
Multiprocessing Services Reference
Carbon > Process Management

2008-02-08



Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, eMac, Logic,
Mac, Mac OS, MPW, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Multiprocessing Services Reference 7

Overview 7
Functions by Task 7

Determining Multiprocessing Services And Processor Availability 7
Creating and Handling Message Queues 8
Creating and Handling Semaphores 8
Creating and Scheduling Tasks 8
Handling Critical Regions 9
Handling Event Groups 9
Handling Kernel Notifications 9
Accessing Per-Task Storage Variables 9
Memory Allocation Functions 10
Remote Calling Functions 10
Timer Services Functions 10
Exception Handling Functions 11
Debugger Support Functions 11

Functions 11
MPAllocate 11
MPAllocateAligned 12
MPAllocateTaskStorageIndex 12
MPArmTimer 13
MPBlockClear 14
MPBlockCopy 14
MPCancelTimer 15
MPCauseNotification 16
MPCreateCriticalRegion 16
MPCreateEvent 17
MPCreateNotification 17
MPCreateQueue 18
MPCreateSemaphore 18
MPCreateTask 19
MPCreateTimer 20
MPCurrentTaskID 21
MPDataToCode 21
MPDeallocateTaskStorageIndex 22
MPDelayUntil 22
MPDeleteCriticalRegion 23
MPDeleteEvent 23
MPDeleteNotification 24
MPDeleteQueue 24
MPDeleteSemaphore 25

3
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.



MPDeleteTimer 25
MPDisposeTaskException 26
MPEnterCriticalRegion 26
MPExit 27
MPExitCriticalRegion 27
MPExtractTaskState 28
MPFree 28
MPGetAllocatedBlockSize 29
MPGetNextCpuID 29
MPGetNextTaskID 30
MPGetTaskStorageValue 30
MPModifyNotification 31
MPModifyNotificationParameters 32
MPNotifyQueue 32
MPProcessors 33
MPProcessorsScheduled 33
MPRegisterDebugger 34
MPRemoteCall 34
MPRemoteCallCFM 35
MPSetEvent 36
MPSetExceptionHandler 36
MPSetQueueReserve 37
MPSetTaskState 38
MPSetTaskStorageValue 39
MPSetTaskType 39
MPSetTaskWeight 40
MPSetTimerNotify 40
MPSignalSemaphore 42
MPTaskIsPreemptive 42
MPTerminateTask 43
MPThrowException 44
MPUnregisterDebugger 44
MPWaitForEvent 45
MPWaitOnQueue 46
MPWaitOnSemaphore 47
MPYield 47
_MPIsFullyInitialized 48

Callbacks 48
MPRemoteProcedure 48
TaskProc 49

Data Types 49
MPAddressSpaceID 49
MPAddressSpaceInfo 50
MPAreaID 50
MPCoherenceID 50
MPConsoleID 50

4
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CONTENTS



MPCpuID 51
MPCriticalRegionID 51
MPCriticalRegionInfo 51
MPEventFlags 52
MPEventID 52
MPEventInfo 52
MPExceptionKind 52
MPNotificationID 53
MPNotificationInfo 53
MPOpaqueID 53
MPOpaqueIDClass 54
MPPageSizeClass 54
MPProcessID 54
MPQueueID 54
MPQueueInfo 55
MPSemaphoreCount 55
MPSemaphoreID 55
MPSemaphoreInfo 56
MPTaskID 56
MPTaskInfo 56
MPTaskInfoVersion2 58
MPTaskStateKind 59
MPTaskWeight 59
MPTimerID 59
TaskStorageIndex 59
TaskStorageValue 59

Constants 60
Allocation constants 60
Task IDs 60
Data Structure Version Constants 60
Values for the MPOpaqueIDClass type 61
Memory Allocation Alignment Constants 63
Memory Allocation Option Constants 65
MPDebuggerLevel 66
Library Version Constants 66
Remote Call Context Option Constants 67
Task Creation Options 68
Task Exception Disposal Constants 68
Task Information Structure Version Constant 69
Task Run State Constants 70
Task State Constants 70
Timer Duration Constants 71
Timer Option Masks 72

Result Codes 73
Gestalt Constants 74

5
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CONTENTS



Document Revision History 75

Index 77

6
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CONTENTS



Framework: CoreServices/CoreServices.h

Companion guide Multiprocessing Services Programming Guide

Declared in Multiprocessing.h
MultiprocessingInfo.h

Overview

Multiprocessing Services is an API that lets you create preemptive tasks in your application that can run on
one or more microprocessors. Unlike the cooperative threads created by the Thread Manager, Multiprocessing
Services automatically divides processor time among the available tasks, so that no particular task can
monopolize the system. This document is relevant to you if you want to add multitasking capability to your
Mac OS applications.

In Mac OS X, Carbon supports Multiprocessing Services with the following restrictions:

 ■ Debugging functions are not implemented. Use the mach APIs provided by the system to implement
debugging services.

 ■ Opaque notification IDs are local to your process; they are not globally addressable across processes.

 ■ Global memory allocation is not supported.

Functions by Task

Determining Multiprocessing Services And Processor Availability

_MPIsFullyInitialized  (page 48)
Indicates whether Multiprocessing Services is available for use.

MPGetNextCpuID  (page 29)
Obtains the next CPU ID in the list of physical processors of the specified memory coherence group.

MPProcessors  (page 33)
Returns the number of processors on the host computer.

MPProcessorsScheduled  (page 33)
Returns the number of active processors available on the host computer.

Overview 7
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Creating and Handling Message Queues

MPCreateQueue  (page 18)
Creates a message queue.

MPDeleteQueue  (page 24)
Deletes a message queue.

MPNotifyQueue  (page 32)
Sends a message to the specified message queue.

MPSetQueueReserve  (page 37)
Reserves space for messages on a specified message queue.

MPWaitOnQueue  (page 46)
Obtains a message from a specified message queue.

Creating and Handling Semaphores

MPCreateSemaphore  (page 18)
Creates a semaphore.

MPDeleteSemaphore  (page 25)
Removes a semaphore.

MPSignalSemaphore  (page 42)
Signals a semaphore.

MPWaitOnSemaphore  (page 47)
Waits on a semaphore

Creating and Scheduling Tasks

MPCreateTask  (page 19)
Creates a preemptive task.

MPCurrentTaskID  (page 21)
Obtains the task ID of the currently-executing preemptive task

MPSetTaskType  (page 39)
Sets the type of the task.

MPExit  (page 27)
Allows a task to terminate itself

MPGetNextTaskID  (page 30)
Obtains the next task ID in the list of available tasks.

MPSetTaskWeight  (page 40)
Assigns a relative weight to a task, indicating how much processor time it should receive compared
to other available tasks.

MPTaskIsPreemptive  (page 42)
Determines whether a task is preemptively scheduled.

MPTerminateTask  (page 43)
Terminates an existing task.

8 Functions by Task
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPYield  (page 47)
Allows a task to yield the processor to another task.

Handling Critical Regions

MPCreateCriticalRegion  (page 16)
Creates a critical region object.

MPDeleteCriticalRegion  (page 23)
Removes the specified critical region object.

MPEnterCriticalRegion  (page 26)
Attempts to enter a critical region.

MPExitCriticalRegion  (page 27)
Exits a critical region.

Handling Event Groups

MPCreateEvent  (page 17)
Creates an event group.

MPDeleteEvent  (page 23)
Removes an event group.

MPSetEvent  (page 36)
Merges event flags into a specified event group.

MPWaitForEvent  (page 45)
Retrieves event flags from a specified event group.

Handling Kernel Notifications

MPCauseNotification  (page 16)
Signals a kernel notification.

MPCreateNotification  (page 17)
Creates a kernel notification

MPDeleteNotification  (page 24)
Removes a kernel notification.

MPModifyNotification  (page 31)
Adds a simple notification to a kernel notification.

MPModifyNotificationParameters  (page 32)
 

Accessing Per-Task Storage Variables

MPAllocateTaskStorageIndex  (page 12)
Returns an index number to access per-task storage.

Functions by Task 9
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPDeallocateTaskStorageIndex  (page 22)
Frees an index number used to access per-task storage

MPGetTaskStorageValue  (page 30)
Gets the storage value stored at a specified index number.

MPSetTaskStorageValue  (page 39)
Sets the storage value for a given index number.

Memory Allocation Functions

MPAllocate  (page 11)
Allocates a nonrelocatable memory block. (Deprecated. Use MPAllocateAligned instead.)

MPAllocateAligned  (page 12)
Allocates a nonrelocatable memory block.

MPBlockClear  (page 14)
Clears a block of memory.

MPBlockCopy  (page 14)
Copies a block of memory.

MPDataToCode  (page 21)
Designates the specified block of memory as executable code.

MPFree  (page 28)
Frees memory allocated by MPAllocateAligned.

MPGetAllocatedBlockSize  (page 29)
Returns the size of a memory block.

Remote Calling Functions

MPRemoteCall  (page 34)
Calls a non-reentrant function and blocks the current task.

MPRemoteCallCFM  (page 35)
Calls a non-reentrant function and blocks the current task.

Timer Services Functions

MPArmTimer  (page 13)
Arms the timer to expire at a given time.

MPCancelTimer  (page 15)
Cancels an armed timer.

MPCreateTimer  (page 20)
Creates a timer.

MPDelayUntil  (page 22)
Blocks the calling task until a specified time.

MPDeleteTimer  (page 25)
Removes a timer.

10 Functions by Task
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPSetTimerNotify  (page 40)
Sets the notification information associated with a timer.

Exception Handling Functions

MPDisposeTaskException  (page 26)
Removes a task exception.

MPExtractTaskState  (page 28)
Extracts state information from a suspended task.

MPSetExceptionHandler  (page 36)
Sets an exception handler for a task.

MPSetTaskState  (page 38)
Sets state information for a suspended task.

MPThrowException  (page 44)
Throws an exception to a specified task.

Debugger Support Functions

MPRegisterDebugger  (page 34)
Registers a debugger.

MPUnregisterDebugger  (page 44)
Unregisters a debugger.

Functions

MPAllocate
Allocates a nonrelocatable memory block. (Deprecated. Use MPAllocateAligned instead.)

LogicalAddress MPAllocate (
    ByteCount size
);

Parameters
size

The size, in bytes, of the memory block to allocate.

Return Value
A pointer to the allocated memory. If the function cannot allocate the requested memory or the requested
alignment, the returned address is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Functions 11
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPAllocateAligned
Allocates a nonrelocatable memory block.

