
Open Scripting Architecture Reference
Carbon > Scripting & Automation

2007-05-07

Apple Inc.
© 1993, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Mac, Mac OS, Macintosh, and OpenDoc
are trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Open Scripting Architecture Reference 9

Overview 9
Functions by Task 9

Saving and Loading Script Data 9
Executing and Disposing of Scripts 10
Setting and Getting Script Information 10
Manipulating the Active Function 10
Compiling Scripts 10
Getting Source Data 11
Coercing Script Values 11
Manipulating the Create and Send Functions 11
Recording Scripts 12
Executing Scripts in One Step 12
Copying a Scripting Dictionary as a Scripting Definition File 12
Manipulating Dialects 13
Using Script Contexts to Handle Apple Events 13
Initializing AppleScript 13
Getting and Setting Styles for Source Data 14
Getting and Setting the Default Scripting Component 14
Using Component-Specific Routines 14
Manipulating Trailers for Generic Storage Descriptor Records 14
Miscellaneous 15
Creating, Invoking and Disposing Universal Procedure Pointers 15
Deprecated Functions 16

Functions 17
ASCopySourceAttributes 17
ASGetAppTerminology 18
ASGetHandler 18
ASGetProperty 19
ASGetSourceStyleNames 19
ASInit 20
ASSetHandler 21
ASSetProperty 22
ASSetSourceAttributes 22
DisposeOSAActiveUPP 23
DisposeOSACreateAppleEventUPP 23
DisposeOSASendUPP 23
InvokeOSAActiveUPP 24
InvokeOSACreateAppleEventUPP 24
InvokeOSASendUPP 25
NewOSAActiveUPP 25

3
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

NewOSACreateAppleEventUPP 25
NewOSASendUPP 26
OSAAddStorageType 26
OSAAvailableDialectCodeList 27
OSAAvailableDialects 27
OSACoerceFromDesc 28
OSACoerceToDesc 29
OSACompile 30
OSACompileExecute 31
OSACopyDisplayString 32
OSACopyID 33
OSACopyScriptingDefinition 33
OSACopySourceString 34
OSADebuggerCreateSession 35
OSADebuggerDisposeCallFrame 35
OSADebuggerDisposeSession 36
OSADebuggerGetBreakpoint 36
OSADebuggerGetCallFrameState 37
OSADebuggerGetCurrentCallFrame 37
OSADebuggerGetDefaultBreakpoint 37
OSADebuggerGetPreviousCallFrame 38
OSADebuggerGetSessionState 38
OSADebuggerGetStatementRanges 39
OSADebuggerGetVariable 39
OSADebuggerSessionStep 39
OSADebuggerSetBreakpoint 40
OSADebuggerSetVariable 40
OSADisplay 41
OSADispose 42
OSADoEvent 42
OSADoScript 44
OSADoScriptFile 45
OSAExecute 46
OSAExecuteEvent 47
OSAGenericToRealID 48
OSAGetActiveProc 49
OSAGetCreateProc 50
OSAGetCurrentDialect 50
OSAGetDefaultScriptingComponent 51
OSAGetDialectInfo 51
OSAGetHandler 52
OSAGetHandlerNames 53
OSAGetProperty 54
OSAGetPropertyNames 55
OSAGetResumeDispatchProc 56
OSAGetScriptInfo 56

4
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

OSAGetScriptingComponent 57
OSAGetScriptingComponentFromStored 58
OSAGetSendProc 59
OSAGetSource 59
OSAGetStorageType 60
OSAGetSysTerminology 61
OSALoad 62
OSALoadExecute 63
OSALoadExecuteFile 64
OSALoadFile 65
OSAMakeContext 66
OSARealToGenericID 66
OSARemoveStorageType 67
OSAScriptError 68
OSAScriptingComponentName 69
OSASetActiveProc 69
OSASetCreateProc 70
OSASetCurrentDialect 71
OSASetDefaultScriptingComponent 71
OSASetDefaultTarget 72
OSASetHandler 73
OSASetProperty 73
OSASetResumeDispatchProc 74
OSASetScriptInfo 75
OSASetSendProc 76
OSAStartRecording 77
OSAStopRecording 78
OSAStore 79
OSAStoreFile 80

Callbacks 81
OSAActiveProcPtr 81
OSACreateAppleEventProcPtr 81
OSASendProcPtr 83

Data Types 84
OSAID 84
GenericID 85
OSAError 85
ScriptingComponentSelector 85
StatementRange 85
OSAActiveUPP 86
OSACreateAppleEventUPP 86
OSASendUPP 86
OSADebugCallFrameRef 86
OSADebugSessionRef 87

Constants 88
cClosure 88

5
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

cCoercion 88
cHandleBreakpoint 88
Component Flags 89
Considerations Flags 90
Considerations Bit Masks 91
cString 92
Current Dialect Constants 92
Date and Time Constants 92
Default Initialization Values 92
Dialect Descriptor Constants 94
Generic Scripting Component Selectors 95
Global Properties 95
kASAdd 95
kASAnd 95
kASErrorEventCode 96
kASStartLogEvent 96
kDialectBundleResType 96
keyAETarget 97
keyAppHandledCoercion 97
keyASPrepositionAt 97
keyASPrepositionOver 98
keyOSASourceEnd 98
keyOSASourceStart 98
keyProcedureName 99
keyProgramState 99
kGenericComponentVersion 99
kOSAComponentType 100
kOSAGenericScriptingComponentSubtype 100
kOSAModeDontDefine 100
kOSANullScript 100
kOSARecordedText 101
kOSAScriptResourceType 101
kOSASelectComponentSpecificStart 101
kOSASelectCopyScript 102
kOSASuite 102
Mode Flags 102
Null Mode Flags 106
OSADebugStepKind 106
OSAProgramState 106
OSAScriptError Selectors 106
Recording Constants 108
Resume Dispatch Function Constants 108
Script Document File Type 109
Script Information Selectors 109
Source Constants 111
Source Style Constants 111

6
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

typeAppleScript 112
typeOSAErrorRange 113
typeOSAGenericStorage 113
typeStatementRange 114
Weekdays 114

Result Codes 114

Appendix A Deprecated Open Scripting Architecture Functions 119

Deprecated in Mac OS X v10.5 119
ASGetSourceStyles 119
ASSetSourceStyles 119
OSAGetAppTerminology 120

Document Revision History 123

Index 125

7
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

8
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in ASDebugging.h
ASRegistry.h
AppleScript.h
OSA.h
OSAComp.h
OSAGeneric.h

Overview

The Open Scripting Architecture (OSA) provides a standard and extensible mechanism for interapplication
communication in Mac OS X. It provides support for creating scriptable applications and for writing scripting
components to implement scripting languages. Every Mac OS X system includes the AppleScript component,
which implements AppleScript, the standard scripting language defined by Apple. However, developers can
write scripting components for additional scripting languages. For conceptual information on the OSA, see
“Open Scripting Architecture” in AppleScript Overview.

You need to use this reference if you are writing a scripting component or if your application needs to interact
with scripting components to manipulate and execute scripts. The API described in this document is
implemented by the OpenScripting framework, a subframework of the Carbon framework. For information
about working with components, see Scripting Components in Inside Macintosh: Interapplication Communi-
cation.

Important: Do not rely on the API descriptions in Interapplication Communication—OpenScriptingArchitecture
Reference provides the current API documentation.

The Apple Event Manager, another part of the OSA, is implemented primarily by the AE framework, a
subframework of the Application Services framework, and is documented in Apple Event Manager Reference
and Apple Events Programming Guide. Applications use the Apple Event Manager to send and respond to
Apple events and to make their operations and data available to AppleScript scripts.

Functions by Task

Saving and Loading Script Data

OSALoad (page 62)
Loads script data.

Overview 9
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-331.html#HEADING331-0
http://developer.apple.com/documentation/mac/IAC/IAC-2.html
http://developer.apple.com/documentation/mac/IAC/IAC-2.html
http://developer.apple.com/documentation/mac/IAC/IAC-2.html

OSALoadFile (page 65)
Loads a script from the specified file into the specified scripting component, compiling the script if
the file is a text file.

OSAStore (page 79)
Gets a handle to script data in the form of a storage descriptor record.

OSAStoreFile (page 80)
Stores a script into the specified file.

Executing and Disposing of Scripts
To execute a script, your application must first obtain a valid script ID for a compiled script or script context.
You can use either the OSALoad function or the optional OSACompile function to obtain a script ID.

OSAExecute (page 46)
Executes a compiled script or a script context.

OSAScriptError (page 68)
Gets information about errors that occur during script execution.

OSADispose (page 42)
Reclaims the memory occupied by script data.

Setting and Getting Script Information

OSASetScriptInfo (page 75)
Sets information about script data according to the value you pass in the selector parameter.

OSAGetScriptInfo (page 56)
Obtains information about script data according to the value you pass in the selector parameter.

Manipulating the Active Function

OSASetActiveProc (page 69)
Sets the active function that a scripting component calls periodically while executing a script.

OSAGetActiveProc (page 49)
Gets a pointer to the active function that a scripting component is currently using.

Compiling Scripts
Scripting components can provide three optional functions that get the name of a scripting component,
compile a script, and update a script ID. A scripting component that supports the functions in this section
has the kOSASupportsCompiling bit set in the componentFlags field of its component description record.

OSAScriptingComponentName (page 69)
Gets the name of a scripting component.

OSACompile (page 30)
Compiles the source data for a script and obtain a script ID for a compiled script or a script context.

10 Functions by Task
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSACopyID (page 33)
Updates script data after editing or recording and to perform undo or revert operations on script
data.

Getting Source Data

OSAGetSource (page 59)
Decompiles the script data identified by a script ID and obtains the equivalent source data.

OSADisplay (page 41)
Converts a script value to text. Your application can then use its own functions to display this text to
the user.

OSACopyDisplayString (page 32)
Converts a script value to an attributed Unicode text string, which your application can display to the
user.

OSACopySourceString (page 34)
Decompiles the script data for the specified script and returns a copy of the equivalent source data
as an attributed Unicode text string.

Coercing Script Values
Scripting components can provide support for two optional functions which coerce data in a descriptor
record to a script value and coerce a script value to data in a descriptor record. A scripting component that
supports the functions in this section has the kOSASupportsAECoercion bit set in the componentFlags
field of its component description record.

OSACoerceFromDesc (page 28)
Obtains the script ID for a script value that corresponds to the data in a descriptor record.

OSACoerceToDesc (page 29)
Coerces a script value to a descriptor record of a desired descriptor type.

Manipulating the Create and Send Functions
Some scripting components provide functions that allow your application to set or get pointers to the create
and send functions used by the scripting component when it sends and creates Apple events during script
execution. If you do not set the pointers that specify these functions, the scripting component uses the
standard AECreateAppleEvent and AESend functions with default parameters. A scripting component
that supports the functions described in this section has the kOSASupportsAESending bit set in the
componentFlags field of its component description record.

OSASetCreateProc (page 70)
Specifies a create function that a scripting component should use instead of the Apple Event Manager’s
AECreateAppleEvent function when creating Apple events.

OSAGetCreateProc (page 50)
Gets a pointer to the create function that a scripting component is currently using to create Apple
events.

Functions by Task 11
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSASetSendProc (page 76)
Specifies a send function that a scripting component should use instead of the Apple Event Manger’s
AESend function when sending Apple events.

OSAGetSendProc (page 59)
Gets a pointer to the send function that a scripting component is currently using.

OSASetDefaultTarget (page 72)
Sets the default target application for Apple events.

Recording Scripts
Script editors use these functions to allow users to control recording. Any application can use these functions
to provide its own script-recording interface. A scripting component that supports the functions described
in this section has the kOSASupportsRecording bit set in the componentFlags field of its component
description record.

OSAStartRecording (page 77)
Turns on Apple event recording and records subsequent Apple events in a compiled script.

OSAStopRecording (page 78)
Turns off Apple event recording.

Executing Scripts in One Step
You can use these functions if you know that the script data to be executed will be executed only once. A
scripting component that supports the functions described in this section has thekOSASupportsConvenience
bit set in the componentFlags field of its component description record.

OSACompileExecute (page 31)
Compiles and executes a script in a single step rather than calling OSACompile and OSAExecute.

OSADoScript (page 44)
Compiles and executes a script and converts the resulting script value to text in a single step rather
than calling OSACompile, OSAExecute, and OSADisplay.

OSADoScriptFile (page 45)
Loads a script from the specified file, compiles the script if the file is a text file, executes the script,
converts the resulting script value to text, and stores the script back into the file if the script has
persistent properties and the file is not a text file.

OSALoadExecute (page 63)
Loads and executes a script in a single step rather than calling OSALoad and OSAExecute.

OSALoadExecuteFile (page 64)
Loads a script from the specified file into the specified scripting component, compiles the script if
the file is a text file, and executes the script.

Copying a Scripting Dictionary as a Scripting Definition File

OSACopyScriptingDefinition (page 33)
Creates a copy of a scripting definition (sdef) from the specified file or bundle.

12 Functions by Task
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Manipulating Dialects
Scripting components that provide several dialects may provide five functions that allow you to switch
between dialects dynamically and get information about currently available dialects. The codes for specific
dialects are provided by the scripting component. A scripting component that supports the functions described
in this section has the kOSASupportsDialects bit set in the componentFlags field of its component
description record.

OSASetCurrentDialect (page 71)
Sets the current dialect for a scripting component.

OSAGetCurrentDialect (page 50)
Gets the dialect code for the dialect currently being used by a scripting component.

OSAAvailableDialectCodeList (page 27)
Obtains a descriptor list containing dialect codes for each of a scripting component’s currently available
dialects.

OSAGetDialectInfo (page 51)
Gets information about a specified dialect provided by a specified scripting component.

OSAAvailableDialects (page 27)
Obtains a descriptor list containing information about each of the currently available dialects for a
scripting component.

Using Script Contexts to Handle Apple Events
The optional functions described in this section allow your application to use script contexts to handle Apple
events. One way to do this is to install a general Apple event handler in your application’s special handler
dispatch table. The general Apple event handler provides initial handling for every Apple event received by
your application. A scripting component that supports the functions described in this section has the
kOSASupportsEventHandling bit set in the componentFlags field of its component description record.

OSASetResumeDispatchProc (page 74)
Sets the resume dispatch function called by a scripting component during execution of an AppleScript
continue statement or its equivalent.

OSAGetResumeDispatchProc (page 56)
Gets the resume dispatch function currently being used by a scripting component instance during
execution of an AppleScript continue statement or its equivalent

OSAExecuteEvent (page 47)
Handles an Apple event with the aid of a script context and obtains a script ID for the resulting script
value.

OSADoEvent (page 42)
Handles an Apple event with the aid of a script context and obtains a reply event.

OSAMakeContext (page 66)
Gets a script ID for a new script context.

Initializing AppleScript

ASInit (page 20)
Initializes the AppleScript component.

Functions by Task 13
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Getting and Setting Styles for Source Data

ASCopySourceAttributes (page 17)
Gets the current text style attributes AppleScript uses to display script text.

ASSetSourceAttributes (page 22)
Sets the text style attributes used by the AppleScript component to display scripts.

ASGetSourceStyleNames (page 19)
Obtains a list of style names that are each formatted according to the script format styles currently
used by the AppleScript component.

Getting and Setting the Default Scripting Component
The default scripting component for any instance of the generic scripting component is initially AppleScript,
but you can change it if necessary.

OSAGetDefaultScriptingComponent (page 51)
Gets the subtype code for the default scripting component associated with an instance of the generic
scripting component.

OSASetDefaultScriptingComponent (page 71)
Sets the default scripting component associated with an instance of the generic scripting component.

Using Component-Specific Routines
You can’t use the generic scripting component to call a component-specific routine. Instead, you must use
an instance of the specific scripting component that supports the routine.

To facilitate the use of component-specific routines, the generic scripting component allows you to identify
the scripting component that created stored script data, get an instance of a specified scripting component,
and convert between generic script IDs and component-specific script IDs.

OSAGetScriptingComponentFromStored (page 58)
Gets the subtype code for a scripting component that created a storage descriptor record.

OSAGetScriptingComponent (page 57)
Gets the instance of a scripting component for a specified subtype.

OSAGenericToRealID (page 48)
Converts a generic script ID to the corresponding component-specific script ID.

OSARealToGenericID (page 66)
Converts a component-specific script ID to the corresponding generic script ID.

Manipulating Trailers for Generic Storage Descriptor Records
All scripting components must use the OSAGetStorageType, OSAAddStorageType, and
OSARemoveStorageType functions described in this section to add, remove, and inspect the trailers appended
to script data in generic storage descriptor records.

OSAGetStorageType (page 60)
Retrieves the scripting component subtype from the script trailer appended to the script data in a
generic storage descriptor record.

14 Functions by Task
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAAddStorageType (page 26)
Adds a trailer to the script data in a generic storage descriptor record.

OSARemoveStorageType (page 67)
Removes a trailer from the script data in a generic storage descriptor record

Miscellaneous

ASGetAppTerminology (page 18)
Deprecated. Use OSAGetAppTerminology (page 120) instead.

ASGetHandler (page 18)
Deprecated. Use OSAGetHandler (page 52) instead.

ASGetProperty (page 19)
Deprecated. Use OSAGetProperty (page 54) instead.

ASSetHandler (page 21)
Deprecated. Use OSASetHandler (page 73) instead.

ASSetProperty (page 22)
Deprecated. Use OSASetProperty (page 73) instead.

OSAGetHandler (page 52)
Gets a script ID for the specified script handler from the specified script.

OSAGetHandlerNames (page 53)
Gets a list of all handler names in the specified script as an AEDescList of descriptors of type
typeChar.

OSAGetProperty (page 54)
Gets the value of a specified script property from a specified script.

OSAGetPropertyNames (page 55)
Gets a list of all property names from the specified script.

OSAGetSysTerminology (page 61)
Gets one or more scripting terminology resources from the OSA system.

OSASetHandler (page 73)
Sets a specified script handler in the specified script to the supplied handler.

OSASetProperty (page 73)
Sets the value of a script property in a specified script, creating the property if it does not already
exist.

OSAGetAppTerminology (page 120) Deprecated in Mac OS X v10.5
Gets one or more scripting terminology resources from the specified file. (Deprecated. Use
OSACopyScriptingDefinition (page 33) instead.)

Creating, Invoking and Disposing Universal Procedure Pointers

NewOSAActiveUPP (page 25)
Creates a new universal procedure pointer to an application-defined active function.

NewOSACreateAppleEventUPP (page 25)
Creates a new universal procedure pointer to an application-defined Apple event creation function.

Functions by Task 15
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

NewOSASendUPP (page 26)
Creates a new universal procedure pointer to an application-defined send function.

DisposeOSAActiveUPP (page 23)
Disposes of a universal procedure pointer to an application-defined active function.

DisposeOSACreateAppleEventUPP (page 23)
Disposes of a universal procedure pointer to an application-defined Apple event create function.

DisposeOSASendUPP (page 23)
Disposes of a universal procedure pointer to an application-defined send function.

InvokeOSAActiveUPP (page 24)
Invokes an application-defined active function.

InvokeOSACreateAppleEventUPP (page 24)
Invokes an application-defined Apple event creation function.

InvokeOSASendUPP (page 25)
Invokes an application-defined send function.

Deprecated Functions

Warning: Do not use the OSA debugging functions listed here. They were were not intended for public
use, they do not work, and they will return an error.

OSADebuggerCreateSession (page 35)
Do not use.

OSADebuggerDisposeCallFrame (page 35)
Do not use.

OSADebuggerDisposeSession (page 36)
Do not use.

OSADebuggerGetBreakpoint (page 36)
Do not use.

OSADebuggerGetCallFrameState (page 37)
Do not use.

OSADebuggerGetCurrentCallFrame (page 37)
Do not use.

OSADebuggerGetDefaultBreakpoint (page 37)
Do not use.

