
Process Manager Reference
Carbon > Process Management

2007-12-04

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Mac, Mac OS,
and Macintosh are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR

PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Process Manager Reference 7

Overview 7
Functions by Task 7

Getting Process Information 7
Starting and Terminating Processes 8
Modifying Processes 8

Functions 9
CopyProcessName 9
ExitToShell 9
GetCurrentProcess 10
GetFrontProcess 10
GetNextProcess 11
GetProcessBundleLocation 11
GetProcessForPID 12
GetProcessInformation 12
GetProcessPID 13
IsProcessVisible 14
KillProcess 14
LaunchApplication 15
ProcessInformationCopyDictionary 16
SameProcess 17
SetFrontProcess 18
SetFrontProcessWithOptions 19
ShowHideProcess 19
TransformProcessType 20
WakeUpProcess 20

Data Types 21
AppParameters 21
LaunchParamBlockRec 21
ProcessInfoRec 23
ProcessInfoExtendedRec 24
ProcessSerialNumber 25
SizeResourceRec 26

Constants 27
Control Panel Result Codes 27
Extension Launch Codes 27
Control Panel Message Codes 27
Termination Options 27
Front Process Options 28
Launch Options 28
Process Mode Flags 30

3
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Identification Constants 30
Process Transformation Constant 31

Result Codes 31

Document Revision History 33

Index 35

4
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Process Manager Reference 7

Table 1 Process information keys 16
Table 2 Process information key constants 17

5
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

6
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

TABLES

Framework: Carbon/Carbon.h

Declared in MacTypes.h
Processes.h

Overview

The Process Manager provides the cooperative multitasking environment for versions of Mac OS that preceded
Mac OS X. The Process Manager controls access to shared resources and manages the scheduling and
execution of applications.

You can use the Process Manager to control the execution of processes and to get information about processes,
including your own. You can use the Process Manager routines to

 ■ control the execution of your application

 ■ get information about processes

 ■ launch other applications

Some Process Manager functions access a ProcessInfoRec data structure, which contains fields that are
no longer applicable in a preemptively scheduled environment (for example, the processLocation,
processFreeMem, and processActiveTime fields). Your application should avoid accessing such fields.
Changes to the memory model may also affect certain fields.

Carbon does not support Process Manager functions that deal with control panels or desk accessories.

Functions by Task

Getting Process Information

CopyProcessName (page 9)
Gets a copy of the name of a process.

GetCurrentProcess (page 10)
Gets information about the current process, if any.

GetFrontProcess (page 10)
Gets the process serial number of the front process.

GetNextProcess (page 11)
Gets information about the next process, if any, in the Process Manager’s internal list of open processes.

Overview 7
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

GetProcessBundleLocation (page 11)
Retrieves the file system location of the application bundle (or executable file) associated with a
process.

GetProcessInformation (page 12)
Get information about a specific process.

ProcessInformationCopyDictionary (page 16)
Obtains a superset of GetProcessInformation in modern data types.

GetProcessPID (page 13)
Obtains the Unix PID from a process serial number.

GetProcessForPID (page 12)
Obtains the process serial number from a Unix PID.

IsProcessVisible (page 14)
Determines the visiblility of the user interface for a process.

SameProcess (page 17)
Determines whether two process serial numbers specify the same process.

Starting and Terminating Processes

LaunchApplication (page 15)
Launches an application.

ExitToShell (page 9)
Terminates an application.

KillProcess (page 14)
Terminates a process with the specified ID.

Modifying Processes

SetFrontProcess (page 18)
Moves a process to the foreground.

SetFrontProcessWithOptions (page 19)
Brings a process to the front of the process list, and activates it.

ShowHideProcess (page 19)
Shows or hides a given process.

TransformProcessType (page 20)
Changes the type of the specified process.

WakeUpProcess (page 20)
Makes a suspended process eligible for CPU time.

8 Functions by Task
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

Functions

CopyProcessName
Gets a copy of the name of a process.

OSStatus CopyProcessName (
 const ProcessSerialNumber *psn,
 CFStringRef *name
);

Parameters
PSN

A pointer to a valid process serial number. See ProcessSerialNumber (page 25) for more information.

name
A Core Foundation string that contains the name of the specified process.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
Because the string returned is a Core Foundation string, it can represent a multilingual name, unlike the
processName field value you obtain using GetProcessInformation (page 12).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ExitToShell
Terminates an application.

void ExitToShell (
 void
);

Discussion
In general, you need to call ExitToShell only if you want your application to terminate without reaching
the end of its main function.

The ExitToShell function terminates the calling process. The Process Manager removes your application
from the list of open processes and performs any other necessary cleanup operations. In particular, all memory
in your application partition and any temporary memory still allocated to your application is released. If
necessary, the Application Died Apple event is sent to the process that launched your application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HideMenuBar

Functions 9
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

ictbSample
QTCarbonShell
QTMetaData

Declared In
Processes.h

GetCurrentProcess
Gets information about the current process, if any.