LogicalAddress MPAllocateAligned (
   ByteCount size,
   UInt8 alignment,
   OptionBits options
);

Parameters
size

The size, in bytes, of the memory block to allocate.

alignment
The desired alignment of the allocated memory block. See “Memory Allocation Alignment
Constants” (page 63) for a list of possible values to pass. Note that there will be a minimum alignment
regardless of the requested alignment. If the requested memory block is 4 bytes or smaller, the block
will be at least 4-byte aligned. If the requested block is greater than 4 bytes, the block will be at least
8-byte aligned.

options
Any optional information to use with this call. See “Memory Allocation Option Constants” (page 65)
for a list of possible values to pass.

Return Value
A pointer to the allocated memory. If the function cannot allocate the requested memory or the requested
alignment, the returned address is NULL.

Discussion
The memory referenced by the returned address is guaranteed to be accessible by the application's cooperative
task and any preemptive tasks that it creates, but not by other applications or their preemptive tasks. Any
existing non-global heap blocks are freed when the application terminates. As with all shared memory, you
must explicitly synchronize access to allocated heap blocks using a notification mechanism.

You can replicate the effect of the older MPAllocate function by calling MPAllocateAligned with 32-byte
alignment and no options.

Also see the function MPFree (page 28).

Special Considerations

Mac OS X does not support allocation of global (cross address space) or resident memory with this function.
In addition, passing the kMPAllocateNoGrowthMask constant in the options parameter has no effect in
Mac OS X, since memory allocation is done with sparse heaps.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPAllocateTaskStorageIndex
Returns an index number to access per-task storage.

12 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



OSStatus MPAllocateTaskStorageIndex (
   TaskStorageIndex *taskIndex
);

Parameters
index

On return, index contains an index number you can use to store task data.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
A call to the function MPAllocateTaskStorageIndex returns an index number that is common across all
tasks in the current process. You can use this index number in calls to MPSetTaskStorageValue (page 39)
and MPGetTaskStorageValue (page 30) to set a different value for each task using the same index.

You can think of the task storage area as a two dimensional array cross-referenced by the task storage index
number and the task ID. Note that since the amount of per-task storage is determined when the task is
created, the number of possible index values associated with a task is limited.

Also see the function MPDeallocateTaskStorageIndex (page 22).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPArmTimer
Arms the timer to expire at a given time.

OSStatus MPArmTimer (
   MPTimerID timerID,
   AbsoluteTime *expirationTime,
   OptionBits options
);

Parameters
timerID

The ID of the timer you want to arm.

expirationTime
A pointer to a value that specifies when you want the timer to expire. Note that if you arm the timer
with a time that has already passed, the timer expires immediately.

options
Any optional actions. See “Timer Option Masks” (page 72) for a list of possible values.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the timer has already expired, the
reset does not take place and the function returns kMPInsufficientResourcesErr.

Functions 13
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
The expiration time is an absolute time, which you can generate by calling the Driver Services Library function
UpTime. When the timer expires, a notification is sent to the notification mechanism specified in the last
MPSetTimerNotify (page 40) call. If the specified notification ID has become invalid, no action is taken
when the timer expires. The timer itself is deleted when it expires unless you specified the
kMPPreserveTimerID option in the options parameter.

Also see the function MPCancelTimer (page 15).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPBlockClear
Clears a block of memory.

void MPBlockClear (
   LogicalAddress address,
   ByteCount size
);

Parameters
address

The starting address of the memory block you want to clear.

size
The number of bytes you want to clear.

Discussion
As with all shared memory, your application must synchronize access to the memory blocks to avoid data
corruption. MPBlockClear ensures the clearing stays within the bounds of the area specified by size, but
the calling task can be preempted during the copying process.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPBlockCopy
Copies a block of memory.

14 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



void MPBlockCopy (
   LogicalAddress source,
   LogicalAddress destination,
   ByteCount size
);

Parameters
source

The starting address of the memory block you want to copy.

destination
The location to which you want to copy the memory block.

size
The number of bytes to copy.

Discussion
This function simply calls through to the Driver Services Library function BlockMoveData. Note that you
should not make any assumptions about the state of the destination memory while this function is executing.
In the intermediate state, values may be present that are neither the original nor the final ones. For example,
this function may use the 'dcbz' instruction. If the underlying memory is not cacheable, if the memory is
write-through instead of copy-back, or if the cache block is flushed for some reason, the 'dcbz' instruction
will write zeros to the destination. You can avoid the use of the 'dcbz' instruction by calling
BlockMoveDataUncached, but even that function makes no other guarantees about the memory block's
intermediate state.

As with all shared memory, your application must synchronize access to the memory blocks to avoid data
corruption. MPBlockCopy ensures the copying stays within the bounds of the area specified by size, but
the calling task can be preempted during the copying process.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCancelTimer
Cancels an armed timer.

OSStatus MPCancelTimer (
   MPTimerID timerID,
   AbsoluteTime *timeRemaining
);

Parameters
timerID

The ID of the armed timer you want to cancel.

timeRemaining
On return, the timeRemaining contains the time remaining before the timer would have expired.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the timer has already expired, this
function returns kMPInsufficientResourcesErr.

Functions 15
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
Also see the function MPArmTimer (page 13).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCauseNotification
Signals a kernel notification.

OSStatus MPCauseNotification (
   MPNotificationID notificationID
);

Parameters
notificationID

The ID of the kernel notification you want to signal.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
You call this function to signal a kernel notification much as you would signal any simple notification (for
example, MPNotifyQueue (page 32) ).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateCriticalRegion
Creates a critical region object.

OSStatus MPCreateCriticalRegion (
   MPCriticalRegionID *criticalRegion
);

Parameters
criticalRegion

On return, the criticalRegion contains the ID of the newly created critical region object.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Also see the function MPDeleteCriticalRegion (page 23).

Availability
Available in Mac OS X v10.0 and later.

16 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

MPCreateEvent
Creates an event group.

OSStatus MPCreateEvent (
   MPEventID *event
);

Parameters
event

On return, event contains the ID of the newly created event group.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Event groups are created from dynamically allocated internal resources. Other tasks may be competing for
these resources so it is possible that this function will not be able to create an event group.

Also see the function MPDeleteEvent (page 23).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateNotification
Creates a kernel notification

OSStatus MPCreateNotification (
   MPNotificationID *notificationID
);

Parameters
notificationID

On return, notificationID points to the newly created kernel notification.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
After creating the kernel notification object, you can add simple notifications by calling the function
MPModifyNotification (page 31).

Also see the function MPDeleteNotification (page 24).

Availability
Available in Mac OS X v10.0 and later.

Functions 17
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

MPCreateQueue
Creates a message queue.

OSStatus MPCreateQueue (
   MPQueueID *queue
);

Parameters
queue

On return, the variable contains the ID of the newly created message queue.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If a queue could not be created,
MPCreateQueue returns kMPInsufficientResourcesErr.

Discussion
This call creates a message queue, which can be used to notify (that is, send) and wait for (that is, receive)
messages consisting of three pointer-sized values in a preemptively safe manner.

Message queues are created from dynamically allocated internal resources. Other tasks may be competing
for these resources so it is possible this function may not be able to create a queue.

See also the functions MPDeleteQueue (page 24) and MPSetQueueReserve (page 37).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateSemaphore
Creates a semaphore.

OSStatus MPCreateSemaphore (
   MPSemaphoreCount maximumValue,
   MPSemaphoreCount initialValue,
   MPSemaphoreID *semaphore
);

Parameters
maximumValue

The maximum allowed value of the semaphore.

initialValue
The initial value of the semaphore.

semaphore
On return, semaphore contains the ID of the newly–created semaphore.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

18 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
If you want to create a binary semaphore, you can call the macro MPCreateBinarySemaphore
(MPSemaphoreID *semaphore) instead, which simply callsMPCreateSemaphorewith bothmaximumValue
and initialValue set to 1.

Also see the function MPDeleteSemaphore (page 25).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateTask
Creates a preemptive task.

OSStatus MPCreateTask (
   TaskProc entryPoint,
   void *parameter,
   ByteCount stackSize,
   MPQueueID notifyQueue,
   void *terminationParameter1,
   void *terminationParameter2,
   MPTaskOptions options,
   MPTaskID *task
);

Parameters
entryPoint

A pointer to the task function. The task function should take a single pointer-sized parameter and
return a value of type OSStatus.

parameter
The parameter to pass to the task function.

stackSize
The size of the stack assigned to the task. Note that you should be careful not to exceed the bounds
of the stack, since stack overflows may not be detected. Specifying zero for the size will result in a
default stack size of 4KB.

Note that in Mac OS X prior to version 10.1, this parameter is ignored, and all stacks have the default
size of 512 KB. Versions 10.1 and later do not have this limitation.

notifyQueue
The ID of the message queue to which the system will send a message when the task terminates. You
specify the first two values of the message in the parameters terminationParameter1 and
terminationParameter2 respectively. The last message value contains the result code of the task
function.

terminationParameter1
A pointer-sized value that is sent to the message queue specified by the parameter notifyQueue
when the task terminates.

terminationParameter2
A pointer-sized value that is sent to the message queue specified by the parameter notifyQueue
when the task terminates.

Functions 19
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



options
Optional attributes of the preemptive task. See “Task Creation Options” (page 68) for a list of possible
values.

task
On return, task points to the ID of the newly created task.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If MPCreateTask could not create the
task because some critical resource was not available, the function returns kMPInsufficientResourcesErr.
Usually this is due to lack of memory to allocate the internal data structures associated with the task or the
stack. The function also returns kMPInsufficientResourcesErr if any reserved option bits are set.

Discussion
Tasks are created in the unblocked state, ready for execution. A task can terminate in the following ways:

 ■ By returning from its entry point

 ■ By calling MPExit (page 27)

 ■ When specified as the target of an MPTerminateTask (page 43) call

 ■ If a hardware-detected exception or programming exception occurs and no exception handler is installed

 ■ If the application calls ExitToShell

Task resources (its stack, active timers, internal structures related to the task, and so on) are reclaimed by the
system when the task terminates. The task's address space is inherited from the process address space. All
existing tasks are terminated when the owning process terminates.

To set the relative processor weight to be assigned to a task, use the function MPSetTaskWeight (page 40).

See also the function MPTerminateTask (page 43).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateTimer
Creates a timer.

OSStatus MPCreateTimer (
   MPTimerID *timerID
);

Parameters
timerID

On return, the timerID contains the ID of the newly created timer.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
You can use a timer to notify an event, queue, or semaphore after a specified amount of time has elapsed.

20 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Timer objects are created from dynamically-allocated internal resources. Other tasks may be competing for
these resources so it is possible this function may not be able to create one.

To specify the notification mechanism to signal, use the function MPSetTimerNotify (page 40).

Also see the functions MPDeleteTimer (page 25) and MPArmTimer (page 13).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCurrentTaskID
Obtains the task ID of the currently-executing preemptive task

MPTaskID MPCurrentTaskID (
   void
);

Return Value
The task ID of the current preemptive task. See the description of the MPTaskID data type.

