode Manager was intended to operate transparently to most applications and other software.

Although Mac OS X does not run 68K code, Carbon supports universal procedure pointers (UPPs) transparently,
so you do not have to change them or remove them from your code. You may want to keep Mixed Mode
Manager calls in your application to maintain source code compatibility with the previous versions of the
Mac OS. Mixed Mode Manager calls from Carbon applications running on Mac OS 8 or 9 will function normally.

The Mixed Mode Manager was used by developers who

 ■ wanted to recompile their applications into PowerPC code and their applications passed the address of
some routines to the Mac OS using a reference of type ProcPtr

 ■ created applications–written in either PowerPC or 680x0 code–that support installable code modules
that might be written in a different architecture

 ■ wrote stand-alone code (for example, a VBL task or a component) that could be called from either the
PowerPC native environment or the 680x0 emulated environment

 ■ wrote debuggers or other software that needed to know about the structure of the stack at any time
(for example, during a mode switch)

Mac OS X will not run 68K code. Although Carbon supports universal procedure pointers (UPPs), applications
should use ProcPtrs for their own code and plug-ins and use the new system-supplied UPP creation functions
for Toolbox callback UPPs. You still need to dispose of those UPPs (using the corresponding disposal function),
so that any allocated memory can be cleaned up when your application is running on Mac OS 8 or 9.

Overview 7
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

Data Types

MixedModeStateRecord
Contains mixed mode state information.

struct MixedModeStateRecord {
 UInt32 state1;
 UInt32 state2;
 UInt32 state3;
 UInt32 state4;
};
typedef struct MixedModeStateRecord MixedModeStateRecord;

Fields
state1
state2
state3
state4

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

ProcInfoType
Defines a data type used to encode a routine’s procedure information.

typedef unsigned long ProcInfoType;

Discussion
The Mixed Mode Manager uses a long word of type ProcInfoType to encode a routine’s procedure
information, which contains essential information about the calling conventions and other features of a
routine. These values specify

 ■ the routine’s calling conventions

 ■ the sizes and locations of the routine’s parameters, if any

 ■ the size and location of the routine’s result, if any

The Mixed Mode Manager provides a number of constants that you can use to specify the procedure
information. See “Procedure Information Size Constants” (page 17) , “ProcInfo Field Offset And Width
Constants” (page 18) , “Calling Convention Constants” (page 12) , “Special Case Calling Convention
Constants” (page 26) , and “Register Constants” (page 21).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

8 Data Types
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

RDFlagsType
Defines a data type for routine descriptor flags.

typedef UInt8 RDFlagsType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineDescriptor
Contains information used by the Mixed Mode Manager to execute a routine.

struct RoutineDescriptor {
 UInt16 goMixedModeTrap;
 SInt8 version;
 RDFlagsType routineDescriptorFlags;
 UInt32 reserved1;
 UInt8 reserved2;
 UInt8 selectorInfo;
 UInt16 routineCount;
 RoutineRecord routineRecords[1];
};
typedef struct RoutineDescriptor RoutineDescriptor;
typedef RoutineDescriptor * RoutineDescriptorPtr;
typedef RoutineDescriptorPtr RoutineDescriptorHandle;

Fields
goMixedModeTrap

An A-line instruction that is used privately by the Mixed Mode Manager. When the emulator encounters
this instruction, it transfers control to the Mixed Mode Manager. This field contains the value $AAFE.

version
The version number of the RoutineDescriptor data type.

routineDescriptorFlags
A set of routine descriptor flags. Currently, all the bits in this field should be set to 0, unless you are
specifying a routine descriptor for a dispatched routine.

reserved1
Reserved. This field must initially be 0.

reserved2
Reserved. This field must be 0.

selectorInfo
Reserved. This field must be 0.

routineCount
The index of the final routine record in the following array, of routineRecords. Because the
routineRecords array is zero-based, this field does not contain an actual count of the routine records
contained in that array. Often, you will use a routine descriptor to describe a single procedure, in
which case this field should contain the value 0. You can, however, construct a routine descriptor that
contains pointers to both 680x0 and PowerPC code (known as a “fat” routine descriptor). In that case,
this field should contain the value 1.