OSErr GetCurrentProcess (
 ProcessSerialNumber * PSN
);

Parameters
PSN

On output, a pointer to the process serial number of the current process, that is, the one currently
accessing the CPU. This application can be running in either the foreground or the background.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
Applications can use this function to find their own process serial number. Drivers can use this function to
find the process serial number of the current process. You can use the returned process serial number in
other Process Manager functions.

This function is named MacGetCurrentProcess on non Macintosh platforms and GetCurrentProcess
on Macintosh computers. However, even Macintosh code can use the MacGetCurrentProcess name
because a macro exists that automatically maps that call to GetCurrentProcess.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetFrontProcess
Gets the process serial number of the front process.

OSErr GetFrontProcess (
 ProcessSerialNumber *PSN
);

Parameters
PSN

On return, a pointer to the process serial number of the process running in the foreground.

Return Value
A result code. See “Process Manager Result Codes” (page 31). If no process is running in the foreground,
returns procNotFound.

10 Functions
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

Discussion
You can use this function to determine if your process or some other process is in the foreground. You can
use the process serial number returned in the PSN parameter in other Process Manager functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetNextProcess
Gets information about the next process, if any, in the Process Manager’s internal list of open processes.

OSErr GetNextProcess (
 ProcessSerialNumber *PSN
);

Parameters
PSN

On input, a pointer to the process serial number of a process. This number should be a valid process
serial number returned from LaunchApplication (page 15), GetFrontProcess (page 10), or
GetCurrentProcess (page 10), or a process serial number structure containing kNoProcess. For
details about this structure, see ProcessSerialNumber (page 25). On return, a pointer to the process
serial number of the next process, or else kNoProcess.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
The Process Manager maintains a list of all open processes. You can derive this list by using repetitive calls
to GetNextProcess. Begin generating the list by calling GetNextProcess and specifying the constant
kNoProcess in the PSN parameter. You can then use the returned process serial number to get the process
serial number of the next process. Note that the order of the list of processes is internal to the Process
Manager. When the end of the list is reached, GetNextProcess returns the constant kNoProcess in the
PSN parameter and the result code procNotFound.

You can use the returned process serial number in other Process Manager functions. You can also use this
process serial number to specify a target application when your application sends a high-level event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetProcessBundleLocation
Retrieves the file system location of the application bundle (or executable file) associated with a process.

Functions 11
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

OSStatus GetProcessBundleLocation (
 const ProcessSerialNumber *psn,
 FSRef *location
);

Parameters
PSN

A pointer to a valid process serial number. See ProcessSerialNumber (page 25) for more information.

location

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Processes.h

GetProcessForPID
Obtains the process serial number from a Unix PID.

OSStatus GetProcessForPID (
 pid_t pid,
 ProcessSerialNumber *psn
);

Parameters
pid

The Unix process ID (PID).

psn
On return, psn points to the process serial number.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
Note that this call does not make sense for Classic applications, since they all share a single UNIX process ID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetProcessInformation
Get information about a specific process.

12 Functions
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

OSErr GetProcessInformation (
 const ProcessSerialNumber *PSN,
 ProcessInfoRec *info
);

Parameters
PSN

A pointer to a valid process serial number. You can pass a process serial number structure containing
the constant kCurrentProcess to get information about the current process. See
ProcessSerialNumber (page 25) for more information.

info
On return, a pointer to a structure containing information about the specified process.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
The information returned in the info parameter includes the application’s name as it appears in the
Application menu, the type and signature of the application, the address of the application partition, the
number of bytes in the application partition, the number of free bytes in the application heap, the application
that launched the application, the time at which the application was launched, and the location of the
application file.

The GetProcessInformation function also returns information about the application’s 'SIZE' resource
and indicates whether the process is an application or a desk accessory.

You need to specify values for the processInfoLength, processName, and processAppSpec fields of the
process information structure. Specify the length of the process information structure in the
processInfoLength field. If you do not want information returned in the processName and
processAppSpec fields, specify NULL for these fields. Otherwise, allocate at least 32 bytes of storage for the
string pointed to by the processName field and, in the processAppSpec field, specify a pointer to an FSSpec
structure.

The processName field may not be what you expect, especially if an application has a localized name. The
processName field, if not NULL, on return will contain the filename part of the executable file of the
application. If you want the localized, user-displayable name for an application, call CopyProcessName (page
9).

In Mac OS X, the processActiveTime field of the returned structure is always 0, and the
modeCanBackground, mode32BitCompatible, and modeHighLevelEventAware fields are always set.

Special Considerations

In most cases, Mac OS X applications should use ProcessInformationCopyDictionary (page 16) instead
of this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetProcessPID
Obtains the Unix PID from a process serial number.