Discussion
Returns the ID of the current preemptive task. If called from a cooperative task, this function returns an ID
which is different than the ID of any preemptive task. Nonpreemptive processes may or may not have different
task IDs for each application; future implementations of this API may behave differently in this regard.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDataToCode
Designates the specified block of memory as executable code.

void MPDataToCode (
   LogicalAddress address,
   ByteCount size
);

Parameters
address

The starting address of the memory block you want to designate as code.

size
The size of the memory block.

Functions 21
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
Since processors need to differentiate between code and data in memory, you should call this function to
tag any executable code that your tasks may generate.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Multiprocessing.h

MPDeallocateTaskStorageIndex
Frees an index number used to access per-task storage

OSStatus MPDeallocateTaskStorageIndex (
   TaskStorageIndex taskIndex
);

Parameters
index

The index number you want to deallocate.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Also see the function MPAllocateTaskStorageIndex (page 12).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDelayUntil
Blocks the calling task until a specified time.

OSStatus MPDelayUntil (
   AbsoluteTime *expirationTime
);

Parameters
expirationTime

The time to unblock the task.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
You cannot call this function from a cooperative task.

22 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteCriticalRegion
Removes the specified critical region object.

OSStatus MPDeleteCriticalRegion (
   MPCriticalRegionID criticalRegion
);

Parameters
criticalRegion

The critical region object you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Calling this function unblocks all tasks waiting to enter the critical region and their respective
MPEnterCriticalRegion (page 26) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateCriticalRegion (page 16).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteEvent
Removes an event group.

OSStatus MPDeleteEvent (
   MPEventID event
);

Parameters
event

The ID of the event group you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
After deletion, the event ID becomes invalid, and all internal resources associated with the event group are
reclaimed. Calling this function unblocks all tasks waiting on the event group and their respective
MPWaitForEvent (page 45) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateEvent (page 17).

Functions 23
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteNotification
Removes a kernel notification.

OSStatus MPDeleteNotification (
   MPNotificationID notificationID
);

Parameters
notificationID

The ID of the notification you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Also see the function MPCreateNotification (page 17).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteQueue
Deletes a message queue.

OSStatus MPDeleteQueue (
   MPQueueID queue
);

Parameters
queue

The ID of the message queue you want to delete.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
After calling MPDeleteQueue, the specified queue ID becomes invalid, and all internal resources associated
with the queue (including queued messages) are reclaimed. Any tasks waiting on the queue are unblocked
and their respective MPWaitOnQueue (page 46) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateQueue (page 18).

Availability
Available in Mac OS X v10.0 and later.

24 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

MPDeleteSemaphore
Removes a semaphore.

OSStatus MPDeleteSemaphore (
   MPSemaphoreID semaphore
);

Parameters
semaphore

The ID of the semaphore you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Calling this function unblocks all tasks waiting on the semaphore and the tasks’ respective
MPWaitOnSemaphore (page 47) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateSemaphore (page 18).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteTimer
Removes a timer.

OSStatus MPDeleteTimer (
   MPTimerID timerID
);

Parameters
timerID

The ID of the timer you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
After deletion, the timer ID becomes invalid, and all internal resources associated with the timer are reclaimed.

Also see the function MPCreateTimer (page 20).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Functions 25
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPDisposeTaskException
Removes a task exception.

OSStatus MPDisposeTaskException (
   MPTaskID task,
   OptionBits action
);

Parameters
task

The task whose exception you want to remove.

action
Any actions to perform on the task. For example, you can enable single-stepping when the task
resumes, or you can pass the exception on to another handler. See “Task Exception Disposal
Constants” (page 68) for a listing of possible values.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the specified action is invalid or
unsupported, or if the specified task is not suspended, this function returns kMPInsufficientResourcesErr.

Discussion
This function removes the task exception and allows the task to resume operation. If desired, you can enable
single-stepping or branch-stepping, or propagate the exception instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPEnterCriticalRegion
Attempts to enter a critical region.

OSStatus MPEnterCriticalRegion (
   MPCriticalRegionID criticalRegion,
   Duration timeout
);

Parameters
criticalRegion

The ID of the critical region you want to enter.

timeout
The maximum time to wait for entry before timing out. See “Timer Duration Constants” (page 71) for
a list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
If another task currently occupies the critical region, the current task is blocked until the critical region is
released or until the designated timeout expires. Otherwise the task enters the critical region and
MPEnterCriticalRegion increments the region’s use count.

26 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Once a task enters a critical region it can make further calls to MPEnterCriticalRegion without blocking
(its use count increments for each call). However, each call to MPEnterCriticalRegion must be balanced
by a call to MPExitCriticalRegion (page 27) ; otherwise the region is not released for use by other tasks.

Note that you can enter a critical region from a cooperative task. Each cooperative task is treated as unique
and different from any preemptive task. If you call this function from a cooperative task, you should specify
only kDurationImmediate for the timeout length; other waits will cause the task to block.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPExit
Allows a task to terminate itself

void MPExit (
   OSStatus status
);

Parameters
status

An application-defined value that indicates termination status. This value is sent to the termination
message queue in place of the task’s result code.

Discussion
When called from within a preemptive task, the task terminates, and the value indicated by the parameter
status is sent to the termination message queue you specified in MPCreateTask (page 19). Note that you
cannot call MPExit from outside a preemptive task.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPExitCriticalRegion
Exits a critical region.

OSStatus MPExitCriticalRegion (
   MPCriticalRegionID criticalRegion
);

Parameters
criticalRegion

The ID of the critical region you want to exit.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the task does not own the critical
region specified by criticalRegion, MPExitCriticalRegion returns kMPInsufficientResourcesErr.

Functions 27
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
This function decrements the use count of the critical region object. When the use count reaches zero,
ownership of the critical region object is released (which allows another task to use the critical region).

Also see the function MPEnterCriticalRegion (page 26).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPExtractTaskState
Extracts state information from a suspended task.

OSStatus MPExtractTaskState (
   MPTaskID task,
   MPTaskStateKind kind,
   void *info
);

Parameters
task

The task whose state information you want to obtain.

kind
The kind of state information you want to obtain. See “Task State Constants” (page 70) for a listing
of possible values.

info
A pointer to a data structure to hold the state information. On return, the data structure holds the
desired state information. The format of the data structure varies depending on the state information
you want to retrieve. See the header file MachineExceptions.h for the formats of the various state
information structures.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If you attempt to extract state information
for a running task, this function returns kMPInsufficientResourcesErr.

Discussion
You can use this function to obtain register contents or exception information about a particular task.

Also see the function MPSetTaskState (page 38).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPFree
Frees memory allocated by MPAllocateAligned.

28 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



void MPFree (
   LogicalAddress object
);

Parameters
object

A pointer to the memory you want to release.

Discussion
Also see the function MPAllocateAligned (page 12).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPGetAllocatedBlockSize
Returns the size of a memory block.

ByteCount MPGetAllocatedBlockSize (
   LogicalAddress object
);

Parameters
object

The address of the memory block whose size you want to determine.

Return Value
The size of the allocated memory block, in bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPGetNextCpuID
Obtains the next CPU ID in the list of physical processors of the specified memory coherence group.

OSStatus MPGetNextCpuID (
   MPCoherenceID owningCoherenceID,
   MPCpuID *cpuID
);

Parameters
owningCoherenceID

The ID of the memory coherence group whose physical processor IDs you want to obtain. Pass
kMPInvalidIDErr, as only one coherence group, internal RAM, is currently defined.

cpuID
On return, cpuID points to the ID of the next physical processor.

Functions 29
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
By iterating on this function (after calling MPProcessors (page 33) , for example), you can obtain the IDs
of all the processors available on the host computer. Generally, you would only use this function in diagnostic
programs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MultiprocessingInfo.h

MPGetNextTaskID
Obtains the next task ID in the list of available tasks.

OSStatus MPGetNextTaskID (
   MPProcessID owningProcessID,
   MPTaskID *taskID
);

Parameters
owningProcessID

The ID of the process (typically the application) that owns the tasks. This ID is the same as the process
ID handled by the Code Fragment Manager.

taskID
On return, taskID points to ID of the next task in the list of tasks.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
By iterating on this function, you can obtain the IDs of all the tasks in a given process. These tasks may be
running, ready, or blocked. Generally you would only use this function in diagnostic programs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MultiprocessingInfo.h

MPGetTaskStorageValue
Gets the storage value stored at a specified index number.

TaskStorageValue MPGetTaskStorageValue (
   TaskStorageIndex taskIndex
);

Parameters
index

The index number of the storage value you want to obtain.

30 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Return Value
The value stored at the specified index number. See the description of the TaskStorageValue data type.

Discussion
Calling this function from within a task effectively reads a value in a two-dimensional array cross-referenced
by task storage index value and the task ID.

Note that since this function does not return any status information, it may not be immediately obvious
whether the returned storage value is valid.

Also see the function MPSetTaskStorageValue (page 39).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPModifyNotification
Adds a simple notification to a kernel notification.

OSStatus MPModifyNotification (
   MPNotificationID notificationID,
   MPOpaqueID anID,
   void *notifyParam1,
   void *notifyParam2,
   void *notifyParam3
);

Parameters
notificationID

The ID of the kernel notification you want to add to..

anID
The ID of the simple notification (semaphore, message group, or event group) you want to add to
the kernel notification.

notifyParam1
If anID specifies an event group, this parameter should contain the flags to set in the event group
when MPCauseNotification (page 16) is called. If anID specifies a message queue, this parameter
should contain the first pointer-sized value of the message to be sent to the message queue when
MPCauseNotification (page 16) is called.

notifyParam2
If anID specifies a message queue, this parameter should contain the second pointer-sized value of
the message to be sent to the message queue when MPCauseNotification (page 16) is called.
Pass NULL if you don’t need this parameter.

notifyParam3
If anID specifies a message queue, this parameter should contain the third pointer-sized value of the
message sent to the message queue when MPCauseNotification (page 16) is called. Pass NULL
if you don’t need this parameter.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Functions 31
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
You specify the parameters for the simple notifications just as if you were calling the
MPSetTimerNotify (page 40) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPModifyNotificationParameters

OSStatus MPModifyNotificationParameters (
   MPNotificationID notificationID,
   MPOpaqueIDClass kind,
   void *notifyParam1,
   void *notifyParam2,
   void *notifyParam3
);

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Multiprocessing.h

MPNotifyQueue
Sends a message to the specified message queue.

OSStatus MPNotifyQueue (
   MPQueueID queue,
   void *param1,
   void *param2,
   void *param3
);

Parameters
queue

The queue ID of the message queue you want to notify.

param1
The first pointer-sized value of the message to send.

param2
The second pointer-sized value of the message to send.

param3
The third pointer-sized value of the message to send.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

32 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
This function sends a message to the specified queue, which consist of the three parameters, param1, param2,
and param3. The system does not interpret the three values which comprise the text of the message. If tasks
are waiting on the specified queue, the first waiting task is unblocked and the task’s MPWaitOnQueue (page
46) function completes.

