
QuickDraw Reference
Carbon > Graphics & Imaging

2007-06-29

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, Quartz, QuickDraw, QuickTime, and
TrueType are trademarks of Apple Inc.,
registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

NuBus is a trademark of Texas Instruments.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

QuickDraw Reference 19

Overview 19
Functions by Task 19

Drawing QuickDraw Pictures in a Quartz Context 19
Using Quartz 2D to Draw in a Graphics Port 20
Other Quartz-Related Functions in QuickDraw 20
Calculating Black-and-White Fills 21
Calculating Color Fills 21
Changing Black-and-White Cursors 21
Changing Color Cursors 21
Changing the Background Bit Pattern 22
Changing the Background Pixel Pattern 22
Compressing and Decompressing Data 22
Converting Between Angle and Slope Values 22
Copying Images 22
Creating, Altering, and Disposing of Offscreen Graphics Worlds 23
Creating and Disposing of Color Tables 23
Creating and Disposing of Pictures 23
Creating and Disposing of Pixel Patterns 24
Creating and Managing Polygons 24
Creating and Managing Rectangles 24
Creating and Managing Regions 25
Creating, Setting, and Disposing of GDevice Records 26
Creating, Setting, and Disposing of Pixel Maps 26
Customizing Color QuickDraw Operations 27
Customizing QuickDraw Operations 27
Determining Current Colors and Best Intermediate Colors 28
Determining the Characteristics of a Video Device 28
Determining Whether QuickDraw Has Finished Drawing 28
Drawing Arcs and Wedges 28
Drawing Lines 29
Drawing Ovals 29
Drawing Pictures 30
Drawing Polygons 30
Drawing Rectangles 30
Drawing Regions 31
Drawing Rounded Rectangles 31
Drawing With Color QuickDraw Colors 31
Drawing With the Eight-Color System 32
Getting Pattern Resources 33
Getting the Available Graphics Devices 33

3
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

Hiding and Showing Cursors 33
Managing a Color Graphics Pen 34
Managing an Offscreen Graphics World’s Pixel Image 34
Managing Bitmaps, Port Rectangles, and Clipping Regions 34
Managing Color Tables 35
Managing Colors 36
Managing the Graphics Pen 36
Manipulating Points in Graphics Ports 37
Obtaining a Pseudorandom Number 38
Operations on Search and Complement Functions 38
Reporting Data Structure Changes to QuickDraw 38
Retrieving Color QuickDraw Result Codes 39
Saving and Restoring Graphics Ports 39
Saving and Restoring Graphics Ports and Offscreen Graphics Worlds 39
Scaling and Mapping Points, Rectangles, Polygons, and Regions 39
Miscellaneous 40

Functions 49
AddPt 49
AngleFromSlope 50
CopyRgn 50
DiffRgn 51
DisposeRgn 52
EmptyRect 53
EmptyRgn 53
EqualPt 54
EqualRect 55
EqualRgn 55
GetClip 56
GetGWorld 56
GetPixBaseAddr 57
GetRegionBounds 58
HandleToRgn 58
HideCursor 59
InitCursor 59
InsetRect 60
InsetRgn 60
IsRegionRectangular 61
IsValidRgnHandle 62
MapPt 62
MapRect 63
MapRgn 63
NewGWorld 64
NewRgn 67
ObscureCursor 68
OffsetRect 69
OffsetRgn 70

4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Pt2Rect 70
PtInRect 71
PtInRgn 72
PtToAngle 72
QDBeginCGContext 73
QDEndCGContext 74
QDGetCGDirectDisplayID 75
QDPictCreateWithProvider 75
QDPictCreateWithURL 76
QDPictDrawToCGContext 76
QDPictGetBounds 77
QDPictGetResolution 78
QDPictRelease 78
QDPictRetain 79
QDRegionToRects 80
RectInRgn 80
RectRgn 81
RgnToHandle 82
ScalePt 82
SectRect 83
SectRgn 84
SetClip 85
SetEmptyRgn 85
SetGWorld 86
SetPt 87
SetRect 87
SetRectRgn 88
ShieldCursor 89
ShowCursor 90
SlopeFromAngle 90
SubPt 91
UnionRect 91
UnionRgn 92
XorRgn 93

Callbacks 94
ColorComplementProcPtr 94
ColorSearchProcPtr 94
CustomXFerProcPtr 95
DeviceLoopDrawingProcPtr 96
DragGrayRgnProcPtr 97
QDArcProcPtr 97
QDBitsProcPtr 97
QDCommentProcPtr 98
QDGetPicProcPtr 98
QDJShieldCursorProcPtr 99
QDLineProcPtr 99

5
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

QDOpcodeProcPtr 100
QDOvalProcPtr 100
QDPolyProcPtr 100
QDPrinterStatusProcPtr 101
QDPutPicProcPtr 101
QDRectProcPtr 102
QDRgnProcPtr 102
QDRRectProcPtr 103
QDStdGlyphsProcPtr 103
QDTextProcPtr 104
QDTxMeasProcPtr 104
RegionToRectsProcPtr 105

Data Types 105
BitMap 105
Bits16 106
CCrsr 107
CGrafPort 109
CGrafPtr 109
ColorComplementUPP 109
ColorSearchUPP 110
ColorSpec 110
ColorTable 111
ConstPatternParam 111
CProcRec 112
CQDProcs 112
CSpecArray 114
Cursor 114
CursorImageRec 115
CursorInfo 116
CustomXFerRec 116
CWindowPtr 116
DeviceLoopDrawingUPP 117
DeviceLoopFlags 117
DialogPtr 117
DragConstraint 117
DragGrayRgnUPP 118
GammaTbl 118
GDevice 119
GrafPort 121
GrafPtr 121
GrafVars 122
GrafVerb 122
GWorldFlags 123
GWorldPtr 123
ITab 123
MacPolygon 124

6
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

MacRegion 124
MatchRec 125
OpenCPicParams 125
Pattern 126
PenState 127
Picture 128
PixelType 129
PixMap 129
PixPat 131
Polygon 133
PrinterFontStatus 133
PrinterScalingStatus 134
PrinterStatusOpcode 134
QDArcUPP 134
QDBitsUPP 134
QDByte 134
QDCommentUPP 135
QDErr 135
QDGetPicUPP 135
QDGlobals 136
QDJShieldCursorUPP 136
QDLineUPP 136
QDOpcodeUPP 136
QDOvalUPP 137
QDPictRef 137
QDPolyUPP 138
QDPrinterStatusUPP 138
QDProcs 138
QDPutPicUPP 139
QDRectUPP 140
QDRegionBitsRef 140
QDRegionParseDirection 140
QDRgnUPP 140
QDRRectUPP 140
QDStdGlyphsUPP 141
QDTextUPP 141
QDTxMeasUPP 141
RegionToRectsUPP 141
ReqListRec 142
RGBColor 142
RgnHandle 143
SProcRec 143
WindowPtr 143
xColorSpec 144
xCSpecArray 144

Constants 145

7
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

chunky 145
Color Constants 145
colorXorXFer 146
Cursor ID Constants 146
cursorDoesAnimate 147
Device Attribute Constants 147
Device Loop Flags 149
deviceIsIndirect 150
Drag Constraint Constants 150
Graphics Device Type Constants 151
Graphics World Flags 151
invalColReq 155
italicBit 155
Pixel Formats 155
k1MonochromePixelFormat 155
kCursorComponentInit 155
kCursorComponentsVersion 156
kCursorComponentType 156
kCursorImageMajorVersion 156
kPrinterFontStatus 156
kQDGrafVerbFrame 156
kQDParseRegionFromTop 156
kQDRegionToRectsMsgInit 157
kQDUseDefaultTextRendering 157
kRenderCursorInHardware 157
kXFer1PixelAtATime 157
normalBit 157
pixPurgeBit 158
singleDevicesBit 158
Source, Pattern, and Arithmetic Transfer Mode Constants 158
Verb Constants 164

Result Codes 164

Appendix A Deprecated QuickDraw Functions 167

Deprecated in Mac OS X v10.4 167
AddComp 167
AddSearch 167
AllocCursor 168
AllowPurgePixels 168
BackColor 169
BackPat 170
BackPixPat 170
BitMapToRegion 171
CalcCMask 172
CalcMask 173

8
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

ClipCGContextToRegion 174
ClipRect 175
CloseCursorComponent 175
ClosePicture 176
ClosePoly 176
CloseRgn 177
Color2Index 178
ColorBit 178
CopyBits 179
CopyDeepMask 181
CopyMask 183
CopyPixMap 184
CopyPixPat 185
CreateCGContextForPort 185
CreateNewPort 186
CreateNewPortForCGDisplayID 187
CTabChanged 187
CursorComponentChanged 188
CursorComponentSetData 188
DelComp 189
DelSearch 189
DeltaPoint 190
deltapoint 190
DeviceLoop 191
DisposeCCursor 192
DisposeColorComplementUPP 192
DisposeColorSearchUPP 192
DisposeCTable 193
DisposeDeviceLoopDrawingUPP 193
DisposeDragGrayRgnUPP 194
DisposeGDevice 194
DisposeGWorld 194
DisposePixMap 195
DisposePixPat 196
DisposePort 196
DisposeQDArcUPP 197
DisposeQDBitsUPP 197
DisposeQDCommentUPP 197
DisposeQDGetPicUPP 197
DisposeQDJShieldCursorUPP 198
DisposeQDLineUPP 198
DisposeQDOpcodeUPP 198
DisposeQDOvalUPP 199
DisposeQDPolyUPP 199
DisposeQDPutPicUPP 199
DisposeQDRectUPP 200

9
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

DisposeQDRgnUPP 200
DisposeQDRRectUPP 200
DisposeQDStdGlyphsUPP 201
DisposeQDTextUPP 201
DisposeQDTxMeasUPP 201
DisposeRegionToRectsUPP 202
DisposeScreenBuffer 202
DrawPicture 203
EraseArc 204
EraseOval 205
ErasePoly 206
EraseRect 206
EraseRgn 207
EraseRoundRect 208
FillArc 208
FillCArc 209
FillCOval 210
FillCPoly 211
FillCRect 211
FillCRgn 212
FillCRoundRect 213
FillOval 213
FillPoly 214
FillRect 215
FillRgn 216
FillRoundRect 217
ForeColor 218
FrameArc 219
FrameOval 219
FramePoly 220
FrameRect 221
FrameRgn 221
FrameRoundRect 222
GDeviceChanged 223
GetBackColor 224
GetCCursor 224
GetCPixel 225
GetCTable 225
GetCTSeed 227
GetCursor 227
GetDeviceList 228
GetForeColor 228
GetGDevice 229
GetGWorldDevice 229
GetGWorldPixMap 230
GetIndPattern 231

10
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

GetMainDevice 232
GetMaskTable 232
GetMaxDevice 233
GetNextDevice 233
GetPattern 234
GetPen 235
GetPenState 235
GetPicture 236
GetPixBounds 237
GetPixDepth 237
GetPixel 237
GetPixelsState 238
GetPixPat 239
GetPixRowBytes 240
GetPort 240
GetPortBackColor 241
GetPortBackPixPat 241
GetPortBitMapForCopyBits 241
GetPortBounds 242
GetPortChExtra 242
GetPortClipRegion 243
GetPortCustomXFerProc 243
GetPortFillPixPat 244
GetPortForeColor 244
GetPortFracHPenLocation 244
GetPortGrafProcs 245
GetPortHiliteColor 245
GetPortOpColor 246
GetPortPenLocation 246
GetPortPenMode 246
GetPortPenPixPat 247
GetPortPenSize 247
GetPortPenVisibility 248
GetPortPixMap 248
GetPortSpExtra 248
GetPortTextFace 249
GetPortTextFont 249
GetPortTextMode 250
GetPortTextSize 250
GetPortVisibleRegion 250
GetQDGlobalsArrow 251
GetQDGlobalsBlack 251
GetQDGlobalsDarkGray 251
GetQDGlobalsGray 252
GetQDGlobalsLightGray 252
GetQDGlobalsRandomSeed 253

11
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

GetQDGlobalsScreenBits 253
GetQDGlobalsThePort 253
GetQDGlobalsWhite 254
GetSubTable 254
GlobalToLocal 255
GrafDevice 255
HidePen 255
HiliteColor 256
Index2Color 257
InitGDevice 257
InvertArc 258
InvertColor 259
InvertOval 260
InvertPoly 260
InvertRect 261
InvertRgn 262
InvertRoundRect 263
InvokeColorComplementUPP 264
InvokeColorSearchUPP 264
InvokeDeviceLoopDrawingUPP 265
InvokeDragGrayRgnUPP 265
InvokeQDArcUPP 266
InvokeQDBitsUPP 266
InvokeQDCommentUPP 266
InvokeQDGetPicUPP 267
InvokeQDJShieldCursorUPP 267
InvokeQDLineUPP 267
InvokeQDOpcodeUPP 268
InvokeQDOvalUPP 268
InvokeQDPolyUPP 269
InvokeQDPutPicUPP 269
InvokeQDRectUPP 269
InvokeQDRgnUPP 270
InvokeQDRRectUPP 270
InvokeQDStdGlyphsUPP 270
InvokeQDTextUPP 271
InvokeQDTxMeasUPP 271
InvokeRegionToRectsUPP 271
IsPortClipRegionEmpty 272
IsPortColor 272
IsPortOffscreen 273
IsPortPictureBeingDefined 273
IsPortPolyBeingDefined 273
IsPortRegionBeingDefined 274
IsPortVisibleRegionEmpty 274
IsValidPort 274

12
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

KillPicture 275
KillPoly 275
Line 276
LineTo 276
LMGetCursorNew 277
LMGetDeviceList 277
LMGetFractEnable 278
LMGetHiliteMode 278
LMGetHiliteRGB 278
LMGetLastFOND 279
LMGetLastSPExtra 279
LMGetMainDevice 279
LMGetQDColors 280
LMGetScrHRes 280
LMGetScrVRes 280
LMGetTheGDevice 281
LMGetWidthListHand 281
LMGetWidthPtr 281
LMGetWidthTabHandle 282
LMSetCursorNew 282
LMSetDeviceList 282
LMSetFractEnable 283
LMSetHiliteMode 283
LMSetHiliteRGB 283
LMSetLastFOND 284
LMSetLastSPExtra 284
LMSetMainDevice 284
LMSetQDColors 285
LMSetScrHRes 285
LMSetScrVRes 285
LMSetTheGDevice 286
LMSetWidthListHand 286
LMSetWidthPtr 286
LMSetWidthTabHandle 287
LocalToGlobal 287
LockPixels 288
LockPortBits 289
MakeITable 290
MakeRGBPat 290
MapPoly 291
Move 292
MovePortTo 293
MoveTo 293
NewColorComplementUPP 294
NewColorSearchUPP 294
NewDeviceLoopDrawingUPP 295

13
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

NewDragGrayRgnUPP 295
NewGDevice 295
NewGWorldFromPtr 297
NewPixMap 297
NewPixPat 298
NewQDArcUPP 299
NewQDBitsUPP 299
NewQDCommentUPP 300
NewQDGetPicUPP 300
NewQDJShieldCursorUPP 300
NewQDLineUPP 301
NewQDOpcodeUPP 301
NewQDOvalUPP 301
NewQDPolyUPP 302
NewQDPutPicUPP 302
NewQDRectUPP 302
NewQDRgnUPP 303
NewQDRRectUPP 303
NewQDStdGlyphsUPP 303
NewQDTextUPP 304
NewQDTxMeasUPP 304
NewRegionToRectsUPP 304
NewScreenBuffer 305
NewTempScreenBuffer 306
NoPurgePixels 306
OffscreenVersion 307
OffsetPoly 307
OpColor 308
OpenCPicture 309
OpenCursorComponent 310
OpenPicture 311
OpenPoly 312
OpenRgn 312
PackBits 314
PaintArc 315
PaintOval 316
PaintPoly 316
PaintRect 317
PaintRgn 318
PaintRoundRect 318
PenMode 319
PenNormal 320
PenPat 321
PenPixPat 322
PenSize 322
PicComment 323

14
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

PixMap32Bit 324
PixPatChanged 325
PortChanged 326
PortSize 326
ProtectEntry 327
QDAddRectToDirtyRegion 328
QDAddRegionToDirtyRegion 328
QDDisplayWaitCursor 328
QDDisposeRegionBits 329
QDDone 329
QDError 330
QDFlushPortBuffer 331
QDGetCursorData 331
QDGetDirtyRegion 332
QDGetPatternOrigin 332
QDGetPictureBounds 333
QDGlobalToLocalPoint 333
QDGlobalToLocalRect 333
QDGlobalToLocalRegion 334
QDIsNamedPixMapCursorRegistered 334
QDIsPortBufferDirty 334
QDIsPortBuffered 335
QDLocalToGlobalPoint 335
QDLocalToGlobalRect 335
QDLocalToGlobalRegion 336
QDRegisterNamedPixMapCursor 336
QDRestoreRegionBits 337
QDSaveRegionBits 337
QDSetCursorScale 337
QDSetDirtyRegion 338
QDSetNamedPixMapCursor 338
QDSetPatternOrigin 338
QDSwapPort 339
QDSwapPortTextFlags 339
QDSwapTextFlags 339
QDUnregisterNamedPixMapCursor 340
Random 340
RealColor 341
ReserveEntry 341
RestoreEntries 342
RGBBackColor 343
RGBForeColor 344
SaveEntries 345
ScreenRes 346
ScrollRect 346
SectRegionWithPortClipRegion 347

15
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

SectRegionWithPortVisibleRegion 348
SeedCFill 348
SeedFill 349
SetCCursor 351
SetClientID 351
SetCPixel 352
SetCursor 352
SetCursorComponent 353
SetDeviceAttribute 353
SetEntries 354
SetGDevice 355
SetOrigin 356
SetPenState 357
SetPixelsState 358
SetPort 358
SetPortBackPixPat 359
SetPortBits 360
SetPortBounds 360
SetPortClipRegion 360
SetPortCustomXFerProc 361
SetPortFillPixPat 361
SetPortFracHPenLocation 362
SetPortGrafProcs 362
SetPortOpColor 362
SetPortPenMode 363
SetPortPenPixPat 363
SetPortPenSize 364
SetPortPix 364
SetPortTextFace 365
SetPortTextFont 365
SetPortTextMode 365
SetPortTextSize 366
SetPortVisibleRegion 366
SetQDError 367
SetQDGlobalsArrow 367
SetQDGlobalsRandomSeed 367
SetStdCProcs 368
SetStdProcs 368
ShowPen 369
StdArc 370
StdBits 371
StdComment 371
StdGetPic 372
StdLine 373
StdOpcode 373
StdOval 374

16
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

StdPoly 374
StdPutPic 375
StdRect 376
StdRgn 376
StdRRect 377
StuffHex 378
SwapPortPicSaveHandle 379
SwapPortPolySaveHandle 379
SwapPortRegionSaveHandle 380
SyncCGContextOriginWithPort 380
TestDeviceAttribute 381
UnlockPixels 381
UnlockPortBits 382
UnpackBits 383
UpdateGWorld 384

Document Revision History 387

Index 389

17
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

18
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: ApplicationServices/ApplicationServices.h

Companion guide Quartz Programming Guide for QuickDraw Developers

Declared in IOMacOSTypes.h
ImageCompression.k.h
QDOffscreen.h
QDPictToCGContext.h
QuickTimeComponents.k.h
Quickdraw.h
QuickdrawAPI.h
QuickdrawTypes.h
X.h

Overview

QuickDraw is the legacy 2D drawing engine for Macintosh computers. QuickDraw provides routines for
drawing, manipulating, and displaying graphic objects such as lines, arcs, rectangles, ovals, regions, and
bitmap images. Carbon supports most of the classic QuickDraw programming interface.

Note: QuickDraw has been deprecated for deployment targets Mac OS X version 10.4 and later. The
replacement API is Quartz 2D. Because of the fundamental differences in the imaging models and design
goals between QuickDraw and Quartz, there is no direct correspondence between QuickDraw and Quartz
concepts and interfaces. For certain purposes, some QuickDraw functions may still be needed during a
transition period; nevertheless, most of them have been deprecated to express the overriding goal of
eliminating the use of QuickDraw in the future.

Functions by Task

Drawing QuickDraw Pictures in a Quartz Context

QDPictCreateWithProvider (page 75)
Creates a QDPict picture, using QuickDraw picture data supplied with a Quartz data provider.

QDPictCreateWithURL (page 76)
Creates a QDPict picture, using QuickDraw picture data specified with a Core Foundation URL.

QDPictDrawToCGContext (page 76)
Draws a QuickDraw picture in a Quartz context.

Overview 19
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDPictGetBounds (page 77)
Returns the intended location and size of a QDPict picture.

QDPictGetResolution (page 78)
Returns the horizontal and vertical resolution of a QDPict picture.

QDPictRetain (page 79)
Retains a QDPict picture.

QDPictRelease (page 78)
Releases a QDPict picture.

Using Quartz 2D to Draw in a Graphics Port

QDBeginCGContext (page 73)
Returns a Quartz 2D drawing environment associated with a graphics port.

QDEndCGContext (page 74)
Terminates a Quartz 2D drawing environment associated with a graphics port.

ClipCGContextToRegion (page 174) Deprecated in Mac OS X v10.4
Sets the clipping path in a Quartz 2D graphics context, using a clipping region. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CreateCGContextForPort (page 185) Deprecated in Mac OS X v10.4
Creates a Quartz 2D drawing environment associated with a graphics port. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SyncCGContextOriginWithPort (page 380) Deprecated in Mac OS X v10.4
Synchronizes the origin in a Quartz context with the lower-left corner of the associated graphics port.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Other Quartz-Related Functions in QuickDraw

QDGetCGDirectDisplayID (page 75)
Returns the Quartz display ID that corresponds to a QuickDraw graphics device.

CreateNewPortForCGDisplayID (page 187) Deprecated in Mac OS X v10.4
Creates a graphics port associated with a display. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

LockPortBits (page 289) Deprecated in Mac OS X v10.4
Acquires an exclusive lock on the back buffer for a Carbon window. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

QDFlushPortBuffer (page 331) Deprecated in Mac OS X v10.4
Calls the Quartz compositor to flush all new drawing in a Carbon window to the display. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

UnlockPortBits (page 382) Deprecated in Mac OS X v10.4
Releases a previously acquired lock on the back buffer for a Carbon window. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

20 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Calculating Black-and-White Fills

CalcMask (page 173) Deprecated in Mac OS X v10.4
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SeedFill (page 349) Deprecated in Mac OS X v10.4
Determines how far filling will extend from a seeding point. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

Calculating Color Fills

CalcCMask (page 172) Deprecated in Mac OS X v10.4
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SeedCFill (page 348) Deprecated in Mac OS X v10.4
Determines how far filling will extend to pixels matching the color of a particular pixel. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Changing Black-and-White Cursors

GetCursor (page 227) Deprecated in Mac OS X v10.4
Loads a cursor resource into memory. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

SetCursor (page 352) Deprecated in Mac OS X v10.4
Sets the current cursor. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Changing Color Cursors

AllocCursor (page 168) Deprecated in Mac OS X v10.4
Reallocates cursor memory. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

DisposeCCursor (page 192) Deprecated in Mac OS X v10.4
Disposes of all structures allocated by the GetCCursor function. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetCCursor (page 224) Deprecated in Mac OS X v10.4
Loads a color cursor resource into memory. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetCCursor (page 351) Deprecated in Mac OS X v10.4
Specifies a color cursor for display on the screen. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Functions by Task 21
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Changing the Background Bit Pattern

BackPat (page 170) Deprecated in Mac OS X v10.4
Changes the bit pattern used as the background pattern by the current graphics port. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Changing the Background Pixel Pattern

BackPixPat (page 170) Deprecated in Mac OS X v10.4
Assigns a pixel pattern as the background pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Compressing and Decompressing Data

PackBits (page 314) Deprecated in Mac OS X v10.4
Compresses a data buffer stored in RAM. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

UnpackBits (page 383) Deprecated in Mac OS X v10.4
Decompresses a data buffer containing data compressed by PackBits. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Converting Between Angle and Slope Values

AngleFromSlope (page 50)
Converts a slope value to an angle value.

SlopeFromAngle (page 90)
Converts an angle value to a slope value.

Copying Images

CopyBits (page 179) Deprecated in Mac OS X v10.4
Copies a portion of a bitmap or a pixel map from one graphics port or offscreen graphics world into
another graphics port. (Deprecated. Use Quartz 2D instead; seeQuartzProgrammingGuide forQuickDraw
Developers.)

CopyDeepMask (page 181) Deprecated in Mac OS X v10.4
Uses a mask when copying bitmaps or pixel maps between graphics ports (or from an offscreen
graphics world into a graphics port). (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

CopyMask (page 183) Deprecated in Mac OS X v10.4
Copies a bit or pixel image from one graphics port or offscreen graphics world into another graphics
port only where the bits in a mask are set to 1. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

22 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Creating, Altering, and Disposing of Offscreen Graphics Worlds

NewGWorld (page 64)
Creates an offscreen graphics world. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

DisposeGWorld (page 194) Deprecated in Mac OS X v10.4
Disposes of all the memory allocated for an offscreen graphics world. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeScreenBuffer (page 202) Deprecated in Mac OS X v10.4
Disposes an offscreen graphics world. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

NewScreenBuffer (page 305) Deprecated in Mac OS X v10.4
Creates an offscreen PixMap structure and allocates memory for the base address of its pixel image.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewTempScreenBuffer (page 306) Deprecated in Mac OS X v10.4
Creates an offscreen PixMap structure and allocate temporary memory for the base address of its
pixel image applications generally don’t need to use NewTempScreenBuffer. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

UpdateGWorld (page 384) Deprecated in Mac OS X v10.4
Changes the pixel depth, boundary rectangle, or color table for an existing offscreen graphics world.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Creating and Disposing of Color Tables

DisposeCTable (page 193) Deprecated in Mac OS X v10.4
Disposes a ColorTable structure. (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide
for QuickDraw Developers.)

GetCTable (page 225) Deprecated in Mac OS X v10.4
Obtains a color table stored in a 'clut' resource. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Creating and Disposing of Pictures

ClosePicture (page 176) Deprecated in Mac OS X v10.4
Completes the collection of drawing commands and picture comments that define your picture.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

KillPicture (page 275) Deprecated in Mac OS X v10.4
Releases the memory occupied by a picture not stored in a 'PICT' resource. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OpenCPicture (page 309) Deprecated in Mac OS X v10.4
Begins defining a picture in extended version 2 format. (Deprecated. Use Quartz 2D instead; seeQuartz
Programming Guide for QuickDraw Developers.)

OpenPicture (page 311) Deprecated in Mac OS X v10.4
Creates a picture which allows you to specify resolutions for your pictures. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 23
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

PicComment (page 323) Deprecated in Mac OS X v10.4
Inserts a picture comment into a picture that you are defining or into your printing code. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Creating and Disposing of Pixel Patterns

CopyPixPat (page 185) Deprecated in Mac OS X v10.4
Copies the contents of one pixel pattern to another. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

DisposePixPat (page 196) Deprecated in Mac OS X v10.4
Releases the storage allocated to a pixel pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPixPat (page 239) Deprecated in Mac OS X v10.4
Obtains a pixel pattern ('ppat') resource stored in a resource file. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

MakeRGBPat (page 290) Deprecated in Mac OS X v10.4
Creates the appearance of otherwise unavailable colors on indexed devices. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewPixPat (page 298) Deprecated in Mac OS X v10.4
Creates a new pixel pattern. Generally, however, your application should create a pixel pattern in a
'ppat' resource. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Creating and Managing Polygons

ClosePoly (page 176) Deprecated in Mac OS X v10.4
Completes the collection of lines that defines a polygon. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

KillPoly (page 275) Deprecated in Mac OS X v10.4
Releases the memory occupied by a polygon. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

OffsetPoly (page 307) Deprecated in Mac OS X v10.4
Moves a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OpenPoly (page 312) Deprecated in Mac OS X v10.4
Begins defining a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Creating and Managing Rectangles

EmptyRect (page 53)
Determines whether a rectangle is an empty rectangle.

EqualRect (page 55)
Determines whether two rectangles are equal.

24 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

InsetRect (page 60)
Shrinks or expands a rectangle.

OffsetRect (page 69)
Moves a rectangle.

Pt2Rect (page 70)
Determines the smallest rectangle that encloses two given points.

PtInRect (page 71)
Determines whether a pixel below is enclosed in a rectangle.