Functions 13
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

OSStatus GetProcessPID (
 const ProcessSerialNumber *psn,
 pid_t *pid
);

Parameters
psn

A pointer to a valid process serial number. See ProcessSerialNumber (page 25) for more information.

pid
On return, pid points to a Unix PID.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
Note that this call does not make sense for Classic applications, since they all share a single UNIX process ID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

IsProcessVisible
Determines the visiblility of the user interface for a process.

Boolean IsProcessVisible (
 const ProcessSerialNumber *psn
);

Parameters
PSN

A pointer to a valid process serial number. See ProcessSerialNumber (page 25) for more information.

Return Value
Returns true if the user interface is currently visible. Otherwise, returns false.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Processes.h

KillProcess
Terminates a process with the specified ID.

14 Functions
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

OSErr KillProcess (
 const ProcessSerialNumber *inProcess
);

Parameters
inProcess

The serial number of the process you want to terminate. You can also pass a process serial number
structure containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 25) for more information.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
KillProcess terminates an process without sending a “quit” Apple event or allowing it any time to save
user data or perform cleanup. You should use this function only as a last resort when all other attempts have
failed. Even then, there is no guarantee that this call will succeed in killing the application, even if it returns
with noErr.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Processes.h

LaunchApplication
Launches an application.

OSErr LaunchApplication (
 LaunchPBPtr LaunchParams
);

Parameters
LaunchParams

A pointer to a LaunchParamBlockRec (page 21) specifying information about the application to
launch.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
The LaunchApplication function launches the application from the specified file and returns the process
serial number, preferred partition size, and minimum partition size if the application is successfully launched.

Note that if you launch another application without terminating your application, the launched application
is not actually executed until you make a subsequent call to WaitNextEvent or EventAvail.

Set the launchContinue flag in the launchControlFlags field of the launch parameter block if you want
your application to continue after the specified application is launched. If you do not set this flag,
LaunchApplication terminates your application after launching the specified application, even if the
launch fails.

Availability
Available in Mac OS X v10.0 and later.

Functions 15
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

Declared In
Processes.h

ProcessInformationCopyDictionary
Obtains a superset of GetProcessInformation in modern data types.

CFDictionaryRef ProcessInformationCopyDictionary (
 const ProcessSerialNumber *PSN,
 UInt32 infoToReturn
);

Parameters
PSN

A pointer to a valid process serial number. See ProcessSerialNumber (page 25) for more information.

infoToReturn
A bitmask indicating the information to obtain. Pass
kProcessDictionaryIncludeAllInformationMask for this parameter.

Return Value
An immutable Core Foundation dictionary containing the system information in key-value pairs.

Discussion
You should use this function instead of GetProcessInformation (page 12). Table 1 and Table 2 show
keys you can use to get process attributes in the returned Core Foundation dictionary. All keys in the dictionary
are Core Foundation strings. (Note that additional keys exist, but these are for internal use only.) Keys marked
with an asterisk (*) may not appear in the dictionary, depending on the application.

Table 1 Process information keys

SummaryTypeKey

The process serial number. See ProcessSerialNumber (page
25).

CFNumberRefPSN

A hint as to the type of the application. You shouldn’t need to
use this key.

CFNumberRefFlavor

Attributes for the process. Useful attributes generally have
their own keys.

CFNumberRefAttributes

The process serial number of the application that launched
this process.

CFNumberRefParentPSN *

The file type (if any) of the executable.CFStringRefFileType *

The creator type (if any) of the executable.CFStringRefFileCreator *

The UNIX PID for this process.CFNumberRefpid *

kCFBooleanTrue if the application is a background-only
application.

CFBooleanRefLSBackgroundOnly

16 Functions
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

SummaryTypeKey

kCFBooleanTrue if the application is an accessibility
UIElement.

CFBooleanRefLSUIElement

kCFBooleanTrue if the application is currently hidden.CFBooleanRefIsHiddenAttr

kCFBooleanTrue if the application’s Info.plist file indicates
that it is a Carbon application.

CFBooleanRefRequiresCarbon

The initial user-interface mode for the application. See Runtime
Configuration Guidelines for a list of possible values.

CFNumberRefLSUIPresentationMode

The path to the application bundle (if the application is
bundled).

CFStringRefBundlePath *

Table 2 lists additional keys that you should reference by their predefined constants, rather than the actual
string names.

Table 2 Process information key constants

SummaryTypeKey

The path to the actual executable file.CFStringRefkCFBundleExecutableKey *

The application’s display name.CFStringRefkCFBundleNameKey *

The application’s bundle identifier (if the application is
bundled). For example, “com.apple.TextEdit”.

CFStringRefkCFBundleIdentifierKey *

Availability
Available in Mac OS X v10.2 and later.

Declared In
Processes.h

SameProcess
Determines whether two process serial numbers specify the same process.

OSErr SameProcess (
 const ProcessSerialNumber *PSN1,
 const ProcessSerialNumber *PSN2,
 Boolean *result
);

Parameters
PSN1

A process serial number.

PSN2
A process serial number.