Data Types 9
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

routineRecords
An array of routine records for the routines described by this routine descriptor. See
“RoutineRecord” (page 10) for the structure of a routine record. This array is zero-based.

Discussion
A routine descriptor is a data structure used by the Mixed Mode Manager to execute a routine. The external
interface to a routine descriptor is through a universal procedure pointer, of type UniversalProcPtr, which
is defined as a procedure pointer (if the code is 680x0 code) or as a pointer to a routine descriptor (if the
code is PowerPC code). A routine descriptor is defined by the RoutineDescriptor data type.

Your application (or other software) should never attempt to guide its execution by inspecting the value in
the ISA field of a routine record and jumping to the address in the procDescriptor field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineFlagsType
Defines a data type for routine flags.

typedef unsigned short RoutineFlagsType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineRecord
Cntains information about a particular routine.

10 Data Types
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

struct RoutineRecord {
 ProcInfoType procInfo;
 SInt8 reserved1;
 ISAType ISA;
 RoutineFlagsType routineFlags;
 ProcPtr procDescriptor;
 UInt32 reserved2;
 UInt32 selector;
};
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord * RoutineRecordPtr;
typedef RoutineRecordPtr RoutineRecordHandle;

Fields
procInfo

A value of type ProcInfoType that encodes essential information about the routine’s calling
conventions and parameters. See “Procedure Information Size Constants” (page 17), “ProcInfo Field
Offset And Width Constants” (page 18), “Calling Convention Constants” (page 12), “Special Case
Calling Convention Constants” (page 26), and “Register Constants” (page 21) for descriptions of the
constants you can use to set this field.

reserved1
Reserved. This field must be 0.

ISA
The instruction set architecture of the routine. See “Instruction Set Architectures” (page 14) for a
complete listing of the constants you can use to set this field.

routineFlags
A value of type RoutineFlagsType that contains a set of flags describing the routine. See “Routine
Entry Point Flags” (page 25), “Fragment Flags” (page 14), “ISA Flags” (page 15), “Routine Selector
Flags” (page 25), and “Default Routine Flags” (page 13) for descriptions of the constants you can use
to set this field.

procDescriptor
A pointer to the routine’s code. If the routine consists of 680x0 code and the
kProcDescriptorIsAbsolute flag is set in the routineFlags field, then this field contains the
address of the routine’s entry point. If the routine consists of 680x0 code and the
kProcDescriptorIsRelative flag is set, then this field contains the offset from the beginning of
the routine descriptor to the routine’s entry point. If the routine consists of PowerPC code, the
kFragmentIsPrepared flag is set, and the kProcDescriptorIsAbsolute flag is set, then this
field contains the address of the routine’s transition vector. If the routine consists of PowerPC code,
the kFragmentNeedsPreparing flag is set, and the kProcDescriptorIsRelative flag is set, then
this field contains the offset from the beginning of the routine descriptor to the routine’s entry point.

reserved2
Reserved. This field must be 0.

selector
Reserved. This field must be 0. For routines that are dispatched, this field contains the routine selector.

Discussion
A routine record is a data structure that contains information about a particular routine. The routine descriptor
specifies, among other things, the instruction set architecture of the routine, the number and size of the
routine’s parameters, the routine’s calling conventions, and the routine’s location in memory. At least one
routine record is contained in the routineRecords field of a routine descriptor. A routine record is defined
by the RoutineRecord data type.

Data Types 11
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

Constants

Calling Convention Constants
Specify a routine’s calling conventions.

typedef unsigned short CallingConventionType;
enum {
 kPascalStackBased = 0,
 kCStackBased = 1,
 kRegisterBased = 2,
 kD0DispatchedPascalStackBased = 8,
 kD1DispatchedPascalStackBased = 12,
 kD0DispatchedCStackBased = 9,
 kStackDispatchedPascalStackBased = 14,
 kThinkCStackBased = 5
};

Constants
kPascalStackBased

The routine follows normal Pascal calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCStackBased
The routine follows the C calling conventions employed by the MPW development environment.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterBased
The parameters are passed in registers.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kD0DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal conventions, and the routine selector is
passed in register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kD1DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal conventions, and the routine selector is
passed in register D1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

12 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kD0DispatchedCStackBased
The parameters are passed on the stack according to C conventions, and the routine selector is passed
in register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackDispatchedPascalStackBased
The routine selector and the parameters are passed on the stack.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kThinkCStackBased
The routine follows the C calling conventions employed by the THINK C software development
environment. Arguments are passed on the stack from right to left, and a result is returned in register
D0. All arguments occupy an even number of bytes on the stack. An argument having the size of a
char is passed in the high-order byte. You should always provide function prototypes; failure to do
so may cause THINK C to generate code that is incompatible with this parameter-passing convention.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 8) type to specify a routine’s calling conventions.