OSADebuggerGetPreviousCallFrame (page 38)
Do not use.

OSADebuggerGetSessionState (page 38)
Do not use.

OSADebuggerGetStatementRanges (page 39)
Do not use.

OSADebuggerGetVariable (page 39)
Do not use.

16 Functions by Task
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSADebuggerSessionStep (page 39)
Do not use.

OSADebuggerSetBreakpoint (page 40)
Do not use.

OSADebuggerSetVariable (page 40)
Do not use.

ASGetSourceStyles (page 119) Deprecated in Mac OS X v10.5
Gets the script format styles currently used by the AppleScript component to display scripts.
(Deprecated. Use ASGetSourceStyleNames (page 19) instead.)

ASSetSourceStyles (page 119) Deprecated in Mac OS X v10.5
Sets the script format styles used by the AppleScript component to display scripts. (Deprecated. Use
ASSetSourceAttributes (page 22) instead.)

Functions

ASCopySourceAttributes
Gets the current text style attributes AppleScript uses to display script text.

OSAError ASCopySourceAttributes (
 ComponentInstance scriptingComponent,
 CFArrayRef *resultingSourceAttributes
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingSourceAttributes
If successful, returns a reference to an array (of type CFArray) of dictionaries (of type CFDictionary)
of text style attributes; otherwise, returns nil.

The order of elements in the array corresponds to the constants defined in “Source Style
Constants” (page 111), and therefore also to the names returned by ASGetSourceStyleNames (page
19). For example, the first dictionary in the array (at position kASSourceStyleUncompiledText)
describes the style for uncompiled text. However, you should not rely on there being any specific
number of dictionaries in the returned array—instead, count the number of items in the array before
accessing any of them.

This array is a copy and the caller is responsible for releasing it, according to the rules described in
Ownership Policy in Memory Management Programming Guide for Core Foundation.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
A text style attribute is typically something that is meaningful to a CFAttributedString, such as the one
returned by OSACopyDisplayString (page 32) or OSACopySourceString (page 34). However, clients
may add other attributes using ASSetSourceAttributes (page 22).

Functions 17
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
AppleScript.h

ASGetAppTerminology
Deprecated. Use OSAGetAppTerminology (page 120) instead.

OSAError ASGetAppTerminology (
 ComponentInstance scriptingComponent,
 FSSpec *fileSpec,
 short terminologID,
 Boolean *didLaunch,
 AEDesc *terminologyList
);

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
Provided for backward compatibility only. Use OSAGetAppTerminology (page 120) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASGetHandler
Deprecated. Use OSAGetHandler (page 52) instead.

OSAError ASGetHandler (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID *resultingCompiledScriptID
);

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
Provided for backward compatibility only. Use OSAGetHandler (page 52) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

18 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

ASGetProperty
Deprecated. Use OSAGetProperty (page 54) instead.

OSAError ASGetProperty (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID *resultingScriptValueID
);

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
Provided for backward compatibility only. Use OSAGetProperty (page 54) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASGetSourceStyleNames
Obtains a list of style names that are each formatted according to the script format styles currently used by
the AppleScript component.

OSAError ASGetSourceStyleNames (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 AEDescList *resultingSourceStyleNamesList
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

modeFlags
Reserved for future use. Set to kOSAModeNull.

resultingSourceStyleNames
A pointer to a list of style names (for example, “Uncompiled Text,” “Normal Text”) that are each
formatted according to the current script format styles. The order of the names corresponds to the
order of the source style constants listed in “Source Style Constants” (page 111). For example, the first
name in the list (at position kASSourceStyleUncompiledText) is formatted according to the style
for uncompiled text.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Functions 19
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
AppleScript.h

ASInit
Initializes the AppleScript component.

OSAError ASInit (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 UInt32 minStackSize,
 UInt32 preferredStackSize,
 UInt32 maxStackSize,
 UInt32 minHeapSize,
 UInt32 preferredHeapSize,
 UInt32 maxHeapSize
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

modeFlags
Reserved for future use. Set to kOSAModeNull.

minStackSize
The minimum size for the portion of the application’s heap used by the AppleScript component’s
application-specific stack.

preferredStackSize
The preferred size for the portion of the application’s heap used by the AppleScript component’s
application-specific stack.

maxStackSize
The maximum size for the portion of the application’s heap used by the AppleScript component’s
application-specific stack.

minHeapSize
The minimum size for the portion of the application’s heap used by the AppleScript component’s
application-specific heap. (See Version Notes section.)

preferredHeapSize
The preferred size for the portion of the application’s heap used by the AppleScript component’s
application-specific heap. (See Version Notes section.)

maxHeapSize
The maximum size for the portion of the application’s heap used by the AppleScript component’s
application-specific heap. (See Version Notes section.)

Return Value
A result code. See “Result Codes” (page 114).

20 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Discussion
Your application should set the modeFlags parameter to kOSAModeNull. You can use the other parameters
to specify memory sizes for the portion of your application’s heap used by the AppleScript component for
its application-specific heap and stack. If your application sets any of these parameters to 0, the AppleScript
component uses the corresponding value in your application’s 'scsz' resource. If that value is also set to
0, the AppleScript component uses the default values described in “Default Initialization Values” (page 92).

If your application doesn’t call ASInit explicitly, the AppleScript component initializes itself using the values
specified in your application’s 'scsz' resource when your application first calls any scripting component
routine. If any of these values are set to 0, the AppleScript component uses the corresponding default value.

If your application doesn’t call ASInit explicitly and doesn’t call any scripting component routines, the
AppleScript component will not be initialized. For example, if your application opens and closes the AppleScript
component or calls Component Manager functions such asOpenDefaultComponentorFindNextComponent
but doesn’t call any scripting component routines, the AppleScript component is not initialized.

When the AppleScript component is initialized, it uses your application’s high memory to create the blocks
that it locks for its own use. If you expect to lock any portion of high memory for a shorter time than you
expect the AppleScript component to be available, you should call ASInit explicitly.

Version Notes
Starting in Mac OS X version 10.5, heap size parameter values are ignored—AppleScript's heap will grow as
large as needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleScript.h

ASSetHandler
Deprecated. Use OSASetHandler (page 73) instead.

OSAError ASSetHandler (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID compiledScriptID
);

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
Provided for backward compatibility only. Use OSASetHandler (page 73) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

Functions 21
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

ASSetProperty
Deprecated. Use OSASetProperty (page 73) instead.

OSAError ASSetProperty (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID scriptValueID
);

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
Provided for backward compatibility only. Use OSASetProperty (page 73) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASSetSourceAttributes
Sets the text style attributes used by the AppleScript component to display scripts.

OSAError ASSetSourceAttributes (
 ComponentInstance scriptingComponent,
 CFArrayRef sourceAttributes
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceAttributes
A reference to an array (of type CFArray) of dictionaries (of type CFDictionary) of text style
attributes.

You can pass a nil reference for this parameter if you want the AppleScript component to display
script text using its default styles.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
A text style attribute is typically something that is meaningful to a CFAttributedString, such as the one
returned by OSACopyDisplayString (page 32) or OSACopySourceString (page 34). However, clients
may add any attributes they like. Because of this, you should generally call ASSetSourceAttributes with
a modified copy of the result from ASCopySourceAttributes (page 17), not a built-from-scratch set of
attributes.

22 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

The order of elements in the array should correspond to the constants defined in “Source Style
Constants” (page 111), and therefore also to the names returned by ASGetSourceStyleNames (page 19).
After calling ASSetSourceAttributes, you must dispose of the style element array you used to specify
the text style attributes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AppleScript.h

DisposeOSAActiveUPP
Disposes of a universal procedure pointer to an application-defined active function.

void DisposeOSAActiveUPP (
 OSAActiveUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

DisposeOSACreateAppleEventUPP
Disposes of a universal procedure pointer to an application-defined Apple event create function.

void DisposeOSACreateAppleEventUPP (
 OSACreateAppleEventUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

DisposeOSASendUPP
Disposes of a universal procedure pointer to an application-defined send function.

Functions 23
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

void DisposeOSASendUPP (
 OSASendUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

InvokeOSAActiveUPP
Invokes an application-defined active function.

OSErr InvokeOSAActiveUPP (
 SRefCon refCon,
 OSAActiveUPP userUPP
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

InvokeOSACreateAppleEventUPP
Invokes an application-defined Apple event creation function.

OSErr InvokeOSACreateAppleEventUPP (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc *target,
 short returnID,
 SInt32 transactionID,
 AppleEvent *result,
 SRefCon refCon,
 OSACreateAppleEventUPP userUPP
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

24 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

InvokeOSASendUPP
Invokes an application-defined send function.

OSErr InvokeOSASendUPP (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 SInt32 timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc,
 SRefCon refCon,
 OSASendUPP userUPP
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

NewOSAActiveUPP
Creates a new universal procedure pointer to an application-defined active function.

OSAActiveUPP NewOSAActiveUPP (
 OSAActiveProcPtr userRoutine
);

Parameters
userRoutine

A pointer to the active function.

Return Value
The new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

NewOSACreateAppleEventUPP
Creates a new universal procedure pointer to an application-defined Apple event creation function.

Functions 25
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSACreateAppleEventUPP NewOSACreateAppleEventUPP (
 OSACreateAppleEventProcPtr userRoutine
);

Parameters
userRoutine

A pointer to the creation function.

Return Value
The new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

NewOSASendUPP
Creates a new universal procedure pointer to an application-defined send function.

OSASendUPP NewOSASendUPP (
 OSASendProcPtr userRoutine
);

Parameters
userRoutine

A pointer to the send function.

Return Value
The new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAAddStorageType
Adds a trailer to the script data in a generic storage descriptor record.

OSErr OSAAddStorageType (
 AEDataStorage scriptData,
 DescType dscType
);

Parameters
scriptData

A handle to the script data.

dscType
The descriptor type to be specified in the trailer added to the script data.

Return Value
A result code. See “Result Codes” (page 114).

26 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Discussion
The OSAAddStorageType function attaches a trailer to a handle (consequently expanding the data to which
the handle refers) or updates an existing trailer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAComp.h

OSAAvailableDialectCodeList
Obtains a descriptor list containing dialect codes for each of a scripting component’s currently available
dialects.

OSAError OSAAvailableDialectCodeList (
 ComponentInstance scriptingComponent,
 AEDesc *resultingDialectCodeList
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingDialectCodeList
A pointer to the returned descriptor list.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Each item in the descriptor list returned by OSAAvailableDialectCodeList is a descriptor record of
descriptor type typeInteger containing a dialect code for one of the specified scripting component’s
currently available dialects. Dialect codes are defined by individual scripting components.

You can pass any dialect code you obtain using OSAAvailableDialectCodeList to OSAGetDialectInfo
to get information about the corresponding dialect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAAvailableDialects
Obtains a descriptor list containing information about each of the currently available dialects for a scripting
component.

Functions 27
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSAAvailableDialects (
 ComponentInstance scriptingComponent,
 AEDesc *resultingDialectInfoList
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingDialectInfoList
A pointer to the returned descriptor list.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Each item in the list returned by OSAAvailableDialects is an AE record of descriptor type
typeOSADialectInfo. Each descriptor record in the descriptor list contains, at a minimum, four
keyword-specified descriptor records with the keywords described in “Dialect Descriptor Constants” (page
94).

Rather than callingOSAAvailableDialects to obtain complete dialect information for a scripting component,
it is usually more convenient to call OSAAvailableDialectCodeList to get a list of codes for a scripting
component’s dialects, then call OSAGetDialectInfo to get information about the specific dialect you’re
interested in.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACoerceFromDesc
Obtains the script ID for a script value that corresponds to the data in a descriptor record.

OSAError OSACoerceFromDesc (
 ComponentInstance scriptingComponent,
 const AEDesc *scriptData,
 SInt32 modeFlags,
 OSAID *resultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptData
A pointer to a descriptor record containing the script data to be coerced.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. If the scriptData parameter contains an Apple event, you can use any of the mode
flags listed in “Mode Flags” (page 102).

28 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

resultingScriptValueID
A pointer to the resulting script ID for a script value. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSACoerceFromDesc function coerces the descriptor record in the scriptData parameter to the
equivalent script value and returns a script ID for that value.

If you pass OSACoerceFromDesc an Apple event in the scriptData parameter, it returns a script ID for the
equivalent compiled script in the resultingScriptValueID parameter. In this case you can specify any
of the modeFlags values used by OSACompile to control the way the compiled script is executed.

If you call OSACoerceFromDesc using an instance of the generic scripting component, the generic scripting
component uses the default scripting component to perform the coercion.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACoerceToDesc
Coerces a script value to a descriptor record of a desired descriptor type.

OSAError OSACoerceToDesc (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script value to coerce. See the OSAID (page 84) data type.

desiredType
The desired descriptor type of the resulting descriptor record.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull.

result
A pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 114).

Functions 29
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Discussion
The OSACoerceToDesc function coerces the script value identified by scriptValueID to a descriptor record
of the type specified by the desiredType parameter, if possible. Valid types include all the standard descriptor
types, plus any special types supported by the scripting component.

If you want the descriptor type of the descriptor record returned in the result parameter to be the same as
the descriptor type returned by a scripting component, use OSACoerceToDesc and specify typeWildCard
as the desired type. If you want to get a script value in a form that you can display for humans to read, use
OSADisplay.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACompile
Compiles the source data for a script and obtain a script ID for a compiled script or a script context.

OSAError OSACompile (
 ComponentInstance scriptingComponent,
 const AEDesc *sourceData,
 SInt32 modeFlags,
 OSAID *previousAndResultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceData
A pointer to a descriptor record containing suitable source data for the specified scripting component.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 102).

previousAndResultingScriptID
A pointer to the script ID for the resulting compiled script. If the value of this parameter on input is
kOSANullScript, OSACompile returns a new script ID for the compiled script data. If the value of
this parameter on input is an existing script ID, OSACompile updates the script ID so that it refers to
the newly compiled script data. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
You can pass a descriptor record containing source data suitable for a specific scripting component (usually
text) to the OSACompile function to obtain a script ID for the equivalent compiled script or script context.
To compile the source data as a script context for use with OSAExecuteEvent or OSADoEvent, you must
set the kOSAModeCompileIntoContext flag, and the source data should include appropriate handlers.

After you have successfully compiled the script, you can use the returned script ID to refer to the compiled
script when you call OSAExecute and other scripting component routines.

30 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

If you use OSACompile with an instance of the generic scripting component and pass kOSANullScript in
the previousAndResultingScriptID parameter, the generic scripting component uses the default
scripting component to compile the script.

If you’re recompiling a script, specify the original script ID in the previousAndResultingScriptID
parameter. The generic scripting component uses the script ID to determine which scripting component it
should use to compile the script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACompileExecute
Compiles and executes a script in a single step rather than calling OSACompile and OSAExecute.

OSAError OSACompileExecute (
 ComponentInstance scriptingComponent,
 const AEDesc *sourceData,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceData
A pointer to a descriptor record identifying suitable source data for the specified scripting component.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 84) data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 102).

resultingScriptValueID
A pointer to the script ID for the script value returned.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSACompileExecute function compiles source data and executes the resulting compiled script, using
the script context identified by the contextID parameter to maintain state information such as the binding
of variables. After successfully executing the script, OSACompileExecute disposes of the compiled script
and returns either the script ID for the resulting script value or, if execution does not result in a value, the
constant kOSANullScript.

Functions 31
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

If the result c ode returned by OSACompileExecute is a general result code, there was some problem in
arranging for the script to be run. If the result code is errOSAScriptError, an error occurred during script
execution. In this case, you can obtain more detailed error information by calling OSAScriptError.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACopyDisplayString
Converts a script value to an attributed Unicode text string, which your application can display to the user.

OSAError OSACopyDisplayString (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 SInt32 modeFlags,
 CFAttributedStringRef *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script value to display. See the OSAID (page 84) data type.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To make the resulting text readable by humans only, so that it can’t be recompiled,
specify kOSAModeDisplayForHumans.

result
If successful, a reference to the script data as an attributed Unicode text string; otherwise not defined.

Because the result parameter returns a copy, the caller is responsible for releasing this string object,
according to the rules described in Ownership Policy in Memory Management Programming Guide for
Core Foundation.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSACopyDisplayString function is analogous to OSADisplay (page 41), except that it returns the
script text as an attributed Unicode text string. An instance of CFAttributedString manages a character
string and an associated set of attributes that apply to characters or ranges of characters in the string. You
can call ASCopySourceAttributes (page 17) to get the current AppleScript source style attributes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
OSA.h

32 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSACopyID
Updates script data after editing or recording and to perform undo or revert operations on script data.

OSAError OSACopyID (
 ComponentInstance scriptingComponent,
 OSAID fromID,
 OSAID *toID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

fromID
The script ID for script data that you want to be associated with the script ID in the toID parameter.
See the OSAID (page 84) data type.

toID
A pointer to the script ID for the script data to be replaced. If the value of this parameter is
kOSANullScript, the OSACopyID function returns a new script ID. See the OSAID (page 84) data
type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSACopyID function replaces the script data identified by the script ID in the toID parameter with the
script data identified by the script ID in the fromID parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACopyScriptingDefinition
Creates a copy of a scripting definition (sdef) from the specified file or bundle.

OSAError OSACopyScriptingDefinition (
 const FSRef *ref,
 SInt32 modeFlags,
 CFDataRef *sdef
);

Parameters
ref

A file reference to the application file or bundle from which to copy the scripting definition.

modeFlags
Reserved for future use. Set to kOSAModeNull.

sdef
On return, the resulting scripting definition, as XML data.

Functions 33
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Return Value
A result code. See “Result Codes” (page 114).

Discussion
If the target application does not have a true scripting definition (sdef) but does have an 'aete' resource
or a Cocoa script suite, this function translates the existing information to an sdef. As a result,
OSACopyScriptingDefinition works for any scriptable application.

To provide a scripting definition in your application:

1. Put the sdef file in the Resources folder of the application bundle.

2. Add an entry to your information property list (Info.plist) file:

 ■ key: “OSAScriptingDefinition”

 ■ value: “MyApplication.sdef” (the name of the sdef)

For an introduction to scripting definitions, see “Specifying Scripting Terminology” in AppleScript Overview.
See the man page for sdef(5) for details of the sdef format.

Availability
Available in Mac OS X v10.4 and later.

Declared In
ASDebugging.h

OSACopySourceString
Decompiles the script data for the specified script and returns a copy of the equivalent source data as an
attributed Unicode text string.

OSAError OSACopySourceString (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 SInt32 modeFlags,
 CFAttributedStringRef *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data to decompile. If you pass kOSANullScript in this parameter,
OSACopySourceString returns a null source description (such as an empty text string). See the
OSAID (page 84) data type.

modeFlags
No mode information is currently supported, so you should specify kOSAModeNull for this parameter.

34 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

result
If successful, a reference to the script data as an attributed Unicode text string; otherwise not defined.

Because the result parameter returns a copy, the caller is responsible for releasing this string object,
according to the rules described in Ownership Policy in Memory Management Programming Guide for
Core Foundation.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSACopySourceString function is analogous to OSAGetSource (page 59), except that it returns the
decompiled script data as an attributed Unicode text string (a Core Foundation attributed string object). This
data can be displayed to the user or compiled and executed. You can call ASCopySourceAttributes (page
17) to get the current AppleScript source style attributes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
OSA.h

OSADebuggerCreateSession
Do not use.

Unsupported

OSAError OSADebuggerCreateSession (
 ComponentInstance scriptingComponent,
 OSAID inScript,
 OSAID inContext,
 OSADebugSessionRef *outSession
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerDisposeCallFrame
Do not use.

Unsupported

Functions 35
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSADebuggerDisposeCallFrame (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerDisposeSession
Do not use.