PtToAngle (page 72)
Calculates an angle between a vertical line pointing straight up from the center of a rectangle and a
line from the center to a given point.

SectRect (page 83)
Determines whether two rectangles intersect.

SetRect (page 87)
Assigns coordinates to a rectangle.

UnionRect (page 91)
Calculates the smallest rectangle that encloses two rectangles.

Creating and Managing Regions

CopyRgn (page 50)
Makes a copy of a region.

DiffRgn (page 51)
Subtracts one region from another.

DisposeRgn (page 52)
Releases the memory occupied by a region.

EmptyRgn (page 53)
Determines whether a region is empty.

EqualRgn (page 55)
Determines whether two regions have identical sizes, shapes, and locations.

InsetRgn (page 60)
Shrinks or expands a region.

NewRgn (page 67)
Begins creating a new region.

OffsetRgn (page 70)
Moves a region.

PtInRgn (page 72)
Determines whether a pixel is within a region.

RectInRgn (page 80)
Determines whether a rectangle intersects a region.

RectRgn (page 81)
Changes the structure of an existing region to that of a rectangle.

SectRgn (page 84)
Calculates the intersection of two regions.

Functions by Task 25
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

SetEmptyRgn (page 85)
Sets an existing region to be empty.

SetRectRgn (page 88)
Changes the structure of an existing region to that of a rectangle.

UnionRgn (page 92)
Calculates the union of two regions.

XorRgn (page 93)
Calculates the difference between the union and the intersection of two regions.

CloseRgn (page 177) Deprecated in Mac OS X v10.4
Organizes a collection of lines and shapes into a region definition. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

OpenRgn (page 312) Deprecated in Mac OS X v10.4
Begins defining a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Creating, Setting, and Disposing of GDevice Records

DisposeGDevice (page 194) Deprecated in Mac OS X v10.4
Disposes of a GDevice structure, releases the space allocated for it, and disposes of all the data
structures allocated for it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

InitGDevice (page 257) Deprecated in Mac OS X v10.4
Initializes a GDevice structure. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

NewGDevice (page 295) Deprecated in Mac OS X v10.4
Creates a new GDevice structure. (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide
for QuickDraw Developers.)

SetDeviceAttribute (page 353) Deprecated in Mac OS X v10.4
Sets the attribute bits of a GDevice structure. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetGDevice (page 355) Deprecated in Mac OS X v10.4
Sets a GDevice structure as the current device. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Creating, Setting, and Disposing of Pixel Maps

CopyPixMap (page 184) Deprecated in Mac OS X v10.4
Duplicates a PixMap structure. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

DisposePixMap (page 195) Deprecated in Mac OS X v10.4
Disposes a PixMap structure and its color table. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

NewPixMap (page 297) Deprecated in Mac OS X v10.4
Creates a new, initialized PixMap structure. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

26 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

SetPortPix (page 364) Deprecated in Mac OS X v10.4
Sets the pixel map for the current color graphics port. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Customizing Color QuickDraw Operations

SetStdCProcs (page 368) Deprecated in Mac OS X v10.4
Obtains a CQDProcs structure with fields that point to QuickDraw’s standard low-level functions,
which you can modify to change QuickDraw’s standard low-level behavior. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Customizing QuickDraw Operations

SetStdProcs (page 368) Deprecated in Mac OS X v10.4
Obtains a QDProcs structure with fields that point to basic QuickDraw’s standard low-level functions,
which you can modify to point to your own functions. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

StdArc (page 370) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing an arc or a wedge. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

StdBits (page 371) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for transferring bits and pixels. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

StdComment (page 371) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for processing a picture comment. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdGetPic (page 372) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for retrieving information from the definition of a picture.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdLine (page 373) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a line. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

StdOval (page 374) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing an oval. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdPoly (page 374) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a polygon. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdPutPic (page 375) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for saving information as the definition of a picture.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdRect (page 376) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a rectangle. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 27
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

StdRgn (page 376) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a region. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdRRect (page 377) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a rounded rectangle. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Determining Current Colors and Best Intermediate Colors

GetBackColor (page 224) Deprecated in Mac OS X v10.4
Obtains the background color of the current graphics port. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

GetCPixel (page 225) Deprecated in Mac OS X v10.4
Determines the color of an individual pixel specified in the h and v parameters. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetForeColor (page 228) Deprecated in Mac OS X v10.4
Obtains the color of the foreground color for the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Determining the Characteristics of a Video Device

DeviceLoop (page 191) Deprecated in Mac OS X v10.4
Draws images that are optimized for every screen they cross. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

ScreenRes (page 346) Deprecated in Mac OS X v10.4
Determines the resolution of the main device. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

TestDeviceAttribute (page 381) Deprecated in Mac OS X v10.4
Determines whether the flag bit for an attribute has been set in the gdFlags field of a GDevice
structure. (Deprecated. Use Quartz 2D instead; seeQuartzProgrammingGuide forQuickDrawDevelopers.)

Determining Whether QuickDraw Has Finished Drawing

QDDone (page 329) Deprecated in Mac OS X v10.4
Determines whether QuickDraw has completed drawing in a given graphics port. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Arcs and Wedges

EraseArc (page 204) Deprecated in Mac OS X v10.4
Erases a wedge. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

28 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

FillArc (page 208) Deprecated in Mac OS X v10.4
Fills a wedge with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FrameArc (page 219) Deprecated in Mac OS X v10.4
Draws an arc of the oval that fits inside a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

InvertArc (page 258) Deprecated in Mac OS X v10.4
Inverts the pixels of a wedge. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

PaintArc (page 315) Deprecated in Mac OS X v10.4
Paints a wedge of the oval that fits inside a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Drawing Lines

Line (page 276) Deprecated in Mac OS X v10.4
Draws a line a specified distance from the graphics pen’s current location in the current graphics port.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LineTo (page 276) Deprecated in Mac OS X v10.4
Draws a line from the graphics pen’s current location to a new location. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Move (page 292) Deprecated in Mac OS X v10.4
Moves the graphics pen a particular distance. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

MoveTo (page 293) Deprecated in Mac OS X v10.4
Moves the graphics pen to a particular location in the current graphics port. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Ovals

EraseOval (page 205) Deprecated in Mac OS X v10.4
Erases an oval. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillOval (page 213) Deprecated in Mac OS X v10.4
Fills an oval with any available bit pattern. (Deprecated. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

FrameOval (page 219) Deprecated in Mac OS X v10.4
Draws an outline inside an oval. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

InvertOval (page 260) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by an oval. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PaintOval (page 316) Deprecated in Mac OS X v10.4
Paints an oval with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 29
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Drawing Pictures

DrawPicture (page 203) Deprecated in Mac OS X v10.4
Draws a picture on any type of output device. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPicture (page 236) Deprecated in Mac OS X v10.4
Obtains a handle to a picture stored in a 'PICT' resource. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

Drawing Polygons

ErasePoly (page 206) Deprecated in Mac OS X v10.4
Erases a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillPoly (page 214) Deprecated in Mac OS X v10.4
Fills a polygon with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FramePoly (page 220) Deprecated in Mac OS X v10.4
Draws the outline of a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

InvertPoly (page 260) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PaintPoly (page 316) Deprecated in Mac OS X v10.4
Paints a polygon with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Rectangles

EraseRect (page 206) Deprecated in Mac OS X v10.4
Erases a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillRect (page 215) Deprecated in Mac OS X v10.4
Fills a rectangle with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FrameRect (page 221) Deprecated in Mac OS X v10.4
Draws an outline inside a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

InvertRect (page 261) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a rectangle. (Deprecated. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

PaintRect (page 317) Deprecated in Mac OS X v10.4
Paints a rectangle with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

30 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Drawing Regions

EraseRgn (page 207) Deprecated in Mac OS X v10.4
Erases a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillRgn (page 216) Deprecated in Mac OS X v10.4
Fills a region with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FrameRgn (page 221) Deprecated in Mac OS X v10.4
Draws an outline inside a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

InvertRgn (page 262) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PaintRgn (page 318) Deprecated in Mac OS X v10.4
Paints a region with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Drawing Rounded Rectangles

EraseRoundRect (page 208) Deprecated in Mac OS X v10.4
Erases a rounded rectangle. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

FillRoundRect (page 217) Deprecated in Mac OS X v10.4
Fills a rounded rectangle with any available bit pattern. (Deprecated. Use Quartz 2D instead; seeQuartz
Programming Guide for QuickDraw Developers.)

FrameRoundRect (page 222) Deprecated in Mac OS X v10.4
Draws an outline inside a rounded rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

InvertRoundRect (page 263) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a rounded rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

PaintRoundRect (page 318) Deprecated in Mac OS X v10.4
Paints a rounded rectangle with the graphics pen’s pattern and pattern mode. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing With Color QuickDraw Colors

FillCArc (page 209) Deprecated in Mac OS X v10.4
Fills a wedge with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCOval (page 210) Deprecated in Mac OS X v10.4
Fills an oval with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 31
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

FillCPoly (page 211) Deprecated in Mac OS X v10.4
Fills a polygon with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCRect (page 211) Deprecated in Mac OS X v10.4
Fills a rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCRgn (page 212) Deprecated in Mac OS X v10.4
Fills a region with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCRoundRect (page 213) Deprecated in Mac OS X v10.4
Fills a rounded rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

HiliteColor (page 256) Deprecated in Mac OS X v10.4
Changes the highlight color for the current color graphics port. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

OpColor (page 308) Deprecated in Mac OS X v10.4
Sets the maximum color values for the addPin and subPin arithmetic transfer modes and the weight
color for the blend arithmetic transfer mode. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

RGBBackColor (page 343) Deprecated in Mac OS X v10.4
Changes the background color. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

RGBForeColor (page 344) Deprecated in Mac OS X v10.4
Changes the color of the “ink” used for framing and painting. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

SetCPixel (page 352) Deprecated in Mac OS X v10.4
Sets the color of an individual pixel to the color that most closely matches the RGB color that you
specify in the cPix parameter. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

Drawing With the Eight-Color System

BackColor (page 169) Deprecated in Mac OS X v10.4
Changes a basic graphics port’s background color. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

ColorBit (page 178) Deprecated in Mac OS X v10.4
Sets the foreground color for all printing in the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

ForeColor (page 218) Deprecated in Mac OS X v10.4
Changes the color of the “ink” used for framing, painting, and filling on computers that support only
basic QuickDraw. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

32 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Getting Pattern Resources

GetIndPattern (page 231) Deprecated in Mac OS X v10.4
Obtains a pattern stored in a pattern list ('PAT#') resource. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

GetPattern (page 234) Deprecated in Mac OS X v10.4
Obtains a pattern ('PAT') resource stored in a resource file. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

Getting the Available Graphics Devices

GetDeviceList (page 228) Deprecated in Mac OS X v10.4
Obtains a handle to the first GDevice structure in the device list. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetGDevice (page 229) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure for the current device. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetMainDevice (page 232) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure for the main screen. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetMaxDevice (page 233) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure for the video device with the greatest pixel depth.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetNextDevice (page 233) Deprecated in Mac OS X v10.4
Returns a handle to the next GDevice structure in the device list. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Hiding and Showing Cursors

InitCursor (page 59)
Sets the cursor to the standard arrow and makes the cursor visible.

HideCursor (page 59)
Hides the cursor if it is visible on the screen.

ObscureCursor (page 68)
Hides the cursor until the next time the user moves the mouse.

ShieldCursor (page 89)
Hides the cursor in a rectangle.

ShowCursor (page 90)
Displays a cursor hidden by the HideCursor or ShieldCursor functions.

Functions by Task 33
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Managing a Color Graphics Pen

PenPixPat (page 322) Deprecated in Mac OS X v10.4
Sets the pixel pattern used by the graphics pen in the current color graphics port. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Managing an Offscreen Graphics World’s Pixel Image

GetPixBaseAddr (page 57)
Obtains a pointer to an offscreen pixel map.

AllowPurgePixels (page 168) Deprecated in Mac OS X v10.4
Makes the base address for an offscreen pixel image purgeable. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetGWorldPixMap (page 230) Deprecated in Mac OS X v10.4
Obtains the pixel map created for an offscreen graphics world. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetPixelsState (page 238) Deprecated in Mac OS X v10.4
Saves the current information about the memory allocated for an offscreen pixel image. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LockPixels (page 288) Deprecated in Mac OS X v10.4
Prevents the base address for an offscreen pixel image from being moved while you draw into or
copy from its pixel map. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

NoPurgePixels (page 306) Deprecated in Mac OS X v10.4
Prevents the Memory Manager from purging the base address for an offscreen pixel image. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixMap32Bit (page 324) Deprecated in Mac OS X v10.4
Determines whether a pixel map requires 32-bit addressing mode for access to its pixel image.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPixelsState (page 358) Deprecated in Mac OS X v10.4
Restores an offscreen pixel image to the state that you saved with the GetPixelsState function.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

UnlockPixels (page 381) Deprecated in Mac OS X v10.4
Allows the Memory Manager to move the base address for the offscreen pixel map that you specify
in the pm parameter. (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

Managing Bitmaps, Port Rectangles, and Clipping Regions

GetClip (page 56)
Saves the clipping region of the current graphics port (basic or color). (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

SetClip (page 85)
Changes the clipping region of the current graphics port (basic or color) to a region you specify.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

34 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

BitMapToRegion (page 171) Deprecated in Mac OS X v10.4
Converts a bitmap or pixel map to a region. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

ClipRect (page 175) Deprecated in Mac OS X v10.4
Changes the clipping region of the current graphics port (basic or color). (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

MovePortTo (page 293) Deprecated in Mac OS X v10.4
Changes the position of the port rectangle of the current graphics port (basic or color). (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PortSize (page 326) Deprecated in Mac OS X v10.4
Changes the size of the port rectangle of the current graphics port (basic or color). (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

ScrollRect (page 346) Deprecated in Mac OS X v10.4
Scroll the pixels of a specified portion of a basic graphics port’s bitmap (or a color graphics port’s
pixel map). (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SetOrigin (page 356) Deprecated in Mac OS X v10.4
Changes the coordinates of the window origin of the port rectangle of the current graphics port (basic
or color). (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDrawDevelopers.)

SetPortBits (page 360) Deprecated in Mac OS X v10.4
Sets the bitmap for the current basic graphics port. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Managing Color Tables

GetCTSeed (page 227) Deprecated in Mac OS X v10.4
Obtains a unique seed value for a color table created by your application. This function is used by
system software and your application should not need to call it. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

ProtectEntry (page 327) Deprecated in Mac OS X v10.4
Adds protection to or removes protection from an entry in the current GDevice data structure’s color
table. This function is used by system software and your application should not need to call it.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

ReserveEntry (page 341) Deprecated in Mac OS X v10.4
Reserves or removes reservation from an entry in the current GDevice data structure’s color table.
This function is used by system software and your application should not need to call it. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

RestoreEntries (page 342) Deprecated in Mac OS X v10.4
Restores a selection of color table entries. This function is used by system software and your application
should not need to call it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

SaveEntries (page 345) Deprecated in Mac OS X v10.4
Saves a selection of color table entries. This function is used by system software and your application
should not need to call it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Functions by Task 35
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

SetEntries (page 354) Deprecated in Mac OS X v10.4
Sets a group of color table entries for the current GDevice data structure. This function is used by
system software and your application should not need to call it. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Managing Colors

Color2Index (page 178) Deprecated in Mac OS X v10.4
Obtains the index of the best available approximation for a given color in the color table of the current
GDevice data structure. This function is used only by system software. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

GetSubTable (page 254) Deprecated in Mac OS X v10.4
Searches one color table for the best matches to colors in another color table. Your application should
not need to call this function; it is used by system software only. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Index2Color (page 257) Deprecated in Mac OS X v10.4
Obtains the RGBColor data structure corresponding to an index value in the color table of the current
GDevice data structure. Your application should not need to call this function; it is used by system
software only. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

InvertColor (page 259) Deprecated in Mac OS X v10.4
Finds the complement of an RGBColor data structure. This function is used only by system software.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

MakeITable (page 290) Deprecated in Mac OS X v10.4
Generates an inverse table for a color table. Your application should not need to call this function; it
is used by system software only. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

RealColor (page 341) Deprecated in Mac OS X v10.4
Determines whether a given RGBColor data structure exists in the current device’s color table. This
function is used by system software and your application should not need to call it. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Managing the Graphics Pen

GetPen (page 235) Deprecated in Mac OS X v10.4
Determines the location of the graphics pen. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPenState (page 235) Deprecated in Mac OS X v10.4
Determines the graphics pen’s location, size, pattern, and pattern mode. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

HidePen (page 255) Deprecated in Mac OS X v10.4
Makes the graphics pen invisible, so that pen drawing doesn’t show on the screen. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PenMode (page 319) Deprecated in Mac OS X v10.4
Sets the pattern mode of the graphics pen in the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

36 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

PenNormal (page 320) Deprecated in Mac OS X v10.4
Sets the size, pattern, and pattern mode of the graphics pen in the current graphics port to their initial
values. (Deprecated. Use Quartz 2D instead; see Quartz ProgrammingGuide forQuickDrawDevelopers.)

PenPat (page 321) Deprecated in Mac OS X v10.4
Sets the bit pattern to be used by the graphics pen in the current graphics port. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PenSize (page 322) Deprecated in Mac OS X v10.4
Sets the dimensions of the graphics pen in the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPenState (page 357) Deprecated in Mac OS X v10.4
Restores the state of the graphics pen that was saved with the GetPenState function. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

ShowPen (page 369) Deprecated in Mac OS X v10.4
Changes the ink of a graphics pen from invisible to visible, making pen drawing appear on the screen.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Manipulating Points in Graphics Ports

AddPt (page 49)
Adds the coordinates of two points.

EqualPt (page 54)
Determines whether the coordinates of two given points are equal.

SetPt (page 87)
Assigns two coordinates to a point.

SubPt (page 91)
Subtracts the coordinates of one point from another.

DeltaPoint (page 190) Deprecated in Mac OS X v10.4
Subtracts the coordinates of one point from another. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPixel (page 237) Deprecated in Mac OS X v10.4
Determines whether the pixel associated with a point is black or white. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

GlobalToLocal (page 255) Deprecated in Mac OS X v10.4
Converts the coordinates of a point from global coordinates to the local coordinates of the current
graphics port (basic or color). (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

LocalToGlobal (page 287) Deprecated in Mac OS X v10.4
Converts a point’s coordinates from the local coordinates of the current graphics port (basic or color)
to global coordinates. (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

Functions by Task 37
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Obtaining a Pseudorandom Number

Random (page 340) Deprecated in Mac OS X v10.4
Obtains a pseudorandom integer. (Deprecated. Use the Standard C Library random(3) function
instead.)

Operations on Search and Complement Functions

AddComp (page 167) Deprecated in Mac OS X v10.4
Adds a function to the head of the current device data structure’s list of complement functions. This
function is used by system software and your application should not need to call it. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

AddSearch (page 167) Deprecated in Mac OS X v10.4
Adds a function to the head of the current GDevice data structure’s list of search functions. This
function is used by system software and your application should not need to call it. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DelComp (page 189) Deprecated in Mac OS X v10.4
Removes a custom complement function from the current GDevice data structure’s list of complement
functions. This function is used by system software and your application should not need to call it.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DelSearch (page 189) Deprecated in Mac OS X v10.4
Removes a custom search function from the current GDevice data structure’s list of search functions.
This function is used by system software and your application should not need to call it. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetClientID (page 351) Deprecated in Mac OS X v10.4
Sets the gdID field in the current GDevice data structure to identify this client program to its search
and complement functions. This function is used by system software and your application should not
need to call it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Reporting Data Structure Changes to QuickDraw

CTabChanged (page 187) Deprecated in Mac OS X v10.4
Signals QuickDraw that the content of a ColorTable structure has been modified. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDeviceChanged (page 223) Deprecated in Mac OS X v10.4
Notifies QuickDraw that the content of a GDevice structure has been modified. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixPatChanged (page 325) Deprecated in Mac OS X v10.4
Notifies QuickDraw that the content of a PixPat structure, including its PixMap structure or the
image in its patData field, has been modified. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

PortChanged (page 326) Deprecated in Mac OS X v10.4
Notifies QuickDraw that the content of a GrafPort structure or CGrafPort structure, including any
of the data structures specified by handles within the structure, has been modified. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

38 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Retrieving Color QuickDraw Result Codes

QDError (page 330) Deprecated in Mac OS X v10.4
Obtains a result code from the last applicable QuickDraw function that you called. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Saving and Restoring Graphics Ports

GetPort (page 240) Deprecated in Mac OS X v10.4
Saves the current graphics port (basic or color). (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetPort (page 358) Deprecated in Mac OS X v10.4
Changes the current graphics port (basic or color). (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

GetGWorld (page 56)
Saves the current graphics port (basic, color, or offscreen) and the current GDevice structure.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetGWorld (page 86)
Changes the current graphics port (basic, color, or offscreen). (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetGWorldDevice (page 229) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure associated with an offscreen graphics world. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Scaling and Mapping Points, Rectangles, Polygons, and Regions

MapPt (page 62)
Maps a point in one rectangle to an equivalent position in another rectangle.

MapRect (page 63)
Maps and scales a rectangle within one rectangle to another rectangle.

MapRgn (page 63)
Maps and scales a region within one rectangle to another rectangle.

ScalePt (page 82)
Scales a height and width according to the proportions of two rectangles.

MapPoly (page 291) Deprecated in Mac OS X v10.4
Maps and scales a polygon within one rectangle to another rectangle. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 39
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Miscellaneous

GetRegionBounds (page 58)

HandleToRgn (page 58)

IsRegionRectangular (page 61)

IsValidRgnHandle (page 62)

QDRegionToRects (page 80)

RgnToHandle (page 82)

CloseCursorComponent (page 175) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CreateNewPort (page 186) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CursorComponentChanged (page 188) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CursorComponentSetData (page 188) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

deltapoint (page 190) Deprecated in Mac OS X v10.4
(Deprecated. Use DeltaPoint (page 190) instead.)

DisposeColorComplementUPP (page 192) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeColorSearchUPP (page 192) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeDeviceLoopDrawingUPP (page 193) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeDragGrayRgnUPP (page 194) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposePort (page 196) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDArcUPP (page 197) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDBitsUPP (page 197) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDCommentUPP (page 197) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDGetPicUPP (page 197) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDJShieldCursorUPP (page 198) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

40 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

DisposeQDLineUPP (page 198) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDOpcodeUPP (page 198) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDOvalUPP (page 199) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDPolyUPP (page 199) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDPutPicUPP (page 199) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDRectUPP (page 200) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDRgnUPP (page 200) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDRRectUPP (page 200) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDStdGlyphsUPP (page 201) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDTextUPP (page 201) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDTxMeasUPP (page 201) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeRegionToRectsUPP (page 202) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetMaskTable (page 232) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPixBounds (page 237) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPixDepth (page 237) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPixRowBytes (page 240) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBackColor (page 241) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBackPixPat (page 241) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBitMapForCopyBits (page 241) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBounds (page 242) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortChExtra (page 242) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortClipRegion (page 243) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 41
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

GetPortCustomXFerProc (page 243) Deprecated in Mac OS X v10.4

GetPortFillPixPat (page 244) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortForeColor (page 244) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortFracHPenLocation (page 244) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortGrafProcs (page 245) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortHiliteColor (page 245) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortOpColor (page 246) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenLocation (page 246) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenMode (page 246) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenPixPat (page 247) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenSize (page 247) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenVisibility (page 248) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPixMap (page 248) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortSpExtra (page 248) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextFace (page 249) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextFont (page 249) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextMode (page 250) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextSize (page 250) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortVisibleRegion (page 250) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsArrow (page 251) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsBlack (page 251) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsDarkGray (page 251) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

42 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

GetQDGlobalsGray (page 252) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsLightGray (page 252) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsRandomSeed (page 253) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsScreenBits (page 253) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsThePort (page 253) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsWhite (page 254) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GrafDevice (page 255) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeColorComplementUPP (page 264) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeColorSearchUPP (page 264) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeDeviceLoopDrawingUPP (page 265) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeDragGrayRgnUPP (page 265) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDArcUPP (page 266) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDBitsUPP (page 266) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDCommentUPP (page 266) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDGetPicUPP (page 267) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDJShieldCursorUPP (page 267) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDLineUPP (page 267) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDOpcodeUPP (page 268) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDOvalUPP (page 268) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDPolyUPP (page 269) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDPutPicUPP (page 269) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDRectUPP (page 269) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 43
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

InvokeQDRgnUPP (page 270) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDRRectUPP (page 270) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDStdGlyphsUPP (page 270) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDTextUPP (page 271) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDTxMeasUPP (page 271) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeRegionToRectsUPP (page 271) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortClipRegionEmpty (page 272) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortColor (page 272) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortOffscreen (page 273) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortPictureBeingDefined (page 273) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortPolyBeingDefined (page 273) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortRegionBeingDefined (page 274) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortVisibleRegionEmpty (page 274) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsValidPort (page 274) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetCursorNew (page 277) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetDeviceList (page 277) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetFractEnable (page 278) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetHiliteMode (page 278) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetHiliteRGB (page 278) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetLastFOND (page 279) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetLastSPExtra (page 279) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetMainDevice (page 279) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

44 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

LMGetQDColors (page 280) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetScrHRes (page 280) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetScrVRes (page 280) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetTheGDevice (page 281) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetWidthListHand (page 281) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetWidthPtr (page 281) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetWidthTabHandle (page 282) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetCursorNew (page 282) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetDeviceList (page 282) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetFractEnable (page 283) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetHiliteMode (page 283) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetHiliteRGB (page 283) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetLastFOND (page 284) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetLastSPExtra (page 284) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetMainDevice (page 284) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetQDColors (page 285) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetScrHRes (page 285) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetScrVRes (page 285) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetTheGDevice (page 286) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetWidthListHand (page 286) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetWidthPtr (page 286) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetWidthTabHandle (page 287) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 45
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

NewColorComplementUPP (page 294) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewColorSearchUPP (page 294) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewDeviceLoopDrawingUPP (page 295) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewDragGrayRgnUPP (page 295) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewGWorldFromPtr (page 297) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDArcUPP (page 299) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDBitsUPP (page 299) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDCommentUPP (page 300) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDGetPicUPP (page 300) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDJShieldCursorUPP (page 300) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDLineUPP (page 301) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDOpcodeUPP (page 301) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDOvalUPP (page 301) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDPolyUPP (page 302) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDPutPicUPP (page 302) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDRectUPP (page 302) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDRgnUPP (page 303) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDRRectUPP (page 303) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDStdGlyphsUPP (page 303) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDTextUPP (page 304) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDTxMeasUPP (page 304) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewRegionToRectsUPP (page 304) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

46 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

OffscreenVersion (page 307) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OpenCursorComponent (page 310) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDAddRectToDirtyRegion (page 328) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDAddRegionToDirtyRegion (page 328) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDDisplayWaitCursor (page 328) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDDisposeRegionBits (page 329) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGetCursorData (page 331) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGetDirtyRegion (page 332) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGetPatternOrigin (page 332) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGetPictureBounds (page 333) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGlobalToLocalPoint (page 333) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGlobalToLocalRect (page 333) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGlobalToLocalRegion (page 334) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDIsNamedPixMapCursorRegistered (page 334) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDIsPortBufferDirty (page 334) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDIsPortBuffered (page 335) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDLocalToGlobalPoint (page 335) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDLocalToGlobalRect (page 335) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDLocalToGlobalRegion (page 336) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDRegisterNamedPixMapCursor (page 336) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDRestoreRegionBits (page 337) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSaveRegionBits (page 337) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 47
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDSetCursorScale (page 337) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetDirtyRegion (page 338) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetNamedPixMapCursor (page 338) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetPatternOrigin (page 338) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSwapPort (page 339) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSwapPortTextFlags (page 339) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSwapTextFlags (page 339) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDUnregisterNamedPixMapCursor (page 340) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SectRegionWithPortClipRegion (page 347) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SectRegionWithPortVisibleRegion (page 348) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetCursorComponent (page 353) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortBackPixPat (page 359) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortBounds (page 360) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortClipRegion (page 360) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortCustomXFerProc (page 361) Deprecated in Mac OS X v10.4

SetPortFillPixPat (page 361) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortFracHPenLocation (page 362) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortGrafProcs (page 362) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortOpColor (page 362) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortPenMode (page 363) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortPenPixPat (page 363) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortPenSize (page 364) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

48 Functions by Task
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

SetPortTextFace (page 365) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextFont (page 365) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextMode (page 365) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextSize (page 366) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortVisibleRegion (page 366) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetQDError (page 367) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetQDGlobalsArrow (page 367) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetQDGlobalsRandomSeed (page 367) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdOpcode (page 373) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StuffHex (page 378) Deprecated in Mac OS X v10.4
Sets byte values into memory. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

SwapPortPicSaveHandle (page 379) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SwapPortPolySaveHandle (page 379) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SwapPortRegionSaveHandle (page 380) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions

AddPt
Adds the coordinates of two points.

void AddPt (
 Point src,
 Point *dst
);

Parameters
src

A point, the coordinates of which are to be added to the point in the dstPt parameter.