Functions 17
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

result
On return, a pointer to a Boolean value which is TRUE if the process serial numbers passed in PSN1
and PSN2 refer to the same process; otherwise FALSE.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
Do not attempt to compare two process serial numbers by any means other than the SameProcess function,
because the interpretation of the bits in a process serial number is internal to the Process Manager.

The values of PSN1 and PSN2must be valid process serial numbers returned from LaunchApplication (page
15) , GetNextProcess (page 11) , GetFrontProcess (page 10) , GetCurrentProcess (page 10) , or a
high-level event. You can also pass a process serial number structure containing the constant
kCurrentProcess to refer to the current process.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

SetFrontProcess
Moves a process to the foreground.

OSErr SetFrontProcess (
 const ProcessSerialNumber *PSN
);

Parameters
PSN

A pointer to a valid process serial number. You can also pass a process serial number structure
containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 25) for more information.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
The SetFrontProcess function moves the specified process to the foreground immediately.

If the specified process serial number is invalid or if the specified process is a background-only application,
SetFrontProcess returns a nonzero result code and does not change the current foreground process.

Special Considerations

Do not call SetFrontProcess at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

18 Functions
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

SetFrontProcessWithOptions
Brings a process to the front of the process list, and activates it.

OSStatus SetFrontProcessWithOptions (
 const ProcessSerialNumber *inProcess,
 OptionBits inOptions
);

Parameters
PSN

A pointer to a valid process serial number. You can also pass a process serial number structure
containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 25) for more information.

inOptions
A flag that indicates how process windows should be brought forward—see the discussion below.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
If you pass 0 in the inOptions parameter, the process is activated and all process windows are brought
forward. This is equivalent to calling SetFrontProcess (page 18). If you pass
kSetFrontProcessFrontWindowOnly, the process is activated and the frontmost nonfloating window is
brought forward.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Processes.h

ShowHideProcess
Shows or hides a given process.

OSErr ShowHideProcess (
 const ProcessSerialNumber *psn,
 Boolean visible
);

Parameters
PSN

A pointer to a valid process serial number. See ProcessSerialNumber (page 25) for more information.

visible
A Boolean value that specifies whether you want to show (true) or hide (false) the process.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Processes.h

Functions 19
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

TransformProcessType
Changes the type of the specified process.

OSStatus TransformProcessType (
 const ProcessSerialNumber *psn,
 ProcessApplicationTransformState transformState
);

Parameters
PSN

The serial number of the process you want to transform. You can also use the constant
kCurrentProcess to refer to the current process. See ProcessSerialNumber (page 25) for more
information.

transformState
A constant indicating the type of transformation you want. See “Process Transformation
Constant” (page 31). Currently you can pass only kProcessTransformToForegroundApplication.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
You can use this call to transform a background-only application into a foreground application. A foreground
application appears in the Dock (and in the Force Quit dialog) and contains a menu bar. This function does
not cause the application to be brought to the front; you must call SetFrontProcess (page 18) to do so.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Processes.h

WakeUpProcess
Makes a suspended process eligible for CPU time.

OSErr WakeUpProcess (
 const ProcessSerialNumber *PSN
);

Parameters
PSN

The serial number of the process you want to wake up. You can also pass a process serial number
structure containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 25) for more information.

Return Value
A result code. See “Process Manager Result Codes” (page 31).

Discussion
The WakeUpProcess function makes a process suspended by WaitNextEvent eligible to receive CPU time.
A process is suspended when the value of the sleep parameter in the WaitNextEvent function is not 0
and no events for that process are pending in the event queue. This process remains suspended until the
time specified in the sleep parameter expires or an event becomes available for that process. You can use

20 Functions
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

WakeUpProcess to make the process eligible for execution before the time specified in the sleep parameter
expires. This function does not change the order of the processes scheduled for execution; it only makes the
specified process eligible for execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

Data Types

AppParameters
Defines the first high-level event sent to a newly-launched application.

struct AppParameters {
 struct {
 UInt16 what;
 UInt32 message;
 UInt32 when;
 Point where;
 UInt16 modifiers;
 } theMsgEvent;
 unsigned long eventRefCon
 unsigned long messageLength
};
typedef struct AppParameters AppParameters;
typedef AppParameters * AppParametersPtr;

Discussion
The application parameters structure is used in the launchAppParameters field of the launch parameter
block, LaunchParamBlockRec (page 21) , whose address is passed to the LaunchApplication (page 15)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

LaunchParamBlockRec
Defines the required parameters when launching an application.