Unsupported

OSAError OSADebuggerDisposeSession (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetBreakpoint
Do not use.

Unsupported

OSAError OSADebuggerGetBreakpoint (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 UInt32 inSrcOffset,
 OSAID *outBreakpoint
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

36 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSADebuggerGetCallFrameState
Do not use.

Unsupported

OSAError OSADebuggerGetCallFrameState (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame,
 AERecord *outState
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetCurrentCallFrame
Do not use.

Unsupported

OSAError OSADebuggerGetCurrentCallFrame (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 OSADebugCallFrameRef *outCallFrame
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetDefaultBreakpoint
Do not use.

Unsupported

Functions 37
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSADebuggerGetDefaultBreakpoint (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 OSAID *outBreakpoint
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetPreviousCallFrame
Do not use.

Unsupported

OSAError OSADebuggerGetPreviousCallFrame (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCurrentFrame,
 OSADebugCallFrameRef *outPrevFrame
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetSessionState
Do not use.

Unsupported

OSAError OSADebuggerGetSessionState (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 AERecord *outState
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

38 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSADebuggerGetStatementRanges
Do not use.

Unsupported

OSAError OSADebuggerGetStatementRanges (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 AEDescList *outStatementRangeArray
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetVariable
Do not use.

Unsupported

OSAError OSADebuggerGetVariable (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame,
 const AEDesc *inVariableName,
 OSAID *outVariable
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerSessionStep
Do not use.

Unsupported

Functions 39
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSADebuggerSessionStep (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 OSADebugStepKind inKind
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerSetBreakpoint
Do not use.

Unsupported

OSAError OSADebuggerSetBreakpoint (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 UInt32 inSrcOffset,
 OSAID inBreakpoint
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerSetVariable
Do not use.

Unsupported

OSAError OSADebuggerSetVariable (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame,
 const AEDesc *inVariableName,
 OSAID inVariable
);

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

40 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSADisplay
Converts a script value to text. Your application can then use its own functions to display this text to the
user.

OSAError OSADisplay (
 ComponentInstance scriptingComponent,
 OSAID scriptValueID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingText
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptValueID
The script ID for the script value to coerce. See the OSAID (page 84) data type.

desiredType
The desired text descriptor type, such as typeChar, for the resulting descriptor record.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To make the resulting text readable by humans only, so that it can’t be recompiled,
specify kOSAModeDisplayForHumans.

resultingText
A pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSADisplay function coerces the script value identified by scriptValueID to a descriptor record of
the text type specified by the desiredType parameter, if possible. Valid types include the standard text
descriptor types, plus any special types supported by the scripting component.

Unlike OSAGetSource (page 59), OSADisplay can coerce only script values and always produces a descriptor
record of a text descriptor type. In addition, if you specify the mode flag kOSAModeDisplayForHumans, the
resulting text cannot be recompiled.

If you want to get a script value in a form that you can display for humans to read, use OSADisplay. If you
want the descriptor type of the descriptor record returned in the resultingText parameter to be the same
as the descriptor type returned by a scripting component, use OSACoerceToDesc and specify typeWildCard
as the desired type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Functions 41
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSADispose
Reclaims the memory occupied by script data.

OSAError OSADispose (
 ComponentInstance scriptingComponent,
 OSAID scriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data to be disposed of. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSADispose function releases the memory assigned to the script data identified by the scriptID
parameter. The script ID passed to the OSADispose function is no longer valid if the function returns
successfully. A scripting component can then reuse that script ID for other script data.

A call to OSADispose returns noErr if the script ID is kOSANullScript, although it does not dispose of
anything.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADoEvent
Handles an Apple event with the aid of a script context and obtains a reply event.

OSAError OSADoEvent (
 ComponentInstance scriptingComponent,
 const AppleEvent *theAppleEvent,
 OSAID contextID,
 SInt32 modeFlags,
 AppleEvent *reply
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

theAppleEvent
A pointer to the Apple event to be handled.

contextID
The script ID for the script context to be used to handle the Apple event. See the OSAID (page 84)
data type.

42 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 102).

reply
A pointer to the reply Apple event.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSADoEvent function resembles both OSADoScript and OSAExecuteEvent. However, unlike
OSADoScript, the script OSADoEvent executes must be in the form of a script context, and execution is
initiated by an Apple event. Unlike OSAExecuteEvent, OSADoEvent returns a reply Apple event rather than
the script ID of the resulting script value.

The OSADoEvent function, like OSAExecuteEvent, attempts to use the script context specified by the
contextID parameter to handle the Apple event specified by the theAppleEvent parameter. If the scripting
component determines that the script context can’t handle the event (for example, if a script written in an
AppleScript dialect doesn’t include statements that handle the event), OSADoEvent immediately returns
errAEEventNotHandled rather than errOSAScriptError. This causes the Apple Event Manager to look
for an appropriate handler in the application’s Apple event dispatch table or elsewhere, using standard Apple
event dispatching.

If the scripting component determines that the script context can handle the event, OSADoEvent executes
the script context’s handler for the event and returns the resulting script ID.

The OSADoEvent function returns a reply event that contains either the resulting script value or, if an error
occurred during script execution, information about the error. If the error errOSAScriptError occurs during
script execution, OSADoEvent calls OSAScriptError and returns the appropriate error information in the
reply. The OSADoEvent function never returns errOSAScriptError.

If the script context specifies that the Apple event should be passed to the application’s standard handler
for that event (for example, with an AppleScript continue statement), OSADoEvent passes the event to the
resume dispatch function currently being used by the scripting component. The resume dispatch function
dispatches the event directly to the application’s standard handler for that event (that is, without calling
OSADoEvent again). If the contextID parameter is kOSANullScript, the OSADoEvent function passes
the event directly to the resume dispatch function. If the call to the resume dispatch function is successful,
execution of the script context proceeds from the point at which the resume dispatch function was called.

Special Considerations

Like OSAExecuteEvent, OSADoEvent can generate the result code errAEEventNotHandled in at least
two ways. If the scripting component determines that a script context doesn’t declare a handler for a particular
event, OSADoEvent immediately returns errAEEventNotHandled. If a scripting component calls its resume
dispatch function during script execution and the application’s standard handler for the event fails to handle
it, OSADoEvent returns errAEEventNotHandled in the reply Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Functions 43
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSADoScript
Compiles and executes a script and converts the resulting script value to text in a single step rather than
calling OSACompile, OSAExecute, and OSADisplay.

OSAError OSADoScript (
 ComponentInstance scriptingComponent,
 const AEDesc *sourceData,
 OSAID contextID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingText
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceData
A pointer to a descriptor record identifying suitable source data for the specified scripting component.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 84) data type.

desiredType
The desired text descriptor type, such as typeChar, for the resulting descriptor record.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 102).

resultingText
A pointer to the resulting descriptor record.

Return Value
A result code.

If the result code returned by OSADoScript is a general result code, there was some problem in arranging
for the script to be run. If an error occurs during script execution, the error message of the error is stored in
resultingText, and the function returns errOSAScriptError. You can use OSAScriptError (page 68)
to obtain more information about the particular error.

For additional information on result codes, see “Result Codes” (page 114).

Discussion
Calling the OSADoScript function is equivalent to calling OSACompile followed by OSAExecute and
OSADisplay. After compiling the source data, executing the compiled script using the script context identified
by the contextID parameter, and returning the text equivalent of the resulting script value in the
resultingText parameter, OSADoScript disposes of both the compiled script and the resulting script
value.

Special Considerations

Prior to Mac OS X version 10.5, if an error occurred during script execution, the error message of the error
was not returned in resultingText.

44 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADoScriptFile
Loads a script from the specified file, compiles the script if the file is a text file, executes the script, converts
the resulting script value to text, and stores the script back into the file if the script has persistent properties
and the file is not a text file.

OSAError OSADoScriptFile (
 ComponentInstance scriptingComponent,
 const FSRef *scriptFile,
 OSAID contextID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingText
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptFile
Identifies the file to load the script from and to save the script back to (if the script has persistent
properties and the file is not a text file). See the File Manager documentation for a description of the
FSRef data type.

File format is determined by inspection. If the file is a text file, OSADoScriptFile uses the following
steps to determine the text encoding:

 ■ If a Unicode BOM is present, that determines the encoding—one of UTF-16BE, UTF-16LE, or UTF-8

 ■ Otherwise, if the file is valid UTF-8, it is assumed to be UTF-8.

 ■ Otherwise, it is assumed to be in the primary encoding.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 84) data type.

desiredType
The desired text descriptor type, such as typeChar, for the resulting descriptor record.

modeFlags
Information for use by the scripting component. Can include any of the mode flags that would normally
be sent to the OSACompile (page 30) (if the file is a text file), OSADisplay (page 41),
OSAExecute (page 46), and OSALoad (page 62) functions. For descriptions of the mode flag usage
of those functions, see the chapter “Scripting Components” in “Interapplication Communication” at
http://developer.apple.com/documentation/mac/IAC/IAC-2.html.

Functions 45
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-2.html

resultingText
The descriptor record for the resulting script value. The AEDesc data type is described in Apple Event
Manager Reference.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
This routine is effectively equivalent to calling OSALoadFile (page 65), followed by OSAExecute (page
46), OSADisplay (page 41), and then OSAStoreFile (page 80) if the script has persistent properties. After
execution, the compiled source and the resulting value are disposed. Only the resultingText descriptor
is retained. If an error occurs during script execution, the error message of the error is stored in
resultingText, and the function returns errOSAScriptError. You can use OSAScriptError (page 68)
to obtain more information about the particular error.

Special Considerations

Prior to Mac OS X version 10.5, if an error occurred during script execution, the error message of the error
was not returned in resultingText.

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

OSAExecute
Executes a compiled script or a script context.

OSAError OSAExecute (
 ComponentInstance scriptingComponent,
 OSAID compiledScriptID,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

compiledScriptID
The script ID for the compiled script to be executed. See the OSAID (page 84) data type.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 84) data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in the description that follows.

resultingScriptValueID
A pointer to the script ID for the script value returned. See the OSAID (page 84) data type.

46 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Return Value
A result code. See “Result Codes” (page 114). If the result code returned by OSAExecute is a general result
code, there was some problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution. In this case, you can obtain more detailed error information by
calling OSAScriptError.

Discussion
The OSAExecute function executes the compiled script identified by the compiledScriptID parameter,
using the script context identified by the contextID parameter to maintain state information, such as the
binding of variables, for the compiled script. After successfully executing a script, OSAExecute returns the
script ID for a resulting script value, or, if execution does not result in a value, the constant kOSANullScript.
You can use the OSACoerceToDesc function to coerce the resulting script value to a descriptor record of a
desired descriptor type, or the OSADisplay (page 41) function to obtain the equivalent source data for the
script value. You can control the way in which the scripting component executes a script by adding any of
the flags described in “Mode Flags” (page 102).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAExecuteEvent
Handles an Apple event with the aid of a script context and obtains a script ID for the resulting script value.

OSAError OSAExecuteEvent (
 ComponentInstance scriptingComponent,
 const AppleEvent *theAppleEvent,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

theAppleEvent
A pointer to the Apple event to be handled.

contextID
The script ID for the script context to be used to handle the Apple event. See the OSAID (page 84)
data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 102).

resultingScriptValueID
A pointer to the script ID for the resulting script value.

Return Value
A result code. See “Result Codes” (page 114).

Functions 47
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Discussion
The OSAExecuteEvent function attempts to use the script context specified by the contextID parameter
to handle the Apple event specified by the theAppleEvent parameter. If the scripting component determines
that the script context can’t handle the event (for example, if a script written in AppleScript doesn’t include
statements that handle the event), OSAExecuteEvent immediately returns errAEEventNotHandled rather
than errOSAScriptError. This causes the Apple Event Manager to look for an appropriate handler in the
application’s Apple event dispatch table or elsewhere, using standard Apple event dispatching.

If the scripting component determines that the script context can handle the event, OSAExecuteEvent
executes the script context’s handler and returns the resulting script ID. If execution of the script context’s
handler for the event generates an error, OSAExecuteEvent returns errOSAScriptError, and you can
get more detailed error information by calling the OSAScriptError function.

If the script context identified by the contextID parameter specifies that the Apple event should be passed
to the application’s default handler for that event (for example, with an AppleScript continue statement),
OSAExecuteEvent passes the event to the resume dispatch function currently being used by the scripting
component. The resume dispatch function dispatches the event directly to the application’s standard handler
for that event (that is, without calling OSAExecuteEvent again). If the contextID parameter is
kOSANullScript, the OSAExecuteEvent function passes the event directly to the resume dispatch function.
If a call to the resume dispatch function is successful, execution of the script context proceeds from the point
at which the resume dispatch function was called.

Special Considerations

The OSAExecuteEvent function can generate the result code errAEEventNotHandled in at least two
ways. If the scripting component determines that a script context doesn’t declare a handler for a particular
event, OSAExecuteEvent immediately returns errAEEventNotHandled. If a scripting component calls its
resume dispatch function during script execution and the application’s standard handler for the event fails
to handle it, OSAExecuteEvent returns errOSAScriptError and a call to OSAScriptError with
kOSAErrorNumber in the selector parameter returns errAEEventNotHandled as the resulting error
description.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGenericToRealID
Converts a generic script ID to the corresponding component-specific script ID.

OSAError OSAGenericToRealID (
 ComponentInstance genericScriptingComponent,
 OSAID *theScriptID,
 ComponentInstance *theExactComponent
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

48 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

theScriptID
A pointer to the generic script ID that you want to convert. The OSAGenericToRealID function
returns, in this parameter, the component-specific script ID that corresponds to the generic script ID
that you pass in this parameter. See the OSAID (page 84) data type.

theExactComponent
On return, a pointer to the component instance that created the script ID returned in the theScriptID
parameter.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
You can’t use the generic scripting component and a generic script ID with component-specific routines.
Instead, you can use the component instance and script ID returned by OSAGenericToRealID.

Given a generic script ID (that is, a script ID returned by a call to a standard component routine via the generic
scripting component), the OSAGenericToRealID function returns the equivalent component-specific script
ID and the component instance that created that script ID. The OSAGenericToRealID function modifies
the script ID in place, changing the generic script ID you pass in the theScriptID parameter to the
corresponding component-specific script ID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetActiveProc
Gets a pointer to the active function that a scripting component is currently using.

OSAError OSAGetActiveProc (
 ComponentInstance scriptingComponent,
 OSAActiveUPP *activeProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

activeProc
On return, a pointer a UPP to the active function currently set for the specified scripting component.

refCon
On return, a pointer to the reference constant associated with the active function for the specified
scripting component.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Functions 49
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSAGetCreateProc
Gets a pointer to the create function that a scripting component is currently using to create Apple events.

OSAError OSAGetCreateProc (
 ComponentInstance scriptingComponent,
 OSACreateAppleEventUPP *createProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

createProc
On return, a pointer to the UPP to the create function currently set for the specified scripting
component.

refCon
On return, a pointer to the reference constant associated with the create function for the specified
scripting component.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetCurrentDialect
Gets the dialect code for the dialect currently being used by a scripting component.

OSAError OSAGetCurrentDialect (
 ComponentInstance scriptingComponent,
 short *resultingDialectCode
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingDialectCode
On return, a pointer to the code for the current dialect of the specified scripting component.

Return Value
A result code. See “Result Codes” (page 114).

50 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetDefaultScriptingComponent
Gets the subtype code for the default scripting component associated with an instance of the generic scripting
component.

OSAError OSAGetDefaultScriptingComponent (
 ComponentInstance genericScriptingComponent,
 ScriptingComponentSelector *scriptingSubType
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptingSubType
On return, a pointer to the subtype code for the default scripting component associated with the
instance of the generic scripting component specified in the genericScriptingComponent
parameter.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAGetDefaultScriptingComponent function returns the subtype code for the default scripting
component. This is the scripting component that will be used by OSAStartRecording, OSACompile, or
OSACompileExecute if no existing script ID is specified. From the user’s point of view, the default scripting
component corresponds to the scripting language selected in the Script Editor application when the user
first creates a new script.

Each instance of the generic scripting component has its own default scripting component, which is initially
AppleScript. You can use OSASetDefaultScriptingComponent to change the default scripting component.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetDialectInfo
Gets information about a specified dialect provided by a specified scripting component.

Functions 51
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSAGetDialectInfo (
 ComponentInstance scriptingComponent,
 short dialectCode,
 OSType selector,
 AEDesc *resultingDialectInfo
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

dialectCode
A code for the dialect about which you want information. You can obtain a list of a scripting
component’s dialect codes by calling OSAAvailableDialectCodeList.

selector
A constant that indicates what kind of information you want OSAGetDialectInfo to return in the
result parameter. This constant determines the descriptor type for the descriptor record returned.
See the description in “Dialect Descriptor Constants” (page 94) for a list of the standard constants
you can specify in this parameter.

resultingDialectInfo
A pointer to a descriptor record containing the requested information. The descriptor record’s descriptor
type corresponds to the constant specified in the selector parameter.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
After you obtain a list of dialect codes by calling OSAAvailableDialectCodeList, you can pass any of
those codes to OSAGetDialectInfo to get information about the corresponding dialect. The descriptor
type of the descriptor record returned by OSAGetDialectInfo depends on the constant specified in the
selector parameter. All scripting components support the “Dialect Descriptor Constants” (page 94) constants
for this parameter. Individual scripting components may allow you to specify additional constants.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetHandler
Gets a script ID for the specified script handler from the specified script.

52 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSAGetHandler (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID *resultingCompiledScriptID
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
Specifies the script to get the script handler for. See the OSAID (page 84) data type.

handlerName
A descriptor record that specifies the name of the handler to get. The descriptor must be of type
typeChar, or of a type that can be coerced to typeChar. The handler name is case-sensitive and
must exactly match the case of the handler name as supplied by the OSAGetHandlerNames function
or the OSAGetSource (page 59) function. See Apple Event Manager Reference for a description of
the AEDesc data type.

resultingCompiledScriptID
On return, the OSAID for the specified handler, or kOSANullScript if the handler does not exist. If
the handler has no input parameters, it may be executed by calling OSAExecute; if it requires input
parameters, you can create an Apple event that supplies the handler parameters and execute it with
OSAExecuteEvent. You may also copy it to another script with the OSASetHandler function or get
its source code with the OSAGetSource function. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSAGetHandlerNames
Gets a list of all handler names in the specified script as an AEDescList of descriptors of type typeChar.

Functions 53
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSAGetHandlerNames (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 AEDescList *resultingHandlerNames
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
See the OSAID (page 84) data type.

resultingHandlerNames
On return, a list of all handler names, as an AEDescList of descriptors of type typeChar. See Apple
Event Manager Reference for a description of the AEDescList data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSAGetProperty
Gets the value of a specified script property from a specified script.

OSAError OSAGetProperty (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
Specifies the script to get the script property from. See the OSAID (page 84) data type.

54 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

variableName
A descriptor record that specifies the name of the property to get. The descriptor must be of type
typeChar, or of a type that can be coerced to typeChar. The variable name is case-sensitive and
must exactly match the case of the variable name as supplied by the OSAGetPropertyNames function
or the OSAGetSource (page 59) function. See Apple Event Manager Reference for a description of
the AEDesc data type.

resultingScriptValueID
On return, a script ID whose associated data supplies the value for the property specified by the
variableName parameter. Note that the value is returned as an OSAID, not an AEDesc. To get it as
an AEDesc, use the OSACoerceToDesc function; to get it as user-readable text, use OSADisplay (page
41). See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSAGetPropertyNames
Gets a list of all property names from the specified script.