Functions 49
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

dst
A pointer to a point, the coordinates of which are to be added to the point in the srcPt parameter.
On return, this value contains the result of adding the coordinates of the points you supplied in the
srcPt and dstPt parameters.

Discussion
The AddPt function adds the coordinates of the point specified in the srcPt parameter to the coordinates
of the point specified in the dstPt parameter, and returns the result in the dstPt parameter.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

AngleFromSlope
Converts a slope value to an angle value.

short AngleFromSlope (
 Fixed slope
);

Parameters
slope

The slope, defined as Dx/Dy, which is the horizontal change divided by the vertical change between
any two points on a line with the slope.

Return Value
The angle corresponding to the slope specified in the slope parameter treated MOD 180. Angles are defined
in clockwise degrees from 12 o’clock. The negative y-axis is defined as being at 12 o’clock, and the positive
y-axis at 6 o’clock. The x-axis is defined as usual, with the positive side defined as being at 3 o’clock.

Special Considerations

The AngleFromSlope function is most useful when you require speed more than accuracy in performing
the calculation. The integer result is within 1 degree of the correct answer, but not necessarily within half a
degree.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyRgn
Makes a copy of a region.

50 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void CopyRgn (
 RgnHandle srcRgn,
 RgnHandle dstRgn
);

Parameters
srcRgn

A handle to the region to copy.

dstRgn
A handle to the region to receive the copy.

Discussion
The CopyRgn function copies the mathematical structure of the region whose handle you pass in the srcRgn
parameter into the region whose handle you pass in the dstRgn parameter; that is, CopyRgn makes a
duplicate copy of srcRgn. When calling CopyRgn, pass handles that have been returned by the NewRgn
function in the srcRgn and dstRgn parameters.

Once this is done, the region indicated by srcRgn may be altered (or even disposed of) without affecting
the region indicated by dstRgn. The CopyRgn function does not create the destination region; space must
already have been allocated for it by using the NewRgn function.

Special Considerations

The CopyRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DiffRgn
Subtracts one region from another.

void DiffRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the region to subtract from.

srcRgnB
A handle to the region to subtract.

Functions 51
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

dstRgn
On return, a handle to the region holding the resulting area. If the first source region is empty, DiffRgn
sets the destination to the empty region defined by the rectangle (0,0,0,0).

The DiffRgn function does not create the destination region; you must have already allocated
memory for it by using the NewRgn (page 67) function.

The destination region may be one of the source regions, if desired.

Discussion
The DiffRgn procedure subtracts the region whose handle you pass in the srcRgnB parameter from the region
whose handle you pass in the srcRgnA parameter and places the difference in the region whose handle you
pass in the dstRgn parameter. If the first source region is empty, DiffRgn sets the destination to the empty
region defined by the rectangle (0,0,0,0).

The DiffRgn procedure does not create the destination region; you must have already allocated memory for
it by using the NewRgn function. The destination region may be one of the source regions, if desired.

Special Considerations

The DiffRgn function may temporarily use heap space that’s twice the size of the two input regions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeRgn
Releases the memory occupied by a region.

void DisposeRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to dispose. This handle should be a region handle returned by the NewRgn (page
67) function.

Discussion
Use DisposeRgn only after you are completely through with a region.

Special Considerations

The DisposeRgn function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

52 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawAPI.h

EmptyRect
Determines whether a rectangle is an empty rectangle.

Boolean EmptyRect (
 const Rect *r
);

Parameters
r

The rectangle to examine.

Return Value
TRUE if the rectangle that you specify in the r parameter is an empty rectangle, FALSE if it is not. A rectangle
is considered empty if the bottom coordinate is less than or equal to the top coordinate or if the right
coordinate is less than or equal to the left.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
SoftVDigX

Declared In
QuickdrawAPI.h

EmptyRgn
Determines whether a region is empty.

Boolean EmptyRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to test for emptiness.

Return Value
TRUE if the region whose handle you pass in the rgn parameter is an empty region or FALSE if it is not.

Functions 53
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Discussion
The EmptyRgn function does not create an empty region. To create an empty region, you can perform any
of the following operations:

 ■ Use NewRgn (page 67).

 ■ Pass the handle to an empty region to CopyRgn (page 50).

 ■ Pass an empty rectangle to either SetRectRgn (page 88) or RectRgn (page 81).

 ■ Call CloseRgn (page 177) without a previous call to OpenRgn (page 312).

 ■ Call CloseRgn (page 177) without performing any drawing after calling OpenRgn (page 312).

 ■ Pass an empty region to OffsetRgn (page 70).

 ■ Pass an empty region or too large an inset to InsetRgn (page 60)

 ■ Pass two nonintersecting regions to SectRgn (page 84).

 ■ Pass two empty regions to UnionRgn (page 92).

 ■ Pass two identical or nonintersecting regions to DiffRgn (page 51) or XorRgn (page 93).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EqualPt
Determines whether the coordinates of two given points are equal.

Boolean EqualPt (
 Point pt1,
 Point pt2
);

Parameters
pt1

The first of two points to be compared.

pt2
The second of two points to be compared.

Return Value
TRUE if the coordinates of the two points are equal, or FALSE if they are not.

Discussion
The EqualPt function compares the points specified in the pt1 and pt2 parameters and returns TRUE if their
coordinates are equal or FALSE if they are not.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

54 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

EqualRect
Determines whether two rectangles are equal.

Boolean EqualRect (
 const Rect * rect1,
 const Rect * rect2
);

Parameters
rect1

The first of two rectangles to compare.

rect2
The second of two rectangles to compare.

Return Value
TRUE if the rectangles are equal, FALSE if they are not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

EqualRgn
Determines whether two regions have identical sizes, shapes, and locations.

Boolean EqualRgn (
 RgnHandle rgnA,
 RgnHandle rgnB
);

Parameters
rgnA

A handle to the first of two regions to compare.

rgnB
A handle to the second of two regions to compare.

Return Value
TRUE if the two regions are equal; FALSE if they are not. The two regions must have identical sizes, shapes,
and locations to be considered equal. Any two empty regions are always equal.

Discussion
The EqualRgn function compares the two regions whose handles you pass in the rgnA and rgnB parameters
and returns TRUE if they’re equal or FALSE if they’re not.

Functions 55
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

The two regions must have identical sizes, shapes, and locations to be considered equal. Any two empty
regions are always equal.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetClip
Saves the clipping region of the current graphics port (basic or color). (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void GetClip (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to be clipped. The GetClip function changes this region to one that’s equivalent
to the clipping region of the current graphics port. The GetClip function doesn’t change the region
handle.

Discussion
You can use the GetClip and SetClip functions to preserve the current clipping region: use GetClip to
save the current port’s clipping region, and use SetClip to restore it. If, for example, you want to draw a
half-circle on the screen, you can set the clipping region to half of the square that would enclose the whole
circle, and then draw the whole circle. Only the half within the clipping region is actually drawn in the graphics
port.

The GetClip function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.k.h

GetGWorld
Saves the current graphics port (basic, color, or offscreen) and the current GDevice structure. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

56 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void GetGWorld (
 CGrafPtr *port,
 GDHandle *gdh
);

Parameters
port

On return, a pointer to the current graphics port in the port parameter. This parameter can return
values of type GrafPtr, CGrafPtr, or GWorldPtr, depending on whether the current graphics port
is a basic graphics port, color graphics port, or offscreen graphics world.

gdh
On return, a pointer to a handle to the GDevice structure for the current device.

Discussion
After using GetGWorld to save a graphics port and a GDevice structure, use the SetGWorld (page 86)
function to restore them.

Special Considerations

The GetGWorld function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
Simple DrawSprocket

Declared In
ImageCompression.k.h

GetPixBaseAddr
Obtains a pointer to an offscreen pixel map.

Ptr GetPixBaseAddr (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. To get a handle to an offscreen pixel map, use the
GetGWorldPixMap (page 230) function.

Return Value
A 32-bit pointer to the beginning of a pixel image. If the offscreen buffer has been purged, GetPixBaseAddr
returns NULL.

Discussion
The baseAddr field of the PixMap structure for an offscreen graphics world contains a handle instead of a
pointer, which is what the baseAddr field for an onscreen pixel map contains. You must use the
GetPixBaseAddr function to obtain a pointer to the PixMap structure for an offscreen graphics world.

Functions 57
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Your application should never directly access the baseAddr field of the PixMap structure for an offscreen
graphics world; instead, always use GetPixBaseAddr. If your application is using 24-bit mode, use the
PixMap32Bit (page 324) function to determine whether a pixel map requires 32-bit addressing mode for
access to its pixel image.

Special Considerations

Any QuickDraw functions that your application uses after calling GetPixBaseAddr may change the base
address for the offscreen pixel image.

The GetPixBaseAddr function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell

Declared In
QDOffscreen.h

GetRegionBounds

Rect * GetRegionBounds (
 RgnHandle region,
 Rect *bounds
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

HandleToRgn

void HandleToRgn (
 Handle oldRegion,
 RgnHandle region
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

58 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

HideCursor
Hides the cursor if it is visible on the screen.

void HideCursor (
 void
);

Discussion
The HideCursor function removes the cursor from the screen, restores the bits under the cursor image, and
decrements the cursor level (which InitCursor initialized to 0). You might want to use HideCursor when
the user is using the keyboard to create content in one of your application’s windows. Every call to HideCursor
should be balanced by a subsequent call to the ShowCursor (page 90) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

InitCursor
Sets the cursor to the standard arrow and makes the cursor visible.

void InitCursor (
 void
);

Discussion
This function initializes the standard arrow cursor, sets the current cursor to the standard arrow, and makes
the cursor visible. Classic Mac OS applications need to call this function when launching because the system
sets the cursor to the watch cursor. Carbon applications running in Mac OS 9 or Mac OS X do not need to
call this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
HideMenuBar
ictbSample
Simple DrawSprocket

Declared In
QuickdrawAPI.h

Functions 59
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

InsetRect
Shrinks or expands a rectangle.

void InsetRect (
 Rect * r,
 short dh,
 short dv
);

Parameters
r

A pointer to the rectangle to alter.

dh
The horizontal distance to move the left and right sides in toward or outward from the center of the
rectangle.

dv
The vertical distance to move the top and bottom sides in toward or outward from the center of the
rectangle.

Discussion
The InsetRect function shrinks or expands the rectangle that you specify in the r parameter: the left and
right sides are moved in by the amount you specify in the dh parameter; the top and bottom are moved
toward the center by the amount you specify in the dv parameter. If the value you pass in dh or dv is negative,
the appropriate pair of sides is moved outward instead of inward. The effect is to alter the size by 2*dh
horizontally and 2*dv vertically, with the rectangle remaining centered in the same place on the coordinate
plane.

If the resulting width or height becomes less than 1, the rectangle is set to the empty rectangle (0,0,0,0).

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

InsetRgn
Shrinks or expands a region.

60 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void InsetRgn (
 RgnHandle rgn,
 short dh,
 short dv
);

Parameters
rgn

A handle to the region to alter.

dh
The horizontal distance to move points on the left and right boundaries in toward or outward from
the center.

dv
The vertical distance to move points on the top and bottom boundaries in toward or outward from
the center.

Discussion
The InsetRgn function moves all points on the region boundary of the region whose handle you pass in
the rgn parameter inward by the vertical distance that you specify in the dv parameter and by the horizontal
distance that you specify in the dh parameter. If you specify negative values for dh or dv, the InsetRgn
function moves the points outward in that direction.

The InsetRgn function leaves the region’s center at the same position, but moves the outline in (for positive
values of dh and dv) or out (for negative values of dh and dv). Using InsetRgn on a rectangular region has
the same effect as using the InsetRect function.

Special Considerations

The InsetRgn function temporarily uses heap space that’s twice the size of the original region.

The InsetRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsRegionRectangular

Boolean IsRegionRectangular (
 RgnHandle region
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 61
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

IsValidRgnHandle

Boolean IsValidRgnHandle (
 RgnHandle rgn
);

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MapPt
Maps a point in one rectangle to an equivalent position in another rectangle.

void MapPt (
 Point *pt,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
pt

Upon input, a pointer to the point in the source rectangle to map; upon completion, a pointer to its
mapped position in the destination rectangle.

srcRect
The source rectangle containing the original point.

dstRect
The destination rectangle in which the point will be mapped.

Discussion
The MapPt function maps a point in one rectangle to an equivalent position in another rectangle.

In the pt parameter, you specify a point that lies within the rectangle that you specify in the srcRect
parameter. The MapPt function maps this point to a similarly located point within the rectangle that you
specify in the dstRect parameter—that is, to where it would fall if it were part of a drawing being expanded
or shrunk to fit the destination rectangle. The MapPt function returns the location of the mapped point in
the pt parameter. For example, a corner point of the source rectangle would be mapped to the corresponding
corner point of the destination rectangle in dstRect, and the center of the source rectangle would be
mapped to the center of destination rectangle.

The source and destination rectangles may overlap, and the point you specify need not actually lie within
the source rectangle.

If you are going to draw inside the destination rectangle, you’ll probably also want to scale the graphics pen
size accordingly with ScalePt (page 82).

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or

62 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

MapRect
Maps and scales a rectangle within one rectangle to another rectangle.

void MapRect (
 Rect *r,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
r

Upon input, a pointer to the rectangle to map; upon completion, the mapped rectangle.

srcRect
The rectangle containing the rectangle to map.

dstRect
The rectangle in which the new rectangle will be mapped.

Discussion
The MapRect function takes a rectangle within one rectangle and maps and scales it to another rectangle.
In the r parameter, you specify a rectangle that lies within the rectangle that you specify in the srcRect
parameter. By calling the MapPt function to map the upper-left and lower-right corners of the rectangle in
the r parameter, MapRect maps and scales it to the rectangle that you specify in the dstRect parameter.
The MapRect function returns the newly mapped rectangle in the r parameter.

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

MapRgn
Maps and scales a region within one rectangle to another rectangle.

Functions 63
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void MapRgn (
 RgnHandle rgn,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
rgn

A handle to a region. Upon input, this is the region to map. Upon completion, this region is the one
mapped to a new location.

srcRect
The rectangle containing the region to map.

dstRect
The rectangle in which the new region will be mapped.

Discussion
The MapRgn function takes a region within one rectangle and maps and scales it to another rectangle. In the
rgn parameter, you specify a handle to a region that lies within the rectangle that you specify in the srcRect
parameter. By calling the MapPt function to map all the points of the region in the rgn parameter, MapRgn
maps and scales it to the rectangle that you specify in the dstRect parameter. The MapRgn function returns
the result in the region whose handle you initially passed in the rgn parameter.

The MapRgn function is useful for determining whether a region operation will exceed available memory. By
mapping a large region into a smaller one and performing the operation (without actually drawing), you can
estimate how much memory will be required by the anticipated operation.

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

The MapRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NewGWorld
Creates an offscreen graphics world. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

64 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDErr NewGWorld (
 GWorldPtr *offscreenGWorld,
 short PixelDepth,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags
);

Parameters
offscreenGWorld

On return, a pointer to the offscreen graphics world created by this function. You use this pointer
when referring to this new offscreen world in other QuickDraw functions.

PixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16, and 32 bits per pixel. The
default parameter (0) uses the pixel depth of the screen with the greatest pixel depth from among
all screens whose boundary rectangles intersect the rectangle that you specify in the boundsRect
parameter. If you specify 0 in this parameter, NewGWorld also uses the GDevice structure from this
device instead of creating a new GDevice structure for the offscreen world. If you use NewGWorld
on a computer that supports only basic QuickDraw, you may specify only 0 or 1 in this parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel map. This becomes the boundary
rectangle for the GDevice structure, if NewGWorld creates one. If you specify 0 in the pixelDepth
parameter, NewGWorld interprets the boundaries in global coordinates that it uses to determine
which screens intersect the rectangle. NewGWorld then uses the pixel depth, color table, and GDevice
structure from the screen with the greatest pixel depth from among all screens whose boundary
rectangles intersect this rectangle. Typically, your application supplies this parameter with the port
rectangle for the onscreen window into which your application will copy the pixel image from this
offscreen world.

cTable
A handle to a ColorTable structure. If you pass NULL in this parameter, NewGWorld uses the default
color table for the pixel depth that you specify in the pixelDepth parameter. If you set the
pixelDepth parameter to 0, NewGWorld ignores the cTable parameter and instead copies and uses
the color table of the graphics device with the greatest pixel depth among all graphics devices whose
boundary rectangles intersect the rectangle that you specify in the boundsRect parameter. If you
use NewGWorld on a computer that supports only basic QuickDraw, you may specify only NULL in
this parameter.

aGDevice
A handle to a GDevice structure that is used only when you specify the noNewDevice flag in the
flags parameter, in which case NewGWorld attaches this GDevice structure to the new offscreen
graphics world. If you set the pixelDepth parameter to 0, or if you do not set the noNewDevice
flag, NewGWorld ignores the aGDevice parameter, so set it to NULL. If you set the pixelDepth
parameter to 0, NewGWorld uses the GDevice structure for the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles intersect the rectangle that you
specify in the boundsRect parameter. You should pass NULL in this parameter if the computer
supports only basic QuickDraw. Generally, your application should never create GDevice structures
for offscreen graphics worlds.

Functions 65
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

flags
Options available to your application. You can set a combination of the flags pixPurge, noNewDevice,
useTempMem, and keepLocal. If you don’t wish to use any of these flags, specify 0 in this parameter
to accept the default behavior for NewGWorld. The default behavior creates an offscreen graphics
world where the base address for the offscreen pixel image is unpurgeable, it uses an existing GDevice
structure (if you pass 0 in the depth parameter) or creates a new GDevice structure, it uses memory
in your application heap, and it allows graphics accelerators to cache the offscreen pixel image. See
“Graphics World Flags” (page 151) for a description of the values you can use here.

Return Value
A result code.

Discussion
Typically, you pass 0 in the pixelDepth parameter, a window’s port rectangle in the boundsRect parameter,
NULL in the cTable and aGDevice parameters, and in the flags parameter a 0. This provides your application
with the default behavior of NewGWorld, and it supports computers running basic QuickDraw. This also
allows QuickDraw to optimize the CopyBits, CopyMask, and CopyDeepMask functions when your application
copies the image in an offscreen graphics world into an onscreen graphics port.

The NewGWorld function allocates memory for an offscreen graphics port and its pixel map. On computers
that support only basic QuickDraw, NewGWorld creates a 1-bit pixel map that your application can manipulate
using other relevant functions described in this chapter. Your application can copy this 1-bit pixel map into
basic graphics ports.

Unless you specify 0 in the pixelDepth parameter–or pass the noNewDevice flag in the flags parameter
and supply a GDevice structure in the aGDevice parameter– NewGWorld also allocates a new offscreen
GDevice structure.

When creating an image, use the NewGWorld function to create an offscreen graphics world that is optimized
for an image’s characteristics—for example, its best pixel depth. After creating the image, use the CopyBits,
CopyMask, or CopyDeepMask function to copy that image to an onscreen graphics port. Color QuickDraw
automatically renders the image at the best available pixel depth for the screen. Creating an image in an
offscreen graphics port and then copying it to the screen in this way prevents the visual choppiness that
would otherwise occur if your application were to build a complex image directly onscreen.

The NewGWorld function initializes the offscreen graphics port by calling the OpenCPort function. The
NewGWorld function sets the offscreen graphics port’s visible region to a rectangular region coincident with
its boundary rectangle. The NewGWorld function generates an inverse table with the Color Manager function
MakeITable, unless one of the GDevice structures for the screens has the same color table as the GDevice
structure for the offscreen world, in which case NewGWorld uses the inverse table from that GDevice structure.

The address of the offscreen pixel image is not directly accessible from the PixMap structure for the offscreen
graphics world. However, you can use the GetPixBaseAddr (page 57) function to get a pointer to the
beginning of the offscreen pixel image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel image by using this
formula:

rowBytes * (boundsRect.bottom – boundsRect.top)

In the flags parameter, you can specify several options. If you don’t want to use any of these options, pass
0 in the flags parameter:

66 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

 ■ If you specify the pixPurge flag, NewGWorld stores the offscreen pixel image in a purgeable block of
memory. In this case, before drawing to or from the offscreen pixel image, your application should call
the LockPixels (page 288) function and ensure that it returns TRUE. If LockPixels returns FALSE, the
memory for the pixel image has been purged, and your application should either call UpdateGWorld (page
384) to reallocate it and then reconstruct the pixel image, or draw directly in a window instead of preparing
the image in an offscreen graphics world. Never draw to or copy from an offscreen pixel image that has
been purged without reallocating its memory and then reconstructing it.

 ■ If you specify the noNewDevice flag, NewGWorld does not create a new offscreen GDevice structure.
Instead, it uses the GDevice structure that you specify in the aGDevice parameter–and its associated
pixel depth and color table–to create the offscreen graphics world. (If you set the pixelDepth parameter
to 0, NewGWorld uses the GDevice structure for the screen with the greatest pixel depth among all the
screens whose boundary rectangles intersect the rectangle that you specify in the boundsRect
parameter–even if you specify the noNewDevice flag.) The NewGWorld function keeps a reference to
the GDevice structure for the offscreen graphics world, and the SetGWorld (page 86) function uses
that structure to set the current graphics device.

 ■ If you set the useTempMem flag, NewGWorld creates the base address for an offscreen pixel image in
temporary memory. You generally would not use this flag, because you should use temporary memory
only for fleeting purposes and only with the AllowPurgePixels (page 168) function.

 ■ If you specify the keepLocal flag, your offscreen pixel image is kept in Macintosh main memory and is
not cached to a graphics accelerator card. use this flag carefully, as it negates the advantages provided
by any graphics acceleration card that might be present.

If your application needs to change the pixel depth, boundary rectangle, or color table for an offscreen
graphics world, use the UpdateGWorld (page 384) function.

Special Considerations

If you supply a handle to a ColorTable structure in the cTable parameter, NewGWorld makes a copy of
the structure and stores its handle in the offscreen PixMap structure. It is your application’s responsibility to
make sure that the ColorTable structure you specify in the cTable parameter is valid for the offscreen
graphics port’s pixel depth.

If when using NewGWorld you specify a pixel depth, color table, or GDevice structure that differs from those
used by the window into which you copy your offscreen image, the CopyBits, CopyMask, and CopyDeepMask
functions require extra time to complete.

To use a custom color table in an offscreen graphics world, you need to create the associated offscreen
GDevice structure, because Color QuickDraw needs its inverse table.

The NewGWorld function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.k.h

NewRgn
Begins creating a new region.

Functions 67
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

RgnHandle NewRgn (
 void
);

Return Value
A handle to the new region.

Discussion
The NewRgn function allocates space for a new, variable-size region and initializes it to the empty region
defined by the rectangle (0,0,0,0). This is the only function that creates a new region; other functions merely
alter the size or shape of existing regions.

To begin defining a region, use the OpenRgn (page 312) function.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The NewRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Use the Memory Manager function MaxMem to determine whether the memory for the region is valid before
using NewRgn.

Ensure that the memory for a region is valid before calling this function to manipulate that region if there
isn’t sufficient memory, the system may crash. Regions are limited to 32 KB in size in basic QuickDraw and
64 KB in color QuickDraw. Before defining a region, you can use the Memory Manager function MaxMem to
determine whether the memory for the region is valid. You can determine the current size of an existing
region by calling the Memory Manager function GetHandleSize. When you record drawing operations in
an open region, the resulting region description may overflow the 32 KB or 64 KB limit. Should this happen
in color QuickDraw, the QDError function returns the result code regionTooBigError.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

ObscureCursor
Hides the cursor until the next time the user moves the mouse.

68 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void ObscureCursor (
 void
);

Discussion
Your application normally calls ObscureCursor when the user begins to type. Unlike HideCursor (page
59) , ObscureCursor has no effect on the cursor level and must not be balanced by a call to ShowCursor.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OffsetRect
Moves a rectangle.

void OffsetRect (
 Rect * r,
 short dh,
 short dv
);

Parameters
r

A pointer to the rectangle to move.

dh
The horizontal distance to move the rectangle.

dv
The vertical distance to move the rectangle.

Discussion
The OffsetRect function moves the rectangle that you specify in the r parameter by adding the value you
specify in the dh parameter to each of its horizontal coordinates and the value you specify in the dv parameter
to each of its vertical coordinates. If the dh and dv parameters are positive, the movement is to the right and
down; if either is negative, the corresponding movement is in the opposite direction. The rectangle retains
its shape and size; it is merely moved on the coordinate plane. The movement does not affect the screen
unless you subsequently call a function to draw within the rectangle.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator

Functions 69
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawAPI.h

OffsetRgn
Moves a region.

void OffsetRgn (
 RgnHandle rgn,
 short dh,
 short dv
);

Parameters
rgn

A handle to the region to move.

dh
The horizontal distance to move the region.

dv
The vertical distance to move the region.

Discussion
The OffsetRgn function moves the region whose handle you pass in the rgn parameter by adding the value
you specify in the dh parameter to the horizontal coordinates of all points of its region boundary, and by
adding the value you specify in the dv parameter to the vertical coordinates of all points of its region boundary.
If the values of dh and dv are positive, the movement is to the right and down; if either is negative, the
corresponding movement is in the opposite direction. The region retains its size and shape. This does not
affect the screen unless you subsequently call a function to draw the region.

The OffsetRgn function is an especially efficient operation, because most of the data defining a region is
stored relative to the rgnBBox field in its Region structure and so is not actually changed by OffsetRgn.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Pt2Rect
Determines the smallest rectangle that encloses two given points.

void Pt2Rect (
 Point pt1,
 Point pt2,
 Rect *dstRect
);

Parameters
pt1

The first of two points to enclose.

70 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

pt2
The second of two points to enclose.

dstRect
On return, a pointer to the smallest rectangle that can enclose them.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

PtInRect
Determines whether a pixel below is enclosed in a rectangle.

Boolean PtInRect (
 Point pt,
 const Rect * r
);

Parameters
pt

The point to test.

r
The rectangle to test.

Return Value
TRUE if the pixel below and to the right of the point specified in the pt parameter is enclosed in the rectangle
specified in the r parameter. FALSE if it is not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Functions 71
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

PtInRgn
Determines whether a pixel is within a region.

Boolean PtInRgn (
 Point pt,
 RgnHandle rgn
);

Parameters
pt

The point whose pixel is to be checked.

rgn
A handle to the region to test.

Return Value
TRUE if the pixel below and to the right of the point specified in the pt parameter is within the region whose
handle is specified in the rgn parameter. FALSE if it is not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PtToAngle
Calculates an angle between a vertical line pointing straight up from the center of a rectangle and a line
from the center to a given point.

void PtToAngle (
 const Rect *r,
 Point pt,
 short *angle
);

Parameters
r

The rectangle to examine.

pt
The point to which an angle is to be calculated.

72 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

angle
On return, a pointer to the resulting angle.

The result returned in the angle parameter is specified in degrees from 0 to 359, measured clockwise
from 12 o’clock, with 90 at 3 o’clock, 180 at 6 o’clock, and 270 at 9 o’clock. Other angles are measured
relative to the rectangle. If the line to the given point goes through the upper-right corner of the
rectangle, the angle returned is 45, even if the rectangle is not square if it goes through the lower-right
corner, the angle is 135, and so on.

The angle returned can be used as input to one of the functions that manipulate arcs and wedges,
in “Drawing Arcs and Wedges”.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

QDBeginCGContext
Returns a Quartz 2D drawing environment associated with a graphics port.