Default Routine Flags
Specify defaults for a routine.

enum {
 kRoutineIsNotDispatchedDefaultRoutine = 0x00,
 kRoutineIsDispatchedDefaultRoutine = 0x10
};

Constants
kRoutineIsNotDispatchedDefaultRoutine

This routine is not the default routine for a set of routines that is dispatched using a routine selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRoutineIsDispatchedDefaultRoutine
This routine is the default routine for a set of routines that is dispatched using a routine selector. If a
set of routines is dispatched using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine must be able to accept the same
procedure information for all routines. If possible, it is passed the procedure information passed in a
call to CallUniversalProc.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Constants 13
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

In general, you should use the constant kRoutineIsNotDispatchedDefaultRoutine. The constant and
kRoutineIsDispatchedDefaultRoutine is reserved for use with selector-based system software routines.

Fragment Flags
Used in the routineFlags field of a routine record.

enum {
 kFragmentIsPrepared = 0x00,
 kFragmentNeedsPreparing = 0x02
};

Constants
kFragmentIsPrepared

The fragment containing the code to be executed is already loaded into memory and prepared by
the Code Fragment Manager.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kFragmentNeedsPreparing
The fragment containing the code to be executed needs to be loaded into memory and prepared by
the Code Fragment Manager. If this flag is set, the kPowerPCISA and kProcDescriptorIsRelative
flags should also be set.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Instruction Set Architectures
Used in the ISA field of a routine record.

typedef SInt8 ISAType;
enum {
 kM68kISA = 0,
 kPowerPCISA = 1
};

Constants
kM68kISA

The routine consists of Motorola 680x0 code.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kPowerPCISA
The routine consists of PowerPC code.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

14 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

Discussion
The ISA field of a routine record contains a flag that specifies the instruction set architecture of a routine.
You can use constants to specify the instruction set architecture.

ISA Flags
Used in the routineFlags field of a routine record.

enum {
 kUseCurrentISA = 0x00,
 kUseNativeISA = 0x04
};

Constants
kUseCurrentISA

If possible, use the current instruction set architecture when executing a routine.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kUseNativeISA
Use the native instruction set architecture when executing a routine.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Current Mixed Mode State
Specifies the current version of the mixed-mode state record.

enum {
 kCurrentMixedModeStateRecord = 1
};

RTA Types

typedef SInt8 RTAType;
enum {
 kOld68kRTA = 0 << 4,
 kPowerPCRTA = 0 << 4,
 kCFM68kRTA = 1 << 4
};

Constants
kOld68kRTA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 15
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kPowerPCRTA
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCFM68kRTA
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Procedure Descriptors

enum {
 kProcDescriptorIsProcPtr = 0x00,
 kProcDescriptorIsIndex = 0x20
};

Constants
kProcDescriptorIsProcPtr

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kProcDescriptorIsIndex
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Routine Descriptor Version
Specifies the version of routine descriptor.

enum {
 kRoutineDescriptorVersion = 7
};

Special Case Constant
Used to specify a special case.

enum {
 kSpecialCase = 0x000F
};

Constants
kSpecialCase

The routine is a special case. You can use the following constants to specify a special case.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

16 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kX86ISA

enum {
 kX86ISA = 2
};

Constants
kX86ISA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kX86RTA

enum {
 kX86RTA = 2 << 4
};

Constants
kX86RTA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

_MixedModeMagic

enum {
 _MixedModeMagic = 0xAAFE
};

Constants
_MixedModeMagic

Procedure Information Size Constants
Specify the size (in bytes) of a value encoded in the procedure information for a routine.

enum {
 kNoByteCode = 0,
 kOneByteCode = 1,
 kTwoByteCode = 2,
 kFourByteCode = 3
};

Constants
kNoByteCode

The value occupies no bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 17
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kOneByteCode
The value occupies 1 byte.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kTwoByteCode
The value occupies 2 bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kFourByteCode
The value occupies 4 bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 8) to specify the size (in bytes) of a value encoded
in a routine’s procedure information.