Data Types 21
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

struct LaunchParamBlockRec {
 unsigned long reserved1;
 unsigned short reserved2;
 unsigned short launchBlockID;
 unsigned long launchEPBLength;
 unsigned short launchFileFlags;
 LaunchFlags launchControlFlags;
 FSSpecPtr launchAppSpec;
 ProcessSerialNumber launchProcessSN;
 unsigned long launchPreferredSize;
 unsigned long launchMinimumSize;
 unsigned long launchAvailableSize;
 AppParametersPtr launchAppParameters;
};
typedef struct LaunchParamBlockRec LaunchParamBlockRec;
typedef LaunchParamBlockRec * LaunchPBPtr;

Fields
reserved1

Reserved.

reserved2
Reserved.

launchBlockID
A value that indicates whether you are using the fields following it in the launch parameter block.
Specify the constant extendedBlock if you use the fields that follow it.

launchEPBLength
The length of the fields following this field in the launch parameter block. Use the constant
extendedBlockLen to specify this value.

launchFileFlags
The Finder flags for the application file. Set the launchNoFileFlags constant in the
launchControlFlags field if you want the LaunchApplication function to extract the Finder
flags from the application file and to set the launchFileFlags field for you.

launchControlFlags
See “Launch Options” (page 28) for a complete description of these flags.

launchAppSpec
A pointer to a file specification structure that gives the location of the application file to launch.

launchProcessSN
The process serial number returned to your application if the launch is successful. You can use this
process serial number in other Process Manager functions to refer to the launched application.

launchPreferredSize
The preferred partition size for the launched application as specified in the launched application’s
'SIZE' resource. LaunchApplication sets this field to 0 if an error occurred or if the application
is already open.

launchMinimumSize
The minimum partition size for the launched application as specified in the launched application’s
'SIZE' resource. LaunchApplication sets this field to 0 if an error occurred or if the application
is already open.

22 Data Types
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

launchAvailableSize
The maximum partition size that is available for allocation. This value is returned to your application
only if the memFullErr result code is returned. If the application launch fails because of insufficient
memory, you can use this value to determine if there is enough memory available to launch in the
minimum size.

launchAppParameters
The first high-level event to send to the launched application. If you set this field to NULL,
LaunchApplication creates and sends the Open Application Apple event to the launched application.

Discussion
You specify a launch parameter block as a parameter to the LaunchApplication (page 15) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ProcessInfoRec
Defines the structure of a process information record.

struct ProcessInfoRec {
 unsigned long processInfoLength;
 StringPtr processName;
 ProcessSerialNumber processNumber;
 unsigned long processType;
 OSType processSignature;
 unsigned long processMode;
 Ptr processLocation;
 unsigned long processSize;
 unsigned long processFreeMem;
 ProcessSerialNumber processLauncher;
 unsigned long processLaunchDate;
 unsigned long processActiveTime;
 FSSpecPtr processAppSpec;
};
typedef struct ProcessInfoRec ProcessInfoRec;
typedef ProcessInfoRec * ProcessInfoRecPtr;

Fields
processInfoLength

The number of bytes in the process information structure. For compatibility, you should specify the
length of the structure in this field.

processName
The name of the application. This field contains the name of the application as designated by the
user at the time the application was opened. For example, for foreground applications, the
processName field contains the name as it appears in the Application menu. You must specify NULL
in the processName field if you do not want the application name returned. Otherwise, you should
allocate at least 32 bytes of storage for the string pointed to by the processName field. Note that
the processName field specifies the name of the application, whereas the processAppSpec field
specifies the location of the file.

processNumber
The process serial number.

Data Types 23
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

processType
The file type of the application, generally 'APPL' for applications and 'appe' for background-only
applications launched at startup.

processSignature
The signature (or creator) of the file containing the application.

processMode
Process mode flags. These flags indicate whether the process is an application or desk accessory. For
applications, this field also returns information specified in the application’s 'SIZE' resource. This
information is returned as flags.

On Mac OS X, some flags in processMode will not be set as they were on Mac OS 9, even for Classic
applications. Mac OS X doesn't support applications which can't be sent into the background, so
modeCanBackground will always be set. Similarly, Mac OS X applications will always have
mode32BitCompatible and modeHighLevelEventAware set

processLocation
The beginning address of the application partition.

processSize
The number of bytes in the application partition (including the heap, stack, and A5 world).

processFreeMem
The number of free bytes in the application heap.

processLauncher
The process serial number of the process that launched the application or desk accessory. If the
original launcher of the process is no longer open, the lowLongOfPSN field of the process serial
number structure contains the constant kNoProcess.

processLaunchDate
The value of the Ticks global variable at the time that the process was launched.

processActiveTime
The accumulated time, in ticks, during which the process has used the CPU, including both foreground
and background processing time.

processAppSpec
The address of a file specification structure that stores the location of the file containing the application
or 'DRVR' resource. You should specify NULL in the processAppSpec field if you do not want the
FSSpec structure of the file returned.

Discussion
A process information record is returned by the GetProcessInformation (page 12) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ProcessInfoExtendedRec
Defines an extended version of the process information record.