Depending on the queue mode, the system either allocates messages dynamically or assigns them to memory
reserved for the queue. In either case, if no more memory is available for messages MPNotifyQueue returns
kMPInsufficientResourcesErr.

You can call this function from an interrupt handler if messages are reserved on the queue. For more
information about queueing modes and reserving messages, see MPSetQueueReserve (page 37).

Also see the function MPWaitOnQueue (page 46).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPProcessors
Returns the number of processors on the host computer.

ItemCount MPProcessors (
   void
);

Return Value
The number of physical processors on the host computer.

Discussion
See also the function MPProcessorsScheduled (page 33).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPProcessorsScheduled
Returns the number of active processors available on the host computer.

ItemCount MPProcessorsScheduled (
   void
);

Return Value
The number of active processors available on the host computer.

Functions 33
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Discussion
The number of active processors is defined as the number of processors scheduled to run tasks. This number
varies while the system is running. Advanced power management facilities may stop or start scheduling
processors in the system to control power consumption or to maintain a proper operating temperature.

See also the function MPProcessors (page 33).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPRegisterDebugger
Registers a debugger.

OSStatus MPRegisterDebugger (
   MPQueueID queue,
   MPDebuggerLevel level
);

Parameters
queue

The ID of the queue to which you want exception messages and other information to be sent.

level
The level of this debugger with respect to other debuggers. Exceptions and informational messages
are sent first to the debugger with the highest level. If more than one debugger attempts to register
at a particular level, only the first debugger is registered. Other attempts return an error.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
In Mac OS X, this function is available but is not implemented. Use system debugging services to write a
debugger for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPRemoteCall
Calls a non-reentrant function and blocks the current task.

34 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



void * MPRemoteCall (
    MPRemoteProcedure remoteProc,
    void *parameter,
    MPRemoteContext context
);

Parameters
remoteProc

A pointer to the application-defined function you want to call. See MPRemoteProcedure (page 48)
for more information about the form of this function.

parameter
A pointer to a parameter to pass to the application-defined function. For example, this value could
point to a data structure or a memory location.

context
This parameter is ignored; specify kMPOwningProcessRemoteContext.

Return Value
The value that your remote procedure callback returned.

Discussion
You use this function to execute code on your application’s main task. The remoteProc function is scheduled
on the application’s main run loop and run in the default mode (kCFRunloopDefaultMode). If you call this
function from your application’s main task, the remoteProc function is executed immediately in the current
mode without blocking the task; otherwise, calling this function blocks the current task until the remote call
completes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPRemoteCallCFM
Calls a non-reentrant function and blocks the current task.

void * MPRemoteCallCFM (
   MPRemoteProcedure remoteProc,
   void *parameter,
   MPRemoteContext context
);

Parameters
remoteProc

A pointer to the application-defined CFM (Code Fragment Manager) function you want to call. See
MPRemoteProcedure (page 48) for more information about the form of this function.

parameter
A pointer to a parameter to pass to the application-defined function. For example, this value could
point to a data structure or a memory location.

context
This parameter is ignored; specify kMPOwningProcessRemoteContext.

Functions 35
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Return Value
The value that your remote procedure callback returned.

Discussion
You use this function to execute code on your application’s main task. The remoteProc function is scheduled
on the application’s main run loop and run in the default mode (kCFRunloopDefaultMode). If you call this
function from your application’s main task, the remoteProc function is executed immediately in the current
mode without blocking the task; otherwise, calling this function blocks the current task until the remote call
completes.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Multiprocessing.h

MPSetEvent
Merges event flags into a specified event group.

OSStatus MPSetEvent (
   MPEventID event,
   MPEventFlags flags
);

Parameters
event

The ID of the event group you want to set.

flags
The flags you want to merge into the event group.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
The flags are logically ORed with the current flags in the event group. This procedure is an atomic operation
to ensure that multiple updates do not get lost. If tasks are waiting on this event group, the first waiting task
is unblocked.

Note that you can call this function from an interrupt handler.

Also see the function MPWaitForEvent (page 45).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetExceptionHandler
Sets an exception handler for a task.

36 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



OSStatus MPSetExceptionHandler (
   MPTaskID task,
   MPQueueID exceptionQ
);

Parameters
task

The task to associate with the exception handler.

exceptionQ
The message queue to which an exception message will be sent.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
When an exception handler is set and an exception occurs, the task is suspended and a message is sent to
the message queue specified by exceptionQ. The message contains the following information:

 ■ The first pointer-sized value contains the ID of the task in which the exception occurred.

 ■ The second pointer-sized value contains the type of exception that occurred. See the header file
MachineExceptions.h for a listing of exception types.

 ■ The last pointer-sized value is set to NULL (reserved for future use).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetQueueReserve
Reserves space for messages on a specified message queue.

OSStatus MPSetQueueReserve (
   MPQueueID queue,
   ItemCount count
);

Parameters
queue

The ID of the queue whose messages you want to reserve.

count
The number of messages to reserve.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
MPNotifyQueue (page 32) allocates spaces for messages dynamically; that is, memory to hold the message
is allocated for the queue at the time of the call. In most cases this method is both speed and storage efficient.
However, it is possible that, due to lack of memory resources, space for the message may not be available
at the time of the call; in such cases, MPNotifyQueue (page 32) will return kInsufficientResourcesErr.

Functions 37
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



If you must have guaranteed message delivery, or if you need to call MPNotifyQueue (page 32) from an
interrupt handler, you should reserve space on the specified queue by calling MPSetQueueReserve. Because
such allocated space is reserved for duration of the queue’s existence, you should avoid straining internal
system resources by reserving messages only when absolutely necessary. Note that if you have reserved
messages on a queue, additional space cannot be added dynamically if the number of messages exceeds
the number reserved for that queue.

The number of reserved messages is set to count, lowering or increasing the current number of reserved
messages as required. If count is set to zero, no messages are reserved for the queue, and space for messages
is allocated dynamically.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTaskState
Sets state information for a suspended task.

OSStatus MPSetTaskState (
   MPTaskID task,
   MPTaskStateKind kind,
   void *info
);

Parameters
task

The task whose state information you want to set.

kind
The kind of state information you want to set. See “Task State Constants” (page 70) for a listing of
possible values. Note that some state information is read-only and cannot be changed using this
function.

info
A pointer to a data structure holding the state information you want to set. The format of the data
structure varies depending on the state information you want to set. See the header file
MachineExceptions.h for the formats of the various state information structures.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If you specify
kMPTaskState32BitMemoryException for the state information, this function returns
kMPInsufficientResourcesErr, since the exception state information is read-only. Attempting to set
state information for a running task will also return kMPInsufficientResourcesErr.

Discussion
You can use this function to set register contents or exception information for a particular task. However,
some state information, such as the exception information (as specified by
kMPTaskState32BitMemoryException) as well as the MSR, ExceptKind, DSISR, and DARmachine registers
(specified under kMPTaskStateMachine) are read-only. Attempting to set the read-only machine registers
will do nothing, while attempting to set the exception information will return an error.

Also see the function MPExtractTaskState (page 28).

38 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTaskStorageValue
Sets the storage value for a given index number.

OSStatus MPSetTaskStorageValue (
   TaskStorageIndex taskIndex,
   TaskStorageValue value
);

Parameters
index

The index number whose storage value you want to set.

value
The value you want to set.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
Typically you use MPSetTaskStorageValue to store pointers to task-specific structures or data.

Calling this function from within a task effectively assigns a value in a two-dimensional array cross-referenced
by task storage index value and the task ID.

Also see the function MPGetTaskStorageValue (page 30).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTaskType
Sets the type of the task.

OSStatus MPSetTaskType (
   MPTaskID task,
   OSType taskType
);

Return Value
The noErr result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
This function does nothing and should not be used.

Functions 39
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Availability
Available in Mac OS X v10.1 and later.

Declared In
Multiprocessing.h

MPSetTaskWeight
Assigns a relative weight to a task, indicating how much processor time it should receive compared to other
available tasks.

OSStatus MPSetTaskWeight (
   MPTaskID task,
   MPTaskWeight weight
);

Parameters
task

The ID of the task to which you want to assign a weighting.

weight
The relative weight to assign. This value can range from 1 to 10,000, with the default value being 100.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
The approximate processor share is defined as:

weight of the task / total weight of available tasks

For a set of ready tasks, the amount of CPU time dedicated to the tasks will be determined by the dynamically
computed share. Note that the processor share devoted to tasks may deviate from the suggested weighting
if critical tasks require attention. For example, a real-time task (such as a QuickTime movie) may require more
than its relative weight of processor time, and the scheduler will adjust proportions accordingly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTimerNotify
Sets the notification information associated with a timer.

40 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



OSStatus MPSetTimerNotify (
   MPTimerID timerID,
   MPOpaqueID anID,
   void *notifyParam1,
   void *notifyParam2,
   void *notifyParam3
);

Parameters
timerID

The ID of the timer whose notification information you want to set.

notificationID
The ID of the notification mechanism to associate with the timer. This value should be the ID of an
event group, a message queue, or a semaphore.

notifyParam1
If anID specifies an event group, this parameter should contain the flags to set in the event group
when the timer expires. If anID specifies a message queue, this parameter should contain the first
pointer-sized value of the message to be sent to the message queue when the timer expires.

notifyParam2
If anID specifies a message queue, this parameter should contain the second pointer-sized value of
the message to be sent to the message queue when the timer expires. Pass NULL if you don’t need
this parameter.

notifyParam3
If anID specifies a message queue, this parameter should contain the third pointer-sized value of the
message sent to the message queue when the timer expires. Pass NULL if you don’t need this
parameter.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
When the timer expires, Multiprocessing Services checks the notification ID, and if it is valid, notifies the
related notification mechanisms (that is, event groups, queues, or semaphores) you had specified in your
MPSetTimerNotify (page 40) calls.

You can specify multiple notification mechanisms by calling this function several times. For example, you
can call MPSetTimerNotify to specify a message queue and then call it again to specify a semaphore. When
the timer expires, a message is sent to the message queue and the appropriate semaphore is signaled. You
cannot, however, specify more than one notification per notification mechanism (for example, if you call
MPSetTimerNotify twice, specifying different messages or message queues in each call, the second call
will overwrite the first). Note that if a call to MPSetTimerNotify returns an error, any previous calls specifying
the same timer are still valid; previously set notifications will still be notified when the timer expires.

You can set the notification information at any time. If the timer is armed, it will modify the notification
parameters dynamically. If the timer is disarmed, it will modify the notification parameters to be used for the
next MPArmTimer (page 13) call.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Functions 41
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPSignalSemaphore
Signals a semaphore.