ProcInfo Field Offset And Width Constants
Specify offsets to fields and the widths of the fields within a value.

18 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

enum {
 kCallingConventionWidth = 4,
 kCallingConventionPhase = 0,
 kCallingConventionMask = 0x0F,
 kResultSizeWidth = 2,
 kResultSizePhase = kCallingConventionWidth,
 kResultSizeMask = 0x30,
 kStackParameterWidth = 2,
 kStackParameterPhase = (kCallingConventionWidth + kResultSizeWidth),
 kStackParameterMask = 0xFFFFFFC0,
 kRegisterResultLocationWidth = 5,
 kRegisterResultLocationPhase = (kCallingConventionWidth + kResultSizeWidth),
 kRegisterParameterWidth = 5,
 kRegisterParameterPhase = (kCallingConventionWidth + kResultSizeWidth
+ kRegisterResultLocationWidth),
 kRegisterParameterMask = 0x7FFFF800,
 kRegisterParameterSizePhase = 0,
 kRegisterParameterSizeWidth = 2,
 kRegisterParameterWhichPhase = kRegisterParameterSizeWidth,
 kRegisterParameterWhichWidth = 3,
 kDispatchedSelectorSizeWidth = 2,
 kDispatchedSelectorSizePhase = (kCallingConventionWidth + kResultSizeWidth),
 kDispatchedParameterPhase = (kCallingConventionWidth + kResultSizeWidth
+ kDispatchedSelectorSizeWidth),
 kSpecialCaseSelectorWidth = 6,
 kSpecialCaseSelectorPhase = kCallingConventionWidth,
 kSpecialCaseSelectorMask = 0x03F0
};

Constants
kCallingConventionWidth

The number of bits in the procedure information that encode the calling convention information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCallingConventionPhase
The offset from the least significant bit in the procedure information to the calling convention
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCallingConventionMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kResultSizeWidth
The number of bits in the procedure information that encode the function result size information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kResultSizePhase
The offset from the least significant bit in the procedure information to the function result size
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 19
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kResultSizeMask
A mask for the bits in the procedure information that encode the function result size information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterWidth
The number of bits in the procedure information that encode the size of a stack-based parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterPhase
The offset from the least significant bit in the procedure information to the stack parameter information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterResultLocationWidth
The number of bits in the procedure information that encode which register the result will be stored
in.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterResultLocationPhase
The offset from the least significant bit in the procedure information to the result register information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWidth
The number of bits in the procedure information that encode the information about a register-based
parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterPhase
The offset from the least significant bit in the procedure information to the register parameter
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterSizePhase
The offset from the beginning of a register parameter information field to the encoded size of the
parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

20 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kRegisterParameterSizeWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWhichPhase
The offset from the beginning of a register parameter information field to the encoded register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWhichWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedSelectorSizeWidth
The number of bits in the procedure information that encode the size of a routine-dispatching selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedSelectorSizePhase
The offset from the least significant bit in the procedure information to the selector size information
of a routine that is dispatched though a selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedParameterPhase
The offset from the least significant bit in the procedure information to the parameter information
of a routine that is dispatched though a selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorPhase
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The offsets to fields and the widths of the fields within a value of type ProcInfoType (page 8) are defined
by constants.

Register Constants
Specify registers that are encoded in the procedure information for a routine.