24 Data Types
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

struct ProcessInfoExtendedRec {
 unsigned long processInfoLength;
 StringPtr processName;
 ProcessSerialNumber processNumber;
 unsigned long processType;
 OSType processSignature;
 unsigned long processMode;
 Ptr processLocation;
 unsigned long processSize;
 unsigned long processFreeMem;
 ProcessSerialNumber processLauncher;
 unsigned long processLaunchDate;
 unsigned long processActiveTime;
 FSSpecPtr processAppSpec;
 unsigned long processTempMemTotal;
 unsigned long processPurgeableTempMemTotal;
};
typedef struct ProcessInfoExtendedRec ProcessInfoExtendedRec;
typedef ProcessInfoExtendedRec * ProcessInfoExtendedRecPtr;

Discussion
See ProcessInfoRec (page 23) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ProcessSerialNumber
Defines the unique identifier for an open process.

struct ProcessSerialNumber {
 unsigned long highLongOfPSN;
 unsigned long lowLongOfPSN;
};
typedef struct ProcessSerialNumber ProcessSerialNumber;
typedef ProcessSerialNumber * ProcessSerialNumberPtr;

Fields
highLongOfPSN

The high-order long integer of the process serial number.

lowLongOfPSN
The low-order long integer of the process serial number.

Discussion
All applications (defined as things which can appear in the Dock that are not documents and are launched
by the Finder or Dock) on Mac OS X have a unique process serial number. This number is created when the
application launches, and remains until the application quits. Other system services, like Apple events, use
the ProcessSerialNumber structure to specify an application.

During launch, every application “checks in” with the Process Manager. Before this checkin, the application
can not receive events or draw to the screen. Prior to Mac OS 10.2, this check in occurred before the
applications's main function was entered. In Mac OS 10.2 and later, this check in does not occur until the
first time the application calls a Process Manager function, or until it enters CFRunLoopRun for the main

Data Types 25
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

event loop. This allows tools and other executables which do not need to receive events to link against more
of the higher level toolbox frameworks, but may cause a problem if the application expects to be able to
retrieve events or use CoreGraphics services before this checkin has occurred. An application can force the
connection to the Process Manager to be set up by calling any Process Manager routine, but the recommended
way to do this is to call GetCurrentProcess (page 10) to ask for the current application's PSN. Doing so
initializes the connection to the Process Manager if it has not already been set up and ”check in“ the application
with the system.

You should not make any assumptions about the meaning of the bits in a process serial number. To compare
two process serial numbers, you should use the function SameProcess (page 17).

You can obtain a process serial number in one of the following ways:

 ■ Process serial numbers are returned by the functions LaunchApplication (page 15),
GetCurrentProcess (page 10), and GetFrontProcess (page 10).

 ■ Some high-level events return process serial numbers.

If you want to specify a process using the “Process Identification Constants” (page 30), you must populate
a process serial number structure, passing 0 in highLongOfPSN and the appropriate constant (such as
kCurrentProcess) in lowLongOfPSN. For example, to bring the current process forward, you can use the
following code:

 ProcessSerialNumber psn = { 0, kCurrentProcess };
 SetFrontProcess(&psn);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTypes.h

SizeResourceRec
Defines a representation of the SIZE resource.

struct SizeResourceRec {
 unsigned short flags;
 unsigned long preferredHeapSize;
 unsigned long minimumHeapSize;
};
typedef struct SizeResourceRec SizeResourceRec;
typedef SizeResourceRec * SizeResourceRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

26 Data Types
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

Constants

Control Panel Result Codes
Specifies the values that a control panel can return.

Unsupported

enum {
 cdevGenErr = -1,
 cdevMemErr = 0,
 cdevResErr = 1,
 cdevUnset = 3
};

Extension Launch Codes
Specifies the values used when launching extensions.

enum {
 extendedBlock = 0x4C43,
 extendedBlockLen = sizeof(LaunchParamBlockRec) - 12
};

Control Panel Message Codes
Specifies the values for messages to a control panel.

enum {
 initDev = 0,
 hitDev = 1,
 closeDev = 2,
 nulDev = 3,
 updateDev = 4,
 activDev = 5,
 deactivDev = 6,
 keyEvtDev = 7,
 macDev = 8,
 undoDev = 9,
 cutDev = 10,
 copyDev = 11,
 pasteDev = 12,
 clearDev = 13,
 cursorDev = 14
};

Termination Options
Specifies masks to control the timing of application termination during system shutdown or restart.

Constants 27
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

enum {
 kQuitBeforeNormalTimeMask = 1,
 kQuitAtNormalTimeMask = 2,
 kQuitBeforeFBAsQuitMask = 4,
 kQuitBeforeShellQuitsMask = 8,
 kQuitBeforeTerminatorAppQuitsMask = 16,
 kQuitNeverMask = 32,
 kQuitOptionsMask = 0x7F,
 kQuitNotQuitDuringInstallMask = 0x0100,
 kQuitNotQuitDuringLogoutMask = 0x0200
};

Discussion
Applications and background applications can control when they are asked to quit by the system at restart
and shutdown by setting these bits in a 'quit'(0) resource located in the resource fork.

Applications without this resource are terminated at kQuitAtNormalTime.

Availability
Available in CarbonLib 1.0 and later. Not available in Mac OS X version 10.0 and later.