OSAError OSAGetPropertyNames (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 AEDescList *resultingPropertyNames
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
Specifies the script to get the property names from. See the OSAID (page 84) data type.

resultingPropertyNames
On return, a list of all property names, as an AEDescList of descriptors of type typeChar. You can
extract these descriptors from the list and use them as input values to the OSAGetProperty function
or the OSASetProperty (page 73) function. See Apple Event Manager Reference for a description
of the AEDescList data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Functions 55
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
ASDebugging.h

OSAGetResumeDispatchProc
Gets the resume dispatch function currently being used by a scripting component instance during execution
of an AppleScript continue statement or its equivalent

OSAError OSAGetResumeDispatchProc (
 ComponentInstance scriptingComponent,
 AEEventHandlerUPP *resumeDispatchProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resumeDispatchProc
On return, a pointer to a UPP to the resume dispatch function for the specified scripting component.
If no resume dispatch function has been registered, OSAGetResumeDispatchProc returns
kOSAUseStandardDispatch (the default).

refCon
On return, a pointer to the reference constant associated with the resume dispatch function.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetScriptInfo
Obtains information about script data according to the value you pass in the selector parameter.

OSAError OSAGetScriptInfo (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 OSType selector,
 long *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data about which to obtain information. See the OSAID (page 84) data
type.

56 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

selector
A value that determines what kind of information OSAGetScriptInfo returns. The value can be one
of the constants described in “Script Information Selectors” (page 109). In addition to the standard
constants, the AppleScript component also supports the kASHasOpenHandler constant. For additional
information, see the Version Notes section below.

result
On return, a pointer to the requested information, which you can coerce to the appropriate descriptor
type for the value specified in the selector parameter.

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
In Mac OS X, if you specify kOSAScriptIsModified for the value of the selector parameter,
OSAGetScriptInfo returns true if the script has been modified and false if it has not.

The following information describes the behavior of OSAGetScriptInfo in versions of the Mac OS prior to
Mac OS X: Although you can specify kOSAScriptIsModifiedwhen you are using the AppleScript component
without generating an error, the current version of AppleScript interprets this request conservatively. The
AppleScript component stores script data in a network of interlocking structures, and running a script can
cause any of these structures to be modified. If you pass a script ID is to OSAGetScriptInfo with
kOSAScriptIsModified as the value of the selector parameter, the AppleScript component returns 1 if
there is any possibility that the script data or related structures may have been modified, and 0 if there is no
possibility that they have been modified.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetScriptingComponent
Gets the instance of a scripting component for a specified subtype.

OSAError OSAGetScriptingComponent (
 ComponentInstance genericScriptingComponent,
 ScriptingComponentSelector scriptingSubType,
 ComponentInstance *scriptingInstance
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptingSubType
A subtype code for a scripting component.

scriptingInstance
On return, a pointer to a component instance for the scripting component identified by the
scriptingSubType parameter.

Return Value
A result code. See “Result Codes” (page 114).

Functions 57
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Discussion
You can’t use the generic scripting component with component-specific routines. Instead, use an instance
of the specific scripting component, which you can obtain with OSAGetScriptingComponent.

The OSAGetScriptingComponent function returns, in the scriptingInstance parameter, an instance
of the scripting component identified by the scriptingSubType parameter. Each instance of the generic
scripting component keeps track of a single instance of each component subtype, so
OSAGetScriptingComponent always returns the same instance of a specified scripting component that
the generic scripting component uses for standard scripting component routines.

For example, you can use OSAGetScriptingComponent to get the subtype code for the default scripting
component (that is, the scripting component used by the generic scripting component for new scripts). You
can then get an instance of the default scripting component by passing its subtype code to
OSAGetScriptingComponent. Finally, you can pass that instance to OSAScriptingComponentName to
obtain the default scripting component’s name so you can display it to the user.

Similarly, you can pass kAppleScriptSubtype in the scriptingSubType parameter to obtain an instance
of the AppleScript component. This is necessary, for example, to call AppleScript-specific routines such as
ASGetSourceStyles (which is deprecated in Mac OS X version 10.5 in favor of
ASCopySourceAttributes (page 17)).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetScriptingComponentFromStored
Gets the subtype code for a scripting component that created a storage descriptor record.

OSAError OSAGetScriptingComponentFromStored (
 ComponentInstance genericScriptingComponent,
 const AEDesc *scriptData,
 ScriptingComponentSelector *scriptingSubType
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptData
A pointer to either a generic storage descriptor record or a component-specific storage descriptor
record.

scriptingSubType
On return, a pointer to a subtype code identifying the scripting component that created the descriptor
record specified by the scriptData parameter.

Return Value
A result code. See “Result Codes” (page 114).

58 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Discussion
The OSAGetScriptingComponentFromStored function returns, in the scriptingSubType parameter,
the subtype code for the scripting component that created the script data specified by the scriptData
parameter.

The generic scripting component automatically identifies the appropriate scripting component for you when
you use it to call OSALoad. By calling OSAGetScriptingComponentFromStored, you can determine, without
loading a script, which scripting component created the script data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetSendProc
Gets a pointer to the send function that a scripting component is currently using.

OSAError OSAGetSendProc (
 ComponentInstance scriptingComponent,
 OSASendUPP *sendProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sendProc
On return, a pointer to the UPP to the send function currently set for the specified scripting component.

refCon
On return, a pointer to the reference constant associated with the send function for the specified
scripting component.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetSource
Decompiles the script data identified by a script ID and obtains the equivalent source data.

Functions 59
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSAGetSource (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 AEDesc *resultingSourceData
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent

scriptID
The script ID for the script data to decompile. If you pass kOSANullScript in this parameter,
OSAGetSource returns a null source description (such as an empty text string). See the OSAID (page
84) data type.

desiredType
The desired descriptor type of the resulting descriptor record, or typeBest if any type will do.

resultingSourceData
A pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAGetSource function decompiles the script data identified by the specified script ID and returns a
descriptor record containing the equivalent source data. The source data returned need not be exactly the
same as the source data originally passed to OSACompile—for example, white space and formatting might
be different—but it should be a reasonable equivalent suitable for user viewing and editing.

The difference between OSACoerceToDesc and OSAGetSource is that OSAGetSource creates source data
that can be displayed to a user or compiled and executed to generate an appropriate value, whereas
OSACoerceToDesc actually returns the value. For example, if you call OSAGetSource and specify a string
value, it returns the text surrounded by quotation marks (so that it can be properly compiled). If you call
OSACoerceToDesc and specify a string value, it simply returns the text.

The main difference between OSADisplay and OSAGetSource is that OSAGetSource can coerce any form
of script data using a variety of descriptor types, whereas OSADisplay can coerce only script values and
always produces a descriptor record of a text descriptor type.

A scripting component that supports the OSAGetSource function has the kOSASupportsGetSource bit
set in the componentFlags field of its component description record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetStorageType
Retrieves the scripting component subtype from the script trailer appended to the script data in a generic
storage descriptor record.

60 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSErr OSAGetStorageType (
 AEDataStorage scriptData,
 DescType *dscType
);

Parameters
scriptData

A handle to the script data.

dscType
A pointer to the descriptor type specified in the script data trailer.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAGetStorageType function retrieves the scripting component subtype from the trailer. If no trailer
can be found, OSAGetStorageType returns the error errOSABadStorageType.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAComp.h

OSAGetSysTerminology
Gets one or more scripting terminology resources from the OSA system.

OSAError OSAGetSysTerminology (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 short terminologyID,
 AEDesc *terminologyList
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

terminologyID
terminologyList

On return, one or more terminology resources from the OSA system. These include the built-in
terminology for AppleScript as well as the standard suites, but not the terminology for installed
scripting additions. The terminology may be returned as a single AEDesc of type typeAEUT or as a
list of such descriptors. The internal format of the typeAEUT descriptor is the resource format described
in AEUserTermTypes.r. See Apple Event Manager Reference Apple Event Manager Reference for a
description of the AEDesc data type.

Return Value
A result code. See “Result Codes” (page 114).

Functions 61
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSALoad
Loads script data.

OSAError OSALoad (
 ComponentInstance scriptingComponent,
 const AEDesc *scriptData,
 SInt32 modeFlags,
 OSAID *resultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptData
A pointer to the descriptor record containing the script data to be loaded.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To indicate that only the minimum script data required to run the script should be
loaded, pass kOSAModePreventGetSource in this parameter.

resultingScriptID
On return, a pointer to the script ID for the compiled script. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSALoad function loads script data and returns a script ID. The generic scripting component uses the
descriptor record in the scriptData parameter to determine which scripting component should load the
script. If the descriptor record is of type typeOSAGenericStorage, the generic scripting component uses
the trailer at the end of the script data to identify the scripting component. If the descriptor record’s type is
the subtype value for another scripting component, the generic scripting component uses the descriptor
type to identify the scripting component.

If you want the script ID returned by OSALoad to identify only the minimum script data required to run the
script and you are sure that you won’t need to display the source data to the user, specify the
kOSAModePreventGetSource flag in the modeFlags parameter.

Scripting components other than the generic scripting component can load script data only if it has been
saved in a descriptor record whose descriptor type matches the scripting component’s subtype.

Script data may change after it has been loaded—for example, if your application allows the user to edit a
script’s source data. To test whether script data has been modified, pass its script ID to OSAGetScriptInfo.
If it has changed, you can call OSAStore again to obtain a handle to the modified script data and save it.

62 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSALoadExecute
Loads and executes a script in a single step rather than calling OSALoad and OSAExecute.

OSAError OSALoadExecute (
 ComponentInstance scriptingComponent,
 const AEDesc *scriptData,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptData
A pointer to the descriptor record identifying the script data to be loaded and executed.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 84) data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 102).

resultingScriptValueID
A pointer to the script ID for the script value returned. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSALoadExecute function loads script data and executes the resulting compiled script, using the script
context identified by the contextID parameter to maintain state information such as the binding of variables.
After successfully executing the script, OSALoadExecute disposes of the compiled script and returns either
the script ID for the resulting script value or, if execution does not result in a value, the constant
kOSANullScript.

You can control the way in which the scripting component executes a script by adding any of the “Mode
Flags” (page 102) flags to the modeFlags parameter.

If the result code returned by OSALoadExecute is a general result code, there was some problem in arranging
for the script to be run. If the result code is errOSAScriptError, an error occurred during script execution.
In this case, you can obtain more detailed error information by calling OSAScriptError.

Availability
Available in Mac OS X v10.0 and later.

Functions 63
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSALoadExecuteFile
Loads a script from the specified file into the specified scripting component, compiles the script if the file is
a text file, and executes the script.

OSAError OSALoadExecuteFile (
 ComponentInstance scriptingComponent,
 const FSRef *scriptFile,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptFile
Identifies the file to load the script from. See the File Manager documentation for a description of the
FSRef data type.

File format is determined by inspection. If the file is a text file, OSALoadExecuteFile uses the
following steps to determine the text encoding:

 ■ If a Unicode BOM is present, that determines the encoding—one of UTF-16BE, UTF-16LE, or UTF-8

 ■ Otherwise, if the file is valid UTF-8, it is presumed to be UTF-8.

 ■ Otherwise, it is assumed to be in the primary encoding.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 84) data type.

modeFlags
Information for use by the scripting component. Can include any of the mode flags that would normally
be sent to the OSACompileExecute (page 31) (if the file is a text file) and OSALoadExecute (page
63) functions. For descriptions of the mode flag usage of those functions, see the chapter “Scripting
Components” in “Interapplication Communication” at http://developer.apple.com/documenta-
tion/mac/IAC/IAC-2.html.

resultingScriptValueID
The script ID for the resulting script value. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
This routine is effectively equivalent to calling OSALoadFile (page 65) followed by OSAExecute (page 46).
After execution, the compiled source is disposed. Only the resulting value ID is retained.

Availability
Available in Mac OS X v10.3 and later.

64 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-2.html
http://developer.apple.com/documentation/mac/IAC/IAC-2.html

Declared In
OSA.h

OSALoadFile
Loads a script from the specified file into the specified scripting component, compiling the script if the file
is a text file.

OSAError OSALoadFile (
 ComponentInstance scriptingComponent,
 const FSRef *scriptFile,
 Boolean *storable,
 SInt32 modeFlags,
 OSAID *resultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptFile
Identifies the file to load the script from. See the File Manager documentation for a description of the
FSRef data type.

File format is determined by inspection. If the file is a text file, OSALoadFile uses the following steps
to determine the text encoding:

 ■ If a Unicode BOM is present, that determines the encoding—one of UTF-16BE, UTF-16LE, or UTF-8

 ■ Otherwise, if the file is valid UTF-8, it is presumed to be UTF-8.

 ■ Otherwise, it is assumed to be in the primary encoding.

storable
If storable is not NULL, on return it is set to indicate whether a compiled script can be stored into
the script file using OSAStoreFile (page 80).

modeFlags
Information for use by the scripting component. Can include any of the mode flags that would normally
be sent to the OSACompile (page 30) (if the file is a text file) and OSALoad (page 62) functions. For
descriptions of the mode flag usage of those functions, see the chapter “Scripting Components” in
“Interapplication Communication” at http://developer.apple.com/documentation/mac/IAC/IAC-2.html.

resultingScriptID
The returned script ID for the compiled script. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

Functions 65
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-2.html

OSAMakeContext
Gets a script ID for a new script context.

OSAError OSAMakeContext (
 ComponentInstance scriptingComponent,
 const AEDesc *contextName,
 OSAID parentContext,
 OSAID *resultingContextID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

contextName
A pointer to the name of the new context. Some scripting components may use context names for
semantic purposes. If the value of this parameter is typeNull, OSAMakeContext creates an unnamed
context.

parentContext
The existing context from which the new context inherits bindings. If the value of this parameter is
kOSANullScript, the new context does not inherit bindings from any other context.

resultingContextID
A pointer to the script ID for the resulting script context. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAMakeContext function creates a new script context that you may pass to OSAExecute or
OSAExecuteEvent. The new script context inherits the bindings of the script context specified in the
parentContext parameter.

If you call OSAMakeContext using an instance of the generic scripting component, the generic scripting
component uses the default scripting component to create the new script context.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSARealToGenericID
Converts a component-specific script ID to the corresponding generic script ID.

66 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSARealToGenericID (
 ComponentInstance genericScriptingComponent,
 OSAID *theScriptID,
 ComponentInstance theExactComponent
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

theScriptID
A pointer to the component-specific script ID that you want to convert. You must have obtained this
script ID from the scripting component instance passed in the theExactComponent parameter. The
OSARealToGenericID function returns, in this parameter, the generic script ID that corresponds to
the component-specific script ID that you pass in this parameter. See the OSAID (page 84) data type.

theExactComponent
A scripting component instance returned by a generic scripting component routine.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSARealToGenericID function performs the reverse of the task performed by OSAGenericToRealID.
Given a component-specific script ID and an exact scripting component instance (that is, the component
instance that created the component-specific script ID), the OSARealToGenericID function returns the
corresponding generic script ID. The OSARealToGenericID function modifies the script ID in place, changing
the component-specific script ID passed in the theScriptID parameter to the corresponding generic script
ID.

You’ll need to do this if you have obtained a component-specific script ID using an exact scripting component
instance and you want to refer to the same script in calls that use an instance of the generic scripting
component. You can’t use a component-specific script ID with the generic scripting component.

The script ID you pass in the theScriptID parameter must be a component-specific script ID obtained from
a scripting component instance known to the generic scripting component. You can obtain such an instance
by calling either OSAGetScriptingComponent or OSAGenericToRealID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSARemoveStorageType
Removes a trailer from the script data in a generic storage descriptor record

OSErr OSARemoveStorageType (
 AEDataStorage scriptData
);

Parameters
scriptData

A handle to the script data.

Functions 67
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSARemoveStorageType function removes an existing trailer (reducing the handle's size). If no trailer
can be found, then the handle is not modified, and noErr is returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAComp.h

OSAScriptError
Gets information about errors that occur during script execution.

OSAError OSAScriptError (
 ComponentInstance scriptingComponent,
 OSType selector,
 DescType desiredType,
 AEDesc *resultingErrorDescription
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

selector
A value that determines what OSAScriptError returns. The value can be one of the constants
described in “OSAScriptError Selectors” (page 106).

desiredType
The desired descriptor type of the resulting descriptor record. The description that follows explains
how this is determined by the value passed in the selector parameter.

resultingErrorDescription
On return, a pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Whenever the OSAExecute function returns the error errOSAScriptError, you can use the
OSAScriptError function to get more specific information about the error from the scripting component
that encountered it. (This information remains available only until the next call to the same scripting
component.) The information returned by OSAScriptError depends on the value passed in the selector
parameter, which also determines the descriptor type you should specify in the desiredType parameter.

Every scripting component should support calls to OSAScriptError that pass kOSAErrorNumber,
kOSAErrorMessage, or kOSAErrorPartialResult in the selector parameter.

68 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Some scripting components may also support calls that pass other values in the selector parameter, including
kOSAErrorRange, which provides start and end positions delimiting the errant expression in the source
data. If the value of the selector parameter is kOSAErrorRange, the value of desiredType must be
typeOSAErrorRange.

If the value of the selector parameter is kOSAErrorNumber, scripting components may return, in the
resultingErrorDescription parameter, one of the general error codes described in “Result Codes” (page
114).

If you call OSAScriptError using an instance of the generic scripting component, the generic scripting
component uses the same instance of a scripting component that it used for the previous call.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAScriptingComponentName
Gets the name of a scripting component.

OSAError OSAScriptingComponentName (
 ComponentInstance scriptingComponent,
 AEDesc *resultingScriptingComponentName
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingScriptingComponentName
On return, a pointer to the name of the scripting component; or, if the component is the generic
scripting component, the name of the default scripting component.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAScriptingComponentName function returns a descriptor record that you can coerce to a text
descriptor type such as typeChar. This can be useful if you want to display the name of the scripting language
in which the user should write a new script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetActiveProc
Sets the active function that a scripting component calls periodically while executing a script.

Functions 69
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSASetActiveProc (
 ComponentInstance scriptingComponent,
 OSAActiveUPP activeProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

activeProc
A pointer to the active function to set. If the value of this parameter is NULL, OSASetActiveProc
sets the scripting component’s default active function.

refCon
A reference constant to be associated with the active function. This parameter can be used for many
purposes; for example, it could contain a handle to data used by the active function.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSASetActiveProc function allows your application to set a pointer to the active function called
periodically by the scripting component during script execution. To get time periodically during script
execution for its own purposes, your application can substitute its own active function for use by the scripting
component. If you do not specify an active function, the scripting component uses its default active function,
which allows a user to cancel script execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetCreateProc
Specifies a create function that a scripting component should use instead of the Apple Event Manager’s
AECreateAppleEvent function when creating Apple events.

OSAError OSASetCreateProc (
 ComponentInstance scriptingComponent,
 OSACreateAppleEventUPP createProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

createProc
A universal procedure pointer to the create function to set.

refCon
A reference constant.

70 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Return Value
A result code. See “Result Codes” (page 114).

Discussion
To gain control over the creation and addressing of Apple events, your application can provide its own create
function for use by scripting components. To set a new create function, call the OSASetCreateProc function;
to get the current create function, call OSAGetCreateProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetCurrentDialect
Sets the current dialect for a scripting component.

OSAError OSASetCurrentDialect (
 ComponentInstance scriptingComponent,
 short dialectCode
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

dialectCode
The code for the dialect to be set.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetDefaultScriptingComponent
Sets the default scripting component associated with an instance of the generic scripting component.

OSAError OSASetDefaultScriptingComponent (
 ComponentInstance genericScriptingComponent,
 ScriptingComponentSelector scriptingSubType
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

Functions 71
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

scriptingSubType
The subtype code for the scripting component you want to set as the default.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSASetDefaultScriptingComponent function sets the default scripting component for the specified
instance of the generic scripting component to the scripting component identified by the scriptingSubType
parameter.

Each instance of the generic scripting component has its own default scripting component, which is initially
AppleScript. You can use OSAGetDefaultScriptingComponent to get the current default scripting
component for an instance of the generic scripting component.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSASetDefaultTarget
Sets the default target application for Apple events.