Constants 21
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

enum {
 kRegisterD0 = 0,
 kRegisterD1 = 1,
 kRegisterD2 = 2,
 kRegisterD3 = 3,
 kRegisterD4 = 8,
 kRegisterD5 = 9,
 kRegisterD6 = 10,
 kRegisterD7 = 11,
 kRegisterA0 = 4,
 kRegisterA1 = 5,
 kRegisterA2 = 6,
 kRegisterA3 = 7,
 kRegisterA4 = 12,
 kRegisterA5 = 13,
 kRegisterA6 = 14,
 kCCRegisterCBit = 16,
 kCCRegisterVBit = 17,
 kCCRegisterZBit = 18,
 kCCRegisterNBit = 19,
 kCCRegisterXBit = 20
};
typedef unsigned short registerSelectorType;

Constants
kRegisterD0

Register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD1
Register D1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD2
Register D2.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD3
Register D3.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD4
Register D4.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD5
Register D5.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

22 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kRegisterD6
Register D6.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD7
Register D7.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA0
Register A0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA1
Register A1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA2
Register A2.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA3
Register A3.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA4
Register A4.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA5
Register A5.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA6
Register A6.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterCBit
The C (carry) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 23
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kCCRegisterVBit
The V (overflow) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterZBit
The Z (zero) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterNBit
The N (negative) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterXBit
The X (extend) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
For register-based routines, the registers are encoded in the routine’s procedure information using these
constants.

Routine Descriptor Flags
Specify attributes of the described routine.

enum {
 kSelectorsAreNotIndexable = 0x00,
 kSelectorsAreIndexable = 0x01
};

Constants
kSelectorsAreNotIndexable

For dispatched routines, the recognized routine selectors are not contiguous.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSelectorsAreIndexable
For dispatched routines, the recognized routine selectors are contiguous and therefore indexable.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineDescriptorFlags field of a routine descriptor contains a set of routine descriptor flags that
specify attributes of the described routine. You can use constants to specify the routine descriptor flags. In
general, you should use the constant kSelectorsAreNotIndexable when constructing your own routine
descriptors; the value kSelectorsAreIndexable is reserved for use by Apple.

24 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

Routine Entry Point Flags
Specify information about the entry point for a routine.

enum {
 kProcDescriptorIsAbsolute = 0x00,
 kProcDescriptorIsRelative = 0x01
};

Constants
kProcDescriptorIsAbsolute

The address of the routine’s entry point specified in the procDescriptor field of a routine record
is an absolute address.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kProcDescriptorIsRelative
The address of the routine’s entry point specified in the procDescriptor field of a routine record
is relative to the beginning of the routine descriptor. If the code is contained in a resource and its
absolute location is not known until run time, you should set this flag.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Routine Selector Flags
Specify whether or not to pass a selector to a routine.

enum {
 kPassSelector = 0x00,
 kDontPassSelector = 0x08
};

Constants
kPassSelector

Pass the routine selector to the target routine as a parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDontPassSelector
Do not pass the routine selector to the target routine as a parameter. You should not use this flag for
680x0 routines.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Constants 25
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

In general, you should use the constant kPassSelector. The constant kDontPassSelector is reserved
for use with selector-based system software routines.

Special Case Calling Convention Constants
Specify the calling conventions for a routine.

enum {
 kSpecialCaseHighHook = 0,
 kSpecialCaseCaretHook = 0,
 kSpecialCaseEOLHook = 1,
 kSpecialCaseWidthHook = 2,
 kSpecialCaseTextWidthHook = 2,
 kSpecialCaseNWidthHook = 3,
 kSpecialCaseDrawHook = 4,
 kSpecialCaseHitTestHook = 5,
 kSpecialCaseTEFindWord = 6,
 kSpecialCaseProtocolHandler = 7,
 kSpecialCaseSocketListener = 8,
 kSpecialCaseTERecalc = 9,
 kSpecialCaseTEDoText = 10,
 kSpecialCaseGNEFilterProc = 11,
 kSpecialCaseMBarHook = 12
};

Constants
kSpecialCaseHighHook

The routine follows the calling conventions documented in Inside Macintosh: Text; a rectangle is on
the stack and a pointer is in register A3; no result is returned.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseCaretHook
The routine follows the calling conventions documented in Inside Macintosh: Text; a rectangle is on
the stack and a pointer is in register A3; no result is returned.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseEOLHook
Parameters are passed to the routine in registers A3, A4, and D0, and output is returned in the Z flag
of the Status Register. An EOLHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and output is returned in
register D1. A WIDTHHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