OSStatus QDBeginCGContext (
 CGrafPtr inPort,
 CGContextRef *outContext
);

Parameters
port

A color graphics port in which to draw. Offscreen graphics worlds with pixel depths of 1, 2, 4, and 8
are not supported. When using Quartz 2D to draw in a offscreen graphics world, alpha information
is always ignored.

contextPtr
A pointer to your storage for a Quartz context. Upon completion, contextPtr points to a context
associated with the port. The context matches the port’s pixel depth, width, and height. Otherwise
the context is in a default state and does not necessarily match other port attributes such as foreground
color, background color, or clip region.

You should not retain or release the context. When you are finished using the context, you should
call QDEndCGContext (page 74).

Return Value
A result code. If noErr, the context was successfully initiated.

Discussion
Applications running in Mac OS X can use Quartz 2D to draw in a QuickDraw graphics port. When you call
this function, you obtain a Quartz context that’s associated with the specified port. To improve performance,
contexts returned by this function are cached and reused during subsequent calls whenever possible.

Functions 73
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Each block of Quartz 2D drawing code in your application should be surrounded by calls to this function and
QDEndCGContext (page 74). Nested calls to this function for the same graphics port are not permitted—that
is, for a given port you should not call this function more than once without an intervening call to
QDEndCGContext (page 74).

While the Quartz context is in use, all Quickdraw imaging operations in the associated graphics port are
disabled. This is done because the operations would fail during printing.

For information about how to use a Quartz context, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDEndCGContext
Terminates a Quartz 2D drawing environment associated with a graphics port.

OSStatus QDEndCGContext (
 CGrafPtr inPort,
 CGContextRef *inoutContext
);

Parameters
port

A graphics port specified in a preceding call to QDBeginCGContext (page 73).

contextPtr
A pointer to the context obtained in the preceding call to QDBeginCGContext (page 73) for the
port. Upon completion, the storage pointed to by contextPtr is set to NULL.

Return Value
A result code. If noErr, the context is terminated.

Discussion
After you finish using Quartz 2D to draw in a graphics port, you should call this function to terminate the
context. For more information, see QDBeginCGContext (page 73).

Before calling this function, you should do one of the following:

 ■ Call CGContextSynchronize to mark the affected areas of the port for update.

 ■ Call CGContextFlush to immediately update the destination device.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

74 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDGetCGDirectDisplayID
Returns the Quartz display ID that corresponds to a QuickDraw graphics device.

CGDirectDisplayID QDGetCGDirectDisplayID (
 GDHandle inGDevice
);

Parameters
inGDevice

A QuickDraw graphics device.

Return Value
A Quartz display ID, or NULL if the inGDevice parameter does not represent a display. For information about
using a display ID, see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDPictCreateWithProvider
Creates a QDPict picture, using QuickDraw picture data supplied with a Quartz data provider.

QDPictRef QDPictCreateWithProvider (
 CGDataProviderRef provider
);

Parameters
provider

A Quartz data provider that supplies QuickDraw picture data. The picture data must begin at either
the first byte or the 513th byte in the data provider. The picture bounds must not be an empty
rectangle.

QuickDraw retains the data provider you pass in, and you may safely release it after this function
returns.

Return Value
A new QDPict picture, or NULL if the picture data is not valid. The initial retain count is 1. After you finish
using the picture, you should release it by calling QDPictRelease (page 78).

Discussion
This function creates a QDPict picture that you can draw in a Quartz context. For general information about
QDPict pictures, see QDPictRef (page 137).

Functions 75
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictCreateWithURL
Creates a QDPict picture, using QuickDraw picture data specified with a Core Foundation URL.

QDPictRef QDPictCreateWithURL (
 CFURLRef url
);

Parameters
url

A Core Foundation URL that specifies a PICT file containing the QuickDraw picture data. The picture
header data must begin at either the first byte or the 513th byte in the PICT file. The picture bounds
must not be an empty rectangle.

Return Value
A new QDPict picture, or NULL if the picture data is not valid. The initial retain count is 1. After you finish
using the picture, you should release it by calling QDPictRelease (page 78).

Discussion
This function creates a QDPict picture that you can draw in a Quartz context. For general information about
QDPict pictures, see QDPictRef (page 137).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictDrawToCGContext
Draws a QuickDraw picture in a Quartz context.

OSStatus QDPictDrawToCGContext (
 CGContextRef ctx,
 CGRect rect,
 QDPictRef pictRef
);

Parameters
context

The Quartz context in which to draw.

76 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

rect
The rectangular area in which to draw the picture. You should specify the origin and size of this
rectangle in user space units. The origin is the lower left corner of the picture when drawn. If necessary,
the picture is scaled to fit inside this rectangle. To get unscaled results, you should pass the rectangle
returned by QDPictGetBounds (page 77). For additional information about scaling, see the discussion
below.

picture
A QDPict picture.

Return Value
A result code. A non-zero result indicates that the picture was not successfully drawn.

Discussion
This function converts the picture data in a QDPict picture into an equivalent sequence of Quartz 2D graphics
operations. Conceptually this is the same processing path taken when an application running in Mac OS X
draws into a QuickDraw printing port.

When drawing a QDPict picture in a Quartz context, there are two ways to change the horizontal or vertical
scale of the picture:

 ■ Construct the drawing rectangle (see the rect parameter) by applying the change of scale to the bounds
rectangle returned by QDPictGetBounds (page 77). In this case, QuickDraw scales all the graphic
elements in the picture except for patterns—the same behavior as DrawPicture (page 203).

 ■ Prior to calling QDPictDrawToCGContext, apply the change of scale to the current transformation
matrix in the Quartz context—for example, by calling CGContextScaleCTM. In this case, QuickDraw
scales the entire picture including patterns.

In a bitmap-based context, the picture is rendered into the bitmap. In a PDF-based context, the picture is
converted into a PDF content stream. If the picture uses transfer modes such as srcXor that do not have an
analog in Quartz 2D, the PDF representation may not match the original exactly.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictGetBounds
Returns the intended location and size of a QDPict picture.

CGRect QDPictGetBounds (
 QDPictRef pictRef
);

Parameters
picture

A QDPict picture.

Return Value
A Quartz rectangle that represents the intended location and size of the picture. The rectangle is in default
user space with one unit = 1/72 inch, and the origin is the lower-left corner of the picture.

Functions 77
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Discussion
If the native resolution in the picture data is not 72 pixels per inch, the bounding rectangle returned by this
function is scaled as follows:

 width = width in pixels * 72 / horizontal resolution
 height = height in pixels * 72 / vertical resolution

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictGetResolution
Returns the horizontal and vertical resolution of a QDPict picture.

void QDPictGetResolution (
 QDPictRef pictRef,
 float *xRes,
 float *yRes
);

Parameters
picture

A QDPict picture.

xRes
A pointer to your storage for a return value. Upon completion, the value is the picture’s horizontal
resolution in pixels per inch.

yRes
A pointer to your storage for a return value. Upon completion, the value is the picture’s vertical
resolution in pixels per inch.

Discussion
This function returns resolution data that you can use—together with the rectangle returned by
QDPictGetBounds (page 77)—to compute the picture’s size in pixels.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictRelease
Releases a QDPict picture.

78 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void QDPictRelease (
 QDPictRef pictRef
);

Parameters
picture

A QDPict picture which you created or retained.

Discussion
After you finish using a QDPict picture that you created or retained, you should call this function to release
the picture. If the picture’s retain count becomes 0, this function frees the picture and any associated resources
such as the picture’s data provider.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictRetain
Retains a QDPict picture.

QDPictRef QDPictRetain (
 QDPictRef pictRef
);

Parameters
picture

A QDPict picture.

Return Value
The retained picture.

Discussion
You should call this function when you obtain a QDPict picture that you did not create and you want to retain
the picture for later use. When you no longer need the retained picture, you should call QDPictRelease (page
78) to release it.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

Functions 79
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDRegionToRects

OSStatus QDRegionToRects (
 RgnHandle rgn,
 QDRegionParseDirection dir,
 RegionToRectsUPP proc,
 void *userData
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

RectInRgn
Determines whether a rectangle intersects a region.

Boolean RectInRgn (
 const Rect *r,
 RgnHandle rgn
);

Parameters
r

The rectangle to check for intersection.

rgn
A handle to the region to check.

Return Value
TRUE if the rectangle specified in the r parameter intersects the region whose handle is specified in the rgn
parameter. The RectInRgn function returns TRUE if the intersection encloses at least 1 bit or FALSE if it does
not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The RectInRgn function sometimes returns TRUEwhen the rectangle merely intersects the region’s bounding
rectangle. If you need to know exactly whether a given rectangle intersects the actual region, use
RectRgn (page 81) to set the rectangle to a region, and call SectRgn (page 84) to see whether the two
regions intersect. If the result of SectRgn is an empty region, then the rectangle does not intersect the region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

80 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawAPI.h

RectRgn
Changes the structure of an existing region to that of a rectangle.

void RectRgn (
 RgnHandle rgn,
 const Rect *r
);

Parameters
rgn

A handle to the region to restructure as a rectangle.

r
The rectangle structure to use.

Discussion
The RectRgn function destroys the previous structure of the SetRectRgn function, and it then sets the new
structure to a rectangle that you specify in the r parameter.

As an alternative to the RectRgn function, use the SetRectRgn function, which accepts as parameters four
coordinates instead of a rectangle.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The RectRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
QTCarbonShell

Declared In
QuickdrawAPI.h

Functions 81
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

RgnToHandle

void RgnToHandle (
 RgnHandle region,
 Handle flattenedRgnDataHdl
);

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ScalePt
Scales a height and width according to the proportions of two rectangles.

void ScalePt (
 Point *pt,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
pt

On input, a pointer to an initial height and width (specified in the two fields of a Point structure) to
scale; on return, vertical and horizontal scaling factors derived by multiplying the height and width
by ratios of the height and width of the rectangle in the srcRect parameter to the height and width
of the rectangle in the dstRect parameter.

You do not pass coordinates in this parameter. Instead, you pass an initial height to scale in the v (or
vertical) field of the Point structure, and you pass an initial width to scale in the h (or horizontal)
field.

The ScalePt function scales these measurements by multiplying the initial height by the ratio of the
height of the rectangle you specify in the dstRect parameter to the height of the rectangle you
specify in the srcRect parameter, and by multiplying the initial width by the ratio of the width of
the dstRect rectangle to the width of the srcRect rectangle.

srcRect
A rectangle. The ratio of this rectangle’s height to the height of the rectangle in the dstRect parameter
provides the vertical scaling factor, and the ratio of this rectangle’s width to the width of the rectangle
in the dstRect parameter provides the horizontal scaling factor.

dstRect
A rectangle compared to the rectangle in the srcRect parameter to determine vertical and horizontal
scaling factors.

Discussion
The ScalePt function produces horizontal and vertical scaling factors from the proportions of two rectangles.
Use ScalePt, for example, to scale the dimensions of the graphics pen.

Where the width of the dstRect rectangle is twice the width of the srcRect rectangle, and its height is
three times the height of srcRect, ScalePt scales the width of the graphics pen from 3 to 6 and scales its
height from 2 to 6.

82 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Special Considerations

The minimum value ScalePt returns is (1,1).

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

SectRect
Determines whether two rectangles intersect.

Boolean SectRect (
 const Rect *src1,
 const Rect *src2,
 Rect *dstRect
);

Parameters
src1

The first of two rectangles to test for intersection.

src2
The second of two rectangles to test for intersection.

dstRect
On return, a pointer to the rectangle marking the intersection of the first two rectangles.

Return Value
TRUE if the specified rectangles intersect or FALSE if they do not.

Discussion
The SectRect function calculates the rectangle that delineates the intersection of the two rectangles you
specify in the src1 and src2 parameters. Rectangles that touch at a line or a point are not considered
intersecting, because their intersection rectangle (actually, in this case, an intersection line or point) does
not enclose any pixels in the bit image.

If the rectangles do not intersect, the destination rectangle is set to (0,0,0,0). The SectRect function works
correctly even if one of the source rectangles is also the destination.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Functions 83
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
QuickdrawAPI.h

SectRgn
Calculates the intersection of two regions.

void SectRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the first of two regions whose intersection is to be determined.

srcRgnB
A handle to the second of two regions whose intersection is to be determined.

dstRgn
On return, a handle to the region holding the intersection area. If the regions do not intersect, or one
of the regions is empty, SectRgn sets the destination to the empty region defined by the rectangle
(0,0,0,0).

The SectRgn function does not create a destination region; you must have already allocated memory
for it by using the NewRgn (page 67) function.

The destination region may be one of the source regions, if desired.

Discussion
The SectRgn procedure calculates the intersection of the two regions whose handles you pass in the srcRgnA
and srcRgnB parameters, and it places the intersection in the region whose handle you pass in the dstRgn
parameter. If the regions do not intersect, or one of the regions is empty, SectRgn sets the destination to the
empty region defined by the rectangle (0,0,0,0).

The SectRgn procedure does not create a destination region; you must have already allocated memory for
it by using the NewRgn function.

The destination region may be one of the source regions, if desired.

Special Considerations

The SectRgn function may temporarily use heap space that’s twice the size of the two input regions.

The SectRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

84 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawAPI.h

SetClip
Changes the clipping region of the current graphics port (basic or color) to a region you specify. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetClip (
 RgnHandle rgn
);

Parameters
rgn

A handle to a region. The SetClip function makes this region the clipping region of the current
graphics port. The SetClip function doesn’t change the region handle, but instead affects the clipping
region itself.

Discussion
Since SetClip copies the specified region into the current graphics port’s clipping region, any subsequent
changes you make to the region specified in the rgn parameter do not affect the clipping region of the
graphics port.

The initial clipping region of a graphics port is an arbitrarily large rectangle. You can set the clipping region
to any arbitrary region, to aid you in drawing inside the graphics port—for example, to avoid drawing over
scroll bars when drawing into a window, you could define a clipping region that excludes the scroll bars.

You can use the GetClip and SetClip functions to preserve the current clipping region: use GetClip to
save the current port’s clipping region, and use SetClip to restore it.

All other system software functions preserve the current clipping region.

The SetClip function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.k.h

SetEmptyRgn
Sets an existing region to be empty.

void SetEmptyRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to be made empty.

Functions 85
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Discussion
The SetEmptyRgn function destroys the previous structure of the region whose handle you pass in the rgn
parameter; it then sets the new structure to the empty region defined by the rectangle (0,0,0,0).

Special Considerations

The SetEmptyRgn function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetGWorld
Changes the current graphics port (basic, color, or offscreen). (Deprecated. Use Quartz 2D instead; seeQuartz
Programming Guide for QuickDraw Developers.)

void SetGWorld (
 CGrafPtr port,
 GDHandle gdh
);

Parameters
port

A pointer to an offscreen graphics world, color graphics port, or basic graphics port. Specify values
of type GrafPtr, CGrafPtr, or GWorldPtr, depending on whether you want to set the current
graphics port to be a basic graphics port, color graphics port, or offscreen graphics world. Any drawing
your application performs then occurs in this graphics port.

gdh
A handle to a GDevice structure. If you pass a pointer to an offscreen graphics world in the port
parameter, set this parameter to NULL, because SetGWorld ignores this parameter and sets the
current device to the device attached to the offscreen graphics world.

Discussion
The SetGWorld function sets the current graphics port to the one specified by the port parameter
and—unless you set the current graphics port to be an offscreen graphics world—sets the current device to
that specified by the gdh parameter.

Special Considerations

The SetGWorld function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell
Simple DrawSprocket

86 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
ImageCompression.k.h

SetPt
Assigns two coordinates to a point.

void SetPt (
 Point *pt,
 short h,
 short v
);

Parameters
pt

A pointer to the point to be given new coordinates. On return, this point is assigned the horizontal
coordinate you specify in the h parameter and the vertical coordinate you specify in the v parameter.

h
The horizontal value of the new coordinates.

v
The vertical value of the new coordinates.

Discussion
The SetPt procedure assigns the horizontal coordinate specified in the h parameter and the vertical coordinate
specified in the v parameter to the point returned in the pt parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

SetRect
Assigns coordinates to a rectangle.

void SetRect (
 Rect * r,
 short left,
 short top,
 short right,
 short bottom
);

Parameters
r

A pointer to the rectangle to set.

left
The horizontal coordinate of the new upper-left corner of the rectangle.

top
The vertical coordinate of the new upper-left corner of the rectangle.

Functions 87
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

right
The horizontal coordinate of the new lower-right corner of the rectangle.

bottom
The vertical coordinate of the new lower-right corner of the rectangle.

Discussion
The SetRect function assigns the coordinates you specify in the left, top, right, and bottom parameters
to the rectangle that you specify in the r parameter. This function is provided to help you shorten your
program text. If you want a more readable text, at the expense of source text length, you can instead assign
integers (or points) directly into the fields of a Rect structure.

You can use a rectangle to specify locations and sizes for various graphics operations.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
WhackedTV

Declared In
QuickdrawAPI.h

SetRectRgn
Changes the structure of an existing region to that of a rectangle.

void SetRectRgn (
 RgnHandle rgn,
 short left,
 short top,
 short right,
 short bottom
);

Parameters
rgn

A handle to the region to restructure as a rectangle.

left
The horizontal coordinate of the upper-left corner of the rectangle to set as the new region.

top
The vertical coordinate of the upper-left corner of the rectangle to set as the new region.

right
The horizontal coordinate of the lower-right corner of the rectangle to set as the new region.

88 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

bottom
The vertical coordinate of the lower-right corner of the rectangle to set as the new region.

Discussion
The SetRectRgn function destroys the previous structure of the region whose handle you pass in the rgn
parameter, and it then sets the new structure to the rectangle that you specify in the left, top, right, and
bottom parameters. If you specify an empty rectangle (that is, right is greater than or equal to left or
bottom = top), the SetRectRgn function sets the region to the empty region defined by the rectangle
(0,0,0,0).

As an alternative to the SetRectRgn function, you can change the structure of an existing region to that of
a rectangle by using the RectRgn (page 81) function, which accepts as a parameter a rectangle instead of
four coordinates.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The SetRectRgn function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ShieldCursor
Hides the cursor in a rectangle.

void ShieldCursor (
 const Rect *shieldRect,
 Point offsetPt
);

Parameters
shieldRect

A rectangle in which the cursor is hidden whenever the cursor intersects the rectangle. The rectangle
may be specified in global or local coordinates. If you are using global coordinates, pass (0,0) in the
offsetPt parameter. If you are using the local coordinates of a graphics port, pass the coordinates
for the upper-left corner of the graphics port’s boundary rectangle in the offsetPt parameter.

offsetPt
A point value for the offset of the rectangle. Like the basic QuickDraw function LocalToGlobal, the
ShieldCursor function offsets the coordinates of the rectangle by the coordinates of this point.

Functions 89
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Discussion
If the cursor and the given rectangle intersect, ShieldCursor hides the cursor. If they do not intersect, the
cursor remains visible while the mouse is not moving, but is hidden when the mouse moves. Use this function
with a feature such as QuickTime to display content in a specified rectangle. When a QuickTime movie is
animating, the cursor should not be visible in front of the movie.

The ShieldCursor function decrements the cursor level and should be balanced by a call to the ShowCursor
function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ShowCursor
Displays a cursor hidden by the HideCursor or ShieldCursor functions.

void ShowCursor (
 void
);

Discussion
ShowCursor increments the cursor level, which has been decremented by the HideCursor (page 59) or
ShieldCursor (page 89) function and displays the cursor on the screen when the level is 0. A call to the
ShowCursor function balances each previous call to the HideCursor or ShieldCursor function. The level
is not incremented beyond 0, so extra calls to ShowCursor have no effect.

Low-level interrupt-driven functions link the cursor with the mouse position, so that if the cursor level is 0
and visible, the cursor automatically follows the mouse.

If the cursor has been changed with the SetCursor (page 352) function while hidden, ShowCursor displays
the new cursor.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

SlopeFromAngle
Converts an angle value to a slope value.

90 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Fixed SlopeFromAngle (
 short angle
);

Parameters
angle

The angle, expressed in clockwise degrees from 12 o’clock and treated MOD 180. (90 degrees is thus
at 3 o’clock and –90 degrees is at 9 o’clock.

Return Value
The slope corresponding to the angle specified in the angle parameter. Slopes are defined as Dx/Dy, the
horizontal change divided by the vertical change between any two points on a line with the given angle.
The negative y-axis is defined as being at 12 o’clock, and the positive y-axis at 6 o’clock. The x-axis is defined
as usual, with the positive side defined as being at 3 o’clock.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SubPt
Subtracts the coordinates of one point from another.

void SubPt (
 Point src,
 Point *dst
);

Parameters
src

A point, the coordinates of which are to be subtracted from the coordinates of the point specified in
the dst parameter.

dst
The address of a point. Upon completion, the coordinates of this point contain the differences between
the coordinates of the two points specified in the entry parameters.

If you pass NULL in the dst parameter, this function sets the QDError result code to paramErr and
returns.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

UnionRect
Calculates the smallest rectangle that encloses two rectangles.

Functions 91
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void UnionRect (
 const Rect * src1,
 const Rect * src2,
 Rect * dstRect
);

Parameters
src1

The first of two rectangles to enclose.

src2
The second of two rectangles to enclose.

dstRect
On return, a pointer to the smallest rectangle that encloses both of the rectangles you specify in the
src1 and src2 parameters. One of the source rectangles may also be the destination.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

UnionRgn
Calculates the union of two regions.

void UnionRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the first of two regions whose union is to be determined.

srcRgnB
A handle to the second of two regions whose union is to be determined.

dstRgn
On return, a handle to the region holding the resulting union area. If both regions are empty, UnionRgn
sets the destination to the empty region defined by the rectangle (0,0,0,0).

The UnionRgn function does not create the destination region; you must have already allocated
memory for it by using the NewRgn (page 67) function.

The destination region may be one of the source regions, if desired.

92 Functions
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Discussion
The UnionRgn procedure calculates the union of the two regions whose handles you pass in the srcRgnA
and srcRgnB parameters, and it places the union in the region whose handle you pass in the dstRgn parameter.
If both regions are empty, UnionRgn sets the destination to the empty region defined by the rectangle
(0,0,0,0).

Special Considerations

The UnionRgn function may temporarily use heap space that’s twice the size of the two input regions.

The UnionRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

XorRgn
Calculates the difference between the union and the intersection of two regions.

void XorRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the first of two regions to compare.

srcRgnB
A handle to the second of two regions to compare.

dstRgn
On return, a handle to the region holding the result.

This does not create the destination region; you must have already allocated memory for it by using
the NewRgn (page 67) function.

If the regions are coincident, XorRgn sets the destination region to the empty region defined by the
rectangle (0,0,0,0).

Discussion
The XorRgn procedure calculates the difference between the union and the intersection of the regions whose
handles you pass in the srcRgnA and srcRgnB parameters and places the result in the region whose handle
you pass in the dstRgn parameter.

Special Considerations

The XorRgn function may temporarily use heap space that’s twice the size of the two input regions.

The XorRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Functions 93
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Callbacks

ColorComplementProcPtr
Defines a pointer to a color inversion callback function that overrides the Color Manager’s color inversion
method.

typedef Boolean (*ColorComplementProcPtr) (
 RGBColor * rgb
);

If you name your function MyColorComplementProc, you would declare it like this:

Boolean ColorComplementProcPtr (
 RGBColor * rgb
);

Parameters
rgb

A pointer to the RGBColor data structure. Change it to reflect the inverted value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ColorSearchProcPtr
Defines a pointer to a color search callback function that overrides the Color Manager’s code for inverse table
mapping.

typedef Boolean (*ColorSearchProcPtr) (
 RGBColor * rgb,
 long * position
);

If you name your function MyColorSearchProc, you would declare it like this:

Boolean ColorSearchProcPtr (
 RGBColor * rgb,
 long * position
);

94 Callbacks
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Parameters
rgb

A pointer to the RGBColor data structure passed to your search function. Your function should set
the ColorSpec.value field to the index corresponding to the color indicated here.

position
A pointer to the index of the best-mapping color your function finds.

Return Value
True if your function succeeds, false if your function cannot find a match.

Discussion
Your MyColorSearchCallback function should examine the RGBColor data structure passed to it by the
Color Manager and return the index to the best-mapping color in the current GDevice data structure.

The Color Manager specifies the desired color in the RGBColor field of a ColorSpec data structure and
passes it by a pointer on the stack. Your function should return the corresponding index in the
ColorSpec.value field. If your function cannot handle the search, return false as the function value, and
pass the RGBColor data structure back to the Color Manager in the rgb parameter.

The Color Manager calls each search function in the list until one returns the Boolean value true. If no search
function installed in the linked list returns true, the Color Manager calls the default search function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

CustomXFerProcPtr
typedef void (*CustomXFerProcPtr) (
 CustomXFerRecPtr info
);

If you name your function MyCustomXFerProc, you would declare it like this:

void CustomXFerProcPtr (
 CustomXFerRecPtr info
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Callbacks 95
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

DeviceLoopDrawingProcPtr
typedef void (*DeviceLoopDrawingProcPtr) (
 short depth,
 short deviceFlags,
 GDHandle targetDevice,
 long userData
);

If you name your function MyDeviceLoopDrawingProc, you would declare it like this:

void DeviceLoopDrawingProcPtr (
 short depth,
 short deviceFlags,
 GDHandle targetDevice,
 long userData
);

Parameters
depth

The pixel depth of the graphics device.

deviceFlags
Constants which represent bits that are set to 1 in the gdFlags field of the GDevice structure for
the current device. See “Device Attribute Constants” (page 147) for a description of the values which
you can receive in this parameter.

targetDevice
A handle to the GDevice (page 119) structure for the current device.

userData
A value that your application supplies to the DeviceLoop function, which in turn passes the value
to your drawing function for whatever purpose you deem useful.

Discussion
For each video device that intersects a drawing region that you define (generally, the update region of a
window), DeviceLoop calls your drawing function. Your drawing function should analyze the pixel depth
passed in the depth parameter and the values passed in the deviceFlags parameter, and then draw in a
manner that is optimized for the current device.

When highlighting, for example, your application might invert black and white when drawing onto a 1-bit
video device but use magenta as the highlight color when drawing onto a color video device. In this case,
even were your window to span both a black-and-white and a color screen, the user sees the selection
inverted on the black-and-white screen, while magenta would be used to highlight the selection on the color
screen.

You must provide a pointer to your MyDeviceLoopDrawingCallback function in the drawingProc
parameter for DeviceLoop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

96 Callbacks
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

DragGrayRgnProcPtr
typedef void (*DragGrayRgnProcPtr) (
);

If you name your function MyDragGrayRgnProc, you would declare it like this:

void DragGrayRgnProcPtr ();

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDArcProcPtr
typedef void (*QDArcProcPtr) (
 GrafVerb verb,
 const Rect * r,
 short startAngle,
 short arcAngle
);

If you name your function MyQDArcProc, you would declare it like this:

void QDArcProcPtr (
 GrafVerb verb,
 const Rect * r,
 short startAngle,
 short arcAngle
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDBitsProcPtr
typedef void (*QDBitsProcPtr) (
 const BitMap * srcBits,
 const Rect * srcRect,
 const Rect * dstRect,
 short mode,
 RgnHandle maskRgn
);

If you name your function MyQDBitsProc, you would declare it like this:

void QDBitsProcPtr (
 const BitMap * srcBits,

Callbacks 97
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

 const Rect * srcRect,
 const Rect * dstRect,
 short mode,
 RgnHandle maskRgn
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDCommentProcPtr
typedef void (*QDCommentProcPtr) (
 short kind,
 short dataSize,
 Handle dataHandle
);

If you name your function MyQDCommentProc, you would declare it like this:

void QDCommentProcPtr (
 short kind,
 short dataSize,
 Handle dataHandle
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDGetPicProcPtr
typedef void (*QDGetPicProcPtr) (
 void * dataPtr,
 short byteCount
);

If you name your function MyQDGetPicProc, you would declare it like this:

void QDGetPicProcPtr (
 void * dataPtr,
 short byteCount
);

Availability
Available in Mac OS X v10.0 and later.