OSAError OSASetDefaultTarget (
 ComponentInstance scriptingComponent,
 const AEAddressDesc *target
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

target
The address of the application that is being made the default application. If you pass a null descriptor
record in this parameter, the scripting component treats the current process as the default target.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Scripting components that support manipulation of the create and send functions also support the
OSASetDefaultTarget function. The OSASetDefaultTarget function establishes the default target
application for Apple event sending and the default application from which the scripting component should
obtain terminology information. For example, AppleScript statements that refer to the default application
do not need to be enclosed in tell/end tell statements.

If your application doesn’t call this function, or if you pass a null descriptor record in the target parameter,
the scripting component treats the current process (that is, the application that calls OSAExecute or related
functions) as the default target application.

Availability
Available in Mac OS X v10.0 and later.

72 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSASetHandler
Sets a specified script handler in the specified script to the supplied handler.

OSAError OSASetHandler (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID compiledScriptID
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. Pass the value kOSAModeDontDefine to prevent a
handler from being created if it doesn't already exist. Otherwise, pass kOSAModeNull to avoid setting
mode flag values (no other flags are applicable for this function).

contextID
Specifies the script to set the script handler for. See OSAID (page 84) for a description of the OSAID
data type.

handlerName
A descriptor record that specifies the handler to set. The descriptor must be of type typeChar, or of
a type that can be coerced to typeChar. If the handler does not already exist, it is created, unless
you pass the value kOSAModeDontDefine for the modeFlags parameter. The handler name is
case-sensitive and must exactly match the case of the handler name as supplied by the
OSAGetHandlerNames function or the OSAGetSource (page 59) function. See Apple Event Manager
Reference for a description of the AEDesc data type.

compiledScriptID
The OSAID value to set the handler to, normally obtained by a previous call to OSAGetHandler. Any
other value will return an error value of errOSAInvalidID. Note that a script compiled by OSACompile
is not itself a handler. See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSASetProperty
Sets the value of a script property in a specified script, creating the property if it does not already exist.

Functions 73
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSASetProperty (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID scriptValueID
);

Parameters
scriptingComponent

See the Component Manager documentation for a description of the ComponentInstance data
type.

modeFlags
Information for use by the scripting component. Pass the value kOSAModeDontDefine to prevent a
property from being created if it doesn't already exist in the specified script. Otherwise, pass
kOSAModeNull to avoid setting mode flag values (no other flags are applicable for this function).

contextID
Specifies the script to set the script property for. See the OSAID (page 84) data type.

variableName
A descriptor record that specifies the name of the property to set. The descriptor must be of type
typeChar, or of a type that can be coerced to typeChar. The variable name is case-sensitive and
must exactly match the case of the variable name as supplied by the OSAGetPropertyNames function
or the OSAGetSource (page 59) function. See Apple Event Manager Reference for a description of
the AEDesc data type.

scriptValueID
A script ID whose associated data should be used to set the value for the property specified by
variableName. Note that the value is specified by an OSAID, not an AEDesc. You can set a property
to a value returned from script execution (from the OSAExecute function), extracted from another
property (with the OSAGetProperty function), or converted from an AEDesc (by the
OSACoerceFromDesc function). See the OSAID (page 84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSASetResumeDispatchProc
Sets the resume dispatch function called by a scripting component during execution of an AppleScript
continue statement or its equivalent.

74 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSASetResumeDispatchProc (
 ComponentInstance scriptingComponent,
 AEEventHandlerUPP resumeDispatchProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resumeDispatchProc
A UPP to the resume dispatch function. You can specify one of the following in this parameter:

 ■ a pointer to a resume dispatch function

 ■ the kOSAUseStandardDispatch constant, which causes the Apple Event Manager to dispatch
the event using standard Apple event dispatching (the handler registered in the application with
AEInstallEventHandler is used)

 ■ the kOSANoDispatch constant, which tells the Apple Event Manager that the processing of the
Apple event is complete and that no dispatching should occur

refCon
A reference constant. You can pass the constant kOSADontUsePhac in this parameter, as described
in the Discussion section below.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSASetResumeDispatchProc function sets the resume dispatch function that the specified instance
of a scripting component calls during execution of an AppleScript continue statement or its equivalent. The
resume dispatch function should dispatch the event to the application’s standard handler for that event.

If you are using a general handler for preliminary processing of Apple events, and if you can rely on standard
Apple event dispatching to dispatch the event correctly, you don’t need to provide a resume dispatch function.
Instead, you can specify kOSAUseStandardDispatch as the value of the resumeDispatchProc parameter
and the constant kOSADontUsePhac as the value of the refCon parameter. This causes the Apple Event
Manager to use standard Apple event dispatching except that it bypasses your application’s special handler
dispatch table and thus won’t call your predispatch Apple event handler recursively. (A predispatch handler
is called immediately before the Apple Event Manager dispatches an event.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetScriptInfo
Sets information about script data according to the value you pass in the selector parameter.

Functions 75
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSASetScriptInfo (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 OSType selector,
 long value
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data whose information is to be set. See the OSAID (page 84) data type.

selector
A value that determines which information OSASetScriptInfo sets.

The value can be one of the constants described in “Script Information Selectors” (page 109). For more
information, see the Version Notes section below.

In Mac OS X, the AppleScript component does not set a value.

value
The value to set.

In Mac OS X, the AppleScript component does not set a value.

Return Value
A result code. See “Result Codes” (page 114).

Version Notes
In Mac OS X, if you specify kOSAScriptIsModified for the value of the selector parameter, it is ignored,
and no value is set.

The following information describes the behavior of OSASetScriptInfo in versions of the Mac OS prior to
Mac OS X: The OSASetScriptInfo function sets script information according to the value you pass in the
selector parameter. If you use the kOSAScriptIsModified constant, OSASetScriptInfo sets a value
that indicates whether the script data has been modified since it was created or passed to OSALoad. Some
scripting components may provide additional constants.

For related information, see the OSAGetScriptInfo (page 56) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetSendProc
Specifies a send function that a scripting component should use instead of the Apple Event Manger’s AESend
function when sending Apple events.

76 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAError OSASetSendProc (
 ComponentInstance scriptingComponent,
 OSASendUPP sendProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sendProc
A universal procedure pointer (UPP) to the send function to set.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The send function provided by your application can perform almost any action instead of or in addition to
sending Apple events; for example, it can be used to facilitate concurrent script execution. To set a new send
function, call the OSASetSendProc function; to get the current send function, call OSAGetSendProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAStartRecording
Turns on Apple event recording and records subsequent Apple events in a compiled script.

OSAError OSAStartRecording (
 ComponentInstance scriptingComponent,
 OSAID *compiledScriptToModifyID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

compiledScriptToModifyID
A pointer to the script ID for the compiled script in which to record. See the OSAID (page 84) data
type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAStartRecording function turns on Apple event recording. Subsequent Apple events are recorded
(that is, appended to any existing statements) in the compiled script specified by the
compiledScriptToModifyID parameter. If the source data for the compiled script is currently displayed
in a script editor’s window, the script editor’s handler for the Recorded Text event should display each new

Functions 77
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

statement in the window as it is recorded. Users should not be able to change a script that is open in a script
editor window while it is being recorded into. Recording continues until a call to OSAStopRecording turns
recording off.

To record into a new compiled script, pass the constant kOSANullScript in the
compiledScriptToModifyID parameter. The scripting component should respond by creating a new
compiled script and recording into that.

The generic scripting component uses its default scripting component to create and record into a new
compiled script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAStopRecording
Turns off Apple event recording.

OSAError OSAStopRecording (
 ComponentInstance scriptingComponent,
 OSAID compiledScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

compiledScriptID
A script ID for the compiled script into which Apple events are being recorded. See the OSAID (page
84) data type.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAStopRecording function turns off recording. If the script is not currently open in a script editor
window, the compiledScriptToModifyID parameter supplied to OSAStartRecording is then augmented
to contain the newly recorded statements. If the script is currently open in a script editor window, the script
data that corresponds to the compiledScriptToModifyID parameter supplied to OSAStartRecording
is updated continuously until the client application calls OSAStopRecording.

If the compiled script identified by the script ID in the compiledScriptID parameter is not being recorded
into or recording is not currently on, OSAStopRecording returns noErr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

78 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSAStore
Gets a handle to script data in the form of a storage descriptor record.

OSAError OSAStore (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingScriptData
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data for which to obtain a data handle.

desiredType
The desired type of the descriptor record to be returned. If you want to store the script data in the
form used by a generic storage descriptor record, specify typeOSAGenericStorage.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To indicate that only the minimum script data required to run the script should be
returned, pass kOSAModePreventGetSource in this parameter. (In this case the script data returned
is not identical to the compiled script data and can’t be used to generate source data.) If the scriptID
parameter identifies a script context, you can pass kOSAModeDontStoreParent in this parameter
to store the script context without storing its parent context.

resultingScriptData
On return, a pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The OSAStore function writes script data to a descriptor record so that the data can later be saved in a
resource or written to the data fork of a document. You can then reload the data for the descriptor record
as a compiled script (although possibly with a different script ID) by passing the descriptor record to OSALoad.

If you want the returned script data to be as small as possible and you are sure that you won’t need to display
the source data to the user, specify the kOSAModePreventGetSource flag in the modeFlags parameter. If
the scriptID parameter identifies a script context and you don’t want the returned script data to include
the associated parent context, specify the kOSAModeDontStoreParent flag in the modeFlags parameter.

The desired type is either typeOSAGenericStorage (for a generic storage descriptor record) or a specific
scripting component subtype value (for a component-specific storage descriptor record).

To store either a generic storage descriptor record or a component-specific storage descriptor record with
your application’s resources, use 'scpt' as the resource type. The generic scripting component subtype,
the generic storage descriptor type, and the resource type for stored script data all have the same value,
though they serve different purposes.

Availability
Available in Mac OS X v10.0 and later.

Functions 79
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSAStoreFile
Stores a script into the specified file.

OSAError OSAStoreFile (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 SInt32 modeFlags,
 const FSRef *scriptFile
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptID
Specifies the script to store. See the OSAID (page 84) data type.

desiredType
Specifies how the script should be stored. The desired type is either typeOSAGenericStorage (for
a generic storage descriptor record) or a specific scripting component subtype value (for a
component-specific storage descriptor record).

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To indicate that only the minimum script data required to run the script should be
stored, pass kOSAModePreventGetSource in this parameter. (In this case the stored script data is
not identical to the compiled script data and can't be used to generate source data.) If the scriptID
parameter identifies a script context, you can pass kOSAModeDontStoreParent in this parameter
to store the script context without storing its parent context.

scriptFile
Identifies the file to store the script into. See the File Manager documentation for a description of the
FSRef data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

80 Functions
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Callbacks

Your application can provide alternative active, send, and create functions for use by scripting components
during script execution. All scripting components support routines that allow you to set and get the current
active function called periodically by the scripting component during script execution. Some scripting
components also support routines that allow you to set and get the current send and create functions used
by the scripting component when it creates and sends Apple events during script execution.

OSAActiveProcPtr
Defines a pointer to an application-defined active function that performs periodic tasks during script
compilation such as checking for Command-period, spinning the cursor, and checking for system-level errors.

typedef OSErr (*OSAActiveProcPtr) (
 long refCon
);

If you name your function MyOSAActiveProc, you would declare it like this:

OSErr MyOSAActiveProc (
 long refCon
);

Parameters
refCon

A reference constant.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Every scripting component calls an active function periodically during script compilation and execution and
provides routines that allow your application to set or get the pointer to the active function.

If you don’t set an alternative active function for a scripting component, it uses its own default active function.
A scripting component’s default active function allows a user to cancel script execution by pressing
Command-period and calls WaitNextEvent to give other processes time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACreateAppleEventProcPtr
Defines a pointer to an application-defined create function that allows you to gain control over the creation
and addressing of Apple events.

Callbacks 81
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

typedef OSErr (*OSACreateAppleEventProcPtr)
(
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc * target,
 short returnID,
 long transactionID,
 AppleEvent * result,
 long refCon
);

If you name your function MyOSACreateAppleEventProc, you would declare it like this:

OSErr MyOSACreateAppleEventProc (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc * target,
 short returnID,
 long transactionID,
 AppleEvent * result,
 long refCon
);

Parameters
theAEEventClass

The event class of the Apple event to create.

theAEEventID
The event ID of the Apple event to create.

target
A pointer to an address descriptor. This descriptor identifies the target (or server) application for the
Apple event.

returnID
The return ID for the created Apple event.

transactionID
The transaction ID for this Apple event. A transaction is a series of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. The constant
kAnyTransactionID specifies that the Apple event is not one of a series of interdependent Apple
events.

result
A pointer to an Apple event. On successful return, this parameter should point to the new Apple
event. On error, this should be a NULL descriptor.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Every scripting component calls a create function whenever it creates an Apple event during script execution
and provides routines that allow you to set or get the pointer to the create function.

82 Callbacks
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Providing your own create function can be useful, for example, if your application needs to add its own
transaction code to the event. An alternative create function takes the same parameters as the
AECreateAppleEvent function plus a reference constant.

If you don’t set an alternative create function for a scripting component, it uses the standard Apple Event
Manager function AECreateAppleEvent, which it calls with its own default parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASendProcPtr
Defines a pointer to an application-defined send function that performs almost any action instead of or in
addition to sending Apple events.

typedef OSErr (*OSASendProcPtr) (
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 long timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc,
 long refCon
);

If you name your function MyOSASendProc, you would declare it like this:

OSErr MyOSASendProc (
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 long timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc,
 long refCon
);

Parameters
theAppleEvent

A pointer to the Apple event.

reply
A pointer to a reply Apple event.

sendMode
Specifies various options for how the Apple event should be handled.

sendPriority
A value that specifies the priority for processing the Apple event.

Callbacks 83
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

timeOutInTicks
If the reply mode specified in the sendMode parameter is kAEWaitReply, or if a return receipt is
requested, this parameter specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt before timing out. If this parameter is kNoTimeOut, the Apple
event never times out.

idleProc
A universal procedure pointer to a function that handles events (such as update, operating-system,
activate, and null events) received while waiting for a reply.

filterProc
A universal procedure pointer to a function that determines which incoming Apple events should be
received while the handler waits for a reply or a return receipt. This parameter may be NULL.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
Every scripting component calls a send function whenever it sends an Apple event during script execution
and provides routines that allow you to set or get the pointer to the send function.

For example, before sending an Apple event, an alternative send function can modify the event or save a
copy of the event. An alternative send function takes the same parameters as the AESend function plus a
reference constant.

If you don’t set an alternative send function for a scripting component, it uses the standard Apple Event
Manager function AESend, which it calls with its own default parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Data Types

OSAID
Used by a scripting component to keep track of script data in memory.

typedef unsigned long OSAID;

Discussion
A scripting component assigns a script ID when it creates the associated script data (that is, a compiled script,
a script value, a script context, or other kinds of script data supported by a scripting component) or loads it
into memory. The scripting routines that create, load, compile, and execute scripts all return script IDs, and
your application must pass valid script IDs to the other routines that manipulate scripts. A script ID remains
valid until a client application calls OSADispose to reclaim the memory used for the corresponding script
data.

84 Data Types
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

GenericID
Represents the ID for generic scripting components.

typedef OSAID GenericID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAError
Represents an OSA result code.

typedef ComponentResult OSAError;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

ScriptingComponentSelector
typedef OSType ScriptingComponentSelector;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

StatementRange
struct StatementRange {
 unsigned long startPos;
 unsigned long endPos;
};
typedef struct StatementRange StatementRange;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Data Types 85
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
OSA.h

OSAActiveUPP
Defines a universal procedure pointer (UPP) to an application-defined active function.

typedef OSAActiveProcPtr OSAActiveUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACreateAppleEventUPP
Defines a universal procedure pointer (UPP) to an application-defined Apple event creation function.

typedef OSACreateAppleEventProcPtr OSACreateAppleEventUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASendUPP
Defines a universal procedure pointer (UPP) to an application-defined send function.

typedef OSASendProcPtr OSASendUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADebugCallFrameRef
typedef OSAID OSADebugCallFrameRef;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

86 Data Types
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

OSADebugSessionRef
typedef OSAID OSADebugSessionRef;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

Data Types 87
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Constants

cClosure
enum {
 cClosure = 'clsr',
 cRawData = 'rdat',
 cStringClass = typeChar,
 cNumber = 'nmbr',
 cListElement = 'celm',
 cListOrRecord = 'lr ',
 cListOrString = 'ls ',
 cListRecordOrString = 'lrs ',
 cNumberOrString = 'ns ',
 cNumberOrDateTime = 'nd ',
 cNumberDateTimeOrString = 'nds ',
 cAliasOrString = 'sf ',
 cSeconds = 'scnd',
 typeSound = 'snd ',
 enumBooleanValues = 'boov',
 kAETrue = typeTrue,
 kAEFalse = typeFalse,
 enumMiscValues = 'misc',
 kASCurrentApplication = 'cura',
 formUserPropertyID = 'usrp'
};

cCoercion
enum {
 cCoercion = 'coec',
 cCoerceUpperCase = 'txup',
 cCoerceLowerCase = 'txlo',
 cCoerceRemoveDiacriticals = 'txdc',
 cCoerceRemovePunctuation = 'txpc',
 cCoerceRemoveHyphens = 'txhy',
 cCoerceOneByteToTwoByte = 'txex',
 cCoerceRemoveWhiteSpace = 'txws',
 cCoerceSmallKana = 'txsk',
 cCoerceZenkakuhankaku = 'txze',
 cCoerceKataHiragana = 'txkh',
 cZone = 'zone',
 cMachine = 'mach',
 cAddress = 'addr',
 cRunningAddress = 'radd',
 cStorage = 'stor'
};

cHandleBreakpoint
enum {
 cHandleBreakpoint = 'brak'

88 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

};

Component Flags
Indicate which features a scripting component supports.

enum {
 kOSASupportsCompiling = 0x0002,
 kOSASupportsGetSource = 0x0004,
 kOSASupportsAECoercion = 0x0008,
 kOSASupportsAESending = 0x0010,
 kOSASupportsRecording = 0x0020,
 kOSASupportsConvenience = 0x0040,
 kOSASupportsDialects = 0x0080,
 kOSASupportsEventHandling = 0x0100
};

Constants
kOSASupportsCompiling

Set if the scripting component supports the functions described in “Compiling Scripts” (page 10).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsGetSource
Set if the scripting component supports the OSAGetSource function.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsAECoercion
Set if the scripting component supports the OSACoerceFromDesc and OSACoerceToDesc functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsAESending
Set if the scripting component supports the functions described in “Manipulating the Create and
Send Functions” (page 11).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsRecording
Set if the scripting component supports the OSAStartRecording (page 77)and
OSAStopRecording (page 78) functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsConvenience
Set if the script component supports the OSALoadExecute (page 63), OSACompileExecute (page
31), and OSADoScript (page 44) functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 89
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSASupportsDialects
Set if the scripting component supports the OSASetCurrentDialect (page 71),
OSAGetCurrentDialect (page 50), OSAAvailableDialectCodeList (page 27),
OSAGetDialectInfo (page 51), and OSAAvailableDialects (page 27) functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsEventHandling
Set if the scripting component supports the event handling functions described in “Using Script
Contexts to Handle Apple Events” (page 13).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Discussion
Your application can use the Component Manager to find a scripting component that supports a specific
group of functions or to determine whether a particular scripting component supports a specific group of
functions. Each of these flags identifies one of these groups of functions. To specify one or more groups of
functions for the Component Manager, use these constants to set the equivalent bits in the componentFlags
field of a component description record.