26 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kSpecialCaseTextWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and output is returned in
register D1. A TextWidthHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseNWidthHook
Parameters are passed to the routine in registers A0, A2, A3, A4, D0, and D1, and output is returned
in register D1. An nWIDTHHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseDrawHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and no result is returned. A
DRAWHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseHitTestHook
Parameters are passed to the routine in registers A0, A3, A4, D0, D1, and D2, and output is returned
in registers D0, D1, and D2. A HITTESTHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseTEFindWord
Parameters are passed to the routine in registers A3, A4, D0, and D2, and output is returned in registers
D0 and D1. A TEFindWord hook has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseProtocolHandler
Parameters are passed to the routine in registers A0, A1, A2, A3, A4, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A protocol handler has these calling
conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSocketListener
Parameters are passed to the routine in registers A0, A1, A2, A3, A4, in the low-order byte of register
D0, and in the low-order word of register D1; output is returned in the Z flag of the Status Register.
A socket listener has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseTERecalc
Parameters are passed to the routine in registers A3 and D7, and output is returned in registers D2,
D3, and D4. A TextEdit line-start recalculation routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 27
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

kSpecialCaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and D7, and output is returned in registers
A0 and D0. A TextEdit text-display, hit-test, and caret-positioning routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseGNEFilterProc
Parameters are passed to the routine in registers A1 and D0 and on the stack, and output is returned
on the stack. A GetNextEvent filter procedure has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseMBarHook
Parameters are passed to the routine on the stack, and output is returned in register D0. A menu bar
hook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 8) type to specify a routine’s calling conventions.

Result Codes

The most common result codes returned by the Mixed Mode Manager are listed below.

DescriptionValueResult Code

An internal error has occurred.-2526mmInternalError

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availabilty information by using the Mixed Mode Manager selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

28 Result Codes
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Mixed Mode Manager Reference

Table A-1 (page 29) lists functions that are unsupported and you should no longer use. These functions have
been removed from the Mixed Mode Manager and redefined as macros for the purpose of source compatibility
with code ported to CFM. See header file MixedMode.h for details.

Table A-1 Porting notes for unsupported Mixed Mode Manager functions

Porting notesUnsupported functions

See the header file MixedMode.h for information.CallOSTrapUniversalProc

See the header file MixedMode.h for information.CallUniversalProc

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

DisposeRoutineDescriptor

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewFatRoutineDescriptor

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewRoutineDescriptor

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

DisposeRoutineDescriptorTrap

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewFatRoutineDescriptorTrap

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

NewRoutineDescriptorTrap

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

RestoreMixedModeState

Only useful for CFM-68K applications. Does nothing in
PowerPC-native code.

SaveMixedModeState

29
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Unsupported Functions

30
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Unsupported Functions

This table describes the changes to Mixed Mode Manager Reference.

NotesDate

Move unsupported functions to the Appendix.2003-04-01

Added information to the introduction.

Added abstracts to many data types and constants.

Updated formatting, linking, and introduction.2003-02-01

31
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

32
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

_MixedModeMagic 17
_MixedModeMagic constant 17

C

Calling Convention Constants 12
Current Mixed Mode State 15

D

Default Routine Flags 13

F

Fragment Flags 14

I

Instruction Set Architectures 14
ISA Flags 15

K

kCallingConventionMask constant 19
kCallingConventionPhase constant 19
kCallingConventionWidth constant 19
kCCRegisterCBit constant 23
kCCRegisterNBit constant 24
kCCRegisterVBit constant 24
kCCRegisterXBit constant 24
kCCRegisterZBit constant 24

kCFM68kRTA constant 16
kCStackBased constant 12
kD0DispatchedCStackBased constant 13
kD0DispatchedPascalStackBased constant 12
kD1DispatchedPascalStackBased constant 12
kDispatchedParameterPhase constant 21
kDispatchedSelectorSizePhase constant 21
kDispatchedSelectorSizeWidth constant 21
kDontPassSelector constant 25
kFourByteCode constant 18
kFragmentIsPrepared constant 14
kFragmentNeedsPreparing constant 14
kM68kISA constant 14
kNoByteCode constant 17
kOld68kRTA constant 15
kOneByteCode constant 18
kPascalStackBased constant 12
kPassSelector constant 25
kPowerPCISA constant 14
kPowerPCRTA constant 16
kProcDescriptorIsAbsolute constant 25
kProcDescriptorIsIndex constant 16
kProcDescriptorIsProcPtr constant 16
kProcDescriptorIsRelative constant 25
kRegisterA0 constant 23
kRegisterA1 constant 23
kRegisterA2 constant 23
kRegisterA3 constant 23
kRegisterA4 constant 23
kRegisterA5 constant 23
kRegisterA6 constant 23
kRegisterBased constant 12
kRegisterD0 constant 22
kRegisterD1 constant 22
kRegisterD2 constant 22
kRegisterD3 constant 22
kRegisterD4 constant 22
kRegisterD5 constant 22
kRegisterD6 constant 23
kRegisterD7 constant 23
kRegisterParameterMask constant 20
kRegisterParameterPhase constant 20