OSStatus MPSignalSemaphore (
   MPSemaphoreID semaphore
);

Parameters
semaphore

The ID of the semaphore you want to signal.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the value of the semaphore was
already at the maximum, MPSignalSemaphore returns kInsufficientResourcesErr.

Discussion
If tasks are waiting on the semaphore, the oldest (first queued) task is unblocked so that the corresponding
MPWaitOnSemaphore (page 47) call for that task completes. Otherwise, if the value of the semaphore is not
already equal to its maximum value, it is incremented by one.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskIsPreemptive
Determines whether a task is preemptively scheduled.

Boolean MPTaskIsPreemptive (
   MPTaskID taskID
);

Parameters
taskID

The task you want to check. Pass kMPNoID or kInvalidID if you want to specify the current task.

Return Value
If true, the task is preemptively scheduled. If false, the task is cooperatively scheduled.

Discussion
If you have code that may be called from either cooperative or preemptive tasks, that code can call
MPTaskIsPreemptive if its actions should differ depending on its execution environment.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

42 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPTerminateTask
Terminates an existing task.

OSStatus MPTerminateTask (
   MPTaskID task,
   OSStatus terminationStatus
);

Parameters
task

The ID of the task you wish to terminate.

terminationStatus
A value of type OSStatus indicating termination status. This value is sent to the termination status
message queue you specified in MPCreateTask (page 19) in place of the task function’s result code.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the task to be terminated is already
in the process of termination, MPTerminateTask returns kMPInsufficientResourcesErr. You do not
need to take any additional action if this occurs.

Discussion
You should be very careful when calling MPTerminateTask. As defined, this call will asynchronously and
abruptly terminate a task, potentially leaving whatever structures or resources it was operating upon in an
indeterminate state. Mac OS X exacerbates this problem, as MP tasks can use many more system services
that are not expecting client threads to asynchronously terminate, and these services do not take the rather
complicated steps necessary to protect against, or recover from, such a situation.

However, there are situations in which calling MPTerminateTask is useful and relatively safe. One such
situation is when your application or service is quitting and you know that the task you wish to terminate is
waiting on an MP synchonization construct (queue, event, semaphore or critical region). While you could do
this more cleanly by waking the task and causing it to exit on its own, doing so may not always be practical.

For example, suppose you have several service tasks performing background processing for your application.
These service tasks wait on a queue, onto which the application places requests for processing. When the
task is done with a request, it notifies another queue, which the application polls. Since the main application
task is placing items on the shared queue, and receiving notifications when the requests are done, it can
track whether or not there are outstanding requests being processed. If all outstanding requests have, in
fact, been processed, it is relatively safe to terminate a task (or all tasks) waiting on the request queue.

You should not assume that the task has completed termination when this call returns; the proper way to
synchronize with task termination is to wait on the termination queue (specified in MPCreateTask (page
19) ) until a message appears. Because task termination is a multistage activity, it is possible for a preemptive
task to attempt to terminate a task that is already undergoing termination. In such cases, MPTerminateTask
returns kMPInsufficientResourcesErr.

Note that Multiprocessing Services resources (event groups, queues, semaphores, and critical regions) owned
by a preemptive task are not released when that task terminates. If a task has a critical region locked when
it terminates, the critical region remains in the locked state. Multiprocessing Services resources no longer
needed should be explicitly deleted by the task that handles the termination message. All Multiprocessing
Services resources created by tasks are released when their owning process (that is, the host application)
terminates.

Availability
Available in Mac OS X v10.0 and later.

Functions 43
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

MPThrowException
Throws an exception to a specified task.

OSStatus MPThrowException (
   MPTaskID task,
   MPExceptionKind kind
);

Parameters
task

The task to which the exception should be thrown.

kind
The type of exception to give to the task.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73). If the task is already suspended or if
the task is not defined to take thrown exceptions, the function returns kMPInsufficientResourcesErr.

Discussion
The exception is treated in the same manner as any other exception taken by a task. However, since it is
asynchronous, it may not be presented immediately.

By convention, you should set the exception kind to kMPTaskStoppedErr if you want to suspend a task. In
general, you should do so only if you are debugging and wish to examine the state of the task. Otherwise
you should block the task using one of the traditional notification mechanisms (such as a message queue).

An exception can be thrown at any time, whether that task is running, eligible to be run (that is, ready), or
blocked. The task is suspended and an exception message may be generated the next time the task is about
to run. Note that this may never occur— for example, if the task is deadlocked or the resource it is waiting
on is never released. If the task is currently blocked when this function is executed, kMPTaskBlockedErr is
returned. If the task was suspended immediately at the conclusion of this function call the return value is
kMPTaskStoppedErr.

In Mac OS X, this function is available but is not implemented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPUnregisterDebugger
Unregisters a debugger.

44 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



OSStatus MPUnregisterDebugger (
   MPQueueID queue
);

Parameters
queue

The ID of the queue whose debugger you want to unregister.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
In Mac OS X, this function is available but is not implemented. Use system debugging services to write a
debugger for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPWaitForEvent
Retrieves event flags from a specified event group.

OSStatus MPWaitForEvent (
   MPEventID event,
   MPEventFlags *flags,
   Duration timeout
);

Parameters
event

The event group whose flags you want to retrieve.

flags
On return, flags contains the flags of the specified event group. Pass NULL if you do not need any
flag information.

timeout
The maximum time to wait for events before timing out. See “Timer Duration Constants” (page 71)
for a list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
This function obtains event flags from the specified event group. The timeout specifies how long to wait for
events if none are present when the call is made. If any flags are set when this function is called, all the flags
in the event group are moved to the flag field and the event group is cleared. This obtaining and clearing
action is an atomic operation to ensure that no updates are lost. If multiple tasks are waiting on an event
group, only one can obtain any particular set of flags.

If you call this function from a cooperative task, you should specify only kDurationImmediate for the
timeout length; other waits will cause the task to block.

Also see the function MPSetEvent (page 36).

Functions 45
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPWaitOnQueue
Obtains a message from a specified message queue.

OSStatus MPWaitOnQueue (
   MPQueueID queue,
   void **param1,
   void **param2,
   void **param3,
   Duration timeout
);

Parameters
queue

The ID of the message queue from which to receive the notification.

param1
On return, the first pointer-sized value of the notification message. Pass NULL if you do not need this
portion of the message.

param2
On return, the second pointer-sized value of the notification message. Pass NULL if you do not need
this portion of the message.

param3
On return, the third pointer-sized value of the notification message. Pass NULL if you do not need
this portion of the message.

timeout
The time to wait for a notification before timing out. See “Timer Duration Constants” (page 71) for a
list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
This function receives a message from the specified message queue. If no messages are currently available,
the timeout specifies how long the function should wait for one. Tasks waiting on the queue are handled in
a first in, first out manner; that is, the first task to wait on the queue receives the message from the
MPNotifyQueue (page 32) call.

After calling this function, when a message appears, it is removed from the queue and the three fields,
param1, param2, and param3 are set to the values specified by the message text. Note these parameters
are pointers to variables to be set with the message text.

If you call this function from a cooperative task, you should specify only kDurationImmediate for the
timeout length; other waits will cause the task to block.

Also see the function MPNotifyQueue (page 32).

46 Functions
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPWaitOnSemaphore
Waits on a semaphore

OSStatus MPWaitOnSemaphore (
   MPSemaphoreID semaphore,
   Duration timeout
);

Parameters
semaphore

The ID of the semaphore you want to wait on.

timeout
The maximum time the function should wait before timing out. See “Timer Duration Constants” (page
71) for a list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 73).

Discussion
If the value of the semaphore is greater than zero, the value is decremented and the function returns with
noErr. Otherwise, the task is blocked awaiting a signal until the specified timeout is exceeded.

If you call this function from a cooperative task, you should specify only kDurationImmediate for the
timeout length; other waits will cause the task to block.

Also see the function MPSignalSemaphore (page 42).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPYield
Allows a task to yield the processor to another task.

void MPYield (
   void
);

Discussion
This function indicates to the scheduler that another task can run. Other than possibly yielding the processor
to another task or application, the call has no effect. Note that since tasks are preemptively scheduled, an
implicit yield may occur at any point, whether or not this function is called.

Functions 47
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



In most cases you should not need to call this function. The most common use of MPYield is to release the
processor when a task is in a loop in which further progress is dependent on other tasks, and the task cannot
be blocked by waiting on a Multiprocessing Services resource. You should avoid such busy waiting whenever
possible.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

_MPIsFullyInitialized
Indicates whether Multiprocessing Services is available for use.

Boolean _MPIsFullyInitialized (
   void
);

Return Value
If true, Multiprocessing Services is available for use; otherwise, false.

Declared In
Multiprocessing.h

Callbacks

MPRemoteProcedure
Defines a remote procedure call.

typedef void* (*MPRemoteProcedure) (
    void *parameter
);

For example, this is how you would declare the application-defined function if you were to name the function
MyRemoteProcedure:

void* MyRemoteProcedure (
    void *parameter
);

Parameters
parameter

A pointer to the application-defined value you passed to the function MPRemoteCallCFM (page 35).
For example, this value could point to a data structure or a memory location.

Availability
Available in Mac OS X v10.0 and later.

48 Callbacks
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

TaskProc
Defines the entry point of a task.

typedef OSStatus (*TaskProc) (
    void *parameter
);

For example, this is how you would declare the application-defined function if you were to name the function
MyTaskProc:

OSStatus MyTaskProc (
    void *parameter
);

Parameters
parameter

A pointer to the application-defined value you passed to the function MPCreateTask (page 19). For
example, this value could point to a data structure or a memory location.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types

MPAddressSpaceID

typedef struct OpaqueMPAddressSpaceID * MPAddressSpaceID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types 49
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPAddressSpaceInfo

struct MPAddressSpaceInfo {
    PBVersion version;
    MPProcessID processID;
    MPCoherenceID groupID;
    ItemCount nTasks;
    UInt32 vsid[16];
};
typedef struct MPAddressSpaceInfo MPAddressSpaceInfo;

Availability
Available in Mac OS X v10.1 and later.

Declared In
MultiprocessingInfo.h

MPAreaID

typedef struct OpaqueMPAreaID * MPAreaID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCoherenceID
Represents a memory coherence group.

typedef struct OpaqueMPCoherenceID * MPCoherenceID;

Discussion
A coherence group is the set of processors and other bus controllers that have cache-coherent access to
memory. Mac OS 9 defines only one coherence group, which is all the processors that can access internal
memory (RAM). Other coherence groups are possible; for example, a PCI card with its own memory and
processors can comprise a coherence group.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPConsoleID

typedef struct OpaqueMPConsoleID * MPConsoleID;

Availability
Available in Mac OS X v10.0 and later.