Front Process Options
Specifies options for bringing windows forward when a process is activated.

enum {
 kSetFrontProcessFrontWindowOnly = (1 << 0)
};

Constants
kSetFrontProcessFrontWindowOnly

Activate the process, but bring only the frontmost non-floating window forward.

Available in Mac OS X version 10.2 and later.

Declared in Processes.h.

Launch Options
Specifies the valid launch options in the launchControlFlags field of the launch parameter block.

28 Constants
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

typedef unsigned short LaunchFlags;
enum {
 launchContinue = 0x4000,
 launchNoFileFlags = 0x0800,
 launchUseMinimum = 0x0400,
 launchDontSwitch = 0x0200,
 launchAllow24Bit = 0x0100,
 launchInhibitDaemon = 0x0080
};

Constants
launchContinue

Set this flag if you want your application to continue after the specified application is launched. If you
do not set this flag, LaunchApplication terminates your application after launching the specified
application, even if the launch fails.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchNoFileFlags
Set this flag if you want the LaunchApplication function to ignore any value specified in the
launchFileFlags field. If you set the launchNoFileFlags flag, the LaunchApplication function
extracts the Finder flags from the application file for you. If you want to supply the file flags, clear the
launchNoFileFlags flag and specify the Finder flags in the launchFileFlags field of the launch
parameter block.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchUseMinimum
Clear this flag if you want the LaunchApplication function to attempt to launch the application
in the preferred size (as specified in the application’s 'SIZE' resource). If you set the
launchUseMinimum flag, the LaunchApplication function attempts to launch the application
using the largest available size greater than or equal to the minimum size but less than the preferred
size. If the LaunchApplication function returns the result code memFullErr or memFragErr, the
application cannot be launched under the current memory conditions.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchDontSwitch
Set this flag if you do not want the launched application brought to the front. If you set this flag, the
launched application runs in the background until the user brings the application to the front—for
example, by clicking in one of the application’s windows. Note that most applications expect to be
launched in the foreground. If you clear the launchDontSwitch flag, the launched application is
brought to the front, and your application is sent to the background.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchAllow24Bit
Available in Mac OS X v10.0 and later.

Declared in Processes.h.

Constants 29
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

launchInhibitDaemon
Set this flag if you do not want LaunchApplication to launch a background-only application. (A
background-only application has the onlyBackground flag set in its 'SIZE' resource.)

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

Discussion
For more information, see LaunchApplication (page 15) and LaunchParamBlockRec (page 21).

Process Mode Flags
Specifies the type of information returned in a process information record.

enum {
 modeReserved = 0x01000000,
 modeControlPanel = 0x00080000,
 modeLaunchDontSwitch = 0x00040000,
 modeDeskAccessory = 0x00020000,
 modeMultiLaunch = 0x00010000,
 modeNeedSuspendResume = 0x00004000,
 modeCanBackground = 0x00001000,
 modeDoesActivateOnFGSwitch = 0x00000800,
 modeOnlyBackground = 0x00000400,
 modeGetFrontClicks = 0x00000200,
 modeGetAppDiedMsg = 0x00000100,
 mode32BitCompatible = 0x00000080,
 modeHighLevelEventAware = 0x00000040,
 modeLocalAndRemoteHLEvents = 0x00000020,
 modeStationeryAware = 0x00000010,
 modeUseTextEditServices = 0x00000008,
 modeDisplayManagerAware = 0x00000004
};

Discussion
These constants indicate, in the processMode field of the ProcessInfoRec (page 23) structure, whether
the process is an application or a desk accessory. If the process is an application, these flags return information
about the application’s ‘SIZE’ resource.

Process Identification Constants
Specifies constants used instead of a process serial number to identify a process.

enum {
 kNoProcess = 0,
 kSystemProcess = 1,
 kCurrentProcess = 2
};

Constants
kNoProcess

Identifies a process that doesn’t exist.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

30 Constants
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

kSystemProcess
Identifies a process that belongs to the Operating System.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

kCurrentProcess
Identifies the current process.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

Discussion
If you want to use these constants to specify a process, you must populate a process serial number structure
(ProcessSerialNumber (page 25)), passing 0 in the highLongOfPSN field and the appropriate constant
(such as kCurrentProcess) in the lowLongOfPSN. For example, to bring the current process forward, you
can use the following code:

 ProcessSerialNumber psn = { 0, kCurrentProcess };
 SetFrontProcess(&psn);

Process Transformation Constant
Specify tranformation types to be applied when calling TransformProcessType (page 20).

enum {
 kProcessTransformToForegroundApplication = 1L
};
typedef UInt32 ProcessApplicationTransformState;

Constants
kProcessTransformToForegroundApplication

Use to convert a background-only application to a foreground application.

Available in Mac OS X v10.3 and later.

Declared in Processes.h.

Result Codes

The table below lists the most common result codes returned by the Process Manager.