98 Callbacks
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDJShieldCursorProcPtr
typedef void (*QDJShieldCursorProcPtr) (
 short left,
 short top,
 short right,
 short bottom
);

If you name your function MyQDJShieldCursorProc, you would declare it like this:

void QDJShieldCursorProcPtr (
 short left,
 short top,
 short right,
 short bottom
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDLineProcPtr
typedef void (*QDLineProcPtr) (
 Point newPt
);

If you name your function MyQDLineProc, you would declare it like this:

void QDLineProcPtr (
 Point newPt
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Callbacks 99
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDOpcodeProcPtr
typedef void (*QDOpcodeProcPtr) (
 const Rect * fromRect,
 const Rect * toRect,
 UInt16 opcode,
 SInt16 version
);

If you name your function MyQDOpcodeProc, you would declare it like this:

void QDOpcodeProcPtr (
 const Rect * fromRect,
 const Rect * toRect,
 UInt16 opcode,
 SInt16 version
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDOvalProcPtr
typedef void (*QDOvalProcPtr) (
 GrafVerb verb,
 const Rect * r
);

If you name your function MyQDOvalProc, you would declare it like this:

void QDOvalProcPtr (
 GrafVerb verb,
 const Rect * r
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPolyProcPtr
typedef void (*QDPolyProcPtr) (
 GrafVerb verb,
 PolyHandle poly
);

If you name your function MyQDPolyProc, you would declare it like this:

100 Callbacks
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

void QDPolyProcPtr (
 GrafVerb verb,
 PolyHandle poly
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPrinterStatusProcPtr
typedef OSStatus (*QDPrinterStatusProcPtr) (
 PrinterStatusOpcode opcode,
 CGrafPtr currentPort,
 void * printerStatus
);

If you name your function MyQDPrinterStatusProc, you would declare it like this:

OSStatus QDPrinterStatusProcPtr (
 PrinterStatusOpcode opcode,
 CGrafPtr currentPort,
 void * printerStatus
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPutPicProcPtr
typedef void (*QDPutPicProcPtr) (
 const void * dataPtr,
 short byteCount
);

If you name your function MyQDPutPicProc, you would declare it like this:

void QDPutPicProcPtr (
 const void * dataPtr,
 short byteCount
);

Availability
Available in Mac OS X v10.0 and later.

Callbacks 101
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDRectProcPtr
typedef void (*QDRectProcPtr) (
 GrafVerb verb,
 const Rect * r
);

If you name your function MyQDRectProc, you would declare it like this:

void QDRectProcPtr (
 GrafVerb verb,
 const Rect * r
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDRgnProcPtr
typedef void (*QDRgnProcPtr) (
 GrafVerb verb,
 RgnHandle rgn
);

If you name your function MyQDRgnProc, you would declare it like this:

void QDRgnProcPtr (
 GrafVerb verb,
 RgnHandle rgn
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

102 Callbacks
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDRRectProcPtr
typedef void (*QDRRectProcPtr) (
 GrafVerb verb,
 const Rect * r,
 short ovalWidth,
 short ovalHeight
);

If you name your function MyQDRRectProc, you would declare it like this:

void QDRRectProcPtr (
 GrafVerb verb,
 const Rect * r,
 short ovalWidth,
 short ovalHeight
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDStdGlyphsProcPtr
typedef OSStatus (*QDStdGlyphsProcPtr) (
 void * dataStream,
 ByteCount size
);

If you name your function MyQDStdGlyphsProc, you would declare it like this:

OSStatus QDStdGlyphsProcPtr (
 void * dataStream,
 ByteCount size
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Callbacks 103
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDTextProcPtr
typedef void (*QDTextProcPtr) (
 short byteCount,
 const void * textBuf,
 Point numer,
 Point denom
);

If you name your function MyQDTextProc, you would declare it like this:

void QDTextProcPtr (
 short byteCount,
 const void * textBuf,
 Point numer,
 Point denom
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDTxMeasProcPtr
typedef short (*QDTxMeasProcPtr) (
 short byteCount,
 const void * textAddr,
 Point * numer,
 Point * denom,
 FontInfo * info
);

If you name your function MyQDTxMeasProc, you would declare it like this:

short QDTxMeasProcPtr (
 short byteCount,
 const void * textAddr,
 Point * numer,
 Point * denom,
 FontInfo * info
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

104 Callbacks
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

RegionToRectsProcPtr
typedef OSStatus (*RegionToRectsProcPtr) (
 UInt16 message,
 RgnHandle rgn,
 const Rect * rect,
 void * refCon
);

If you name your function MyRegionToRectsProc, you would declare it like this:

OSStatus RegionToRectsProcPtr (
 UInt16 message,
 RgnHandle rgn,
 const Rect * rect,
 void * refCon
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Data Types

BitMap
struct BitMap {
 Ptr baseAddr;
 short rowBytes;
 Rect bounds;
};
typedef struct BitMap BitMap;
typedef BitMap * BitMapPtr;

Fields
baseAddr

A pointer to the beginning of the bit image.

rowBytes
The offset in bytes from one row of the image to the next. The value of the rowBytes field must be
less than $4000.

bounds
The bitmap’s boundary rectangle by default, the entire main screen.

Discussion
A bitmap, which is a data structure of type BitMap, defines a bit image in terms of the QuickDraw coordinate
plane. (A bit image is a collection of bits in memory that form a grid.)

Data Types 105
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

A bitmap has three parts: a pointer to a bit image, the row width of that image, and a boundary rectangle
that links the local coordinate system of a graphics port to QuickDraw’s global coordinate system and defines
the area of the bit image into which QuickDraw can draw.

The width of the boundary rectangle determines how many bits of one row are logically owned by the
bitmap. This width must not exceed the number of bits in each row of the bit image. The height of the
boundary rectangle determines how many rows of the image are logically owned by the bitmap. The number
of rows enclosed by the boundary rectangle must not exceed the number of rows in the bit image.

The boundary rectangle defines the local coordinate system used by the port rectangle for a graphics port
(described next). The upper-left corner (which for a window is called the window origin) of the port rectangle
usually has a vertical coordinate of 0 and a horizontal coordinate of 0, although you can use the function
SetOrigin (page 356) to change the coordinates of the window origin.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Bits16
typedef short Bits16[16];

Discussion
The Bits16 array is used by the Cursor (page 114) structure to hold a black-and-white, 16-by-16 pixel square
image.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

106 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

CCrsr
struct CCrsr {
 short crsrType;
 PixMapHandle crsrMap;
 Handle crsrData;
 Handle crsrXData;
 short crsrXValid;
 Handle crsrXHandle;
 Bits16 crsr1Data;
 Bits16 crsrMask;
 Point crsrHotSpot;
 long crsrXTable;
 long crsrID;
};
typedef struct CCrsr CCrsr;
typedef CCrsr * CCrsrPtr;

Fields
crsrType

The type of cursor. Possible values are $8000 for a black-and-white cursor and $8001 for a color cursor.

crsrMap
A handle to the PixMap structure defining the cursor’s characteristics. When the screen depth is
greater than 2 bits per pixel, the crsrMap field and the crsrData field define the image. The pixels
within the mask replace the destination pixels. Color QuickDraw transfers the pixels outside the mask
into the destination pixels using the XOR Boolean transfer mode. Therefore, if pixels outside the mask
are white, the destination pixels aren’t changed. If pixels outside the mask are all black, the destination
pixels are inverted. All other values outside of the mask cause unpredictable results.

crsrData
A handle to the cursor’s pixel data. To work properly, a color cursor’s image should contain white
pixels (R=G= B=$FFFF) for the transparent part of the image, and black pixels (R=G=B=$0000) for
the part of the image to be inverted, in addition to the other colors in the cursor’s image. Thus, to
define a cursor that contains two colors, it’s necessary to use a 2-bit cursor image (that is, a four-color
image.

crsrXData
A handle to the expanded pixel image used internally by Color QuickDraw.

crsrXValid
The depth of the expanded cursor image. If you change the cursor’s data or color table, set this field
to 0 to cause the cursor to be re-expanded. Never set it to any other values.

crsrXHandle
Reserved for future use.

crsr1Data
A 16-by-16 pixel image with a pixel depth of 1 to be displayed when the cursor is on screens with
pixel depths of 1 or 2 bits.

crsrMask
The cursor’s mask data. QuickDraw uses the mask to crop the cursor’s outline into a background color
or pattern. QuickDraw then draws the cursor into this shape. The same 1-bit mask is used with images
specified by the crsrData and crsr1Data fields.

crsrHotSpot
The cursor’s hot spot.

Data Types 107
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

crsrXTable
Reserved for future use.

crsrID
The color table seed for the cursor.

Discussion
Your application typically does not create CCrsr structures. Although you can create a CCrsr structure, it
is usually easier to create a color cursor in a color cursor resource, ‘crsr’.

A color cursor is a 256-pixel color image in a 16-by-16 pixel square defined in a color cursor ('crsr') resource.
When your application uses the GetCCursor function to get a color cursor from a 'crsr' resource,
GetCCursor loads the resource into memory as a CCrsr structure. Your application can then display the
color cursor by using the SetCCursor (page 351) function.

CCrsr is substantially different from the Cursor structure. The fields crsr1Data, crsrMask, and
crsrHotSpot in the CCrsr structure are the only ones that have counterparts in the Cursor structure.

The first four fields of the CCrsr structure are similar to the first four fields of the PixPat record, and are
used in the same manner by QuickDraw.

The display of a cursor involves a relationship between a mask, stored in the crsrMask field with the same
format used for 1-bit cursor masks, and an image. There are two possible sources for a color cursor’s image.
When the cursor is on a screen whose depth is 1 or 2 bits per pixel, the image for the cursor is taken from
the crsr1Data field, which contains bitmap cursor data, similar to the bitmap in a 'CURS' resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

108 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

CGrafPort
struct CGrafPort {
 SInt16 device;
 PixMapHandle portPixMap;
 SInt16 portVersion;
 Handle grafVars;
 SInt16 chExtra;
 SInt16 pnLocHFrac;
 Rect portRect;
 RgnHandle visRgn;
 RgnHandle clipRgn;
 PixPatHandle bkPixPat;
 RGBColor rgbFgColor;
 RGBColor rgbBkColor;
 Point pnLoc;
 Point pnSize;
 SInt16 pnMode;
 PixPatHandle pnPixPat;
 PixPatHandle fillPixPat;
 SInt16 pnVis;
 SInt16 txFont;
 StyleField txFace;
 SInt16 txMode;
 SInt16 txSize;
 Fixed spExtra;
 SInt32 fgColor;
 SInt32 bkColor;
 SInt16 colrBit;
 SInt16 patStretch;
 Handle picSave;
 Handle rgnSave;
 Handle polySave;
 CQDProcsPtr grafProcs;
};

CGrafPtr
typedef GrafPtr CGrafPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ColorComplementUPP
typedef ColorComplementProcPtr ColorComplementUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 109
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

ColorSearchUPP
typedef ColorSearchProcPtr ColorSearchUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ColorSpec
struct ColorSpec {
 short value;
 RGBColor rgb;
};
typedef struct ColorSpec ColorSpec;
typedef ColorSpec * ColorSpecPtr;

Fields
value

The pixel value assigned by QuickDraw for the color specified in the rgb field of this structure.
QuickDraw assigns a pixel value based on the capabilities of the user’s screen. For indexed devices,
the pixel value is an index number assigned by QuickDraw to the closest color available on the indexed
device for direct devices, this value expresses the best available red, green, and blue values for the
color on the direct device.

rgb
An RGBColor (page 142) structure that fully specifies the color whose approximation QuickDraw
specifies in the value field.

Discussion
When creating a PixMap (page 129) structure for an indexed device, QuickDraw creates a ColorTable
structure that defines the best colors available for the pixel image on that graphics device. QuickDraw also
stores a ColorTable structure for the currently available colors in the graphics device’s CLUT.

One of the fields in a ColorTable structure requires a value of type cSpecArray, which is defined as an
array of ColorSpec structures. Typically, your application never needs to create ColorTable structures or
ColorSpec structures. For completeness, the data structure of type ColorSpec is shown here.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

110 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

ColorTable
struct ColorTable {
 long ctSeed;
 short ctFlags;
 short ctSize;
 CSpecArray ctTable;
};
typedef struct ColorTable ColorTable;
typedef ColorTable * CTabPtr;
typedef CTabPtr * CTabHandle;

Fields
ctSeed

Identifies a particular instance of a color table. QuickDraw uses the ctSeed value to compare an
indexed device’s color table with its associated inverse table (a table it uses for fast color lookup).
When the color table for a graphics device has been changed, QuickDraw needs to rebuild the inverse
table.

ctFlags
Flags that distinguish pixel map color tables from color tables in GDevice structures.

ctSize
One less than the number of entries in the table.

ctTable
An array of ColorSpec (page 110) entries, each containing a pixel value and a color specified by an
RGBColor structure.

Discussion
When creating a PixMap (page 129) structure for a particular graphics device, QuickDraw creates a ColorTable
structure that defines the best colors available for the pixel image on that particular graphics device. QuickDraw
also creates a ColorTable structure of all available colors for use by the CLUT on indexed devices.

Typically, your application needs to create ColorTable structures only if it uses the Palette Manager.

Your application should never need to directly change the fields of a ColorTable structure. If you find it
absolutely necessary for your application to do so, immediately use the CTabChanged (page 187) function
to notify QuickDraw that your application has changed the ColorTable structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ConstPatternParam
typedef const Pattern* ConstPatternParam;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 111
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

CProcRec
struct CProcRec {
 Handle nxtComp;
 ColorComplementUPP compProc;
};
typedef struct CProcRec CProcRec;
typedef CProcRec * CProcPtr;

Fields
nxtComp

A handle to the next CPRocRec data structure in the list.

compProc
A pointer to a complement function, as described in ColorComplementProcPtr (page 94).

Discussion
The CProcRec data structure contains a pointer to a custom complement function and a pointer to the next
complement function in the list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

CQDProcs
struct CQDProcs {
 QDTextUPP textProc;
 QDLineUPP lineProc;
 QDRectUPP rectProc;
 QDRRectUPP rRectProc;
 QDOvalUPP ovalProc;
 QDArcUPP arcProc;
 QDPolyUPP polyProc;
 QDRgnUPP rgnProc;
 QDBitsUPP bitsProc;
 QDCommentUPP commentProc;
 QDTxMeasUPP txMeasProc;
 QDGetPicUPP getPicProc;
 QDPutPicUPP putPicProc;
 QDOpcodeUPP opcodeProc;
 UniversalProcPtr newProc1;
 QDStdGlyphsUPP glyphsProc;
 QDPrinterStatusUPP printerStatusProc;
 UniversalProcPtr newProc4;
 UniversalProcPtr newProc5;
 UniversalProcPtr newProc6;
};
typedef struct CQDProcs CQDProcs;
typedef CQDProcs * CQDProcsPtr;

Fields
textProc

A pointer to the low-level function that draws text. The standard QuickDraw function is the StdText
function.

112 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

lineProc
A pointer to the low-level function that draws lines. The standard QuickDraw function is the StdLine
function.

rectProc
A pointer to the low-level function that draws rectangles. The standard QuickDraw function is the
StdRect function.

rRectProc
A pointer to the low-level function that draws rounded rectangles. The standard QuickDraw function
is the StdRRect function.

ovalProc
A pointer to the low-level function that draws ovals. The standard QuickDraw function is the StdOval
function.

arcProc
A pointer to the low-level function that draws arcs. The standard QuickDraw function is the StdArc
function.

polyProc
A pointer to the low-level function that draws polygons. The standard QuickDraw function is the
StdPoly function.

rgnProc
A pointer to the low-level function that draws regions. The standard QuickDraw function is the StdRgn
function.

bitsProc
A pointer to the low-level function that copies bitmaps. The standard QuickDraw function is the
StdBits function.

commentProc
A pointer to the low-level function for processing a picture comment. The standard QuickDraw function
is the StdComment function.

txMeasProc
A pointer to the low-level function for measuring text width. The standard QuickDraw function is the
StdTxMeas function.

getPicProc
A pointer to the low-level function for retrieving information from the definition of a picture. The
standard QuickDraw function is the StdGetPic function.

putPicProc
A pointer to the low-level function for saving information as the definition of a picture. The standard
QuickDraw function is the StdPutPic function.

opcodeProc
Reserved for future use.

newProc1
Reserved for future use.

glyphsProc
Reserved for future use.

printerStatusProc
Reserved for future use.

newProc4
Reserved for future use.

Data Types 113
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

newProc5
Reserved for future use.

newProc6
Reserved for future use.

Discussion
Use the CQDProcs structure only if you customize one or more of QuickDraw’s standard low-level drawing
functions. Use the SetStdCProcs (page 368) function to create a CQDProcs structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

CSpecArray
typedef ColorSpec CSpecArray[1];

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Cursor
struct Cursor {
 Bits16 data;
 Bits16 mask;
 Point hotSpot;
};
typedef struct Cursor Cursor;
typedef Cursor * CursPtr;

Fields
data

Cursor image data, which must begin on a word boundary.

mask
The cursor’s mask. QuickDraw uses the mask to crop the cursor’s outline into a background color or
pattern. QuickDraw then draws the cursor into this shape.

hotSpot
A point in the image that aligns a point (not a bit) in the image with the mouse location on the screen.
Whenever the user moves the mouse, the low-level interrupt-driven mouse functions move the cursor.
When the user clicks, the Event Manager function WaitNextEvent reports the location of the cursor’s
hot spot in global coordinates.

Discussion
Your application typically does not create Cursor structures. Although you can create a Cursor structure
and its associated Bits16 array in your program code, it is usually easier to create a black-and-white cursor
in a cursor resource,‘CURS’.

114 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square. When your application uses the
GetCursor (page 227) function to get a cursor from a 'CURS' resource, GetCursor loads the resource into
memory as a Cursor structure. Your application then displays the color cursor by using the SetCursor (page
352) function.

The cursor appears on the screen as a 16-by-16 pixel square. The appearance of each bit if the square is
determined by the corresponding bits in the data and the mask and, if the mask bit is 0, by the pixel under
the cursor. The four possible combinations of values for the data bit and the mask bit are:

 ■ Data bit 0, Mask bit 1. The resulting pixel on the screen is white.

 ■ Data bit 1, Mask bit 1. The resulting pixel on the screen is black.

 ■ Data bit 0, Mask bit 0. The resulting pixel on the screen is the same as the pixel under the cursor.

 ■ Data bit 1, Mask bit 0. The resulting pixel on the screen is the inverse of the pixel under the cursor.

Notice that if all mask bits are 0, the cursor is completely transparent, in that the image under the cursor can
still be viewed. Pixels under the white part of the cursor appear unchanged; under the black part of the
cursor, black pixels show through as white.

Basic QuickDraw supplies a predefined cursor in the global variable named arrow; this is the standard arrow
cursor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
X.h

CursorImageRec
struct CursorImageRec {
 UInt16 majorVersion;
 UInt16 minorVersion;
 PixMapHandle cursorPixMap;
 BitMapHandle cursorBitMask;
};
typedef struct CursorImageRec CursorImageRec;
typedef CursorImageRec * CursorImagePtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Quickdraw.h

Data Types 115
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

CursorInfo
struct CursorInfo {
 long version;
 long capabilities;
 long animateDuration;
 Rect bounds;
 Point hotspot;
 long reserved;
};
typedef struct CursorInfo CursorInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

CustomXFerRec
struct CustomXFerRec {
 UInt32 version;
 void * srcPixels;
 void * destPixels;
 void * resultPixels;
 UInt32 refCon;
 UInt32 pixelSize;
 UInt32 pixelCount;
 Point firstPixelHV;
 Rect destBounds;
};
typedef struct CustomXFerRec CustomXFerRec;
typedef CustomXFerRec * CustomXFerRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

CWindowPtr
typedef WindowPtr CWindowPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

116 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

DeviceLoopDrawingUPP
typedef DeviceLoopDrawingProcPtr DeviceLoopDrawingUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

DeviceLoopFlags
typedef unsigned long DeviceLoopFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

DialogPtr
An opaque type that represents a dialog.

typedef struct OpaqueDialogPtr * DialogPtr;

Discussion
This is a Dialog Manager data type, defined in QuickDraw for historical reasons. Its role in Mac OS X is to serve
as the basis for the widely used DialogRef data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

DragConstraint
typedef UInt16 DragConstraint;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 117
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

DragGrayRgnUPP
typedef DragGrayRgnProcPtr DragGrayRgnUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

GammaTbl
struct GammaTbl {
 short gVersion;
 short gType;
 short gFormulaSize;
 short gChanCnt;
 short gDataCnt;
 short gDataWidth;
 short gFormulaData[1];
};
typedef struct GammaTbl GammaTbl;
typedef GammaTbl * GammaTblPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

118 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

GDevice
struct GDevice {
 short gdRefNum;
 short gdID;
 short gdType;
 ITabHandle gdITable;
 short gdResPref;
 SProcHndl gdSearchProc;
 CProcHndl gdCompProc;
 short gdFlags;
 PixMapHandle gdPMap;
 long gdRefCon;
 GDHandle gdNextGD;
 Rect gdRect;
 long gdMode;
 short gdCCBytes;
 short gdCCDepth;
 Handle gdCCXData;
 Handle gdCCXMask;
 long gdReserved;
};
typedef struct GDevice GDevice;
typedef GDevice * GDPtr;
typedef GDPtr * GDHandle;

Fields
gdRefNum

The reference number of the driver for the screen associated with the video device. For most video
devices, this information is set at system startup time.

gdID
Reserved. If you create your own GDevice structure, set this field to 0.

gdType
The general type of graphics device. See “Graphics Device Type Constants” (page 151) for a description
of the values which you can use in this field.

gdITable
A handle to the inverse table for color mapping.

gdResPref
The preferred resolution for inverse tables.

gdSearchProc
A handle to the list of search functions. Its value is NULL for the default function.

gdCompProc
A handle to a list of complement functions. Its value is NULL for the default function.

gdFlags
The GDevice structure’s attributes. To set the attribute bits in the gdFlags field, use the
SetDeviceAttribute (page 353) function. Do not set gdFlags directly in the GDevice structure.

Data Types 119
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

gdPMap
A handle to a PixMap structure giving the dimension of the image buffer, along with the characteristics
of the graphics device (resolution, storage format, color depth, and color table). For GDevice structures,
the high bit of the global variable

(((**TheGDevice).**gdPMap).**pmTable).ctFlags

is always set.

gdRefCon
A value used by system software to pass device-related parameters. Since a graphics device is shared,
do not store data here.

gdNextGD
A handle to the next graphics device in the device list. If this is the last graphics device in the device
list, the field contains 0.

gdRect
The boundary rectangle of the graphics device represented by the GDevice structure. The main
screen has the upper-left corner of the rectangle set to (0,0). All other graphics devices are relative
to this point.

gdMode
The current setting for the graphics device mode. This value is passed to the video driver to set its
pixel depth and to specify color or black and white; applications do not need this information.

gdCCBytes
The rowBytes value of the expanded cursor. Your application should not change this field.

gdCCDepth
The depth of the expanded cursor. Your application should not change this field.

gdCCXData
A handle to the cursor’s expanded data. Your application should not change this field.

gdCCXMask
A handle to the cursor’s expanded mask. Your application should not change this field.

gdReserved
Reserved for future expansion; it must be set to 0 for future compatibility.

Discussion
Color QuickDraw stores state information for video devices and offscreen graphics worlds in GDevice
structures. When the system starts up, it allocates and initializes one handle to a GDevice structure for each
video device it finds. When you use the Offscreen Graphics Devices function, NewGWorld, Color QuickDraw
automatically creates a GDevice structure for the new offscreen graphics world. The system links these
GDevice structures in a list, called the device list. (You can find a handle to the first element in the device
list in the global variable DeviceList.) By default, the GDevice structure corresponding to the first video
device found is marked as the current device. All other graphics devices in the list are initially marked as
inactive.

When the user moves a window or creates a window on another screen, and your application draws into
that window, Color QuickDraw automatically makes the video device for that screen the current device. Color
QuickDraw stores that information in the global variable TheGDevice.

GDevice structures that correspond to video devices have drivers associated with them. These drivers can
be used to change the mode of the video device from black and white to color and to change the pixel depth.
Application-created GDevice structures usually don’t require drivers.

120 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Your application should never need to directly change the fields of a GDevice structure. If you find it absolutely
necessary for your application to so, immediately use the GDeviceChanged function to notify QuickDraw
that your application has changed the GDevice structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

GrafPort
struct GrafPort {
 SInt16 device;
 BitMap portBits;
 Rect portRect;
 RgnHandle visRgn;
 RgnHandle clipRgn;
 Pattern bkPat;
 Pattern fillPat;
 Point pnLoc;
 Point pnSize;
 SInt16 pnMode;
 Pattern pnPat;
 SInt16 pnVis;
 SInt16 txFont;
 StyleField txFace;
 SInt16 txMode;
 SInt16 txSize;
 Fixed spExtra;
 SInt32 fgColor;
 SInt32 bkColor;
 SInt16 colrBit;
 SInt16 patStretch;
 Handle picSave;
 Handle rgnSave;
 Handle polySave;
 QDProcsPtr grafProcs;
};

GrafPtr
typedef struct OpaqueGrafPtr * GrafPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 121
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

GrafVars
struct GrafVars {
 RGBColor rgbOpColor;
 RGBColor rgbHiliteColor;
 Handle pmFgColor;
 short pmFgIndex;
 Handle pmBkColor;
 short pmBkIndex;
 short pmFlags;
};
typedef struct GrafVars GrafVars;
typedef GrafVars * GVarPtr;

Fields
rgbOpColor

The color for the arithmetic transfer operations addPin, subPin, and blend.

rgbHiliteColor
The highlight color for this graphics port.

pmFgColor
A handle to the palette that contains the foreground color.

pmFgIndex
The index value into the palette for the foreground color.

pmBkColor
A handle to the palette that contains the background color.

pmBkIndex
The index value into the palette for the background color.

pmFlags
Flags private to the Palette Manager.

Discussion
The GrafVars structure contains color information in addition to that in the CGrafPort structure, of which
it is logically a part; the information is used by QuickDraw and the Palette Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

GrafVerb
typedef SInt8 GrafVerb;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

122 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

GWorldFlags
typedef unsigned long GWorldFlags;

Discussion
Several functions expect or return values defined by the GWorldFlags data type. See “Graphics World
Flags” (page 151) for a detailed description of these flags.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QDOffscreen.h

GWorldPtr
Defines a pointer to a structure that your application can use to refer to an offscreen graphics world.

typedef CGrafPtr GWorldPtr;

Discussion
An offscreen graphics world in color QuickDraw contains a CGrafPort structure—and its handles to associated
PixMap and ColorTable structures—that describes an offscreen graphics port and contains references to
a GDevice structure and other state information. The actual data structure for an offscreen graphics world
is kept private to allow for future extensions. However, when your application uses the NewGWorld function
to create an offscreen world, NewGWorld returns a pointer of type GWorldPtr by which your application
refers to the offscreen graphics world.

On computers lacking color QuickDraw, GWorldPtr points to an extension of the GrafPort structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QDOffscreen.h

ITab
struct ITab {
 long iTabSeed;
 short iTabRes;
 Byte iTTable[1];
};
typedef struct ITab ITab;
typedef ITab * ITabPtr;
typedef ITabPtr * ITabHandle;

Fields
iTabSeed

The iTabSeed value, initially set from the corresponding CLUT’s ctSeed field. If at any time these
do not match, then the color table was changed, and the inverse table needs to be rebuilt.

iTabRes
The resolution of this inverse table.

Data Types 123
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

iTTable
An array of index values. The size of the iTabTable field in bytes is 23*iTabRes.

Discussion
The ITab data structure contains the inverse table information that the Color Manager uses for fast mapping
of RGB color values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

MacPolygon
struct MacPolygon {
 short polySize;
 Rect polyBBox;
 Point polyPoints[1];
};
typedef struct MacPolygon MacPolygon;
typedef MacPolygon Polygon;
typedef MacPolygon * PolyPtr;
typedef PolyPtr * PolyHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

MacRegion
struct MacRegion {
 UInt16 rgnSize;
 Rect rgnBBox;
};
typedef struct MacRegion MacRegion;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

124 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

MatchRec
struct MatchRec {
 unsigned short red;
 unsigned short green;
 unsigned short blue;
 long matchData;
};
typedef struct MatchRec MatchRec;

Fields
red

Red value of the seed.

green
Green value of the seed.

blue
Blue value of the seed.

matchData
The value passed in the matchData parameter of the SeedCFill or CalcCMask function.