50 Data Types
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

MPCpuID
Represents a CPU ID.

typedef struct OpaqueMPCpuID * MPCpuID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCriticalRegionID
Represents a critical region ID, which Multiprocessing Services uses to manipulate critical regions.

typedef struct OpaqueMPCriticalRegionID * MPCriticalRegionID;

Discussion
You obtain a critical region ID by calling the function MPCreateCriticalRegion (page 16).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCriticalRegionInfo

struct MPCriticalRegionInfo {
    PBVersion version;
    MPProcessID processID;
    OSType regionName;
    ItemCount nWaiting;
    MPTaskID waitingTaskID;
    MPTaskID owningTask;
    ItemCount count;
};
typedef struct MPCriticalRegionInfo MPCriticalRegionInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

Data Types 51
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPEventFlags
Represents event information for an event group.

typedef UInt32 MPEventFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPEventID
Represents an event group ID, which Multiprocessing Services uses to manipulate event groups.

typedef struct OpaqueMPEventID * MPEventID;

Discussion
You obtain an event group ID by calling the function MPCreateEvent (page 17).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPEventInfo

struct MPEventInfo {
    PBVersion version;
    MPProcessID processID;
    OSType eventName;
    ItemCount nWaiting;
    MPTaskID waitingTaskID;
    MPEventFlags events;
};
typedef struct MPEventInfo MPEventInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPExceptionKind
Represents the kind of exception thrown.

typedef UInt32 MPExceptionKind;

Availability
Available in Mac OS X v10.0 and later.

52 Data Types
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Declared In
Multiprocessing.h

MPNotificationID
Represents a notification ID, which Multiprocessing Services uses to manipulate kernel notifications.

typedef struct OpaqueMPNotificationID * MPNotificationID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPNotificationInfo

struct MPNotificationInfo {
    PBVersion version;
    MPProcessID processID;
    OSType notificationName;
    MPQueueID queueID;
    void * p1;
    void * p2;
    void * p3;
    MPEventID eventID;
    MPEventFlags events;
    MPSemaphoreID semaphoreID;
};
typedef struct MPNotificationInfo MPNotificationInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPOpaqueID
Represents a generic notification ID (that is, an ID that could be a queue ID, event ID, kernel notification ID,
or semaphore ID).

typedef struct OpaqueMPOpaqueID * MPOpaqueID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types 53
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPOpaqueIDClass

typedef UInt32 MPOpaqueIDClass;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPPageSizeClass

typedef UInt32 MPPageSizeClass;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPProcessID
Represents a process ID.

typedef struct OpaqueMPProcessID * MPProcessID;

Discussion
Note that this process ID is identical to the process ID (or context ID) handled by the Code Fragment Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPQueueID
Represents a queue ID, which Multiprocessing Services uses to manipulate message queues.

typedef struct OpaqueMPQueueID * MPQueueID;

Discussion
You obtain a queue ID by calling the function MPCreateQueue (page 18).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

54 Data Types
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPQueueInfo

struct MPQueueInfo {
    PBVersion version;
    MPProcessID processID;
    OSType queueName;
    ItemCount nWaiting;
    MPTaskID waitingTaskID;
    ItemCount nMessages;
    ItemCount nReserved;
    void * p1;
    void * p2;
    void * p3;
};
typedef struct MPQueueInfo MPQueueInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPSemaphoreCount
Represents a semaphore count.

typedef ItemCount MPSemaphoreCount;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSemaphoreID
Represents a semaphore ID, which Multiprocessing Services uses to manipulate semaphores.

typedef struct OpaqueMPSemaphoreID * MPSemaphoreID;

Discussion
You obtain a semaphore ID by calling the function MPCreateSemaphore (page 18).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types 55
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPSemaphoreInfo

struct MPSemaphoreInfo {
    PBVersion version;
    MPProcessID processID;
    OSType semaphoreName;
    ItemCount nWaiting;
    MPTaskID waitingTaskID;
    ItemCount maximum;
    ItemCount count;
};
typedef struct MPSemaphoreInfo MPSemaphoreInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPTaskID
Represents a task ID.

typedef struct OpaqueMPTaskID * MPTaskID;

Discussion
You obtain a task ID by calling the function MPCreateTask (page 19).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskInfo
Contains information about a task.

56 Data Types
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



struct MPTaskInfo {
    PBVersion version;
    OSType name;
    OSType queueName;
    UInt16 runState;
    UInt16 lastCPU;
    UInt32 weight;
    MPProcessID processID;
    AbsoluteTime cpuTime;
    AbsoluteTime schedTime;
    AbsoluteTime creationTime;
    ItemCount codePageFaults;
    ItemCount dataPageFaults;
    ItemCount preemptions;
    MPCpuID cpuID;
    MPOpaqueID blockedObject;
    MPAddressSpaceID spaceID;
    LogicalAddress stackBase;
    LogicalAddress stackLimit;
    LogicalAddress stackCurr;
};
typedef struct MPTaskInfo MPTaskInfo;

Fields
version

The version of this data structure.

name
The name of the task.

queueName
A four-byte code indicating the status of the queue waiting on the task.

runState
The current state of the task (running, ready, or blocked).

lastCPU
The address of the last processor that ran this task.

weight
The weighting assigned to this task.

processID
The ID of the process that owns this task.

cpuTime
The accumulated CPU time used by the task.

schedTime
The time when the task was last scheduled.

creationTime
The time when the task was created.

codePageFaults
The number of page faults that occurred during code execution.

dataPageFaults
The number of page faults that occurred during data access.

preemptions
The number of times this task was preempted.

Data Types 57
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



cpuID
The ID of the last processor that ran this task.

blockedObject
Reserved for use by Mac OS X.

spaceID
Address space ID of this task.

stackBase
The lowest memory address of the task’s stack.

stackLimit
The highest memory address of the task’s stack.

stackCurr
The current stack address.

Discussion
If you specify the kMPTaskStateTaskInfo constant when calling the function MPExtractTaskState (page
28) , Multiprocessing Services returns state information in an MPTaskInfo structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskInfoVersion2

struct MPTaskInfoVersion2 {
    PBVersion version;
    OSType name;
    OSType queueName;
    UInt16 runState;
    UInt16 lastCPU;
    UInt32 weight;
    MPProcessID processID;
    AbsoluteTime cpuTime;
    AbsoluteTime schedTime;
    AbsoluteTime creationTime;
    ItemCount codePageFaults;
    ItemCount dataPageFaults;
    ItemCount preemptions;
    MPCpuID cpuID;
};
typedef struct MPTaskInfoVersion2 MPTaskInfoVersion2;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

58 Data Types
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPTaskStateKind

typedef UInt32 MPTaskStateKind;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskWeight
Represents the relative processor weighting of a task.

typedef UInt32 MPTaskWeight;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTimerID
Represents a timer ID.

typedef struct OpaqueMPTimerID * MPTimerID;

Discussion
You obtain a timer ID by calling the function MPCreateTimer (page 20).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

TaskStorageIndex
Represents a task storage index value used by functions described in “Accessing Per-Task Storage Variables.”

typedef ItemCount TaskStorageIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

TaskStorageValue
Represents a task storage value used by functions described in “Accessing Per-Task Storage Variables.”

Data Types 59
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



typedef LogicalAddress TaskStorageValue;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Constants

Allocation constants
The maximum memory allocation size.

enum {
    kMPMaxAllocSize = 1024L * 1024 * 1024
};

Constants
kMPMaxAllocSize

The maximum allocation size: 1GB.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task IDs
Use to specify no task ID.

enum {
    kMPNoID = kInvalidID
};

Constants
kMPNoID

No task ID.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Discussion
Used when calling MPTaskIsPreemptive (page 42) if you want to specify the current task.

Data Structure Version Constants
Data structure version information constants.

60 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kMPQueueInfoVersion = 1L | (kOpaqueQueueID << 16),
    kMPSemaphoreInfoVersion = 1L | (kOpaqueSemaphoreID << 16),
    kMPEventInfoVersion = 1L | (kOpaqueEventID << 16),
    kMPCriticalRegionInfoVersion = 1L | (kOpaqueCriticalRegionID << 16),
    kMPNotificationInfoVersion = 1L | (kOpaqueNotificationID << 16),
    kMPAddressSpaceInfoVersion = 1L | (kOpaqueAddressSpaceID << 16)
};

Constants
kMPQueueInfoVersion

The MPQueueInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPSemaphoreInfoVersion
The MPSemaphoreInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPEventInfoVersion
The MPEventInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPCriticalRegionInfoVersion
The MPCriticalRegionInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPNotificationInfoVersion
The MPNotificationInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPAddressSpaceInfoVersion
The MPAddressSpaceInfo structure version.

Available in Mac OS X v10.1 and later.

Declared in MultiprocessingInfo.h.

Values for the MPOpaqueIDClass type
Constants indicating the source of a generic notification.

Constants 61
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kOpaqueAnyID = 0,
    kOpaqueProcessID = 1,
    kOpaqueTaskID = 2,
    kOpaqueTimerID = 3,
    kOpaqueQueueID = 4,
    kOpaqueSemaphoreID = 5,
    kOpaqueCriticalRegionID = 6,
    kOpaqueCpuID = 7,
    kOpaqueAddressSpaceID = 8,
    kOpaqueEventID = 9,
    kOpaqueCoherenceID = 10,
    kOpaqueAreaID = 11,
    kOpaqueNotificationID = 12,
    kOpaqueConsoleID = 13
};

Constants
kOpaqueAnyID

Any source.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueProcessID
A process.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueTaskID
A task.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueTimerID
A timer.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueQueueID
A queue.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueSemaphoreID
A semaphore.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueCriticalRegionID
A critical region.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

62 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



kOpaqueCpuID
A CPU.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueAddressSpaceID
An address space.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueEventID
An event.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueCoherenceID
A coherence group.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueAreaID
An area.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueNotificationID
A notification.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueConsoleID
A console.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Memory Allocation Alignment Constants
Specify the alignment of the desired memory block when calling the MPAllocateAligned function.

Constants 63
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kMPAllocateDefaultAligned = 0,
    kMPAllocate8ByteAligned = 3,
    kMPAllocate16ByteAligned = 4,
    kMPAllocate32ByteAligned = 5,
    kMPAllocate1024ByteAligned = 10,
    kMPAllocate4096ByteAligned = 12,
    kMPAllocateMaxAlignment = 16,
    kMPAllocateAltiVecAligned = kMPAllocate16ByteAligned,
    kMPAllocateVMXAligned = kMPAllocateAltiVecAligned,
    kMPAllocateVMPageAligned = 254,
    kMPAllocateInterlockAligned = 255
};

Constants
kMPAllocateDefaultAligned

Use the default alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate8ByteAligned
Use 8-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate16ByteAligned
Use 16-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate32ByteAligned
Use 32-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate1024ByteAligned
Use 1024-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate4096ByteAligned
Use 4096-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateMaxAlignment
Use the maximum alignment (65536 byte).