DescriptionValueResult Code

No eligible process with specified process serial number.-600procNotFound

Available in Mac OS X v10.0 and later.

Not enough room to launch application with special requirements.-601memFragErr

Available in Mac OS X v10.0 and later.

Addressing mode is 32-bit, but application is not 32-bit clean.-602appModeErr

Available in Mac OS X v10.0 and later.

Result Codes 31
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

DescriptionValueResult Code

app made module calls in improper order-603protocolErr

Available in Mac OS X v10.0 and later.

Hardware configuration not supported.-604hardwareConfigErr

Available in Mac OS X v10.0 and later.

Partition size specified in SIZE resource is not big enough for
launch.

-605appMemFullErr

Available in Mac OS X v10.0 and later.

Application runs in background only.-606appIsDaemon

Available in Mac OS X v10.0 and later.

The application could not launch because the required platform
is not available.

-875wrongApplicationPlatform

Available in Mac OS X v10.0 and later.

The application's creator and version are incompatible with the
current version of Mac OS.

-876appVersionTooOld

Available in Mac OS X v10.0 and later.

This application will not (or should not) run in Classic.-877notAppropriateForClassic

Available in Mac OS X v10.0 and later.

32 Result Codes
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Process Manager Reference

This table describes the changes to Process Manager Reference.

NotesDate

Updated description of ProcessInformationCopyDictionary (page 16)
function.

2007-12-04

Clarified how to use process identification constants (such as kCurrentProcess).
Removed outdated material pertaining to Mac OS 9 or earlier.

2005-12-06

Updated GetProcessInformationCopyDictionary keys. Added documentation
for KillProcess and TransformProcessType.

2005-07-07

Added documentation for functions
ProcessInformationCopyDictionary (page 16), GetProcessPID (page
13), and GetProcessForPID (page 12).

2003-05-19

Added documentation for the function ShowHideProcess (page 19).2003-04-01

Updated to include Mac OS X availability information.2003-02-01

33
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

appIsDaemon constant 32
appMemFullErr constant 32
appModeErr constant 31
AppParameters structure 21
appVersionTooOld constant 32

C

Control Panel Message Codes 27
Control Panel Result Codes 27
CopyProcessName function 9

E

ExitToShell function 9
Extension Launch Codes 27

F

Front Process Options 28

G

GetCurrentProcess function 10
GetFrontProcess function 10
GetNextProcess function 11
GetProcessBundleLocation function 11
GetProcessForPID function 12
GetProcessInformation function 12
GetProcessPID function 13

H

hardwareConfigErr constant 32

I

IsProcessVisible function 14

K

kCurrentProcess constant 31
KillProcess function 14
kNoProcess constant 30
kProcessTransformToForegroundApplication

constant 31
kSetFrontProcessFrontWindowOnly constant 28
kSystemProcess constant 31

L

Launch Options 28
launchAllow24Bit constant 29
LaunchApplication function 15
launchContinue constant 29
launchDontSwitch constant 29
launchInhibitDaemon constant 30
launchNoFileFlags constant 29
LaunchParamBlockRec structure 21
launchUseMinimum constant 29

M

memFragErr constant 31

35
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

Index

N

notAppropriateForClassic constant 32

P

Process Identification Constants 30
Process Mode Flags 30
Process Transformation Constant 31
ProcessInfoExtendedRec structure 24
ProcessInfoRec structure 23
ProcessInformationCopyDictionary function 16
ProcessSerialNumber structure 25
procNotFound constant 31
protocolErr constant 32

S

SameProcess function 17
SetFrontProcess function 18
SetFrontProcessWithOptions function 19
ShowHideProcess function 19
SizeResourceRec structure 26

T

Termination Options 27
TransformProcessType function 20

W

WakeUpProcess function 20
wrongApplicationPlatform constant 32

36
2007-12-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

	Process Manager Reference
	Contents
	Tables
	Process Manager Reference
	Overview
	Functions by Task
	Getting Process Information
	Starting and Terminating Processes
	Modifying Processes

	Functions
	CopyProcessName
	ExitToShell
	GetCurrentProcess
	GetFrontProcess
	GetNextProcess
	GetProcessBundleLocation
	GetProcessForPID
	GetProcessInformation
	GetProcessPID
	IsProcessVisible
	KillProcess
	LaunchApplication
	ProcessInformationCopyDictionary
	SameProcess
	SetFrontProcess
	SetFrontProcessWithOptions
	ShowHideProcess
	TransformProcessType
	WakeUpProcess

	Data Types
	AppParameters
	LaunchParamBlockRec
	ProcessInfoRec
	ProcessInfoExtendedRec
	ProcessSerialNumber
	SizeResourceRec

	Constants
	Control Panel Result Codes
	Extension Launch Codes
	Control Panel Message Codes
	Termination Options
	Front Process Options
	Launch Options
	Process Mode Flags
	Process Identification Constants
	Process Transformation Constant

	Result Codes

	Revision History
	Index
	A
	C
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	S
	T
	W