Discussion
When SeedCFill (page 348) or CalcCMask (page 172) calls your color search function, the GDRefCon field
of the current GDevice structure contains a pointer to a MatchRec structure. This structure contains the
RGB value of the seed pixel or seed color for which your color search function searches.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

OpenCPicParams
struct OpenCPicParams {
 Rect srcRect;
 Fixed hRes;
 Fixed vRes;
 short version;
 short reserved1;
 long reserved2;
};
typedef struct OpenCPicParams OpenCPicParams;

Fields
srcRect

The optimal bounding rectangle for the resolution indicated by the hRes and vRes fields. When you
later call the DrawPicture (page 203) function to play back the saved picture, specify a destination
rectangle and DrawPicture scales the picture so that it is completely aligned with the destination
rectangle.

hRes
The best horizontal resolution for the picture. A value of $00480000 specifies a horizontal resolution
of 72 dpi.

Data Types 125
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

vRes
The best vertical resolution for the picture. A value of $00480000 specifies a vertical resolution of 72
dpi.

version
Always set this field to –2.

reserved1
Reserved; set to 0.

reserved2
Reserved; set to 0.

Discussion
When you use the OpenCPicture function to begin creating a picture, you must pass it information in an
OpenCPicParams structure. This structure provides a simple mechanism for specifying resolutions when
creating images. For example, applications that create pictures from scanned images can specify resolutions
higher than 72 dpi for these pictures in OpenCPicParams structures.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Pattern
struct Pattern {
 UInt8 pat[8];
};
typedef struct Pattern Pattern;
typedef Pattern * PatPtr;
typedef PatPtr * PatHandle;

Discussion
Your application typically does not create Pattern structures. Although you can create Pattern structures
in your program code, it is usually easier to create bit patterns using the pattern, ‘PAT’, or pattern list, ‘PAT#’,
resource.

A bit pattern is a 64-bit image, organized as an 8-by-8 bit square, that defines a repeating design or tone.
When a pattern is drawn, it is aligned so that adjacent areas of the same pattern in the same graphics port
form a continuous, coordinated pattern. QuickDraw provides predefined patterns in global variables named
white, black, gray, ltGray, and dkGray. The row width of a pattern is 1 byte.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

126 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

PenState
struct PenState {
 Point pnLoc;
 Point pnSize;
 short pnMode;
 Pattern pnPat;
};
typedef struct PenState PenState;

Fields
pnLoc

For the current graphics port at the time the GetPenState function was called, the value of that
graphics port’s pnLoc field. This value is the point where QuickDraw begins drawing next. The location
of the graphics pen is a point in the graphics port’s coordinate system, not a pixel in a bit image. The
upper-left corner of the pen is at the pen location the graphics pen hangs below and to the right of
this point.

pnSize
For the current graphics port at the time the GetPenState function was called, the value of that
graphics port’s pnSize field. The graphics pen is rectangular in shape, and its width and height are
specified by the values in the pnSize field. The default size is a 1-by-1 bit square; the width and
height can range from 0 by 0 to 32,767 by 32,767. If either the pen width or the pen height is 0, the
pen does not draw. Heights or widths of less than 0 are undefined.

pnMode
The pattern mode—that is, for the current graphics port at the time the GetPenState function was
called, the value of that graphics port’s pnMode field. This value determines how the pen pattern is
to affect what’s already in the bit image when lines or shapes are drawn. When the graphics pen
draws, QuickDraw first determines what bits in the bit image are affected, finds their corresponding
bits in the pattern, and then transfers the bits from the pattern into the image according to this mode,
which specifies one of eight Boolean transfer operations. The resulting bit is stored into its proper
place in the bit image.

pnPat
For the current graphics port at the time the GetPenState function was called, the pen pattern for
that graphics port. This pattern determines how the bits under the graphics pen are affected when
lines or shapes are drawn.

Discussion
The GetPenState (page 235) function saves the location, size, pattern, and pattern mode of the graphics
pen for the current graphics port in a PenState structure, which is a data structure of type PenState. After
changing the graphics pen as necessary, you can later restore these pen states with the SetPenState (page
357) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 127
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Picture
struct Picture {
 short picSize;
 Rect picFrame;
};
typedef struct Picture Picture;
typedef Picture * PicPtr;
typedef PicPtr * PicHandle;

Fields
picSize

The size of the rest of this structure for a version 1 picture. To maintain compatibility with the version
1 picture format, the picSize field was not changed for the version 2 picture or extended version 2
formats. The information in this field is used only for version 1 pictures, which cannot exceed 32 KB
in size. Because version 2 and extended version 2 pictures can be much larger than the 32 KB limit
imposed by the 2-byte picSize field, you should use the Memory Manager function GetHandleSize
to determine the size of a picture in memory; you should use the File Manager function PBGetFInfo
to determine the size of a picture in a 'PICT' file; and you should use the Resource Manager function
GetMaxResourceSize to determine the size of a 'PICT' resource.

picFrame
The bounding rectangle for the picture defined in the rest of this structure. The DrawPicture function
uses this rectangle to scale the picture if you draw it into a destination rectangle of a different size.

Discussion
When you use the OpenCPicture (page 309) or OpenPicture (page 311) function, QuickDraw begins
collecting your subsequent drawing commands in a Picture structure. (You use the ClosePicture function
to complete a picture definition.) When you use the GetPicture (page 236) function to retrieve a picture
stored in a resource, GetPicture reads the resource into memory as a Picture structure. By using the
DrawPicture (page 203) procedure, you can draw onscreen the picture defined by the commands stored
in the Picture structure.

A picture opcode is a number that the DrawPicture function uses to determine what object to draw or
what mode to change for subsequent drawing. Generally, do not read or write this picture data directly.
Instead, use the OpenCPicture (or OpenPicture), ClosePicture, and DrawPicture functions to process
these opcodes.

The Picture structure can also contain picture comments. Created by applications using the PicComment
function, picture comments contain data or commands for special processing by output devices, such as
PostScript printers.

You can use File Manager functions to save the picture in a file of type 'PICT', you can use Resource Manager
functions to save the picture in a resource of type 'PICT', and you can use the Scrap Manager function
PutScrap to store the picture in 'PICT' scrap format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

128 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

PixelType
typedef SInt8 PixelType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PixMap
struct PixMap {
 Ptr baseAddr;
 short rowBytes;
 Rect bounds;
 short pmVersion;
 short packType;
 long packSize;
 Fixed hRes;
 Fixed vRes;
 short pixelType;
 short pixelSize;
 short cmpCount;
 short cmpSize;
 long planeBytes;
 CTabHandle pmTable;
 long pmReserved;
};
typedef struct PixMap PixMap;
typedef PixMap * PixMapPtr;
typedef PixMapPtr * PixMapHandle;

Fields
baseAddr

For an onscreen pixel image, a pointer to the first byte of the image. For optimal performance, this
should be a multiple of 4. The pixel image that appears on a screen is normally stored on a graphics
card rather than in main memory.

Note that the baseAddr field of the PixMap structure for an offscreen graphics world contains a
handle instead of a pointer. You must use the GetPixBaseAddr function to obtain a pointer to the
PixMap structure for an offscreen graphics world. Your application should never directly access the
baseAddr field of the PixMap structure for an offscreen graphics world.

rowBytes
The offset in bytes from one row of the image to the next. The value must be even, less than $4000,
and for best performance it should be a multiple of 4. The high 2 bits of rowBytes are used as flags.
If bit 15 = 1, the data structure pointed to is a PixMap structure; otherwise it is a BitMap structure.

bounds
The boundary rectangle, which links the local coordinate system of a graphics port to QuickDraw’s
global coordinate system and defines the area of the bit image into which QuickDraw can draw. By
default, the boundary rectangle is the entire main screen. Do not use the value of this field to determine
the size of the screen instead use the value of the gdRect field of the GDevice structure for the
screen.

Data Types 129
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

pmVersion
The version number of QuickDraw that created this PixMap structure. The value of pmVersion is
normally 0. If pmVersion is 4, QuickDraw treats the PixMap structure’s baseAddr field as 32-bit clean.
All other flags are private. Most applications never need to set this field.

packType
The packing algorithm used to compress image data. QuickDraw currently supports a packType of
0, which means no packing, and values of 1 to 4 for packing direct pixels.

packSize
The size of the packed image in bytes. When the packType field contains the value 0, this field is
always set to 0.

hRes
The horizontal resolution of the pixel image in pixels per inch. This value is of type Fixed; by default,
the value here is $00480000 (for 72 pixels per inch).

vRes
The vertical resolution of the pixel image in pixels per inch. This value is of type Fixed; by default,
the value here is $00480000 (for 72 pixels per inch).

pixelType
The storage format for a pixel image. Indexed pixels are indicated by a value of 0. Direct pixels are
specified by a value of RGBDirect, or 16. In the PixMap structure of the GDevice structure for a
direct device, this field is set to the constant RGBDirect when the screen depth is set.

pixelSize
Pixel depth; that is, the number of bits used to represent a pixel. Indexed pixels can have sizes of 1,
2, 4, and 8 bits; direct pixel sizes are 16 and 32 bits.

cmpCount
The number of components used to represent a color for a pixel. With indexed pixels, each pixel is a
single value representing an index in a color table, and therefore this field contains the value 1—the
index is the single component. With direct pixels, each pixel contains three components—one integer
each for the intensities of red, green, and blue—so this field contains the value 3.

cmpSize
The size in bits of each component for a pixel. QuickDraw expects that the sizes of all components
are the same, and that the value of the cmpCount field multiplied by the value of the cmpSize field
is less than or equal to the value in the pixelSize field.

For an indexed pixel value, which has only one component, the value of the cmpSize field is the
same as the value of the pixelSize field—that is, 1, 2, 4, or 8.

For direct pixels there are two additional possibilities:

 ■ A 16-bit pixel, which has three components, has a cmpSize value of 5. This leaves an unused
high-order bit, which QuickDraw sets to 0.

 ■ A 32-bit pixel, which has three components (red, green, and blue), has a cmpSize value of 8. This
leaves an unused high-order byte, which QuickDraw sets to 0.

Generally, therefore, your application should clear the memory for the image to 0 before creating a
16-bit or 32-bit image. The Memory Manager functions NewHandleClear and NewPtrClear assist
you in allocating pre-zeroed memory.

planeBytes
The offset in bytes from one drawing plane to the next. This field is set to 0.

pmTable
A handle to a ColorTable structure for the colors in this pixel map.

130 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

pmReserved
Reserved for future expansion. This field must be set to 0 for future compatibility.

Discussion
The PixMap structure contains information about the dimensions, contents, storage format, depth, resolution,
and color usage of a pixel image. The pixel map for a window’s color graphics port always consists of the
pixel depth, color table, and boundary rectangle of the main screen, even if the window is created on or
moved to an entirely different screen.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PixPat
struct PixPat {
 short patType;
 PixMapHandle patMap;
 Handle patData;
 Handle patXData;
 short patXValid;
 Handle patXMap;
 Pattern pat1Data;
};
typedef struct PixPat PixPat;
typedef PixPat * PixPatPtr;
typedef PixPatPtr * PixPatHandle;

Fields
patType

The pattern’s type. The value 0 specifies a basic QuickDraw bit pattern, the value 1 specifies a full-color
pixel pattern, and the value 2 specifies an RGB pattern.

patMap
A handle to a PixMap (page 129) structure that describes the pattern’s pixel image. The PixMap
structure can contain indexed or direct pixels.

patData
A handle to the pattern’s pixel image.

patXData
A handle to an expanded pixel image used internally by QuickDraw.

patXValid
A flag that, when set to –1, invalidates the expanded data.

patXMap
Reserved for use by QuickDraw.

pat1Data
A bit pattern to be used when this pattern is drawn into a GrafPort structure. The NewPixPat (page
298) function sets this field to 50 percent gray.

Discussion
Your application typically does not create PixPat structures. Although you can create such structures in
your program code, it is usually easier to create pixel patterns using the pixel pattern resource, 'ppat'.

Data Types 131
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

When used for a color graphics port, the basic QuickDraw functions PenPat and BackPat store pixel patterns
in, respectively, the pnPixPat and bkPixPat fields of the CGrafPort structure and set the patType field
of the PixPat field to 0 to indicate that the PixPat structure contains a bit pattern. Such patterns are limited
to 8-by-8 pixel dimensions and, instead of being drawn in black and white, are always drawn using the colors
specified in the CGrafPort structure’s rgbFgColor and rgbBkColor fields, respectively.

In a full-color pixel pattern, the patType field contains the value 1, and the pattern’s dimensions, depth,
resolution, set of colors, and other characteristics are defined by a PixMap structure, referenced by the handle
in the patMap field of the PixPat structure. Full-color pixel patterns contain color tables that describe the
colors they use. Generally such a color table contains one entry for each color used in the pattern. For instance,
if your pattern has five colors, you would probably create a 4 bits per pixel pattern that uses pixel values 0–4,
and a color table with five entries, numbered 0–4, that contain the RGB specifications for those pixel values.

However, if you don’t specify a color table for a pixel value, QuickDraw assigns a color to that pixel value.
The largest unassigned pixel value becomes the foreground color the smallest unassigned pixel value is
assigned the background color. Remaining unassigned pixel values are given colors that are evenly distributed
between the foreground and background.

For instance, in the color table mentioned above, pixel values 5–15 are unused. Assume that the foreground
color is black and the background color is white. Pixel value 15 is assigned the foreground color, black pixel
value 5 is assigned the background color, white the nine pixel values between them are assigned evenly
distributed shades of gray. If the PixMap structure’s color table is set to NULL, all pixel values are determined
by blending the foreground and background colors.

Full-color pixel patterns are not limited to a fixed size: their height and width can be any power of 2, as
specified by the height and width of the boundary rectangle for the PixMap structure specified in the patMap
field. A pattern 8 bits wide, which is the size of a bit pattern, has a row width of just 1 byte, contrary to the
usual rule that the rowBytes field must be even. Read this pattern type into memory using the
GetPixPat (page 239) function, and set it using the PenPixPat (page 322) or BackPixPat (page 170)
functions.

The pixel map specified in the patMap field of the PixPat structure defines the pattern’s characteristics. The
baseAddr field of the PixMap structure for that pixel map is ignored. For a full-color pixel pattern, the actual
pixel image defining the pattern is stored in the handle in the patData field of the PixPat structure. The
pattern’s pixel depth need not match that of the pixel map into which it’s transferred the depth is adjusted
automatically when the pattern is drawn. QuickDraw maintains a private copy of the pattern’s pixel image,
expanded to the current screen depth and aligned to the current graphics port, in the patXData field of the
PixPat structure.

In an RGB pixel pattern, the patType field contains the value 2. Using the MakeRGBPat (page 290) function,
your application can specify the exact color it wants to use. QuickDraw selects a pattern to approximate that
color. In this way, your application can effectively increase the color resolution of the screen. RGB pixel
patterns are particularly useful for dithering: mixing existing colors together to create the illusion of a third
color that’s unavailable on an indexed device. The MakeRGBPat function aids in this process by constructing
a dithered pattern to approximate a given absolute color. An RGB pixel pattern can display 125 different
patterns on a 4-bit screen, or 2197 different patterns on an 8-bit screen.

An RGB pixel pattern has an 8-by-8 pixel pattern that is 2 bits deep. For an RGB pixel pattern, the RGBColor
structure that you specify to the MakeRGBPat function defines the image; there is no image data.

Your application should never need to directly change the fields of a PixPat structure. If you find it absolutely
necessary for your application to so, immediately use the PixPatChanged (page 325) function to notify
QuickDraw that your application has changed the PixPat structure.

132 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Polygon
typedef MacPolygon Polygon;

Discussion
After you use the OpenPoly function to create a polygon, QuickDraw begins collecting the line-drawing
information you provide into a MacPolygon structure. The OpenPoly function returns a handle to the newly
allocated MacPolygon structure. Thereafter, your application normally refers to your new polygon by this
handle, because QuickDraw functions such as FramePoly and PaintPoly expect a handle to a Polygon
as their first parameter.

A polygon is defined by a sequence of connected lines. A MacPolygon structure consists of two fixed-length
fields followed by a variable-length array of points: the starting point followed by each successive point to
which a line is drawn.

Your application typically does not need to create a MacPolygon structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PrinterFontStatus
struct PrinterFontStatus {
 SInt32 oResult;
 SInt16 iFondID;
 Style iStyle;
};
typedef struct PrinterFontStatus PrinterFontStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 133
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

PrinterScalingStatus
struct PrinterScalingStatus {
 Point oScalingFactors;
};
typedef struct PrinterScalingStatus PrinterScalingStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PrinterStatusOpcode
typedef SInt32 PrinterStatusOpcode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDArcUPP
typedef QDArcProcPtr QDArcUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDBitsUPP
typedef QDBitsProcPtr QDBitsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDByte
typedef SignedByte QDByte;

Availability
Available in Mac OS X v10.0 and later.

134 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDCommentUPP
typedef QDCommentProcPtr QDCommentUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDErr
typedef short QDErr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDGetPicUPP
typedef QDGetPicProcPtr QDGetPicUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 135
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDGlobals
struct QDGlobals {
 char privates[76];
 long randSeed;
 BitMap screenBits;
 Cursor arrow;
 Pattern dkGray;
 Pattern ltGray;
 Pattern gray;
 Pattern black;
 Pattern white;
 GrafPtr thePort;
};
typedef struct QDGlobals QDGlobals;
typedef QDGlobals * QDGlobalsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDJShieldCursorUPP
typedef QDJShieldCursorProcPtr QDJShieldCursorUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDLineUPP
typedef QDLineProcPtr QDLineUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDOpcodeUPP
typedef QDOpcodeProcPtr QDOpcodeUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

136 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

QDOvalUPP
typedef QDOvalProcPtr QDOvalUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPictRef
Defines an opaque data type that represents a QuickDraw picture in the Quartz 2D graphics environment.

typedef struct QDPict * QDPictRef;

Discussion
This opaque type is used to draw QuickDraw picture data in a Quartz context. (Quartz 2D defines an analogous
opaque type called CGPDFDocumentRef which is used to draw PDF data in a Quartz context.) An instance
of the QDPictRef type is called a QDPict picture. There are two ways to create a QDPict picture:

 ■ You can call QDPictCreateWithProvider (page 75), passing in a Quartz data provider for the picture
data. Typically the source of this data is a 'PICT' resource.

 ■ You can call QDPictCreateWithURL (page 76), passing in a Core Foundation URL that specifies a file
with picture data in the data fork.

Both functions verify that picture header information is present, starting at either byte 1 or byte 513 of the
picture data.

To draw a QDPict picture in a Quartz context, you call QDPictDrawToCGContext (page 76). To get the
bounds or native resolution of a QDPict picture, you call QDPictGetBounds (page 77) or
QDPictGetResolution (page 78).

When you draw a QDPict picture in a PDF context, you can save the drawing in a PDF file. This is the
recommended way to convert QuickDraw pictures into single-page PDF documents.

These additional sources of information may be helpful:

 ■ The sample Carbon program CGDrawPicture shows how to use this opaque type to draw QuickDraw
pictures in a Quartz context.

 ■ For general information about QuickDraw pictures and the PICT graphics format, see Chapter 7 in Inside
Macintosh: Imaging With QuickDraw.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QDPictToCGContext.h

Data Types 137
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-332.html

QDPolyUPP
typedef QDPolyProcPtr QDPolyUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPrinterStatusUPP
typedef QDPrinterStatusProcPtr QDPrinterStatusUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDProcs
struct QDProcs {
 QDTextUPP textProc;
 QDLineUPP lineProc;
 QDRectUPP rectProc;
 QDRRectUPP rRectProc;
 QDOvalUPP ovalProc;
 QDArcUPP arcProc;
 QDPolyUPP polyProc;
 QDRgnUPP rgnProc;
 QDBitsUPP bitsProc;
 QDCommentUPP commentProc;
 QDTxMeasUPP txMeasProc;
 QDGetPicUPP getPicProc;
 QDPutPicUPP putPicProc;
};
typedef struct QDProcs QDProcs;
typedef QDProcs * QDProcsPtr;

Fields
textProc

A pointer to the low-level function that draws text. The standard QuickDraw function is the StdText
function.

lineProc
A pointer to the low-level function that draws lines. The standard QuickDraw function is the
StdLine (page 373) function.

rectProc
A pointer to the low-level function that draws rectangles. The standard QuickDraw function is the
StdRect (page 376) function.

138 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

rRectProc
A pointer to the low-level function that draws rounded rectangles. The standard QuickDraw function
is the StdRRect (page 377) function.

ovalProc
A pointer to the low-level function that draws ovals. The standard QuickDraw function is the
StdOval (page 374) function.

arcProc
A pointer to the low-level function that draws arcs. The standard QuickDraw function is the
StdArc (page 370) function.

polyProc
A pointer to the low-level function that draws polygons. The standard QuickDraw function is the
StdPoly (page 374) function.

rgnProc
A pointer to the low-level function that draws regions. The standard QuickDraw function is the
StdRgn (page 376) function.

bitsProc
A pointer to the low-level function that copies bitmaps. The standard QuickDraw function is the
StdBits (page 371) function.

commentProc
A pointer to the low-level function for processing a picture comment. The standard QuickDraw function
is the StdComment (page 371) function.

txMeasProc
A pointer to the low-level function for measuring text width. The standard QuickDraw function is the
StdTxMeas function.

getPicProc
A pointer to the low-level function for retrieving information from the definition of a picture. The
standard QuickDraw function is the StdGetPic (page 372) function.

putPicProc
A pointer to the low-level function for saving information as the definition of a picture. The standard
QuickDraw function is the StdPutPic (page 375) function.

Discussion
You need to use the QDProcs structure only if you customize one or more of QuickDraw’s low-level drawing
functions. Use SetStdProcs (page 368) to create a QDProcs structure.

The QDProcs structure contains pointers to low-level drawing functions. You can change the fields of this
structure to point to functions of your own devising.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPutPicUPP
typedef QDPutPicProcPtr QDPutPicUPP;

Availability
Available in Mac OS X v10.0 and later.

Data Types 139
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDRectUPP
typedef QDRectProcPtr QDRectUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDRegionBitsRef
typedef struct OpaqueQDRegionBitsRef * QDRegionBitsRef;

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickdrawAPI.h

QDRegionParseDirection
typedef SInt32 QDRegionParseDirection;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

QDRgnUPP
typedef QDRgnProcPtr QDRgnUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDRRectUPP
typedef QDRRectProcPtr QDRRectUPP;

Availability
Available in Mac OS X v10.0 and later.

140 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDStdGlyphsUPP
typedef QDStdGlyphsProcPtr QDStdGlyphsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDTextUPP
typedef QDTextProcPtr QDTextUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDTxMeasUPP
typedef QDTxMeasProcPtr QDTxMeasUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

RegionToRectsUPP
typedef RegionToRectsProcPtr RegionToRectsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Data Types 141
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

ReqListRec
struct ReqListRec {
 short reqLSize;
 short reqLData[1];
};
typedef struct ReqListRec ReqListRec;

Fields
reqLSize

The size of this ReqListRec data structure minus one.

reqLData
An array of integers representing offsets into a color table.

Discussion
The ReqListRec data structure is a parameter to the SaveEntries function by which you can describe
color table entries to be saved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

RGBColor
struct RGBColor {
 unsigned short red;
 unsigned short green;
 unsigned short blue;
};
typedef struct RGBColor RGBColor;
typedef RGBColor * RGBColorPtr;

Fields
red

An unsigned integer specifying the red value of the color.

green
An unsigned integer specifying the green value of the color.

blue
An unsigned integer specifying the blue value of the color.

Discussion
You usually specify a color to QuickDraw by creating an RGBColor structure in which you assign the red,
green, and blue values of the foreground color. For example, when you want to set the foreground color for
drawing, you create an RGBColor structure that defines the foreground color you desire; then you pass that
structure as a parameter to the RGBForeColor function.

In an RGBColor structure, three 16-bit unsigned integers give the intensity values for the three additive
primary colors.

Availability
Available in Mac OS X v10.0 and later.

142 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Declared In
IOMacOSTypes.h

RgnHandle
An opaque type that represents a QuickDraw region.

typedef struct OpaqueRgnHandle * RgnHandle;

Discussion
A region is an arbitrary area or set of areas on the QuickDraw coordinate plane. The outline of a region should
be one or more closed loops.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

SProcRec
struct SProcRec {
 Handle nxtSrch;
 ColorSearchUPP srchProc;
};
typedef struct SProcRec SProcRec;
typedef SProcRec * SProcPtr;

Fields
nxtSrch

A handle to the next SProcRec data structure in the chain of search functions.

srchProc
A pointer to a custom search function (described in ColorSearchProcPtr (page 94)).

Discussion
The SProcRec data structure contains a pointer to a custom search function and a handle to the next
SProcRec data structure in the function list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

WindowPtr
An opaque type that represents a window.

typedef struct OpaqueWindowPtr * WindowPtr;

Discussion
This is a Window Manager data type, defined in QuickDraw for historical reasons. Its role in Mac OS X is to
serve as the basis for the widely used WindowRef data type.

Data Types 143
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

xColorSpec
struct xColorSpec {
 short value;
 RGBColor rgb;
 short xalpha;
};
typedef struct xColorSpec xColorSpec;
typedef xColorSpec * xColorSpecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

xCSpecArray
typedef xColorSpec xCSpecArray[1];

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

144 Data Types
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Constants

chunky
enum {
 chunky = 0,
 chunkyPlanar = 1,
 planar = 2
};

Color Constants
enum {
 blackColor = 33,
 whiteColor = 30,
 redColor = 205,
 greenColor = 341,
 blueColor = 409,
 cyanColor = 273,
 magentaColor = 137,
 yellowColor = 69
};

Constants
blackColor

Represents black.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

whiteColor
Represents white.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

redColor
Represents red.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

greenColor
Represents green.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

blueColor
Represents blue.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 145
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

cyanColor
Represents cyan.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

magentaColor
Represents magenta.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

yellowColor
Represents yellow.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
These constants are used in the color parameter of the ForeColor (page 218) and BackColor (page 169)
functions to specify one of the eight basic QuickDraw colors.

colorXorXFer
enum {
 colorXorXFer = 52,
 noiseXFer = 53,
 customXFer = 54
};

Cursor ID Constants
enum {
 sysPatListID = 0,
 iBeamCursor = 1,
 crossCursor = 2,
 plusCursor = 3,
 watchCursor = 4
};

Constants
iBeamCursor

The I-beam cursor; to select text

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

crossCursor
The crosshairs cursor; to draw graphics

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

146 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

plusCursor
The plus sign cursor; to select cells

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

watchCursor
The wristwatch cursor; to indicate a short operation in progress

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
When passing a value to the Show_Cursor function, use the Cursors data type to represent the kind of
cursor to show.

cursorDoesAnimate
enum {
 cursorDoesAnimate = 1L << 0,
 cursorDoesHardware = 1L << 1,
 cursorDoesUnreadableScreenBits = 1L << 2
};

Device Attribute Constants
enum {
 interlacedDevice = 2,
 hwMirroredDevice = 4,
 roundedDevice = 5,
 hasAuxMenuBar = 6,
 burstDevice = 7,
 ext32Device = 8,
 ramInit = 10,
 mainScreen = 11,
 allInit = 12,
 screenDevice = 13,
 noDriver = 14,
 screenActive = 15,
 hiliteBit = 7,
 pHiliteBit = 0,
 defQDColors = 127,
 RGBDirect = 16,
 baseAddr32 = 4
};

Constants
burstDevice

If this bit is set to 1, the graphics device supports block transfer.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 147
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

ext32Device
If this bit is set to 1, the graphics device must be used in 32-bit mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

ramInit
If this bit is set to 1, the graphics device has been initialized from RAM.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

mainScreen
If this bit is set to 1,the graphics device is the main screen.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

allInit
If this bit is set to 1, all graphics devices were initialized from the 'scrn' resource.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

screenDevice
If this bit is set to 1, the graphics device is a screen.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

noDriver
If this bit is set to 1, the GDevice structure has no driver.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

screenActive
If this bit is set to 1, the graphics device is active.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
These constants are used in the attribute parameters of the SetDeviceAttribute (page 353) and
TestDeviceAttribute (page 381) functions, and in the deviceFlags parameter of the
DeviceLoopDrawingProcPtr (page 96) callback. These constants represent the GDevice structure’s
attributes, as bits in the gdFlags field.