Declared In
OSA.h

Considerations Flags
enum {
 kAECase = 'case',
 kAEDiacritic = 'diac',
 kAEWhiteSpace = 'whit',
 kAEHyphens = 'hyph',
 kAEExpansion = 'expa',
 kAEPunctuation = 'punc',
 kAEZenkakuHankaku = 'zkhk',
 kAESmallKana = 'skna',
 kAEKataHiragana = 'hika',
 kASConsiderReplies = 'rmte',
 kASNumericStrings = 'nume',
 enumConsiderations = 'cons'
};

Constants
kASNumericStrings

Should strings be considered as numbers?

Available in Mac OS X v10.4 and later.

Declared in ASRegistry.h.

Version Notes
The constant kASNumericStrings is available starting with Mac OS X version 10.4.

Declared In
ASRegistry.h

90 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Considerations Bit Masks
Specify settings for string comparisons.

enum {
 kAECaseConsiderMask = 0x00000001,
 kAEDiacriticConsiderMask = 0x00000002,
 kAEWhiteSpaceConsiderMask = 0x00000004,
 kAEHyphensConsiderMask = 0x00000008,
 kAEExpansionConsiderMask = 0x00000010,
 kAEPunctuationConsiderMask = 0x00000020,
 kASConsiderRepliesConsiderMask = 0x00000040,
 kASNumericStringsConsiderMask = 0x00000080,
 kAECaseIgnoreMask = 0x00010000,
 kAEDiacriticIgnoreMask = 0x00020000,
 kAEWhiteSpaceIgnoreMask = 0x00040000,
 kAEHyphensIgnoreMask = 0x00080000,
 kAEExpansionIgnoreMask = 0x00100000,
 kAEPunctuationIgnoreMask = 0x00200000,
 kASConsiderRepliesIgnoreMask = 0x00400000,
 kASNumericStringsIgnoreMask = 0x00800000,
 enumConsidsAndIgnores = 'csig'
};

Constants
kASNumericStringsConsiderMask

If bit at this position is set, consider strings to represent numerical values for comparison. For example,
compare the string “1.01” as if it were the number 1.01.

Available in Mac OS X v10.4 and later.

Declared in ASRegistry.h.

kASNumericStringsIgnoreMask
If bit at this position is set, do not compare strings as numeric values.

Available in Mac OS X v10.4 and later.

Declared in ASRegistry.h.

Discussion
AppleScript has various settings for string comparisons, such as whether to consider or ignore capitalization.
When your application receives an Apple event from AppleScript, it contains an attribute with the keyword
enumConsidsAndIgnores. You can extract the consideration bit information from that attribute as
typeSInt32, then use the bit masks in this enum to determine which considering and ignoring flags are
currently set. You can use that information to conduct comparisons with the same criteria currently in use
by AppleScript.

Version Notes
The constants kASNumericStringsConsiderMask and kASNumericStringsIgnoreMask are available
starting with Mac OS X version 10.4.

Declared In
ASRegistry.h

Constants 91
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

cString
enum {
 cString = cStringClass
};

Current Dialect Constants
enum {
 kOSASelectSetCurrentDialect = 0x0701,
 kOSASelectGetCurrentDialect = 0x0702,
 kOSASelectAvailableDialects = 0x0703,
 kOSASelectGetDialectInfo = 0x0704,
 kOSASelectAvailableDialectCodeList = 0x0705
};

Discussion
AppleScript is designed so that scripts can be displayed in different dialects, which are representations of
AppleScript that resemble human languages or programming languages. While dialects are supported, they
are not particularly useful because no currently available OSA language supports dialects other than English.

Date and Time Constants
enum {
 pASWeekday = 'wkdy',
 pASMonth = 'mnth',
 pASDay = 'day ',
 pASYear = 'year',
 pASTime = 'time',
 pASDateString = 'dstr',
 pASTimeString = 'tstr',
 cMonth = pASMonth,
 cJanuary = 'jan ',
 cFebruary = 'feb ',
 cMarch = 'mar ',
 cApril = 'apr ',
 cMay = 'may ',
 cJune = 'jun ',
 cJuly = 'jul ',
 cAugust = 'aug ',
 cSeptember = 'sep ',
 cOctober = 'oct ',
 cNovember = 'nov ',
 cDecember = 'dec '
};

Default Initialization Values
Initialization constants passed to ASInit function.

92 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 kASDefaultMinStackSize = 4 * 1024,
 kASDefaultPreferredStackSize = 16 * 1024,
 kASDefaultMaxStackSize = 16 * 1024,
 kASDefaultMinHeapSize = 4 * 1024,
 kASDefaultPreferredHeapSize = 16 * 1024,
 kASDefaultMaxHeapSize = 32L * 1024 * 1024
};

Constants
kASDefaultMinStackSize

Represents the default value for the minimum size for the portion of the application’s heap used by
the AppleScript component’s application-specific stack.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultPreferredStackSize
Represents the default value for the preferred size for the portion of the application’s heap used by
the AppleScript component’s application-specific stack.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultMaxStackSize
Represents the default value for the maximum size for the portion of the application’s heap used by
the AppleScript component’s application-specific stack.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultMinHeapSize
Represents the default value for the minimum size for the portion of the application’s heap used by
the AppleScript component’s application-specific heap. (See Version Notes section.)

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultPreferredHeapSize
Represents the default value for the preferred size for the portion of the application’s heap used by
the AppleScript component’s application-specific heap. (See Version Notes section.)

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultMaxHeapSize
Represents the default value for the maximum size for the portion of the application’s heap used by
the AppleScript component’s application-specific heap. (See Version Notes section.)

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Discussion
You can pass these constants to the ASInit (page 20) function to use the default values when initializing
the AppleScript component. These values are also used if ASInit is not called explicitly, or if any of ASInit's
parameters are zero.

Version Notes
Starting in Mac OS X version 10.5, heap size parameter values are ignored—AppleScript's heap will grow as
large as needed.

Constants 93
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Declared In
AppleScript.h

Dialect Descriptor Constants
Define the descriptor type and keywords for descriptor records describing the dialects supported by a scripting
component.

enum {
 typeOSADialectInfo = 'difo',
 keyOSADialectName = 'dnam',
 keyOSADialectCode = 'dcod',
 keyOSADialectLangCode = 'dlcd',
 keyOSADialectScriptCode = 'dscd'
};

Constants
typeOSADialectInfo

The descriptor type for each item in list returned by OSAAvailableDialects.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectName
Used with a descriptor record of any text type, such as type typeChar.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectCode
Used with a descriptor record of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectLangCode
Used with a descriptor record of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectScriptCode
Used with a descriptor record of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Discussion
These constants define the descriptor type for each item in the list returned by OSAAvailableDialects
and the keywords for descriptor records of that type. The keyword constants can also be used in the selector
parameter of OSAGetDialectInfo to obtain information about the dialects supported by a scripting
component.

94 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

Generic Scripting Component Selectors
enum {
 kGSSSelectGetDefaultScriptingComponent = 0x1001,
 kGSSSelectSetDefaultScriptingComponent = 0x1002,
 kGSSSelectGetScriptingComponent = 0x1003,
 kGSSSelectGetScriptingComponentFromStored = 0x1004,
 kGSSSelectGenericToRealID = 0x1005,
 kGSSSelectRealToGenericID = 0x1006,
 kGSSSelectOutOfRange = 0x1007
};

Global Properties
enum {
 pASIt = 'it ',
 pASMe = 'me ',
 pASResult = 'rslt',
 pASSpace = 'spac',
 pASReturn = 'ret ',
 pASTab = 'tab ',
 pASPi = 'pi ',
 pASParent = 'pare',
 kASInitializeEventCode = 'init',
 pASPrintLength = 'prln',
 pASPrintDepth = 'prdp',
 pASTopLevelScript = 'ascr'
};

kASAdd
enum {
 kASAdd = '+ ',
 kASSubtract = '- ',
 kASMultiply = '* ',
 kASDivide = '/ ',
 kASQuotient = 'div ',
 kASRemainder = 'mod ',
 kASPower = '^ ',
 kASEqual = kAEEquals,
 kASNotEqual = ' ',
 kASGreaterThan = kAEGreaterThan,
 kASGreaterThanOrEqual = kAEGreaterThanEquals,
 kASLessThan = kAELessThan,
 kASLessThanOrEqual = kAELessThanEquals,
 kASComesBefore = 'cbfr',
 kASComesAfter = 'cafr',
 kASConcatenate = 'ccat',
 kASStartsWith = kAEBeginsWith,
 kASEndsWith = kAEEndsWith,
 kASContains = kAEContains
};

Constants 95
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kASAnd
enum {
 kASAnd = kAEAND,
 kASOr = kAEOR,
 kASNot = kAENOT,
 kASNegate = 'neg ',
 keyASArg = 'arg '
};

kASErrorEventCode
enum {
 kASErrorEventCode = 'err ',
 kOSAErrorArgs = 'erra',
 keyAEErrorObject = 'erob',
 pLength = 'leng',
 pReverse = 'rvse',
 pRest = 'rest',
 pInherits = 'c@#^',
 pProperties = 'pALL',
 keyASUserRecordFields = 'usrf',
 typeUserRecordFields = typeAEList
};

kASStartLogEvent
enum {
 kASStartLogEvent = 'log1',
 kASStopLogEvent = 'log0',
 kASCommentEvent = 'cmnt'
};

kDialectBundleResType
enum {
 kDialectBundleResType = 'Dbdl',
 cConstant = typeEnumerated,
 cClassIdentifier = pClass,
 cObjectBeingExamined = typeObjectBeingExamined,
 cList = typeAEList,
 cSmallReal = typeSMFloat,
 cReal = typeFloat,
 cRecord = typeAERecord,
 cReference = cObjectSpecifier,
 cUndefined = 'undf',
 cMissingValue = 'msng',
 cSymbol = 'symb',
 cLinkedList = 'llst',
 cVector = 'vect',
 cEventIdentifier = 'evnt',
 cKeyIdentifier = 'kyid',
 cUserIdentifier = 'uid ',

96 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

 cPreposition = 'prep',
 cKeyForm = enumKeyForm,
 cScript = 'scpt',
 cHandler = 'hand',
 cProcedure = 'proc'
};

keyAETarget
enum {
 keyAETarget = 'targ',
 keySubjectAttr = 'subj',
 keyASReturning = 'Krtn',
 kASAppleScriptSuite = 'ascr',
 kASScriptEditorSuite = 'ToyS',
 kASTypeNamesSuite = 'tpnm',
 typeAETE = 'aete',
 typeAEUT = 'aeut',
 kGetAETE = 'gdte',
 kGetAEUT = 'gdut',
 kUpdateAEUT = 'udut',
 kUpdateAETE = 'udte',
 kCleanUpAEUT = 'cdut',
 kASComment = 'cmnt',
 kASLaunchEvent = 'noop',
 keyScszResource = 'scsz',
 typeScszResource = 'scsz',
 kASSubroutineEvent = 'psbr',
 keyASSubroutineName = 'snam',
 kASPrepositionalSubroutine = 'psbr',
 keyASPositionalArgs = 'parg'
};

keyAppHandledCoercion
enum {
 keyAppHandledCoercion = 'idas'
};

keyASPrepositionAt
enum {
 keyASPrepositionAt = 'at ',
 keyASPrepositionIn = 'in ',
 keyASPrepositionFrom = 'from',
 keyASPrepositionFor = 'for ',
 keyASPrepositionTo = 'to ',
 keyASPrepositionThru = 'thru',
 keyASPrepositionThrough = 'thgh',
 keyASPrepositionBy = 'by ',
 keyASPrepositionOn = 'on ',
 keyASPrepositionInto = 'into',
 keyASPrepositionOnto = 'onto',

Constants 97
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

 keyASPrepositionBetween = 'btwn',
 keyASPrepositionAgainst = 'agst',
 keyASPrepositionOutOf = 'outo',
 keyASPrepositionInsteadOf = 'isto',
 keyASPrepositionAsideFrom = 'asdf',
 keyASPrepositionAround = 'arnd',
 keyASPrepositionBeside = 'bsid',
 keyASPrepositionBeneath = 'bnth',
 keyASPrepositionUnder = 'undr'
};

keyASPrepositionOver
enum {
 keyASPrepositionOver = 'over',
 keyASPrepositionAbove = 'abve',
 keyASPrepositionBelow = 'belw',
 keyASPrepositionApartFrom = 'aprt',
 keyASPrepositionGiven = 'givn',
 keyASPrepositionWith = 'with',
 keyASPrepositionWithout = 'wout',
 keyASPrepositionAbout = 'abou',
 keyASPrepositionSince = 'snce',
 keyASPrepositionUntil = 'till'
};

keyOSASourceEnd
Specifies the end of an error range.

enum {
 keyOSASourceEnd = 'srce'
};

Constants
keyOSASourceEnd

Field of a typeOSAErrorRange record of typeShortInteger. This field specifies the end of the
error range.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

keyOSASourceStart
Specifies the start of an error range.

98 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 keyOSASourceStart = 'srcs'
};

Constants
keyOSASourceStart

Field of a typeOSAErrorRange record of typeShortInteger. This field specifies the start of the
error range.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

keyProcedureName
enum {
 keyProcedureName = 'dfnm',
 keyStatementRange = 'dfsr',
 keyLocalsNames = 'dfln',
 keyGlobalsNames = 'dfgn',
 keyParamsNames = 'dfpn'
};

keyProgramState
enum {
 keyProgramState = 'dsps'
};

kGenericComponentVersion
Specifies the generic component version.

enum {
 kGenericComponentVersion = 0x0100
};

Constants
kGenericComponentVersion

Indicates the component version this header file describes.

Available in Mac OS X v10.0 and later.

Declared in OSAGeneric.h.

Declared In
OSAGeneric.h

Constants 99
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSAComponentType
Defines the Component Manager type code for components that support the standard scripting component
routines.

enum {
 kOSAComponentType = 'osa '
};

Constants
kOSAComponentType

Specifies the standard OSA component type.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

kOSAGenericScriptingComponentSubtype
Defines the subtype code for the generic scripting component.

enum {
 kOSAGenericScriptingComponentSubtype = 'scpt'
};

kOSAModeDontDefine
enum {
 kOSAModeDontDefine = 0x0001
};

Constants
kOSAModeDontDefine

This mode flag can be passed to OSASetProperty (page 73) or OSASetHandler (page 73) and will
prevent properties or handlers from being defined in a context that doesn't already have bindings
for them. An error is returned if a current binding doesn't already exist.

Available in Mac OS X v10.0 and later.

Declared in ASDebugging.h.

kOSANullScript
Defines a null script ID.

100 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 kOSANullScript = 0
};

Discussion
If the execution of a script does not result in a value, OSAExecute returns the constant kOSANullScript
as the script ID. If a client application passes kOSANullScript to the OSAGetSource function instead of a
valid script ID, the scripting component should display a null source description (possibly an empty text
string). If a client application passes kOSANullScript to OSAStartRecording, the scripting component
creates a new compiled script for editing or recording.

kOSARecordedText
Defines the event code for the Recorded Text event.

enum {
 kOSARecordedText = 'recd'
};

kOSAScriptResourceType
Defines the resource type for stored script data.

enum {
 kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype
};

Constants
kOSAScriptResourceType

Resource type for scripts.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASelectComponentSpecificStart
enum {
 kOSASelectComponentSpecificStart = 0x1001
};

Constants
kOSASelectComponentSpecificStart

Scripting component specific selectors are added beginning with this value.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 101
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSASelectCopyScript
enum {
 kOSASelectCopyScript = 0x0105
};

kOSASuite
Defines the suite for the Recorded Text event.

enum {
 kOSASuite = 'ascr'
};

Mode Flags
Specify information used by the scripting component.

102 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 kOSAModePreventGetSource = 0x00000001
};
enum {
 kOSAModeNeverInteract = kAENeverInteract,
 kOSAModeCanInteract = kAECanInteract,
 kOSAModeAlwaysInteract = kAEAlwaysInteract,
 kOSAModeDontReconnect = kAEDontReconnect
};
enum {
 kOSAModeCantSwitchLayer = 0x00000040
};
enum {
 kOSAModeDoRecord = 0x00001000
};
enum {
 kOSAModeCompileIntoContext = 0x00000002
};
enum {
 kOSAModeAugmentContext = 0x00000004
};
enum {
 kOSAModeDisplayForHumans = 0x00000008
};
enum {
 kOSAModeDontStoreParent = 0x00010000
};
enum {
 kOSAModeDispatchToDirectObject = 0x00020000
};
enum {
 kOSAModeDontGetDataForArguments = 0x00040000
};
enum {
kOSAModeFullyQualifyDescriptors = 0x00080000
};

Constants
kOSAModePreventGetSource

This mode flag may be passed to OSALoad (page 62), OSAStore (page 79), or OSACompile (page
30) to instruct the scripting component to not retain the “source” of an expression. This will cause a
call to OSAGetSource (page 59) to return the error errOSASourceNotAvailable if used. However,
some scripting components may not retain the source anyway. This is mainly used when either space
efficiency is desired, or a script is to be "locked" so that its implementation may not be viewed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeNeverInteract
This mode flag may be passed to the functions OSACompile (page 30), OSAExecute (page 46),
OSALoadExecute (page 63), OSACompileExecute (page 31), OSADoScriptFile (page 45),
OSAExecuteEvent (page 47), and OSADoEvent (page 42) to indicate whether or not the script may
interact with the user if necessary. Adds kAENeverInteract to the sendMode parameter of AESend
for events sent when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 103
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSAModeCanInteract
This mode flag may be passed to the functions OSACompile (page 30), OSAExecute (page 46),
OSALoadExecute (page 63), OSACompileExecute (page 31), OSADoScriptFile (page 45),
OSAExecuteEvent (page 47), and OSADoEvent (page 42) to indicate whether or not the script may
interact with the user. Adds kAECanInteract to the sendMode parameter of AESend for events sent
when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeAlwaysInteract
This mode flag may be passed to the functions OSACompile (page 30), OSAExecute (page 46),
OSALoadExecute (page 63), OSACompileExecute (page 31), OSADoScriptFile (page 45),
OSAExecuteEvent (page 47), and OSADoEvent (page 42) to indicate whether or not the script may
interact with the user. Adds kAEAlwaysInteract to the sendMode parameter of AESend for events
sent when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDontReconnect
This mode flag may be passed to the functions OSACompile (page 30), OSAExecute (page 46),
OSALoadExecute (page 63), OSACompileExecute (page 31), OSADoScriptFile (page 45),
OSAExecuteEvent (page 47), and OSADoEvent (page 42) to indicate whether or not the script may
reconnect if necessary. Adds kAEDontReconnect to the sendMode parameter of AESend for events
sent when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeCantSwitchLayer
This mode flag may be passed to the functions OSACompile (page 30), OSAExecute (page 46),
OSALoadExecute (page 63), OSACompileExecute (page 31), OSADoScriptFile (page 45),
OSAExecuteEvent (page 47), and OSADoEvent (page 42) to indicate whether Apple events should
be sent with the kAECanSwitchLayer mode flag sent. This flag is exactly the opposite of the Apple
event flag kAECanSwitchLayer. This is to provide a more convenient default, such as not supplying
any mode (see kOSANullMode in the “Null Mode Flags” (page 106)) means to send events with
kAECanSwitchLayer. Supplying the kOSAModeCantSwitchLayer mode flag will cause AESend to
be called without kAECanSwitchLayer.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDoRecord
This mode flag may be passed to the functions OSACompile (page 30), OSAExecute (page 46),
OSALoadExecute (page 63), OSACompileExecute (page 31), OSADoScriptFile (page 45),
OSAExecuteEvent (page 47), and OSADoEvent (page 42) to indicate whether Apple events should
be sent with the kAEDontRecord mode flag. This flag is exactly the opposite the Apple event flag
kAEDontRecord. This is to provide a more convenient default, such as not supplying any mode (see
kOSANullMode in the “Null Mode Flags” (page 106)) means to send events with kAEDontRecord.
Supplying the kOSAModeDoRecord mode flag will causeAESend to be called withoutkAEDontRecord.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

104 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSAModeCompileIntoContext
This is a mode flag for OSACompile (page 30) that indicates that a context should be created as the
result of compilation. All handler definitions are inserted into the new context, and variables are
initialized by evaluating their initial values in a null context (for example, they must be constant
expressions).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeAugmentContext
This is a mode flag for OSACompile (page 30) that indicates that the previous script ID (input to
OSACompile) should be augmented with any new definitions in the sourceData parameter rather
than replaced with a new script. This means that the previous script ID must designate a context. The
presence of this flag causes the kOSAModeCompileIntoContext flag to be implicitly used, causing
any new definitions to be initialized in a null context.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDisplayForHumans
This mode flag may be passed to OSADisplay (page 41) or OSADoScriptFile (page 45) to indicate
that output only need be human-readable, not re-compilable by OSACompile (page 30). If used,
output may be arbitrarily "beautified", for example, quotes may be left off of string values, and long
lists may have ellipses.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDontStoreParent
This mode flag may be passed to OSAStore (page 79) in the case where the scriptID parameter
is a context. This causes the context to be saved, but not the context's parent context. When the
stored context is loaded back in, the parent will be kOSANullMode (see the “Null Mode Flags” (page
106)).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDispatchToDirectObject
This mode flag may be passed to OSAExecuteEvent (page 47) to cause the event to be dispatched
to the direct object of the event. The direct object (or subject attribute if the direct object is a
non-object specifier) will be resolved, and the resulting script object will be the recipient of the
message. The context argument to OSAExecuteEventwill serve as the root of the lookup/resolution
process.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDontGetDataForArguments
This mode flag may be passed to OSAExecuteEvent (page 47) to indicate that components do not
have to get the data of object specifier arguments.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 105
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSAModeFullyQualifyDescriptors
This mode flag may be passed to OSACoerceToDesc (page 29) to indicate that the resulting descriptor
should be fully qualified (i.e. should include the root application reference).