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateAltiVecAligned
Use AltiVec alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

64 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



kMPAllocateVMXAligned
Use VMX (now called AltiVec) alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateVMPageAligned
Use virtual memory page alignment. This alignment is set at runtime.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateInterlockAligned
Use interlock alignment, which is the alignment needed to allow the use of CPU interlock instructions
(that is, lwarx and stwcx.) on the returned memory address. This alignment is set at runtime. In most
cases you would never need to use this alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Memory Allocation Option Constants
Specify optional actions when calling the MPAllocateAligned function.

enum {
    kMPAllocateClearMask = 0x0001,
    kMPAllocateGloballyMask = 0x0002,
    kMPAllocateResidentMask = 0x0004,
    kMPAllocateNoGrowthMask = 0x0010,
    kMPAllocateNoCreateMask = 0x0020
};

Constants
kMPAllocateClearMask

Zero out the allocated memory block.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateGloballyMask
Allocate memory from in memory space that is visible to all processes. Note that such globally-allocated
space is not automatically reclaimed when the allocating process terminates. By default,
MPAllocateAligned (page 12) allocates memory from process-specific (that is, not global) memory.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateResidentMask
Allocate memory from resident memory only (that is, the allocated memory is not pageable).

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateNoGrowthMask
Do not attempt to grow the pool of available memory. Specifying this option is useful, as attempting
to grow memory may cause your task to block until such memory becomes available.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Constants 65
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



kMPAllocateNoCreateMask
Do not attempt to create the pool if it does not yet exist.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

MPDebuggerLevel
Indicates the debugger level.

typedef UInt32 MPDebuggerLevel;
enum {
    kMPLowLevelDebugger = 0x00000000,
    kMPMidLevelDebugger = 0x10000000,
    kMPHighLevelDebugger = 0x20000000
};

Constants
kMPLowLevelDebugger

The low-level debugger.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPMidLevelDebugger
The mid-level debugger.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPHighLevelDebugger
The high-level debugger.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

Library Version Constants
Identifies the current library version.

enum {
    MPLibrary_MajorVersion = 2,
    MPLibrary_MinorVersion = 3,
    MPLibrary_Release = 1,
    MPLibrary_DevelopmentRevision = 1
};

Constants
MPLibrary_MajorVersion

Major version number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

66 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



MPLibrary_MinorVersion
Minor version number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

MPLibrary_Release
Release number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

MPLibrary_DevelopmentRevision
Development revision number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Remote Call Context Option Constants
Specify which contexts are allowed to execute the callback function when using MPRemoteCall.

enum {
    kMPAnyRemoteContext = 0,
    kMPOwningProcessRemoteContext = 1,
    kMPInterruptRemoteContext = 2,
    kMPAsyncInterruptRemoteContext = 3
};
typedef UInt8 MPRemoteContext;

Constants
kMPAnyRemoteContext

Any cooperative context can execute the function. Note that the called function may not have access
to any of the owning context’s process-specific low-memory values.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPOwningProcessRemoteContext
Only the context that owns the task can execute the function.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPInterruptRemoteContext
Unsupported in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPAsyncInterruptRemoteContext
Unsupported in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

Discussion
These constants are used to support older versions of Mac OS and are ignored in Mac OS X.

Constants 67
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



Task Creation Options
Specify optional actions when calling the MPCreateTask function.

enum {
    kMPCreateTaskSuspendedMask = 1L << 0,
    kMPCreateTaskTakesAllExceptionsMask = 1L << 1,
    kMPCreateTaskNotDebuggableMask = 1L << 2,
    kMPCreateTaskValidOptionsMask = kMPCreateTaskSuspendedMask | 
kMPCreateTaskTakesAllExceptionsMask | kMPCreateTaskNotDebuggableMask
};
typedef OptionBits MPTaskOptions;

Constants
kMPCreateTaskSuspendedMask

Unsupported in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPCreateTaskTakesAllExceptionsMask
The task will take all exceptions, including those normally handled by the system, such as page faults.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPCreateTaskNotDebuggableMask
Unsupported in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPCreateTaskValidOptionsMask
Include all valid options for this task.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task Exception Disposal Constants
Specify actions to take on an exception when passed in the action parameter of the
MPDisposeTaskException function.

68 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kMPTaskPropagate = 0,
    kMPTaskResumeStep = 1,
    kMPTaskResumeBranch = 2,
    kMPTaskResumeMask = 0x0000,
    kMPTaskPropagateMask = 1 << kMPTaskPropagate,
    kMPTaskResumeStepMask = 1 << kMPTaskResumeStep,
    kMPTaskResumeBranchMask = 1 << kMPTaskResumeBranch
};

Constants
kMPTaskPropagate

The exception is propagated.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeStep
The task is resumed and single step is enabled.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeBranch
The task is resumed and branch stepping is enabled.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeMask
Resume the task.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskPropagateMask
Propagate the exception to the next debugger level.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeStepMask
Resume the task and enable single stepping.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeBranchMask
Resume the task and enable branch stepping.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task Information Structure Version Constant
Indicates the current version of the MPTaskInfo structure (returned as the first field).

Constants 69
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kMPTaskInfoVersion = 3
};

Constants
kMPTaskInfoVersion

The current version of the task information structure.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task Run State Constants
Indicate the state of the task when returned as part of the MPTaskInfo data structure.

enum {
    kMPTaskBlocked = 0,
    kMPTaskReady = 1,
    kMPTaskRunning = 2
};

Constants
kMPTaskBlocked

The task is blocked..

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskReady
The task is ready for execution.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskRunning
The task is currently running.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task State Constants
Specify what states you want to set or obtain when calling the MPExtractTaskState or MPSetTaskState
functions.

70 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kMPTaskStateRegisters = 0,
    kMPTaskStateFPU = 1,
    kMPTaskStateVectors = 2,
    kMPTaskStateMachine = 3,
    kMPTaskState32BitMemoryException = 4,
    kMPTaskStateTaskInfo = 5
};

Constants
kMPTaskStateRegisters

The task’s general-purpose (GP) registers. The RegisterInformationPowerPC structure in
MachineExceptions.h defines the format of this information.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateFPU
The task’s floating point registers. The FPUInformationPowerPC structure in MachineExceptions.h
defines the format of this information.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateVectors
The task’s vector registers. The VectorInformationPowerPC structure in MachineExceptions.h
defines the format of this information.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateMachine
The task’s machine registers. TheMachineInformationPowerPC structure inMachineExceptions.h
defines the format of this information. Note that the MSR, ExceptKind, DSISR, and DAR registers are
read-only.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskState32BitMemoryException
The task’s exception information for older 32-bit memory exceptions (that is, memory exceptions on
32-bit CPUs). The MemoryExceptionInformation structure in MachineExceptions.h defines the
format of this information. This exception information is read-only.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateTaskInfo
Static and dynamic information about the task, as described by the data structure MPTaskInfo (page
56). This task information is read-only.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Timer Duration Constants
Specify the maximum time a task should wait for an event to occur.

Constants 71
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



enum {
    kDurationImmediate = 0,
    kDurationForever = 0x7FFFFFFF,
    kDurationMillisecond = 1,
    kDurationMicrosecond = -1
};

Constants
kDurationImmediate

The task times out immediately, whether or not the event has occurred. If the event occurred, the
return status is noErr. If the event did not occur, the return status is kMPTimeoutErr (assuming no
other errors occurred).

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kDurationForever
The task waits forever. The blocking call waits until either the event occurs, or until the object being
waited upon (such as a message queue) is deleted.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kDurationMillisecond
The task waits one millisecond before timing out.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kDurationMicrosecond
The task waits one microsecond before timing out.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Discussion
You can use these constants in conjunction with other values to indicate specific wait intervals. For example,
to wait 1 second, you can pass kDurationMillisecond * 1000.

Timer Option Masks
Indicate optional actions when calling MPArmTimer.

enum {
    kMPPreserveTimerIDMask = 1L << 0,
    kMPTimeIsDeltaMask = 1L << 1,
    kMPTimeIsDurationMask = 1L << 2
};

Constants
kMPPreserveTimerIDMask

Specifying this mask prevents the timer from being deleted when it expires.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

72 Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



kMPTimeIsDeltaMask
Specifying this mask indicates that the specified time should be added to the previous expiration
time to form the new expiration time. You can use this mask to compensate for timing drift caused
by the finite amount of time required to arm the timer, receive the notification, and so on.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTimeIsDurationMask
Specifying this mask indicates that the specified expiration time is of type Duration. You can use
this mask to avoid having to call time conversion routines when specifying an expiration time.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Result Codes

Result codes defined for Multiprocessing Services are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-29275kMPIterationEndErr

Available in Mac OS X v10.0 and later.-29276kMPPrivilegedErr

Available in Mac OS X v10.0 and later.-29288kMPProcessCreatedErr

Available in Mac OS X v10.0 and later.-29289kMPProcessTerminatedErr

Available in Mac OS X v10.0 and later.-29290kMPTaskCreatedErr

The desired task is blocked.-29291kMPTaskBlockedErr

Available in Mac OS X v10.0 and later.

The desired task is stopped.-29292kMPTaskStoppedErr

Available in Mac OS X v10.0 and later.

The desired notification the function was waiting upon was
deleted.

-29295kMPDeletedErr

Available in Mac OS X v10.0 and later.

The designated timeout interval passed before the function
could take action.

-29296kMPTimeoutErr

Available in Mac OS X v10.0 and later.

Could not complete task due to unavailable Multiprocessing
Services resources. Note that many functions return this
value as a general error when the desired action could not
be performed.

-29298kMPInsufficientResourcesErr

Available in Mac OS X v10.0 and later.

Result Codes 73
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



DescriptionValueResult Code

Invalid ID value. For example, an invalid message queue ID
was passed to MPNotifyQueue.

-29299kMPInvalidIDErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can determine which system software calls are preemptively-safe for Multiprocessing Services by using
the preemptive function attribute selectors defined in the Gestalt Manager. For more information, see Gestalt
Manager Reference.

74 Gestalt Constants
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Multiprocessing Services Reference



This table describes the changes to Multiprocessing Services Reference.