148 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Device Loop Flags
enum {
 singleDevices = 1 << singleDevicesBit,
 dontMatchSeeds = 1 << dontMatchSeedsBit,
 allDevices = 1 << allDevicesBit
};

Constants
singleDevices

If this flag is not set, DeviceLoop calls your drawing function only once for each set of similar graphics
devices, and the first one found is passed as the target device. (It is assumed to be representative of
all the similar graphics devices.) If you set the singleDevices flag, then DeviceLoop does not group
similar graphics devices, (that is, those having identical pixel depths, black-and-white or color settings,
and matching color table seeds), when it calls your drawing function.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

dontMatchSeeds
If you set the dontMatchSeeds flag, then DeviceLoop does not consider the ctSeed field of
ColorTable structures for graphics devices when comparing them; DeviceLoop ignores this flag
if you set the singleDevices flag.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

allDevices
If you set the allDevices flag, DeviceLoop ignores the drawingRgn parameter and calls your
drawing function for every device. The value of the current graphics port’s visRgn field is not affected
when you set this flag.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
When you use the DeviceLoop (page 191) function, you can change its default behavior by using the flags
parameter to specify one or more members of the set of flags defined by the DeviceLoopFlags data type.
If you want to use the default behavior of DeviceLoop, specify 0 in the flags parameter.

Constants 149
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

deviceIsIndirect
enum {
 deviceIsIndirect = (1L << 0),
 deviceNeedsLock = (1L << 1),
 deviceIsStatic = (1L << 2),
 deviceIsExternalBuffer = (1L << 3),
 deviceIsDDSurface = (1L << 4),
 deviceIsDCISurface = (1L << 5),
 deviceIsGDISurface = (1L << 6),
 deviceIsAScreen = (1L << 7),
 deviceIsOverlaySurface = (1L << 8)
};

Drag Constraint Constants
When passed to the DragControl function, specify how a user can move a control.

enum {
 kNoConstraint = 0,
 kVerticalConstraint = 1,
 kHorizontalConstraint = 2
};

Constants
kNoConstraint

No constraint.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

kVerticalConstraint
Constrain movement to horizontal axis only.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

kHorizontalConstraint
Constrain movement to vertical axis only.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

150 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Graphics Device Type Constants
enum {
 picLParen = 0,
 picRParen = 1,
 clutType = 0,
 fixedType = 1,
 directType = 2,
 gdDevType = 0
};

Constants
clutType

Represents a CLUT device--that is, one with colors mapped with a color lookup table.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

fixedType
Represents a fixed colors device --that is, the color lookup table can't be changed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

directType
Represents a device with direct RGB colors.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

gdDevType
If this bit is set to 0, the graphics device is black and white; if it is set to 1, the graphics device supports
color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
These constants represent the general type of graphics device for the gdType field of the GDevice (page
119) structure.

Graphics World Flags
Specify additional information passed to and from NewGWorld (page 64) and related functions in parameters
of type GWorldFlags (page 123).

Constants 151
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

enum {
 pixPurge = 1L << pixPurgeBit,
 noNewDevice = 1L << noNewDeviceBit,
 useTempMem = 1L << useTempMemBit,
 keepLocal = 1L << keepLocalBit,
 useDistantHdwrMem = 1L << useDistantHdwrMemBit,
 useLocalHdwrMem = 1L << useLocalHdwrMemBit,
 pixelsPurgeable = 1L << pixelsPurgeableBit,
 pixelsLocked = 1L << pixelsLockedBit,
 kNativeEndianPixMap = 1L << nativeEndianPixMapBit,
 kAllocDirectDrawSurface = 1L << 14,
 mapPix = 1L << mapPixBit,
 newDepth = 1L << newDepthBit,
 alignPix = 1L << alignPixBit,
 newRowBytes = 1L << newRowBytesBit,
 reallocPix = 1L << reallocPixBit,
 clipPix = 1L << clipPixBit,
 stretchPix = 1L << stretchPixBit,
 ditherPix = 1L << ditherPixBit,
 gwFlagErr = 1L << gwFlagErrBit
};

Constants
pixPurge

If you specify this flag for the flags parameter of the NewGWorld function, UpdateGWorld (page
384) makes the base address for the offscreen pixel image purgeable.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

noNewDevice
If you specify this flag for the flags parameter of the UpdateGWorld (page 384) function, NewGWorld
does not create a new offscreen GDevice structure; instead, NewGWorld uses either the GDevice
structure you specify or the GDevice structure for a video card on the user’s system.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

useTempMem
If you specify this in the flags parameter of the UpdateGWorld (page 384) function, NewGWorld
creates the base address for an offscreen pixel image in temporary memory. You generally should
not use this flag. You should use temporary memory only for fleeting purposes and only with the
GetPixelsState (page 238) function so that other applications can launch.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

keepLocal
If you specify this in the flags parameter of the UpdateGWorld (page 384) function, NewGWorld
creates a pixel image in Macintosh main memory where it cannot be cached to a graphics accelerator
card.

If you specify this in the flags parameter of GetPixelsState (page 238), UpdateGWorld keeps the
offscreen pixel image in Macintosh main memory.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

152 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

pixelsPurgeable
If you specify this in thestateparameter of the UpdateGWorld (page 384) function,SetPixelsState
makes the base address for an offscreen pixel map purgeable. If you use the SetPixelsState
function without passing it this flag, then SetPixelsState makes the base address for an offscreen
pixel map unpurgeable. If the GetPixelsState (page 238) function returns this flag, then the base
address for an offscreen pixel is purgeable.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

pixelsLocked
If you specify this flag for the state parameter of the SetPixelsState function, SetPixelsState
locks the base address for an offscreen pixel image. If you use the SetPixelsState function without
passing it this flag, then SetPixelsState unlocks the offscreen pixel image. If the GetPixelsState
function returns this flag, then the base address for an offscreen pixel is locked.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

kNativeEndianPixMap
By default, the function NewGWorld (page 64) allocates pixel buffers with big-endian byte ordering
regardless of the system architecture. If this flag is passed in the flags parameter of NewGWorld, the
pixel format will be set to k32ARGBPixelFormat or k16BE555PixelFormat on a PowerPC system,
and to k32BGRAPixelFormat or k16LE555PixelFormat on an Intel system, for depths 32 or 16,
respectively. Note that NewGWorld is the only function where this flag is observed;
NewGWorldFromPtr (page 297) and UpdateGWorld (page 384) ignore it.

Available in Mac OS X v10.3 and later.

Declared in QDOffscreen.h.

mapPix
If the UpdateGWorld (page 384) function returns this flag, then it remapped the colors in the offscreen
pixel map to a new color table.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

newDepth
If the UpdateGWorld function returns this flag, then it translated the offscreen pixel map to a different
pixel depth.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

alignPix
If the UpdateGWorld function returns this flag, then it realigned the offscreen pixel image to an
onscreen window.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

newRowBytes
If the UpdateGWorld function returns this flag, then it changed the rowBytes field of the PixMap
structure for the offscreen graphics world.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

Constants 153
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

reallocPix
If the UpdateGWorld function returns this flag, then it reallocated the base address for the offscreen
pixel image. Your application should then reconstruct the pixel image or draw directly in a window
instead of preparing the image in an offscreen graphics world.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

clipPix
If you specify this flag in the flags parameter of the UpdateGWorld (page 384) function, then
UpdateGWorld updates and clips the pixel image to the new boundary rectangle specified. If the
UpdateGWorld function returns this flag, then it clipped the pixel image.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

stretchPix
If you specify this flag in the flags parameter of the UpdateGWorld (page 384) function, then
UpdateGWorld updates and stretches or shrinks the pixel image to the new boundary rectangle
specified. If the UpdateGWorld function returns this flag, then it stretched or shrank the offscreen
image.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

ditherPix
If you specify this flag in the flags parameter of the UpdateGWorld (page 384) function, then
UpdateGWorld dithers the pixel image to the new boundary rectangle specified. Include this flag
with the clipPix or stretchPix flag. If the UpdateGWorld function returns this flag, then it dithered
the offscreen image.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

gwFlagErr
If the UpdateGWorld function returns this flag, then it was unsuccessful and the offscreen graphics
world was left unchanged.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

154 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

invalColReq
enum {
 invalColReq = -1
};

italicBit
enum {
 italicBit = 1,
 ulineBit = 2,
 outlineBit = 3,
 shadowBit = 4,
 condenseBit = 5,
 extendBit = 6
};

Pixel Formats
enum {
 k16LE555PixelFormat = 'L555',
 k16LE5551PixelFormat = '5551',
 k16BE565PixelFormat = 'B565',
 k16LE565PixelFormat = 'L565',
 k24BGRPixelFormat = '24BG',
 k32BGRAPixelFormat = 'BGRA',
 k32ABGRPixelFormat = 'ABGR',
 k32RGBAPixelFormat = 'RGBA',
 kYUVSPixelFormat = 'yuvs',
 kYUVUPixelFormat = 'yuvu',
 kYVU9PixelFormat = 'YVU9',
 kYUV411PixelFormat = 'Y411',
 kYVYU422PixelFormat = 'YVYU',
 kUYVY422PixelFormat = 'UYVY',
 kYUV211PixelFormat = 'Y211',
 k2vuyPixelFormat = '2vuy'
};

k1MonochromePixelFormat
enum {
 k1MonochromePixelFormat = 0x00000001,
 k2IndexedPixelFormat = 0x00000002,
 k4IndexedPixelFormat = 0x00000004,
 k8IndexedPixelFormat = 0x00000008,
 k16BE555PixelFormat = 0x00000010,
 k24RGBPixelFormat = 0x00000018,
 k32ARGBPixelFormat = 0x00000020,
 k1IndexedGrayPixelFormat = 0x00000021,
 k2IndexedGrayPixelFormat = 0x00000022,
 k4IndexedGrayPixelFormat = 0x00000024,
 k8IndexedGrayPixelFormat = 0x00000028
};

Constants 155
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

kCursorComponentInit
enum {
 kCursorComponentInit = 0x0001,
 kCursorComponentGetInfo = 0x0002,
 kCursorComponentSetOutputMode = 0x0003,
 kCursorComponentSetData = 0x0004,
 kCursorComponentReconfigure = 0x0005,
 kCursorComponentDraw = 0x0006,
 kCursorComponentErase = 0x0007,
 kCursorComponentMove = 0x0008,
 kCursorComponentAnimate = 0x0009,
 kCursorComponentLastReserved = 0x0050
};

kCursorComponentsVersion
enum {
 kCursorComponentsVersion = 0x00010001
};

kCursorComponentType
enum {
 kCursorComponentType = 'curs'
};

kCursorImageMajorVersion
enum {
 kCursorImageMajorVersion = 0x0001,
 kCursorImageMinorVersion = 0x0000
};

kPrinterFontStatus
enum {
 kPrinterFontStatus = 0,
 kPrinterScalingStatus = 1
};

kQDGrafVerbFrame
enum {
 kQDGrafVerbFrame = 0,
 kQDGrafVerbPaint = 1,
 kQDGrafVerbErase = 2,
 kQDGrafVerbInvert = 3,
 kQDGrafVerbFill = 4
};

156 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

kQDParseRegionFromTop
enum {
 kQDParseRegionFromTop = (1 << 0),
 kQDParseRegionFromBottom = (1 << 1),
 kQDParseRegionFromLeft = (1 << 2),
 kQDParseRegionFromRight = (1 << 3),
 kQDParseRegionFromTopLeft = kQDParseRegionFromTop | kQDParseRegionFromLeft,
 kQDParseRegionFromBottomRight = kQDParseRegionFromBottom |
kQDParseRegionFromRight
};

kQDRegionToRectsMsgInit
enum {
 kQDRegionToRectsMsgInit = 1,
 kQDRegionToRectsMsgParse = 2,
 kQDRegionToRectsMsgTerminate = 3
};

kQDUseDefaultTextRendering
enum {
 kQDUseDefaultTextRendering = 0,
 kQDUseTrueTypeScalerGlyphs = (1 << 0),
 kQDUseCGTextRendering = (1 << 1),
 kQDUseCGTextMetrics = (1 << 2),
 kQDSupportedFlags = kQDUseTrueTypeScalerGlyphs | kQDUseCGTextRendering |
kQDUseCGTextMetrics,
 kQDDontChangeFlags = 0xFFFFFFFF
};

kRenderCursorInHardware
enum {
 kRenderCursorInHardware = 1L << 0,
 kRenderCursorInSoftware = 1L << 1
};

kXFer1PixelAtATime
enum {
 kXFer1PixelAtATime = 0x00000001,
 kXFerConvertPixelToRGB32 = 0x00000002
};

normalBit
enum {
 normalBit = 0,

Constants 157
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

 inverseBit = 1,
 redBit = 4,
 greenBit = 3,
 blueBit = 2,
 cyanBit = 8,
 magentaBit = 7,
 yellowBit = 6,
 blackBit = 5
};

pixPurgeBit
enum {
 pixPurgeBit = 0,
 noNewDeviceBit = 1,
 useTempMemBit = 2,
 keepLocalBit = 3,
 useDistantHdwrMemBit = 4,
 useLocalHdwrMemBit = 5,
 pixelsPurgeableBit = 6,
 pixelsLockedBit = 7,
 nativeEndianPixMapBit = 8,
 mapPixBit = 16,
 newDepthBit = 17,
 alignPixBit = 18,
 newRowBytesBit = 19,
 reallocPixBit = 20,
 clipPixBit = 28,
 stretchPixBit = 29,
 ditherPixBit = 30,
 gwFlagErrBit = 31
};

singleDevicesBit
enum {
 singleDevicesBit = 0,
 dontMatchSeedsBit = 1,
 allDevicesBit = 2
};

Source, Pattern, and Arithmetic Transfer Mode Constants
enum {
 srcCopy = 0,
 srcOr = 1,
 srcXor = 2,
 srcBic = 3,
 notSrcCopy = 4,
 notSrcOr = 5,
 notSrcXor = 6,
 notSrcBic = 7,
 patCopy = 8,

158 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

 patOr = 9,
 patXor = 10,
 patBic = 11,
 notPatCopy = 12,
 notPatOr = 13,
 notPatXor = 14,
 notPatBic = 15,
 grayishTextOr = 49,
 hilitetransfermode = 50,
 hilite = 50,
 blend = 32,
 addPin = 33,
 addOver = 34,
 subPin = 35,
 addMax = 37,
 adMax = 37,
 subOver = 38,
 adMin = 39,
 ditherCopy = 64,
 transparent = 36
};

Constants
srcCopy

For basic graphics ports, force the destination pixel black where the source pixel is black; where the
source pixel is white, force the destination pixel white.

For color graphics ports, determines how close the color of the source pixel is to black, and assigns
this relative amount of foreground color to the destination pixel. Determines how close the color of
the source pixel is to white, and assigns this relative amount of background color to the destination
pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

srcOr
For basic graphics ports, forces the destination pixel black if the source pixel is black; where the source
pixel is white, leaves the destination pixel unaltered.

For color graphics ports, determines how close the color of the source pixel is to black, and assigns
this relative amount of foreground color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

srcXor
For basic and color graphics ports, inverts destination pixel where the source pixel is black. For a basic
graphics port, where the source pixel is white, leaves the destination pixel unaltered.

For a color graphics port, for a colored destination pixel, uses the complement of its color if the pixel
is direct, or inverts its index if the pixel is indexed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 159
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

srcBic
For a basic graphics port, forces destination pixel white where source pixel is black; where source
pixel is white, leaves the destination pixel unaltered.

For a color graphics port, determines how close the color of the source pixel is to black, and assigns
this relative amount of background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcCopy
For a basic graphics port, forces the destination pixel white where the source pixel is black; where
the source pixel is white, forces the destination pixel black.

For a color graphics port, determines how close the color of the source pixel is to black, and assigns
this relative amount of background color to the destination pixel. Determines how close the color of
the source pixel is to white, and assigns this relative amount of foreground color to the destination
pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcOr
For a basic graphics port, leaves the destination pixel unaltered where the source pixel is black; where
the source pixel is white, forces the destination pixel black.

For a color graphics port, determines how close the color of the source pixel is to white, and assigns
this relative amount of foreground color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcXor
For basic and color graphics ports, where the source pixel is white, inverts the destination pixel. For
a basic graphics port, where the source pixel is black, leaves the destination pixel unaltered.

For a color graphics port, for a colored destination pixel, uses the complement of its color if the pixel
is direct, or inverts its index if the pixel is indexed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcBic
For a basic graphics port, where the source pixel is black, leaves the destination pixel unaltered; where
the source pixel is white, forces the destination pixel white.

For a color graphics port, determines how close the color of the source pixel is to white, and assigns
this relative amount of background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patCopy
Where the pattern pixel is black, applies foreground color to the destination pixel; where the pattern
pixel is white, applies background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

160 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

patOr
Where the pattern pixel is black, inverts the destination pixel; where the pattern pixel is white, leaves
the destination pixel unaltered.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patXor
Where the pattern pixel is black, inverts the destination pixel; where the pattern pixel is white, leaves
the destination pixel unaltered.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patBic
Where the pattern pixel is black, applies the background color to destination pixel; where the pattern
pixel is white, leaves the destination pixel unaltered.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatCopy
Where the pattern pixel is black, applies background color to destination pixel; where the pattern
pixel is white, applies foreground color to the destination pixel

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatOr
Where the pattern pixel is black, leaves the destination pixel unaltered; where the pattern pixel is
white, applies foreground color to the destination pixel

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatXor
Where the pattern pixel is black, leaves the destination pixel unaltered; where the pattern pixel is
white, inverts the destination pixel

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatBic
Where the pattern pixel is black, leaves the destination pixel unaltered; where the pattern pixel is
white, applies background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

grayishTextOr
Draws dimmed text on the screen. You can use it for black-and-white or color graphics ports. The
grayishTextOr transfer mode is not considered a standard transfer mode because currently it is
not stored in pictures, and printing with it is undefined. (It does not pass through the QuickDraw
bottleneck functions.)

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 161
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

hilite
Adds highlighting to the source or pattern mode. With highlighting, QuickDraw replaces the
background color with the highlight color when your application copies images between graphics
ports. This has the visual effect of using a highlighting pen to select the object. (The global variable
HiliteRGB is read from parameter RAM when the machine starts. Basic graphics ports use the color
stored in the HiliteRGB global variable as the highlight color. Color graphics ports default to the
HiliteRGB global variable, but can be overridden by the HiliteColor function.)

For text, specifies that the caret position should be determined according to the primary line direction,
based on the value of SysDirection.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

blend
Replaces the destination pixel with a blend of the source and destination pixel colors. If the destination
is a bitmap or 1-bit pixel map, reverts to srcCopy mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addPin
Replaces the destination pixel with the sum of the source and destination pixel colors-- up to a
maximum allowable values. If the destination is a bitmap or 1-bit pixel map, reverts to srcBic mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addOver
Replaces the destination pixel with the sum of the source and destination pixel colors, except if the
value of the red, green, or blue component exceeds 65,536, then addOver subtracts 65,536 from that
value. If the destination is a bitmap or 1-bit pixel map, reverts to srcXor mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

subPin
Replaces the destination pixel with the difference of the source and destination pixel colors, but not
less than a minimum allowable value. If the destination is a bitmap or 1-bit pixel map, reverts to srcOr
mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addMax
Compares the source and destination pixels, and replaces the destination pixel with the color containing
the greater saturation of each of the RGB components. If the destination is a bitmap or 1-bit pixel
map, reverts to srcBic mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

subOver
Replaces the destination pixel with the difference of the source and destination pixel colors, except
if the value of the red, green, or blue component is less than 0, then it adds the negative result to
65,536. if the destination is a bitmap or 1-bit pixel map, revert to srcXor mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

162 Constants
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

adMin
Compares the source and destination pixels, and replaces the destination pixel with the color containing
the lesser saturation of each of the RGB components. If the destination is a bitmap or 1-bit pixel map,
reverts to srcOr mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

ditherCopy
On computers running System 7, you can add dithering to any source mode by adding this constant
or the value it represents to the source mode.

Dithering is a technique that mixes existing colors to create the effect of additional colors. It also
improves images that you shrink or that you copy from a direct pixel device to an indexed device.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

transparent
Replaces the destination pixel with the source pixel if the source pixel is not equal to the background
color. The transparent mode replaces the destination pixel with the source pixel if the source pixel
isn’t equal to the background color. This mode is most useful in 8-bit, 4-bit, or 2-bit color modes.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
CopyBits (page 179) uses the source and arithmetic transfer mode constants in the mode parameter to
specify the manner in which pixels are transferred from a source pixel map to a destination pixel map.

PenMode (page 319) uses the pattern mode constants in the mode parameter to specify source modes for
transferring the bits from a source bitmap to a destination bitmap.

The TextMode function uses these constants to set the transfer mode in the graphics port txMode field.

The transfer mode determines the interplay between what an application is drawing (the source) and what
already exists on the display device (the destination), resulting in the text display.

There are two basic kinds of modes: pattern (pat) and source (src).

The pattern mode constants are patCopy, patOr, patXor, patBic, notPatCopy, notPatOr, notPatXor,
and notPatBic.

Source is the kind that you use for drawing text. There are four basic Boolean operations: Copy, Or, Xor, and
Bic (bit clear), each of which has an inverse variant in which the source is inverted before the transfer, yielding
eight operations in all. Basic QuickDraw supports these eight transfer modes. Color QuickDraw interprets the
source mode constants differently than basic QuickDraw does. Color QuickDraw enables your application to
achieve color effects within those basic transfer modes, and offers an additional set of transfer modes that
perform arithmetic operations on the RGB values of the source and destination pixels. Other transfer modes
are grayishTextOr, transparent mode, and text mask mode.

The arithmetic transfer modes are addOver, addPin, subOver, subPin, addMax, adMax, adMin, and blend.
For color, the arithmetic modes change the destination pixels by performing arithmetic operations on the
source and destination pixels. Arithmetic transfer modes calculate pixel values by adding, subtracting, or
averaging the RGB components of the source and destination pixels. They are most useful for 8-bit color, but
they work on 4-bit and 2-bit color also. When the destination bitmap is one bit deep, the mode reverts to
the basic transfer mode that best approximates the arithmetic mode requested.

Constants 163
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

Verb Constants
enum {
 frame = kQDGrafVerbFrame,
 paint = kQDGrafVerbPaint,
 erase = kQDGrafVerbErase,
 invert = kQDGrafVerbInvert,
 fill = kQDGrafVerbFill
};

Constants
frame

Specifies the frame action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

paint
Specifies the paint action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

erase
Specifies the erase action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

invert
Specifies the invert action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

fill
Specifies the fill action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
When you use the StdRect (page 376) , StdRRect (page 377) , StdOval (page 374) , StdArc (page 370) ,
StdPoly (page 374) , or StdRgn (page 376) functions, these constants are used in the verb parameter to
specify the type of action taken by those low-level drawing functions.

Result Codes

The table below lists the result codes specific to QuickDraw.

DescriptionValueResult Code

Insufficient memory to update a pixmap.-125updPixMemErr

Available in Mac OS X v10.0 and later.

164 Result Codes
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

DescriptionValueResult Code

Insufficient memory for drawing the picture.-145noMemForPictPlaybackErr

Available in Mac OS X v10.0 and later.

Pixel map is deeper than 1 bit per pixel.-148pixMapTooDeepErr

Available in Mac OS X v10.0 and later.

Insufficient stack-149nsStackErr

Available in Mac OS X v10.0 and later.

Color2Index failed to find an index.-150cMatchErr

Available in Mac OS X v10.0 and later.

Failed to allocate memory for temporary structures.-151cTempMemErr

Available in Mac OS X v10.0 and later.

Failed to allocate memory for structures.-152cNoMemErr

Available in Mac OS X v10.0 and later.

Range error on color table requests.-153cRangeErr

Available in Mac OS X v10.0 and later.

ColorTable structure entry protection violation.-154cProtectErr

Available in Mac OS X v10.0 and later.

Invalid type of graphics device.-155cDevErr

Available in Mac OS X v10.0 and later.

Invalid resolution for MakeITable.-156cResErr

Available in Mac OS X v10.0 and later.

Invalid pixel depth.-157cDepthErr

Available in Mac OS X v10.0 and later.

Bitmap too large to convert to a region.-500rgnTooBigErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.2 and later.-3950kQDNoPalette

Available in Mac OS X v10.2 and later.-3951kQDNoColorHWCursorSupport

Available in Mac OS X v10.2 and later.-3952kQDCursorAlreadyRegistered

Available in Mac OS X v10.2 and later.-3953kQDCursorNotRegistered

Available in Mac OS X v10.2 and later.-3954kQDCorruptPICTDataErr

Result Codes 165
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

166 Result Codes
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

QuickDraw Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

AddComp
Adds a function to the head of the current device data structure’s list of complement functions. This function
is used by system software and your application should not need to call it. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void AddComp (
 ColorComplementUPP compProc
);

Parameters
compProc

A pointer to your complement function, ColorComplementProcPtr (page 94).

Discussion
AddComp creates and allocates a CProcRec (page 112) data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

AddSearch
Adds a function to the head of the current GDevice data structure’s list of search functions. This function is
used by system software and your application should not need to call it. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void AddSearch (
 ColorSearchUPP searchProc
);

Parameters
searchProc

A pointer to your custom search function, ColorSearchProcPtr (page 94).

Deprecated in Mac OS X v10.4 167
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
AddSearch creates and allocates an SProcRec (page 143) data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

AllocCursor
Reallocates cursor memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void AllocCursor (
 void
);

Discussion
Under normal circumstances, you should never need to use this function, since Color QuickDraw handles
reallocation of cursor memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

AllowPurgePixels
Makes the base address for an offscreen pixel image purgeable. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void AllowPurgePixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map.

Discussion
The AllowPurgePixels function allows the Memory Manager to free the memory it occupies if available
memory space becomes low. By default, NewGWorld creates an unpurgeable base address for an offscreen
pixel image.

To get a handle to an offscreen pixel map, first use the GetGWorldPixMap (page 230) function. Then supply
this handle for the pm parameter of AllowPurgePixels.

168 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Your application should call the LockPixels (page 288) function before drawing into or copying from an
offscreen pixel map. If the Memory Manager has purged the base address for its pixel image, LockPixels
returns FALSE. In that case either your application should use the UpdateGWorld (page 384) function to
begin reconstructing the offscreen pixel image, or it should draw directly to an onscreen graphics port.

Only unlocked memory blocks can be made purgeable. If you use LockPixels, you must use the
UnlockPixels function before calling AllowPurgePixels.

Special Considerations

The AllowPurgePixels function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

BackColor
Changes a basic graphics port’s background color. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void BackColor (
 long color
);

Parameters
color

One of eight color values. See “Color Constants” (page 145).

Discussion
The background color is the color of the pixels in the bitmap wherever no drawing has taken place. By default
the background color of a GrafPort is white.

The BackColor function sets the background color for the current graphics port to the color that you specify
in the color parameter. When you draw with the patCopy and srcCopy transfer modes, for example, white
pixels are drawn in the color you specify with BackColor.

All nonwhite colors appear as black on black-and-white screens. Before you use BackColor, use the
DeviceLoop function to determine the color characteristics of the current screen.

Special Considerations

The BackColor function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Version Notes
In System 7, use the Color QuickDraw function RGBBackColor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 169
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

BackPat
Changes the bit pattern used as the background pattern by the current graphics port. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void BackPat (
 const Pattern *pat
);

Parameters
pat

A bit pattern, as defined by a Pattern (page 126) structure.

Discussion
The BackPat function sets the bit pattern defined in the Pattern structure, which you specify in the pat
parameter, to be the background pattern. (The standard bit patterns white, black, gray, ltGray, and
dkGray are predefined; the initial background pattern for the graphics port is white.) This pattern is stored
in the bkPat field of a GrafPort structure.

The BackPat function also sets a bit pattern for the background color in a color graphics port. The BackPat
function creates a handle, of type PixPatHandle, for the bit pattern and stores this handle in the bkPixPat
field of the CGrafPort structure. As in basic graphics ports, Color QuickDraw draws patterns in color graphics
ports at the time of drawing, not at the time you use PenPat to set the pattern.

To define your own patterns, you typically create pattern, ‘PAT’, or pattern list, ‘PAT#’, resources.

Special Considerations

The BackPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

BackPixPat
Assigns a pixel pattern as the background pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

170 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void BackPixPat (
 PixPatHandle pp
);

Parameters
pp

A handle to the pixel pattern to use as the background pattern.

Discussion
Setting the background pattern allows the ScrollRect function and the shape-erasing functions (for
example, EraseRect) to fill the background with a colored patterned “ink.”

The BackPixPat function is similar to the basic QuickDraw function BackPat, except that you pass
BackPixPat a handle to a multicolored pixel pattern instead of a bit pattern.

The handle to the pixel pattern is stored in the bkPixPat field of the CGrafPort structure, therefore, you
should not dispose of this handle since QuickDraw removes all references to your pattern from an existing
graphics port when you dispose of it.