Available in Mac OS X v10.3 and later.

Declared in OSA.h.

Null Mode Flags
Indicate a function’s default mode settings are to be used.

enum {
 kOSANullMode = 0,
 kOSAModeNull = 0
};

OSADebugStepKind
typedef UInt32 OSADebugStepKind;
enum {
 eStepOver = 0,
 eStepIn = 1,
 eStepOut = 2,
 eRun = 3
};

OSAProgramState
typedef UInt32 OSAProgramState;
enum {
 eNotStarted = 0,
 eRunnable = 1,
 eRunning = 2,
 eStopped = 3,
 eTerminated = 4
};

OSAScriptError Selectors
Define selectors used to retrieve information about script errors from the OSAScriptError function.

106 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 kOSAErrorNumber = keyErrorNumber
};
enum {
 kOSAErrorMessage = keyErrorString
};
enum {
 kOSAErrorBriefMessage = 'errb'
};
enum {
 kOSAErrorApp = 'erap'
};
enum {
 kOSAErrorPartialResult = 'ptlr'
};
enum {
 kOSAErrorOffendingObject = 'erob'
};
enum {
 kOSAErrorExpectedType = 'errt'
};
enum {
 kOSAErrorRange = 'erng'
};

Constants
kOSAErrorNumber

This selector is used to determine the error number of a script error. These error numbers may be
either system error numbers, or error numbers that are scripting component specific. The value of
desiredType must be typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorMessage
This selector is used to determine the full error message associated with the error number. It should
include the name of the application which caused the error, as well as the specific error that occurred.
This selector is sufficient for simple error reporting (but see kOSAErrorBriefMessage). The value of
desiredType must be typeChar or another text descriptor type.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorBriefMessage
This selector is used to determine a brief error message associated with the error number. This message
should not mention the name of the application which caused the error, any partial results or offending
object (see kOSAErrorApp, kOSAErrorPartialResult , and kOSAErrorOffendingObject). The value of
desiredType must be typeChar or another text descriptor type.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorApp
This selector is used to determine which application actually got the error (if it was the result of an
AESend). The value of desiredType must be typeProcessSerialNumber (for the PSN) or a text
descriptor type such as typeChar (for the name).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 107
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSAErrorPartialResult
This selector is used to determine any partial result returned by an operation. If an AESend call failed,
but a partial result was returned, then the partial result may be returned as an AEDesc. The value of
desiredType must be typeBest (for the best type) or typeWildCard (for the default type).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorOffendingObject
This selector is used to determine any object which caused the error that may have been indicated
by an application. The result is an AEDesc. The value of desiredType must be
typeObjectSpecifier, typeBest, or typeWildCard. For some scripting components, including
AppleScript, these three values are equivalent.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorRange
This selector is used to determine the source text range (start and end positions) of where the error
occurred. The value of desiredType must be typeOSAErrorRange.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorExpectedType
This selector is used to determine the type expected by a coercion operation if a type error occurred.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Recording Constants
enum {
 kOSASelectStartRecording = 0x0501,
 kOSASelectStopRecording = 0x0502
};

Resume Dispatch Function Constants
Define constants used with the OSASetResumeDispatchProc function.

108 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 kOSAUseStandardDispatch = kAEUseStandardDispatch
};
enum {
 kOSANoDispatch = kAENoDispatch
};
enum {
 kOSADontUsePhac = 0x0001
};

Constants
kOSAUseStandardDispatch

Used in the resumeDispatchProc parameter of OSASetResumeDispatchProc (page 74) and
OSAGetResumeDispatchProc (page 56) to indicate that the event is dispatched using standard
Apple event dispatching (the handler registered in the application with AEInstallEventHandler
should be used).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSANoDispatch
Used in the resumeDispatchProc parameter of OSASetResumeDispatchProc (page 74) to tell
the Apple Event Manager that the processing of the Apple event is complete and that no dispatching
should occur.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSADontUsePhac
Used in the refCon parameter of OSASetResumeDispatchProc (page 74) to dispatch the event
using standard Apple event dispatching, except that the predispatch handler should not be called.
Used only in conjunction with kOSAUseStandardDispatch. This is useful when the predispatch
handler is used to lookup a context associated with an event's direct parameter and call
OSAExecuteEvent (page 47) or OSADoEvent (page 42). Failure to bypass the predispatch handler
when resuming an event in this case would result in an infinite loop. (A predispatch handler is called
immediately before the Apple Event Manager dispatches an event.)

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

Script Document File Type
Defines the file type of script document files.

enum {
 kOSAFileType = 'osas'
};

Script Information Selectors
Specify which script information is set or returned.

Constants 109
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 kOSAScriptIsModified = 'modi'
};
enum {
 kOSAScriptIsTypeCompiledScript = 'cscr'
};
enum {
 kOSAScriptIsTypeScriptValue = 'valu'
};
enum {
 kOSAScriptIsTypeScriptContext = 'cntx'
};
enum {
 kOSAScriptBestType = 'best'
};
enum {
 kOSACanGetSource = 'gsrc'
};
enum {
 kASHasOpenHandler = 'hsod'
};

Constants
kOSAScriptIsModified

This selector is used to determine whether there have been any changes since the script data was
loaded or created. In Mac OS X, the AppleScript component returns a value of false if no changes
have been made, and a value of true if changes may have been made. For more information, see
the Version Notes section for the OSAGetScriptInfo (page 56) function.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptIsTypeCompiledScript
This selector is used to determine whether or not the script data is a compiled script. The selector
returns a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptIsTypeScriptValue
This selector is used to determine whether or not the script data is a script value. The selector returns
a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptIsTypeScriptContext
This selector is used to determine whether or not the script data is a script context. The selector returns
a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptBestType
A descriptor type that you can pass to OSACoerceToDesc.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

110 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kOSACanGetSource
This selector is used to determine whether a script has source associated with it that when given to
OSAGetSource, the call will not fail. The selector returns a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kASHasOpenHandler
This selector is used to query a context as to whether it contains a handler for the kAEOpenDocuments
event. This allows "applets" to be distinguished from "droplets." OSAGetScriptInfo (page 56)
returns false if there is no kAEOpenDocuments handler, and returns the error value
errOSAInvalidAccess if the input is not a context.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Source Constants
enum {
 kOSASelectGetSource = 0x0201
};

Source Style Constants
Identify script format styles used by the AppleScript component to display scripts.

enum {
 kASSourceStyleUncompiledText = 0,
 kASSourceStyleNormalText = 1,
 kASSourceStyleLanguageKeyword = 2,
 kASSourceStyleApplicationKeyword = 3,
 kASSourceStyleComment = 4,
 kASSourceStyleLiteral = 5,
 kASSourceStyleUserSymbol = 6,
 kASSourceStyleObjectSpecifier = 7,
 kASNumberOfSourceStyles = 8
};

Constants
kASSourceStyleUncompiledText

Script format style for uncompiled text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleNormalText
Script format style for normal text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleLanguageKeyword
Script format style for keywords of the AppleScript Language.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Constants 111
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

kASSourceStyleApplicationKeyword
Script format style for keywords of a scriptable application.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleComment
Script format style for comment text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleLiteral
Script format style for literal text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleUserSymbol
A user-defined symbol, such as a variable or custom handler name.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleObjectSpecifier
Deprecated.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASNumberOfSourceStyles
Deprecated. (The number of different format styles available.)

See the Discussion section for why you should not use this constant.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Discussion
These constants are used to access specific styles in the style information used by the
ASCopySourceAttributes (page 17), ASSetSourceAttributes (page 22), and
ASGetSourceStyleNames (page 19) functions (and the deprecated functions ASGetSourceStyles (page
119) and ASSetSourceStyles (page 119)).

The order of the style information corresponds to the order of the constants. For example, the first dictionary
in the array returned by ASCopySourceAttributes (page 17) (at position
kASSourceStyleUncompiledText) describes the style for uncompiled text. However, you should not rely
on there being any specific number of dictionaries (such as kASNumberOfSourceStyles) in the returned
array—instead, count the number of items in the array before accessing any of them.

Declared In
AppleScript.h

typeAppleScript
Define descriptor types for the AppleScript instance of the Open Scripting Architecture type.

112 Constants
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

enum {
 typeAppleScript = 'ascr',
 kAppleScriptSubtype = typeAppleScript,
 typeASStorage = typeAppleScript
};

Constants
kAppleScriptSubtype

Defines the Component Manager subtype for the AppleScript component.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

typeASStorage
Defines the AppleScript constant for storage descriptor records.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

typeOSAErrorRange
Defines the descriptor type for an error range.

enum {
 typeOSAErrorRange = 'erng'
};

typeOSAGenericStorage
Defines the descriptor type for generic storage descriptor records.

enum {
 typeOSAGenericStorage = kOSAScriptResourceType
};

Constants
typeOSAGenericStorage

Default type given to OSAStore (page 79), which creates "generic" loadable script data descriptors.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

Constants 113
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

typeStatementRange
enum {
 typeStatementRange = 'srng'
};

Weekdays
enum {
 cWeekday = pASWeekday,
 cSunday = 'sun ',
 cMonday = 'mon ',
 cTuesday = 'tue ',
 cWednesday = 'wed ',
 cThursday = 'thu ',
 cFriday = 'fri ',
 cSaturday = 'sat ',
 pASQuote = 'quot',
 pASSeconds = 'secs',
 pASMinutes = 'min ',
 pASHours = 'hour',
 pASDays = 'days',
 pASWeeks = 'week',
 cWritingCodeInfo = 'citl',
 pScriptCode = 'pscd',
 pLangCode = 'plcd',
 kASMagicTellEvent = 'tell',
 kASMagicEndTellEvent = 'tend'
};

Result Codes

The most common result codes returned by Open Scripting Architecture are listed in Table 1-1. Open Scripting
Architecture may also return the result codes noErr (0), and badComponentInstance (-2147450879).

DescriptionValueResult Code

A value can't be coerced to the desired type.-1700errOSACantCoerce

Available in Mac OS X v10.0 and later.

A parameter is missing for a function invocation.-1701OSAMissingParameter

Available in Mac OS X v10.0 and later.

Some data could not be read.-1702errOSACorruptData

Available in Mac OS X v10.0 and later.

Same as errAEWrongDataType; wrong descriptor
type.

-1703errOSATypeError

Available in Mac OS X v10.0 and later.

114 Result Codes
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

DescriptionValueResult Code

A message was sent to an object that didn't handle it.-1708OSAMessageNotUnderstood

Available in Mac OS X v10.0 and later.

A function to be returned doesn't exist.-1717OSAUndefinedHandler

Available in Mac OS X v10.0 and later.

An index was out of range. Specialization of
errOSACantAccess.

-1719OSAIllegalIndex

Available in Mac OS X v10.0 and later.

The specified range is illegal. Specialization of
errOSACantAccess.

-1720OSAIllegalRange

Available in Mac OS X v10.0 and later.

The wrong number of parameters were passed to the
function, or a parameter pattern cannot be matched.

-1721OSAParameterMismatch

Available in Mac OS X v10.0 and later.

A container can not have the requested object.-1723OSAIllegalAccess

Available in Mac OS X v10.0 and later.

An object is not found in a container.-1728errOSACantAccess

Available in Mac OS X v10.0 and later.

Recording is already on.-1732errOSARecordingIsAlreadyOn

Available in Mac OS X v10.0 and later.

Scripting component error.-1750errOSASystemError

Available in Mac OS X v10.0 and later.

Invalid script id.-1751errOSAInvalidID

Available in Mac OS X v10.0 and later.

Script doesn’t seem to belong to AppleScript.-1752errOSABadStorageType

Available in Mac OS X v10.0 and later.

Script error.-1753errOSAScriptError

Available in Mac OS X v10.0 and later.

Invalid selector given.-1754errOSABadSelector

Available in Mac OS X v10.0 and later.

Invalid access.-1756errOSASourceNotAvailable

Available in Mac OS X v10.0 and later.

Result Codes 115
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

DescriptionValueResult Code

Source not available.-1757errOSANoSuchDialect

Available in Mac OS X v10.0 and later.

No such dialect.-1758errOSADataFormatObsolete

Available in Mac OS X v10.0 and later.

Data couldn’t be read because its format is obsolete.-1759errOSADataFormatTooNew

Available in Mac OS X v10.0 and later.

Parameters are from two different components.-1761errOSAComponentMismatch

Available in Mac OS X v10.0 and later.

Can't connect to system with that ID.-1762errOSACantOpenComponent

Available in Mac OS X v10.0 and later.

No actual error code is to be returned.-2700errOSAGeneralError

Available in Mac OS X v10.0 and later.

An attempt to divide by zero was made.-2701errOSADivideByZero

Available in Mac OS X v10.0 and later.

An integer or real value is too large to be represented.-2702errOSANumericOverflow

Available in Mac OS X v10.0 and later.

An application can't be launched, or when it is, remote
and program linking is not enabled.

-2703errOSACantLaunch

Available in Mac OS X v10.0 and later.

An application can't respond to Apple events.-2704errOSAAppNotHighLevelEventAware

Available in Mac OS X v10.0 and later.

An application's terminology resource is not readable.-2705errOSACorruptTerminology

Available in Mac OS X v10.0 and later.

The runtime stack overflowed.-2706errOSAStackOverflow

Available in Mac OS X v10.0 and later.

A runtime internal data structure overflowed.-2707errOSAInternalTableOverflow

Available in Mac OS X v10.0 and later.

An intrinsic limitation is exceeded for the size of a value
or data structure.

-2708errOSADataBlockTooLarge

Available in Mac OS X v10.0 and later.

Can’t get the event dictionary.-2709errOSACantGetTerminology

Available in Mac OS X v10.0 and later.

116 Result Codes
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

DescriptionValueResult Code

Can't make class <class identifier>.-2710errOSACantCreate

Available in Mac OS X v10.0 and later.

A syntax error occurred.-2740OSASyntaxError

Available in Mac OS X v10.0 and later.

Another form of syntax was expected.-2741OSASyntaxTypeError

Available in Mac OS X v10.0 and later.

A name or number is too long to be parsed.-2742OSATokenTooLong

Available in Mac OS X v10.0 and later.

A formal parameter, local variable, or instance variable
is specified more than once.

-2750OSADuplicateParameter

Available in Mac OS X v10.0 and later.

A formal parameter, local variable, or instance variable
is specified more than once.

-2751OSADuplicateProperty

Available in Mac OS X v10.0 and later.

More than one handler is defined with the same name
in a scope where the language doesn't allow it.

-2752OSADuplicateHandler

Available in Mac OS X v10.0 and later.

A variable is accessed that has no value.-2753OSAUndefinedVariable

Available in Mac OS X v10.0 and later.

A variable is declared inconsistently in the same scope,
such as both local and global.

-2754OSAInconsistentDeclarations

Available in Mac OS X v10.0 and later.

An illegal control flow occurs in an application. For
example, there is no catcher for the throw, or there
was a non-lexical loop exit.

-2755OSAControlFlowError

Available in Mac OS X v10.0 and later.

An object can never be set in a container-10003OSAIllegalAssign

Available in Mac OS X v10.0 and later.

An object cannot be set in a container.-10006errOSACantAssign

Available in Mac OS X v10.0 and later.

Result Codes 117
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

118 Result Codes
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Open Scripting Architecture Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

ASGetSourceStyles
Gets the script format styles currently used by the AppleScript component to display scripts. (Deprecated in
Mac OS X v10.5. Use ASGetSourceStyleNames (page 19) instead.)

OSAError ASGetSourceStyles (
 ComponentInstance scriptingComponent,
 STHandle *resultingSourceStyles
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingSourceStyles
A pointer to a handle to a style element array defined by the TextEdit data type TEStyleTable that
defines the styles used for different kinds of AppleScript terms.

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The ASGetSourceStyles function returns a style element array that defines the styles used for AppleScript
terms. You can use the index constants described in “Source Style Constants” (page 111) to identify individual
styles returned in the resultingSourceStyles parameter. Other AppleScript dialects may define additional
styles. When you have finished using the style element array, you must dispose of it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
AppleScript.h

ASSetSourceStyles
Sets the script format styles used by the AppleScript component to display scripts. (Deprecated in Mac OS
X v10.5. Use ASSetSourceAttributes (page 22) instead.)

Deprecated in Mac OS X v10.5 119
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Open Scripting Architecture
Functions

OSAError ASSetSourceStyles (
 ComponentInstance scriptingComponent,
 STHandle sourceStyles
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceStyles
A handle to a style element array defined by the TextEdit data type TEStyleTable that defines the
styles used for different kinds of AppleScript terms. The style for each kind of term should be identified
according to the index constants listed in “Source Style Constants” (page 111).

Return Value
A result code. See “Result Codes” (page 114).

Discussion
The ASSetSourceStyles function sets the script format styles used to display scripts. If you pass a NULL
handle in the sourceStyles parameter, the AppleScript component uses its default styles.

After you have set the script format styles, you must dispose of the style element array you used to specify
them.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
AppleScript.h

OSAGetAppTerminology
Gets one or more scripting terminology resources from the specified file. (Deprecated in Mac OS X v10.5. Use
OSACopyScriptingDefinition (page 33) instead.)

OSAError OSAGetAppTerminology (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 FSSpec *fileSpec,
 short terminologyID,
 Boolean *didLaunch,
 AEDesc *terminologyList
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

120 Deprecated in Mac OS X v10.5
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Open Scripting Architecture Functions

fileSpec
Specifies the file to search. See the File Manager documentation for a description of the FSSpec data
type.

terminologyID
A dialect code obtained from a previous call to the OSAGetDialectInfo function or the
OSAGetCurrentDialect function.

didLaunch
On return, has the value true if the application's scripting size resource or plist flags indicate that it
has a dynamic terminology (in which case, the application will have been launched).

terminologyList
On return, a descriptor list containing zero or more terminology resources. See Apple Event Manager
Reference for a description of the AEDesc data type.