NotesDate

Updated the description of the MPRemoteCall function.2008-02-08

Updated for Mac OS X v10.5.2007-10-31

Made minor technical corrections.2005-07-07

Updated formatting and linking.2003-02-01

75
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



76
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



Symbols

_MPIsFullyInitialized function 48

A

Allocation constants 60

D

Data Structure Version Constants 60

K

kDurationForever constant 72
kDurationImmediate constant 72
kDurationMicrosecond constant 72
kDurationMillisecond constant 72
kMPAddressSpaceInfoVersion constant 61
kMPAllocate1024ByteAligned constant 64
kMPAllocate16ByteAligned constant 64
kMPAllocate32ByteAligned constant 64
kMPAllocate4096ByteAligned constant 64
kMPAllocate8ByteAligned constant 64
kMPAllocateAltiVecAligned constant 64
kMPAllocateClearMask constant 65
kMPAllocateDefaultAligned constant 64
kMPAllocateGloballyMask constant 65
kMPAllocateInterlockAligned constant 65
kMPAllocateMaxAlignment constant 64
kMPAllocateNoCreateMask constant 66
kMPAllocateNoGrowthMask constant 65
kMPAllocateResidentMask constant 65
kMPAllocateVMPageAligned constant 65
kMPAllocateVMXAligned constant 65
kMPAnyRemoteContext constant 67

kMPAsyncInterruptRemoteContext constant 67
kMPCreateTaskNotDebuggableMask constant 68
kMPCreateTaskSuspendedMask constant 68
kMPCreateTaskTakesAllExceptionsMask constant

68
kMPCreateTaskValidOptionsMask constant 68
kMPCriticalRegionInfoVersion constant 61
kMPDeletedErr constant 73
kMPEventInfoVersion constant 61
kMPHighLevelDebugger constant 66
kMPInsufficientResourcesErr constant 73
kMPInterruptRemoteContext constant 67
kMPInvalidIDErr constant 74
kMPIterationEndErr constant 73
kMPLowLevelDebugger constant 66
kMPMaxAllocSize constant 60
kMPMidLevelDebugger constant 66
kMPNoID constant 60
kMPNotificationInfoVersion constant 61
kMPOwningProcessRemoteContext constant 67
kMPPreserveTimerIDMask constant 72
kMPPrivilegedErr constant 73
kMPProcessCreatedErr constant 73
kMPProcessTerminatedErr constant 73
kMPQueueInfoVersion constant 61
kMPSemaphoreInfoVersion constant 61
kMPTaskBlocked constant 70
kMPTaskBlockedErr constant 73
kMPTaskCreatedErr constant 73
kMPTaskInfoVersion constant 70
kMPTaskPropagate constant 69
kMPTaskPropagateMask constant 69
kMPTaskReady constant 70
kMPTaskResumeBranch constant 69
kMPTaskResumeBranchMask constant 69
kMPTaskResumeMask constant 69
kMPTaskResumeStep constant 69
kMPTaskResumeStepMask constant 69
kMPTaskRunning constant 70
kMPTaskState32BitMemoryException constant 71
kMPTaskStateFPU constant 71
kMPTaskStateMachine constant 71

77
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

Index



kMPTaskStateRegisters constant 71
kMPTaskStateTaskInfo constant 71
kMPTaskStateVectors constant 71
kMPTaskStoppedErr constant 73
kMPTimeIsDeltaMask constant 73
kMPTimeIsDurationMask constant 73
kMPTimeoutErr constant 73
kOpaqueAddressSpaceID constant 63
kOpaqueAnyID constant 62
kOpaqueAreaID constant 63
kOpaqueCoherenceID constant 63
kOpaqueConsoleID constant 63
kOpaqueCpuID constant 63
kOpaqueCriticalRegionID constant 62
kOpaqueEventID constant 63
kOpaqueNotificationID constant 63
kOpaqueProcessID constant 62
kOpaqueQueueID constant 62
kOpaqueSemaphoreID constant 62
kOpaqueTaskID constant 62
kOpaqueTimerID constant 62

L

Library Version Constants 66

M

Memory Allocation Alignment Constants 63
Memory Allocation Option Constants 65
MPAddressSpaceID data type 49
MPAddressSpaceInfo structure 50
MPAllocate function 11
MPAllocateAligned function 12
MPAllocateTaskStorageIndex function 12
MPAreaID data type 50
MPArmTimer function 13
MPBlockClear function 14
MPBlockCopy function 14
MPCancelTimer function 15
MPCauseNotification function 16
MPCoherenceID data type 50
MPConsoleID data type 50
MPCpuID data type 51
MPCreateCriticalRegion function 16
MPCreateEvent function 17
MPCreateNotification function 17
MPCreateQueue function 18
MPCreateSemaphore function 18
MPCreateTask function 19

MPCreateTimer function 20
MPCriticalRegionID data type 51
MPCriticalRegionInfo structure 51
MPCurrentTaskID function 21
MPDataToCode function 21
MPDeallocateTaskStorageIndex function 22
MPDebuggerLevel 66
MPDelayUntil function 22
MPDeleteCriticalRegion function 23
MPDeleteEvent function 23
MPDeleteNotification function 24
MPDeleteQueue function 24
MPDeleteSemaphore function 25
MPDeleteTimer function 25
MPDisposeTaskException function 26
MPEnterCriticalRegion function 26
MPEventFlags data type 52
MPEventID data type 52
MPEventInfo structure 52
MPExceptionKind data type 52
MPExit function 27
MPExitCriticalRegion function 27
MPExtractTaskState function 28
MPFree function 28
MPGetAllocatedBlockSize function 29
MPGetNextCpuID function 29
MPGetNextTaskID function 30
MPGetTaskStorageValue function 30
MPLibrary_DevelopmentRevision constant 67
MPLibrary_MajorVersion constant 66
MPLibrary_MinorVersion constant 67
MPLibrary_Release constant 67
MPModifyNotification function 31
MPModifyNotificationParameters function 32
MPNotificationID data type 53
MPNotificationInfo structure 53
MPNotifyQueue function 32
MPOpaqueID data type 53
MPOpaqueIDClass data type 54
MPPageSizeClass data type 54
MPProcessID data type 54
MPProcessors function 33
MPProcessorsScheduled function 33
MPQueueID data type 54
MPQueueInfo structure 55
MPRegisterDebugger function 34
MPRemoteCall function 34
MPRemoteCallCFM function 35
MPRemoteProcedure callback 48
MPSemaphoreCount data type 55
MPSemaphoreID data type 55
MPSemaphoreInfo structure 56
MPSetEvent function 36

78
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

INDEX



MPSetExceptionHandler function 36
MPSetQueueReserve function 37
MPSetTaskState function 38
MPSetTaskStorageValue function 39
MPSetTaskType function 39
MPSetTaskWeight function 40
MPSetTimerNotify function 40
MPSignalSemaphore function 42
MPTaskID data type 56
MPTaskInfo structure 56
MPTaskInfoVersion2 structure 58
MPTaskIsPreemptive function 42
MPTaskStateKind data type 59
MPTaskWeight data type 59
MPTerminateTask function 43
MPThrowException function 44
MPTimerID data type 59
MPUnregisterDebugger function 44
MPWaitForEvent function 45
MPWaitOnQueue function 46
MPWaitOnSemaphore function 47
MPYield function 47

R

Remote Call Context Option Constants 67

T

Task Creation Options 68
Task Exception Disposal Constants 68
Task IDs 60
Task Information Structure Version Constant 69
Task Run State Constants 70
Task State Constants 70
TaskProc callback 49
TaskStorageIndex data type 59
TaskStorageValue data type 59
Timer Duration Constants 71
Timer Option Masks 72

V

Values for the MPOpaqueIDClass type 61

79
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

INDEX


	Multiprocessing Services Reference
	Contents
	Multiprocessing Services Reference
	Overview
	Functions by Task
	Determining Multiprocessing Services And Processor Availability
	Creating and Handling Message Queues
	Creating and Handling Semaphores
	Creating and Scheduling Tasks
	Handling Critical Regions
	Handling Event Groups
	Handling Kernel Notifications
	Accessing Per-Task Storage Variables
	Memory Allocation Functions
	Remote Calling Functions
	Timer Services Functions
	Exception Handling Functions
	Debugger Support Functions

	Functions
	MPAllocate
	MPAllocateAligned
	MPAllocateTaskStorageIndex
	MPArmTimer
	MPBlockClear
	MPBlockCopy
	MPCancelTimer
	MPCauseNotification
	MPCreateCriticalRegion
	MPCreateEvent
	MPCreateNotification
	MPCreateQueue
	MPCreateSemaphore
	MPCreateTask
	MPCreateTimer
	MPCurrentTaskID
	MPDataToCode
	MPDeallocateTaskStorageIndex
	MPDelayUntil
	MPDeleteCriticalRegion
	MPDeleteEvent
	MPDeleteNotification
	MPDeleteQueue
	MPDeleteSemaphore
	MPDeleteTimer
	MPDisposeTaskException
	MPEnterCriticalRegion
	MPExit
	MPExitCriticalRegion
	MPExtractTaskState
	MPFree
	MPGetAllocatedBlockSize
	MPGetNextCpuID
	MPGetNextTaskID
	MPGetTaskStorageValue
	MPModifyNotification
	MPModifyNotificationParameters
	MPNotifyQueue
	MPProcessors
	MPProcessorsScheduled
	MPRegisterDebugger
	MPRemoteCall
	MPRemoteCallCFM
	MPSetEvent
	MPSetExceptionHandler
	MPSetQueueReserve
	MPSetTaskState
	MPSetTaskStorageValue
	MPSetTaskType
	MPSetTaskWeight
	MPSetTimerNotify
	MPSignalSemaphore
	MPTaskIsPreemptive
	MPTerminateTask
	MPThrowException
	MPUnregisterDebugger
	MPWaitForEvent
	MPWaitOnQueue
	MPWaitOnSemaphore
	MPYield
	_MPIsFullyInitialized

	Callbacks
	MPRemoteProcedure
	TaskProc

	Data Types
	MPAddressSpaceID
	MPAddressSpaceInfo
	MPAreaID
	MPCoherenceID
	MPConsoleID
	MPCpuID
	MPCriticalRegionID
	MPCriticalRegionInfo
	MPEventFlags
	MPEventID
	MPEventInfo
	MPExceptionKind
	MPNotificationID
	MPNotificationInfo
	MPOpaqueID
	MPOpaqueIDClass
	MPPageSizeClass
	MPProcessID
	MPQueueID
	MPQueueInfo
	MPSemaphoreCount
	MPSemaphoreID
	MPSemaphoreInfo
	MPTaskID
	MPTaskInfo
	MPTaskInfoVersion2
	MPTaskStateKind
	MPTaskWeight
	MPTimerID
	TaskStorageIndex
	TaskStorageValue

	Constants
	Allocation constants
	Task IDs
	Data Structure Version Constants
	Values for the MPOpaqueIDClass type
	Memory Allocation Alignment Constants
	Memory Allocation Option Constants
	MPDebuggerLevel
	Library Version Constants
	Remote Call Context Option Constants
	Task Creation Options
	Task Exception Disposal Constants
	Task Information Structure Version Constant
	Task Run State Constants
	Task State Constants
	Timer Duration Constants
	Timer Option Masks

	Result Codes
	Gestalt Constants

	Revision History
	Index
	Symbols
	A
	D
	K
	L
	M
	R
	T
	V