33
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Index

kRegisterParameterSizePhase constant 20
kRegisterParameterSizeWidth constant 21
kRegisterParameterWhichPhase constant 21
kRegisterParameterWhichWidth constant 21
kRegisterParameterWidth constant 20
kRegisterResultLocationPhase constant 20
kRegisterResultLocationWidth constant 20
kResultSizeMask constant 20
kResultSizePhase constant 19
kResultSizeWidth constant 19
kRoutineIsDispatchedDefaultRoutine constant 13
kRoutineIsNotDispatchedDefaultRoutine constant

13
kSelectorsAreIndexable constant 24
kSelectorsAreNotIndexable constant 24
kSpecialCase constant 16
kSpecialCaseCaretHook constant 26
kSpecialCaseDrawHook constant 27
kSpecialCaseEOLHook constant 26
kSpecialCaseGNEFilterProc constant 28
kSpecialCaseHighHook constant 26
kSpecialCaseHitTestHook constant 27
kSpecialCaseMBarHook constant 28
kSpecialCaseNWidthHook constant 27
kSpecialCaseProtocolHandler constant 27
kSpecialCaseSelectorMask constant 21
kSpecialCaseSelectorPhase constant 21
kSpecialCaseSelectorWidth constant 21
kSpecialCaseSocketListener constant 27
kSpecialCaseTEDoText constant 28
kSpecialCaseTEFindWord constant 27
kSpecialCaseTERecalc constant 27
kSpecialCaseTextWidthHook constant 27
kSpecialCaseWidthHook constant 26
kStackDispatchedPascalStackBased constant 13
kStackParameterMask constant 20
kStackParameterPhase constant 20
kStackParameterWidth constant 20
kThinkCStackBased constant 13
kTwoByteCode constant 18
kUseCurrentISA constant 15
kUseNativeISA constant 15
kX86ISA 17
kX86ISA constant 17
kX86RTA 17
kX86RTA constant 17

M

MixedModeStateRecord structure 8
mmInternalError constant 28

P

Procedure Descriptors 16
Procedure Information Size Constants 17
ProcInfo Field Offset And Width Constants 18
ProcInfoType data type 8

R

RDFlagsType data type 9
Register Constants 21
Routine Descriptor Flags 24
Routine Descriptor Version 16
Routine Entry Point Flags 25
Routine Selector Flags 25
RoutineDescriptor structure 9
RoutineFlagsType data type 10
RoutineRecord structure 10
RTA Types 15

S

Special Case Calling Convention Constants 26
Special Case Constant 16

34
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

INDEX

	Mixed Mode Manager Reference
	Contents
	Tables
	Mixed Mode Manager Reference
	Overview
	Data Types
	MixedModeStateRecord
	ProcInfoType
	RDFlagsType
	RoutineDescriptor
	RoutineFlagsType
	RoutineRecord

	Constants
	Calling Convention Constants
	Default Routine Flags
	Fragment Flags
	Instruction Set Architectures
	ISA Flags
	Current Mixed Mode State
	RTA Types
	Procedure Descriptors
	Routine Descriptor Version
	Special Case Constant
	kX86ISA
	kX86RTA
	_MixedModeMagic
	Procedure Information Size Constants
	ProcInfo Field Offset And Width Constants
	Register Constants
	Routine Descriptor Flags
	Routine Entry Point Flags
	Routine Selector Flags
	Special Case Calling Convention Constants

	Result Codes
	Gestalt Constants

	Appendix A: Unsupported Functions
	Revision History
	Index
	Symbols
	C
	D
	F
	I
	K
	M
	P
	R
	S