Return Value
A result code. See “Result Codes” (page 114).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
ASDebugging.h

Deprecated in Mac OS X v10.5 121
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Open Scripting Architecture Functions

122 Deprecated in Mac OS X v10.5
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Open Scripting Architecture Functions

This table describes the changes to Open Scripting Architecture Reference.

NotesDate

Added documentation for new functions and other changes in Mac OS X version
10.5.

2007-05-07

The new functions are ASCopySourceAttributes (page 17),
ASSetSourceAttributes (page 22), OSACopyDisplayString (page 32),
and OSACopySourceString (page 34).

The functionsASGetSourceStyles (page 119) andASSetSourceStyles (page
119) are deprecated in Mac OS X version 10.5; use
ASCopySourceAttributes (page 17) and ASSetSourceAttributes (page
22) instead.

Removed undocumented constants that can be used with
CallComponentFunction, such as kOSASelectLoad and
kASSelectSetSourceStyles, because they have easier-to-use function
equivalents, such as OSALoad (page 62) and ASSetSourceStyles (page 119)
(though the latter is deprecated in Mac OS X version 10.5, in favor of
ASSetSourceAttributes (page 22)).

For the function ASInit (page 20) and the constants in “Default Initialization
Values” (page 92) that you use with ASInit, noted that starting in Mac OS X
version 10.5, heap size parameter values are ignored—AppleScript's heap will
grow as large as needed.

Removed the description for the OSACopyScript function because it has never
been defined in a public header.

Made minor changes to the Discussion sections for the functions
OSADoScript (page 44) and OSADoScriptFile (page 45), including that for
OSADoScriptFile, the Discussion now correctly refers to OSAExecute (page
46), rather than OSAExecuteEvent (page 47).

In “Source Style Constants” (page 111), noted that you should not use the
constant kASNumberOfSourceStyles to determine the number of style items
used by theASCopySourceAttributes (page 17),
ASSetSourceAttributes (page 22), and ASGetSourceStyleNames (page
19) functions (and the deprecated functions ASGetSourceStyles (page 119)
and ASSetSourceStyles (page 119)).

Moved some functions to more appropriate groups to make them easier to find.2005-07-07

123
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Provided the correct descriptions for kOSANoDispatch and kOSADontUsePhac
in “Resume Dispatch Function Constants” (page 108).

Updated for Mac OS X v10.4. Filled in missing error code descriptions and made
minor text corrections.

2005-04-29

Added description for function OSACopyScriptingDefinition (page 33),
new in Mac OS X version 10.4 (v10.4).

Added constant kASNumericStrings to “Considerations Flags” (page 90) and
constants kASNumericStringsConsiderMask and
kASNumericStringsIgnoreMask to “Considerations Bit Masks” (page 91);
constants are new in Mac OS X v10.4.

Added more stringent warning not to use the OSA debugging functions listed
in “Deprecated Functions” (page 16).

Added note to “Current Dialect Constants” (page 92) that the constants are not
particularly useful because no currently available OSA languages support them.

Made minor revision to Introduction.

Deleted a duplicate entry for the error code constant
errOSARecordingIsAlreadyOn. (The entry with the error number -1760 was
incorrect.)

Added Version Notes sections to OSASetScriptInfo (page 75) and
OSAGetScriptInfo (page 56) to clarify use of the selector parameter in
Mac OS X.

Noted that the functions ASSetProperty (page 22) and
ASGetAppTerminology (page 18) are obsolete and only available for backward
compatibility, and that you should use OSASetProperty (page 73) and
OSAGetAppTerminology (page 120) instead.

Incorporated existing OSA reference documentation.2003-08-21

Added descriptions for the following functions: OSADoScriptFile (page 45),
OSALoadExecuteFile (page 64), OSALoadFile (page 65),
OSAStoreFile (page 80)

2003-07-31

Moved OSADebugger functions to “Deprecated Functions” (page 16) and marked
them as unsupported.

Added comments available in header file.2003-01-01

Updated Result Code section.

Last version of this document.2001-07-01

124
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

ASCopySourceAttributes function 17
ASGetAppTerminology function 18
ASGetHandler function 18
ASGetProperty function 19
ASGetSourceStyleNames function 19
ASGetSourceStyles function (Deprecated in Mac OS X

v10.5) 119
ASInit function 20
ASSetHandler function 21
ASSetProperty function 22
ASSetSourceAttributes function 22
ASSetSourceStyles function (Deprecated in Mac OS X

v10.5) 119

C

cClosure 88
cCoercion 88
cHandleBreakpoint 88
Component Flags 89
Considerations Bit Masks 91
Considerations Flags 90
cString 92
Current Dialect Constants 92

D

Date and Time Constants 92
Default Initialization Values 92
Dialect Descriptor Constants 94
DisposeOSAActiveUPP function 23
DisposeOSACreateAppleEventUPP function 23
DisposeOSASendUPP function 23

E

errOSAAppNotHighLevelEventAware constant 116
errOSABadSelector constant 115
errOSABadStorageType constant 115
errOSACantAccess constant 115
errOSACantAssign constant 117
errOSACantCoerce constant 114
errOSACantCreate constant 117
errOSACantGetTerminology constant 116
errOSACantLaunch constant 116
errOSACantOpenComponent constant 116
errOSAComponentMismatch constant 116
errOSACorruptData constant 114
errOSACorruptTerminology constant 116
errOSADataBlockTooLarge constant 116
errOSADataFormatObsolete constant 116
errOSADataFormatTooNew constant 116
errOSADivideByZero constant 116
errOSAGeneralError constant 116
errOSAInternalTableOverflow constant 116
errOSAInvalidID constant 115
errOSANoSuchDialect constant 116
errOSANumericOverflow constant 116
errOSARecordingIsAlreadyOn constant 115
errOSAScriptError constant 115
errOSASourceNotAvailable constant 115
errOSAStackOverflow constant 116
errOSASystemError constant 115
errOSATypeError constant 114

G

Generic Scripting Component Selectors 95
GenericID data type 85
Global Properties 95

125
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

Index

I

InvokeOSAActiveUPP function 24
InvokeOSACreateAppleEventUPP function 24
InvokeOSASendUPP function 25

K

kAppleScriptSubtype constant 113
kASAdd 95
kASAnd 95
kASDefaultMaxHeapSize constant 93
kASDefaultMaxStackSize constant 93
kASDefaultMinHeapSize constant 93
kASDefaultMinStackSize constant 93
kASDefaultPreferredHeapSize constant 93
kASDefaultPreferredStackSize constant 93
kASErrorEventCode 96
kASHasOpenHandler constant 111
kASNumberOfSourceStyles constant 112
kASNumericStrings constant 90
kASNumericStringsConsiderMask constant 91
kASNumericStringsIgnoreMask constant 91
kASSourceStyleApplicationKeyword constant 112
kASSourceStyleComment constant 112
kASSourceStyleLanguageKeyword constant 111
kASSourceStyleLiteral constant 112
kASSourceStyleNormalText constant 111
kASSourceStyleObjectSpecifier constant 112
kASSourceStyleUncompiledText constant 111
kASSourceStyleUserSymbol constant 112
kASStartLogEvent 96
kDialectBundleResType 96
keyAETarget 97
keyAppHandledCoercion 97
keyASPrepositionAt 97
keyASPrepositionOver 98
keyOSADialectCode constant 94
keyOSADialectLangCode constant 94
keyOSADialectName constant 94
keyOSADialectScriptCode constant 94
keyOSASourceEnd 98
keyOSASourceEnd constant 98
keyOSASourceStart 98
keyOSASourceStart constant 99
keyProcedureName 99
keyProgramState 99
kGenericComponentVersion 99
kGenericComponentVersion constant 99
kOSACanGetSource constant 111
kOSAComponentType 100
kOSAComponentType constant 100

kOSADontUsePhac constant 109
kOSAErrorApp constant 107
kOSAErrorBriefMessage constant 107
kOSAErrorExpectedType constant 108
kOSAErrorMessage constant 107
kOSAErrorNumber constant 107
kOSAErrorOffendingObject constant 108
kOSAErrorPartialResult constant 108
kOSAErrorRange constant 108
kOSAGenericScriptingComponentSubtype 100
kOSAModeAlwaysInteract constant 104
kOSAModeAugmentContext constant 105
kOSAModeCanInteract constant 104
kOSAModeCantSwitchLayer constant 104
kOSAModeCompileIntoContext constant 105
kOSAModeDispatchToDirectObject constant 105
kOSAModeDisplayForHumans constant 105
kOSAModeDontDefine 100
kOSAModeDontDefine constant 100
kOSAModeDontGetDataForArguments constant 105
kOSAModeDontReconnect constant 104
kOSAModeDontStoreParent constant 105
kOSAModeDoRecord constant 104
kOSAModeFullyQualifyDescriptors constant 106
kOSAModeNeverInteract constant 103
kOSAModePreventGetSource constant 103
kOSANoDispatch constant 109
kOSANullScript 100
kOSARecordedText 101
kOSAScriptBestType constant 110
kOSAScriptIsModified constant 110
kOSAScriptIsTypeCompiledScript constant 110
kOSAScriptIsTypeScriptContext constant 110
kOSAScriptIsTypeScriptValue constant 110
kOSAScriptResourceType 101
kOSAScriptResourceType constant 101
kOSASelectComponentSpecificStart 101
kOSASelectComponentSpecificStart constant 101
kOSASelectCopyScript 102
kOSASuite 102
kOSASupportsAECoercion constant 89
kOSASupportsAESending constant 89
kOSASupportsCompiling constant 89
kOSASupportsConvenience constant 89
kOSASupportsDialects constant 90
kOSASupportsEventHandling constant 90
kOSASupportsGetSource constant 89
kOSASupportsRecording constant 89
kOSAUseStandardDispatch constant 109

126
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

M

Mode Flags 102

N

NewOSAActiveUPP function 25
NewOSACreateAppleEventUPP function 25
NewOSASendUPP function 26
Null Mode Flags 106

O

OSAActiveProcPtr callback 81
OSAActiveUPP data type 86
OSAAddStorageType function 26
OSAAvailableDialectCodeList function 27
OSAAvailableDialects function 27
OSACoerceFromDesc function 28
OSACoerceToDesc function 29
OSACompile function 30
OSACompileExecute function 31
OSAControlFlowError constant 117
OSACopyDisplayString function 32
OSACopyID function 33
OSACopyScriptingDefinition function 33
OSACopySourceString function 34
OSACreateAppleEventProcPtr callback 81
OSACreateAppleEventUPP data type 86
OSADebugCallFrameRef data type 86
OSADebuggerCreateSession function 35
OSADebuggerDisposeCallFrame function 35
OSADebuggerDisposeSession function 36
OSADebuggerGetBreakpoint function 36
OSADebuggerGetCallFrameState function 37
OSADebuggerGetCurrentCallFrame function 37
OSADebuggerGetDefaultBreakpoint function 37
OSADebuggerGetPreviousCallFrame function 38
OSADebuggerGetSessionState function 38
OSADebuggerGetStatementRanges function 39
OSADebuggerGetVariable function 39
OSADebuggerSessionStep function 39
OSADebuggerSetBreakpoint function 40
OSADebuggerSetVariable function 40
OSADebugSessionRef data type 87
OSADebugStepKind 106
OSADisplay function 41
OSADispose function 42
OSADoEvent function 42
OSADoScript function 44

OSADoScriptFile function 45
OSADuplicateHandler constant 117
OSADuplicateParameter constant 117
OSADuplicateProperty constant 117
OSAError data type 85
OSAExecute function 46
OSAExecuteEvent function 47
OSAGenericToRealID function 48
OSAGetActiveProc function 49
OSAGetAppTerminology function (Deprecated in Mac

OS X v10.5) 120
OSAGetCreateProc function 50
OSAGetCurrentDialect function 50
OSAGetDefaultScriptingComponent function 51
OSAGetDialectInfo function 51
OSAGetHandler function 52
OSAGetHandlerNames function 53
OSAGetProperty function 54
OSAGetPropertyNames function 55
OSAGetResumeDispatchProc function 56
OSAGetScriptInfo function 56
OSAGetScriptingComponent function 57
OSAGetScriptingComponentFromStored function 58
OSAGetSendProc function 59
OSAGetSource function 59
OSAGetStorageType function 60
OSAGetSysTerminology function 61
OSAID data type 84
OSAIllegalAccess constant 115
OSAIllegalAssign constant 117
OSAIllegalIndex constant 115
OSAIllegalRange constant 115
OSAInconsistentDeclarations constant 117
OSALoad function 62
OSALoadExecute function 63
OSALoadExecuteFile function 64
OSALoadFile function 65
OSAMakeContext function 66
OSAMessageNotUnderstood constant 115
OSAMissingParameter constant 114
OSAParameterMismatch constant 115
OSAProgramState 106
OSARealToGenericID function 66
OSARemoveStorageType function 67
OSAScriptError function 68
OSAScriptError Selectors 106
OSAScriptingComponentName function 69
OSASendProcPtr callback 83
OSASendUPP data type 86
OSASetActiveProc function 69
OSASetCreateProc function 70
OSASetCurrentDialect function 71
OSASetDefaultScriptingComponent function 71

127
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

OSASetDefaultTarget function 72
OSASetHandler function 73
OSASetProperty function 73
OSASetResumeDispatchProc function 74
OSASetScriptInfo function 75
OSASetSendProc function 76
OSAStartRecording function 77
OSAStopRecording function 78
OSAStore function 79
OSAStoreFile function 80
OSASyntaxError constant 117
OSASyntaxTypeError constant 117
OSATokenTooLong constant 117
OSAUndefinedHandler constant 115
OSAUndefinedVariable constant 117

R

Recording Constants 108
Resume Dispatch Function Constants 108

S

Script Document File Type 109
Script Information Selectors 109
ScriptingComponentSelector data type 85
Source Constants 111
Source Style Constants 111
StatementRange structure 85

T

typeAppleScript 112
typeASStorage constant 113
typeOSADialectInfo constant 94
typeOSAErrorRange 113
typeOSAGenericStorage 113
typeOSAGenericStorage constant 113
typeStatementRange 114

W

Weekdays 114

128
2007-05-07 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

	Open Scripting Architecture Reference
	Contents
	Open Scripting Architecture Reference
	Overview
	Functions by Task
	Saving and Loading Script Data
	Executing and Disposing of Scripts
	Setting and Getting Script Information
	Manipulating the Active Function
	Compiling Scripts
	Getting Source Data
	Coercing Script Values
	Manipulating the Create and Send Functions
	Recording Scripts
	Executing Scripts in One Step
	Copying a Scripting Dictionary as a Scripting Definition File
	Manipulating Dialects
	Using Script Contexts to Handle Apple Events
	Initializing AppleScript
	Getting and Setting Styles for Source Data
	Getting and Setting the Default Scripting Component
	Using Component-Specific Routines
	Manipulating Trailers for Generic Storage Descriptor Records
	Miscellaneous
	Creating, Invoking and Disposing Universal Procedure Pointers
	Deprecated Functions

	Functions
	ASCopySourceAttributes
	ASGetAppTerminology
	ASGetHandler
	ASGetProperty
	ASGetSourceStyleNames
	ASInit
	ASSetHandler
	ASSetProperty
	ASSetSourceAttributes
	DisposeOSAActiveUPP
	DisposeOSACreateAppleEventUPP
	DisposeOSASendUPP
	InvokeOSAActiveUPP
	InvokeOSACreateAppleEventUPP
	InvokeOSASendUPP
	NewOSAActiveUPP
	NewOSACreateAppleEventUPP
	NewOSASendUPP
	OSAAddStorageType
	OSAAvailableDialectCodeList
	OSAAvailableDialects
	OSACoerceFromDesc
	OSACoerceToDesc
	OSACompile
	OSACompileExecute
	OSACopyDisplayString
	OSACopyID
	OSACopyScriptingDefinition
	OSACopySourceString
	OSADebuggerCreateSession
	OSADebuggerDisposeCallFrame
	OSADebuggerDisposeSession
	OSADebuggerGetBreakpoint
	OSADebuggerGetCallFrameState
	OSADebuggerGetCurrentCallFrame
	OSADebuggerGetDefaultBreakpoint
	OSADebuggerGetPreviousCallFrame
	OSADebuggerGetSessionState
	OSADebuggerGetStatementRanges
	OSADebuggerGetVariable
	OSADebuggerSessionStep
	OSADebuggerSetBreakpoint
	OSADebuggerSetVariable
	OSADisplay
	OSADispose
	OSADoEvent
	OSADoScript
	OSADoScriptFile
	OSAExecute
	OSAExecuteEvent
	OSAGenericToRealID
	OSAGetActiveProc
	OSAGetCreateProc
	OSAGetCurrentDialect
	OSAGetDefaultScriptingComponent
	OSAGetDialectInfo
	OSAGetHandler
	OSAGetHandlerNames
	OSAGetProperty
	OSAGetPropertyNames
	OSAGetResumeDispatchProc
	OSAGetScriptInfo
	OSAGetScriptingComponent
	OSAGetScriptingComponentFromStored
	OSAGetSendProc
	OSAGetSource
	OSAGetStorageType
	OSAGetSysTerminology
	OSALoad
	OSALoadExecute
	OSALoadExecuteFile
	OSALoadFile
	OSAMakeContext
	OSARealToGenericID
	OSARemoveStorageType
	OSAScriptError
	OSAScriptingComponentName
	OSASetActiveProc
	OSASetCreateProc
	OSASetCurrentDialect
	OSASetDefaultScriptingComponent
	OSASetDefaultTarget
	OSASetHandler
	OSASetProperty
	OSASetResumeDispatchProc
	OSASetScriptInfo
	OSASetSendProc
	OSAStartRecording
	OSAStopRecording
	OSAStore
	OSAStoreFile

	Callbacks
	OSAActiveProcPtr
	OSACreateAppleEventProcPtr
	OSASendProcPtr

	Data Types
	OSAID
	GenericID
	OSAError
	ScriptingComponentSelector
	StatementRange
	OSAActiveUPP
	OSACreateAppleEventUPP
	OSASendUPP
	OSADebugCallFrameRef
	OSADebugSessionRef

	Constants
	cClosure
	cCoercion
	cHandleBreakpoint
	Component Flags
	Considerations Flags
	Considerations Bit Masks
	cString
	Current Dialect Constants
	Date and Time Constants
	Default Initialization Values
	Dialect Descriptor Constants
	Generic Scripting Component Selectors
	Global Properties
	kASAdd
	kASAnd
	kASErrorEventCode
	kASStartLogEvent
	kDialectBundleResType
	keyAETarget
	keyAppHandledCoercion
	keyASPrepositionAt
	keyASPrepositionOver
	keyOSASourceEnd
	keyOSASourceStart
	keyProcedureName
	keyProgramState
	kGenericComponentVersion
	kOSAComponentType
	kOSAGenericScriptingComponentSubtype
	kOSAModeDontDefine
	kOSANullScript
	kOSARecordedText
	kOSAScriptResourceType
	kOSASelectComponentSpecificStart
	kOSASelectCopyScript
	kOSASuite
	Mode Flags
	Null Mode Flags
	OSADebugStepKind
	OSAProgramState
	OSAScriptError Selectors
	Recording Constants
	Resume Dispatch Function Constants
	Script Document File Type
	Script Information Selectors
	Source Constants
	Source Style Constants
	typeAppleScript
	typeOSAErrorRange
	typeOSAGenericStorage
	typeStatementRange
	Weekdays

	Result Codes

	Appendix A: Deprecated Open Scripting Architecture Functions
	Deprecated in Mac OS X v10.5
	ASGetSourceStyles
	ASSetSourceStyles
	OSAGetAppTerminology

	Revision History
	Index
	A
	C
	D
	E
	G
	I
	K
	M
	N
	O
	R
	S
	T
	W