If you use BackPixPat to set a background pixel pattern in a basic graphics port, the data in the pat1Data
field of the PixPat (page 131) structure is placed into the bkPat field of the GrafPort structure.

To define your own pixel pattern, create a pixel pattern resource, x is described on 'ppat', or use the
NewPixPat (page 298) function. To set the background pattern to a bit pattern, you can also use the QuickDraw
function, BackPat.

Special Considerations

The BackPixPat function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

BitMapToRegion
Converts a bitmap or pixel map to a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

OSErr BitMapToRegion (
 RgnHandle region,
 const BitMap *bMap
);

Parameters
region

A handle to a region to hold the converted BitMap or PixMap structure. This must be a valid region
handle created with the NewRgn function. The old region contents are lost.

Deprecated in Mac OS X v10.4 171
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

bMap
A pointer to a BitMap or PixMap structure to be converted. If you supply a PixMap structure, its pixel
depth must be 1.

Return Value
A result code.

Discussion
The BitMapToRegion function converts a given BitMap or PixMap structure to a region. Pixels are added
to the region where the corresponding entries in the bitmap have a value of 1. You would generally use this
region later for drawing operations.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CalcCMask
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CalcCMask (
 const BitMap *srcBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *dstRect,
 const RGBColor *seedRGB,
 ColorSearchUPP matchProc,
 long matchData
);

Parameters
srcBits

The source image. If the image is in a pixel map, you must coerce its PixMap structure to a BitMap
structure.

dstBits
The destination image. The CalcCMask function returns the generated bitmap mask in this parameter.
You can then use this mask with the CopyBits, CopyMask, and CopyDeepMask functions.

srcRect
The rectangle of the source image.

dstRect
The rectangle of the destination image.

seedRGB
An RGBColor structure specifying the color for pixels that should not be filled.

matchProc
An optional matching function.

172 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

matchData
Data for the optional matching function.

Discussion
Specify a source image in the srcBits parameter and in the srcRect parameter, specify a rectangle within
that source image. Starting from the edges of this rectangle, CalcCMask calculates which pixels cannot be
filled. By default, CalcCMask returns 1’s in the mask to indicate which pixels have the exact color that you
specify in the seedRGB parameter and which pixels are enclosed by shapes whose outlines consist entirely
of pixels with this color.

For instance, if the source image in srcBits contains a dark blue rectangle on a red background, and your
application sets seedRGB equal to dark blue, then CalcCMask returns a mask with 1’s in the positions
corresponding to the edges and interior of the rectangle, and the 0’s outside of the rectangle.

If you set the matchProc and matchData parameters to 0, CalcCMask uses the exact color specified in the
RGBColor structure that you supply in the seedRGB parameter. You can customize CalcCMask by writing
your own color search function and pointing to it in the matchProc parameter. As with SeedCFill, you
can then use the matchData parameter in any manner useful for your application.

The CalcCMask function does not scale so the source and destination rectangles must be the same size.
Calls to CalcCMask are not clipped to the current port and are not stored into QuickDraw pictures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CalcMask
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CalcMask (
 const void *srcPtr,
 void *dstPtr,
 short srcRow,
 short dstRow,
 short height,
 short words
);

Parameters
srcPtr

A pointer to the source bit image.

dstPtr
A pointer to the destination bit image.

srcRow
Row width of the source bitmap.

dstRow
Row width of the destination bitmap.

Deprecated in Mac OS X v10.4 173
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

height
Height (in pixels) of the fill rectangle.

words
Width (in words) of the fill rectangle.

Discussion
The CalcMask function produces a bit image with 1’s in all pixels to which paint could not flow from any of
the outer edges of the rectangle. Use this bit image as a mask with the CopyBits or CopyMask function. A
hollow object produces a solid mask, but an open object produces a mask of itself.

As with the SeedFill function, point to the bit image you want to fill with the srcPtr parameter, which
can point to the image’s base address or a word boundary within the image. Specify a pixel height and word
width with the height and words parameters to define a fill rectangle that delimits the area you want to
fill. The fill rectangle can be the entire bit image or a subset of it. Point to a destination image with the dstPtr
parameter. Specify the row widths of the source and destination bitmaps (their rowBytes values) with the
srcRow and dstRow parameters. (The bitmaps can be different sizes, but they must be large enough to
contain the fill rectangle at the origins specified by srcPtr and dstPtr.)

Calls to CalcMask are not clipped to the current port and are not stored into QuickDraw pictures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClipCGContextToRegion
Sets the clipping path in a Quartz 2D graphics context, using a clipping region. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSStatus ClipCGContextToRegion (
 CGContextRef gc,
 const Rect *portRect,
 RgnHandle region
);

Parameters
context

A Quartz context associated with a graphics port. You can obtain such a context by calling
QDBeginCGContext (page 73).

portRect
The portRect for the graphics port associated with the context.

region
A region that represents the desired clipping path.

Return Value
A result code. If noErr, the clipping path is now the region-based path.

174 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
This function sets the clipping path in the specified context to closely approximate the geometry of the
specified region.

Unlike clipping in Quartz 2D, this function does not intersect the new region-based path with the current
clipping path—the new path simply replaces the current clipping path.

You should use this function only when absolutely necessary—it’s relatively inefficient when compared to
Quartz 2D clipping functions such as CGContextClipToRect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClipRect
Changes the clipping region of the current graphics port (basic or color). (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ClipRect (
 const Rect *r
);

Parameters
r

A pointer to a rectangle for the boundary of the new clipping region. The ClipRect function changes
the clipping region of the current graphics port to a region that’s equivalent to this rectangle. ClipRect
doesn’t change the region handle, but it affects the clipping region itself.

Discussion
Since ClipRect makes a copy of the given rectangle, any subsequent changes you make to that rectangle
do not affect the clipping region of the port.

The ClipRect function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CloseCursorComponent
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 175
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

OSErr CloseCursorComponent (
 ComponentInstance ci
);

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClosePicture
Completes the collection of drawing commands and picture comments that define your picture. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ClosePicture (
 void
);

Discussion
The ClosePicture function stops collecting drawing commands and picture comments for the currently
open picture. You should perform one and only one call to ClosePicture for every call to the OpenCPicture
(or OpenPicture) function.

The ClosePicture function calls the ShowPen function, balancing the call made by OpenCPicture (or
OpenPicture) to the HidePen function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClosePoly
Completes the collection of lines that defines a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void ClosePoly (
 void
);

Discussion
The ClosePoly function stops collecting line-drawing commands for the currently open polygon and
computes the polyBBox field of the Polygon (page 133) structure. You should call ClosePoly only once
for every call to the OpenPoly function.

176 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

The ClosePoly function uses the ShowPen function, balancing the call to the HidePen function made by
the OpenPoly function.

Special Considerations

The ClosePoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CloseRgn
Organizes a collection of lines and shapes into a region definition. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CloseRgn (
 RgnHandle dstRgn
);

Parameters
dstRgn

The handle to the region to close. This handle should be a region handle returned by the NewRgn (page
67) function.

Discussion
The CloseRgn function stops the collection of lines and framed shapes, organizes them into a region
definition, and saves the result in the region whose handle you pass in the dstRgn parameter.

The CloseRgn function does not create the destination region; you must have already allocated space for
it by using the OpenRgn function. The CloseRgn function calls the ShowPen function, balancing the call to
the HidePen function made by OpenRgn.

When you no longer need the memory occupied by the region, use the DisposeRgn (page 52) function.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw. When you structure
drawing operations in an open region, the resulting region description may overflow this limit. Should this
happen in Color QuickDraw, the QDError function returns the result code regionTooBigError. Since the
resulting region is potentially corrupt, the CloseRgn function returns an empty region if it detects QDError
has returned regionTooBigError.

Deprecated in Mac OS X v10.4 177
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

The CloseRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Color2Index
Obtains the index of the best available approximation for a given color in the color table of the current
GDevice data structure. This function is used only by system software. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

long Color2Index (
 const RGBColor *myColor
);

Parameters
myColor

A pointer to the RGB color value to be approximated.

Return Value
The index of the best approximation for the given color that is available in the color table of the current
GDevice data structure. Note that Color2Index returns a long integer, in which the low-order word is the
index value; the high-order word contains zeros.

Discussion
You should not call Color2Index from within a custom search function (described in
ColorSearchProcPtr (page 94)).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ColorBit
Sets the foreground color for all printing in the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

178 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void ColorBit (
 short whichBit
);

Parameters
whichBit

An integer specifying the plane to draw into.

Discussion
The ColorBit function is called by printing software for a color printer (or other color-imaging software) to
set the GrafPort structure’s colorBit field to the value in the whichBit parameter. This value tells
QuickDraw which plane of the color picture to draw into. QuickDraw draws into the plane corresponding to
the bit number specified by the whichBit parameter. Since QuickDraw can support output devices that
have up to 32 bits of color information per pixel, the possible range of values for whichBit is 0 through 31.
The initial value of the colorBit field is 0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyBits
Copies a portion of a bitmap or a pixel map from one graphics port or offscreen graphics world into another
graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void CopyBits (
 const BitMap *srcBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn
);

Parameters
srcBits

The source BitMap structure.

dstBits
The destination BitMap structure.

srcRect
The source rectangle.

dstRect
The destination rectangle.

Deprecated in Mac OS X v10.4 179
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

mode
One of the eight source modes in which the copy is to be performed. See “Source, Pattern, and
Arithmetic Transfer Mode Constants” (page 158). The CopyBits function always dithers images when
shrinking them between pixel maps on direct devices.

When transferring pixels from a source pixel map to a destination pixel map, color QuickDraw interprets
the source mode constants differently than basic QuickDraw does.

When you use CopyBits on a computer running color QuickDraw, you can also specify one of the
transfer modes in the mode parameter.

maskRgn
A region to use as a clipping mask. You can pass a region handle to specify a mask region the resulting
image is always clipped to this mask region and to the boundary rectangle of the destination bitmap.
If the destination bitmap is the current graphics port’s bitmap, it is also clipped to the intersection of
the graphics port’s clipping region and visible region. If you do not want to clip to a masking region,
just pass NULL for this parameter.

Discussion
The CopyBits function transfers any portion of a bitmap between two basic graphics ports, or any portion
of a pixel map between two color graphics ports. Use CopyBits to move offscreen graphic images into an
onscreen window, to blend colors for the image in a pixel map, and to shrink and expand images.

Specify a source bitmap in the srcBits parameter and a destination bitmap in the dstBits parameter.
When copying images between color graphics ports, you must coerce each CGrafPort structure to a
GrafPort structure, dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits
and dstBits parameters. If your application copies a pixel image from a color graphics port called
MyColorPort, for example, you could specify (* GrafPtr(MyColorPort)).portBits in the srcBits
parameter. In a CGrafPort structure, the high 2 bits of the portVersion field are set. This field, which
shares the same position in a CGrafPort structure as the portBits.rowBytes field in a GrafPort structure,
indicates to CopyBits that you have passed it a handle to a pixel map rather than a bitmap.

Using the srcRect and dstRect parameters, you can specify identically or differently sized source and
destination rectangles; for differently sized rectangles, CopyBits scales the source image to fit the destination.
If the bit image is a circle in a square source rectangle, and the destination rectangle is not square, the bit
image appears as an oval in the destination. When you specify rectangles in the srcRect and dstRect
parameters, use the local coordinate systems of, respectively, the source and destination graphics ports.

The CopyDeepMask (page 181) function combines the functions of the CopyBits and CopyMask functions.

Special Considerations

When you use the CopyBits function to transfer an image between pixel maps, the source and destination
images may be of different pixel depths, of different sizes, and they may have different color tables. However,
CopyBits assumes that the destination pixel map uses the same color table as the color table for the current
GDevice structure. (This is because the Color Manager requires an inverse table for translating the color
table from the source pixel map to the destination pixel map.)

The CopyBits function applies the foreground and background colors of the current graphics port to the
image in the destination pixel map (or bitmap), even if the source image is a bitmap. This causes the foreground
color to replace all black pixels in the destination and the background color to replace all white pixels. To
avoid unwanted coloring of the image, use the RGBForeColor function to set the foreground to black and
use the RGBBackColor function to set the background to white before calling CopyBits.

The source bitmap or pixel map must not occupy more memory than half the available stack space. The stack
space required by CopyBits is roughly five times the value of the rowBytes field of the source pixel map:
one rowBytes value for the pixel map (or bitmap), an additional rowBytes value for dithering, another

180 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

rowBytes value when stretching or shrinking the source pixel map into the destination, another rowBytes
value for any color map changing, and a fifth additional rowBytes value for any color aliasing. If there is
insufficient memory to complete a CopyBits operation in Color QuickDraw, the QDError function returns
the result code –143.

If you use CopyBits to copy between two graphics ports that overlap, you must first use the LocalToGlobal
function to convert to global coordinates, and then specify the global variable screenBits for both the
srcBits and dstBits parameters.

The CopyBits function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

If you are reading directly from a NuBus video card with a base address of Fs00000 and there is not a card
in the slot (s–1) below it, CopyBits reads addresses less than the base address of the pixel map. This causes
a bus error. To work around the problem, remap the baseAddr field of the pixel map in your video card to
at least 20 bytes above the NuBus boundary; an address link of Fs000020 precludes the problem.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyDeepMask
Uses a mask when copying bitmaps or pixel maps between graphics ports (or from an offscreen graphics
world into a graphics port). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void CopyDeepMask (
 const BitMap *srcBits,
 const BitMap *maskBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *maskRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn
);

Parameters
srcBits

The source BitMap structure.

maskBits
The masking BitMap structure.

dstBits
The destination BitMap structure. The result is clipped to the mask region that you specify in the
maskRgn parameter, and to the boundary rectangle that you specify in the dstRect parameter.

srcRect
The source rectangle.

Deprecated in Mac OS X v10.4 181
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

maskRect
The mask rectangle. This must be the same size as the rectangle passed in the srcRect parameter.
The rectangle you pass here selects the portion of the bitmap or pixel map that you specify in the
maskBits parameter to use as the mask.

dstRect
The destination rectangle.

mode
The source mode.

maskRgn
The mask clipping region. If you do not want to clip to the mask region, specify NULL.

Discussion
CopyDeepMask combines the effects of the CopyBits and CopyMask functions. You specify a mask to
CopyDeepMask so that it transfers the source image to the destination image only where the bits of the
mask are set to 1. Use CopyDeepMask to move offscreen graphic images into an onscreen window, to blend
colors for the image in a pixel map, and to shrink and expand images.

When copying images between color graphics ports, you must coerce each port’s CGrafPort structure to
a GrafPort structure, dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits
and dstBits parameters. If your application copies a pixel image from a color graphics port called
MyColorPort, for example, you could specify (* GrafPtr(MyColorPort)).portBits in the srcBits
parameter. The transfer can be performed in any of the transfer modes—with or without adding the
ditherCopy constant—that are available to CopyBits (page 179).

Using the srcRect and dstRect parameters, you can specify identically or differently sized source and
destination rectangles; for differently sized rectangles, CopyDeepMask scales the source image to fit the
destination. When you specify rectangles in the srcRect and dstRect parameters, use the local coordinate
systems of, respectively, the source and destination graphics ports.

If you specify pixel maps to CopyDeepMask, they may range from 1 to 32 pixels in depth. The pixel depth of
the mask that you specify in the maskBits parameter is applied as a filter between the source and destination
pixel maps that you specify in the srcBits and dstBits parameters. A black mask pixel value means that
the copy operation is to take the source pixel a white value means that the copy operation is to take the
destination pixel. Intermediate values specify a weighted average, which is calculated on a color component
basis. For each pixel’s color component value, the calculation is

(1 – mask) x source + (mask) x destination

Thus high mask values for a pixel’s color component reduce that component’s contribution from the source
PixMap structure.

Special Considerations

As with the CopyMask function, calls to CopyDeepMask are not recorded in pictures and do not print.

See the list of special considerations for CopyBits (page 179); these considerations also apply to
CopyDeepMask.

The CopyDeepMask function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

182 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyMask
Copies a bit or pixel image from one graphics port or offscreen graphics world into another graphics port
only where the bits in a mask are set to 1. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void CopyMask (
 const BitMap *srcBits,
 const BitMap *maskBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *maskRect,
 const Rect *dstRect
);

Parameters
srcBits

The source BitMap structure.

maskBits
The mask BitMap structure.

dstBits
The destination BitMap structure.

srcRect
The source rectangle.

maskRect
The mask rectangle. This must be the same size as the rectangle passed in the srcRect parameter.
The rectangle you pass in this parameter selects the portion of the bitmap or pixel map that you
specify in the maskBits parameter to use as the mask.

dstRect
The destination rectangle.

Discussion
The CopyMask function copies the source bitmap or pixel map that you specify in the srcBits parameter
to a destination bitmap or pixel map that you specify in the dstBits parameter—but only where the bits
of the mask bitmap or pixel map that you specify in the maskBits parameter are set to 1. When copying
images between color graphics ports, you must coerce each CGrafPort structure to a GrafPort structure,
dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits and dstBits
parameters. If your application copies a pixel image from a color graphics port called MyColorPort, for
example, you could specify (* GrafPtr(MyColorPort)).portBits in the srcBits parameter.

Using the srcRect and dstRect parameters, you can specify identically or differently sized source and
destination rectangles; for differently sized rectangles, CopyMask scales the source image to fit the destination.
When you specify rectangles in the srcRect and dstRect parameters, use the local coordinate systems of,
respectively, the source and destination graphics ports.

Deprecated in Mac OS X v10.4 183
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

If you specify pixel maps to CopyMask, they may range from 1 to 32 pixels in depth. The pixel depth of the
mask that you specify in the maskBits parameter is applied as a filter between the source and destination
pixel maps that you specify in the srcBits and dstBits parameters. A black mask pixel value means that
the copy operation is to take the source pixel a white value means that the copy operation is to take the
destination pixel. Intermediate values specify a weighted average, which is calculated on a color component
basis. For each pixel’s color component value, the calculation is

(1 – mask) x source + (mask) x destination

Thus high mask values for a pixel’s color component reduce that component’s contribution from the source
PixMap structure.

Use the bitmap returned by CalcMask (page 173) as the mask in order to implement a mask copy similar to
that performed by the MacPaint lasso tool. In the same way, you can use the pixel map returned by the
CalcCMask function.

The CopyDeepMask (page 181) function combines the functions of the CopyMask and CopyBits functions.

Special Considerations

Calls to CopyMask are not recorded in pictures and do not print.

See the list of special considerations for CopyBits (page 179); these considerations also apply to CopyMask.

The CopyMask function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyPixMap
Duplicates a PixMap structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void CopyPixMap (
 PixMapHandle srcPM,
 PixMapHandle dstPM
);

Parameters
srcPM

A handle to the PixMap structure to be copied.

dstPM
On return, a handle to the duplicated PixMap structure.

184 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
Typically, you do not need to call this function in your application code, because the CopyPixMap function
copies the contents of the source PixMap structure to the destination PixMap structure. The contents of the
color table are copied, so the destination PixMap has its own copy of the color table. Because the baseAddr
field of the PixMap structure is a pointer, the pointer, but not the image itself, is copied.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyPixPat
Copies the contents of one pixel pattern to another. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void CopyPixPat (
 PixPatHandle srcPP,
 PixPatHandle dstPP
);

Parameters
srcPP

A handle to a source pixel pattern, the contents of which you want to copy.

dstPP
A handle to a destination pixel pattern, into which you want to copy the contents of the pixel pattern
in the srcPP parameter.

Discussion
The CopyPixPat function copies all of the fields in the source PixPat (page 131) structure, including the
contents of the data handle, expanded data handle, expanded map, pixel map handle, and color table.

Generally, your application should create a pixel pattern in a 'ppat' resource, instead of using this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CreateCGContextForPort
Creates a Quartz 2D drawing environment associated with a graphics port. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Not Recommended

Deprecated in Mac OS X v10.4 185
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

OSStatus CreateCGContextForPort (
 CGrafPtr inPort,
 CGContextRef *outContext
);

Parameters
port

A color graphics port in which to draw. Offscreen graphics worlds with pixel depths of 1, 2, 4, and 8
are not supported. When using Quartz 2D to draw in a offscreen graphics world, alpha information
is always ignored. Printing ports are not supported—if you specify a printing port, this function does
nothing and returns a non-zero result code.

contextPtr
A pointer to your storage for a Quartz context. Upon completion, contextPtr points to a context
associated with the port. The context matches the port’s pixel depth, width, and height. Otherwise
the context is in a default state and does not necessarily match other port attributes such as foreground
color, background color, or clip region.

You should release this context when you no longer need it.

Return Value
A result code. If noErr, the context was successfully created.

Discussion
This function is not recommended in Mac OS X version 10.1 and later. For information about its replacement,
see QDBeginCGContext (page 73).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CreateNewPort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

CGrafPtr CreateNewPort (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

186 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

CreateNewPortForCGDisplayID
Creates a graphics port associated with a display. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

CGrafPtr CreateNewPortForCGDisplayID (
 UInt32 inCGDisplayID
);

Parameters
displayID

A display identifier. If the identifier is not valid, the main display is used instead. For information about
finding displays, see Quartz Display Services Reference.

Return Value
A new display port. The portBounds rectangle is the same size as the display. When you are finished using
the port, you should call DisposePort (page 196) to release it.

Discussion
This function returns a graphics port used to draw directly to a display. The pixel map for the new port is
taken from the GDevice record corresponding to the display. There is no back buffer associated with the
port.

Before calling this function, you should capture the display. For information about capturing displays, see
Quartz Display Services Reference.

You should not call this function and then attempt to create a Quartz drawing environment inside the port.
Instead, applications using Quartz 2D can call CGDisplayGetDrawingContext to obtain a context suitable
for drawing directly to a captured display.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CTabChanged
Signals QuickDraw that the content of a ColorTable structure has been modified. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CTabChanged (
 CTabHandle ctab
);

Parameters
ctab

A handle to the ColorTable structure changed by your application.

Discussion
The CTabChanged function calls the function GetCTSeed and gets a new, unique identifier in the ctSeed
field of the ColorTable structure, and notifies QuickDraw of the change.

Deprecated in Mac OS X v10.4 187
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Your application should never need to directly modify a ColorTable structure and use the CTabChanged
function; instead, your application should use the QuickDraw functions provided for manipulating the values
in a ColorTable structure.

Special Considerations

The CTabChanged function may move or purge memory in the application heap; do not call the CTabChanged
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

CursorComponentChanged
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr CursorComponentChanged (
 ComponentInstance ci
);

Return Value
A result code.

Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CursorComponentSetData
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr CursorComponentSetData (
 ComponentInstance ci,
 long data
);

Return Value
A result code.

188 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DelComp
Removes a custom complement function from the current GDevice data structure’s list of complement
functions. This function is used by system software and your application should not need to call it. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DelComp (
 ColorComplementUPP compProc
);

Parameters
compProc

A pointer to the complement function, ColorComplementProcPtr (page 94), to be deleted. DelComp
disposes of the chain element, but does nothing to the ProcPtr data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DelSearch
Removes a custom search function from the current GDevice data structure’s list of search functions. This
function is used by system software and your application should not need to call it. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DelSearch (
 ColorSearchUPP searchProc
);

Parameters
searchProc

A pointer to the custom search function, ColorSearchProcPtr (page 94) to be deleted. DelSearch
disposes of the chain element, but does nothing to the ProcPtr data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 189
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DeltaPoint
Subtracts the coordinates of one point from another. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

long DeltaPoint (
 Point ptA,
 Point ptB
);

Parameters
p1

The first point.

p2
The second point, the coordinates of which are to be subtracted from the coordinates of the first
point.

Return Value
A 32-bit value that contains the differences between the coordinates of the points p1 and p2. The vertical
difference is returned in the high 16 bits and the horizontal difference is returned in the low 16 bits.

Discussion
You should not cast the result to a Point data structure. Instead, use HiWord and LoWord to obtain the
horizontal and vertical differences.

For example:

 Point pointDiff;
 SInt32 difference = DeltaPoint(p1, p2);
 pointDiff.h = LoWord(difference);
 pointDiff.v = HiWord(difference);

While DeltaPoint is supported in Carbon, you can achieve the same result in a more direct manner using
the function SubPt (page 91).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

deltapoint
(Deprecated in Mac OS X v10.4. Use DeltaPoint (page 190) instead.)

190 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

long deltapoint (
 Point *ptA,
 Point *ptB
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DeviceLoop
Draws images that are optimized for every screen they cross. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void DeviceLoop (
 RgnHandle drawingRgn,
 DeviceLoopDrawingUPP drawingProc,
 long userData,
 DeviceLoopFlags flags
);

Parameters
drawingRgn

A handle to the region in which you will draw; this drawing region uses coordinates that are local to
its graphics port.

drawingProc
A pointer to your own drawing function.

userData
Any additional data that you wish to supply to your drawing function.

flags
One or more members of the set of flags defined by the “ Device Loop Flags” (page 149) data type. if
you want to use the default behavior of DeviceLoop, specify an empty set ([]) in this parameter.

Discussion
The DeviceLoop function searches for graphics devices that intersect your window’s drawing region, and
it calls your drawing function for each dissimilar video device it finds.

Because DeviceLoop provides your drawing function with the pixel depth and other attributes of each video
device, your drawing function can optimize its drawing for each video device.

See DeviceLoopDrawingProcPtr (page 96) for a description of the drawing function you must provide
for the drawingProc parameter.

Special Considerations

The DeviceLoop function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 191
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeCCursor
Disposes of all structures allocated by the GetCCursor function. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeCCursor (
 CCrsrHandle cCrsr
);

Parameters
cCrsr

A handle to the color cursor to be disposed of.

Discussion
Use DisposeCCursor for each call to the GetCCursor (page 224) function.

The DisposeCCursor function is also available as the DisposCCursor function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeColorComplementUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeColorComplementUPP (
 ColorComplementUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeColorSearchUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

192 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeColorSearchUPP (
 ColorSearchUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeCTable
Disposes a ColorTable structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void DisposeCTable (
 CTabHandle cTable
);

Parameters
cTable

A handle to a ColorTable structure to dispose of.

Discussion
The DisposeCTable procedure disposes of the ColorTable record whose handle you pass in the cTable
parameter.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeDeviceLoopDrawingUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeDeviceLoopDrawingUPP (
 DeviceLoopDrawingUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

Deprecated in Mac OS X v10.4 193
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

DisposeDragGrayRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeDragGrayRgnUPP (
 DragGrayRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeGDevice
Disposes of a GDevice structure, releases the space allocated for it, and disposes of all the data structures
allocated for it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void DisposeGDevice (
 GDHandle gdh
);

Parameters
gdh

A handle to the GDevice structure.

Discussion
Generally, you should never need to use this function. Color QuickDraw calls this function when appropriate.
The DisposeGDevice function is also available as the DisposGDevice function.

When your application uses the DisposeGWorld function to dispose of an offscreen graphics world,
DisposeGDevice disposes of its GDevice structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeGWorld
Disposes of all the memory allocated for an offscreen graphics world. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

194 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeGWorld (
 GWorldPtr offscreenGWorld
);

Parameters
offscreenGWorld

A pointer to an offscreen graphics world. In this parameter, pass the pointer returned to your
application by the NewGWorld function when you created the offscreen graphics world.

Discussion
The DisposeGWorld function disposes of all the memory allocated for the specified offscreen graphics world,
including the pixel map, color table, pixel image, and GDevice structure (if one was created).

Call DisposeGWorld only when your application no longer needs the pixel image associated with this
offscreen graphics world. If this offscreen graphics world was the current device, the current device is reset
to the device stored in the global variable MainDevice.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell
WhackedTV

Declared In
QDOffscreen.h

DisposePixMap
Disposes a PixMap structure and its color table. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void DisposePixMap (
 PixMapHandle pm
);

Parameters
pm

A handle to the PixMap structure to be disposed of.

Discussion
The CloseCPort function calls DisposePixMap.

Your application typically does not need to call this function. This function is also available as DisposPixMap.

If your application uses DisposePixMap, take care that it does not dispose of a PixMap structure whose
color table is the same as the current device’s CLUT.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 195
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Related Sample Code
LiveVideoMixer2

Declared In
QuickdrawAPI.h

DisposePixPat
Releases the storage allocated to a pixel pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void DisposePixPat (
 PixPatHandle pp
);

Parameters
pp

A handle to the pixel pattern to be disposed of.

Discussion
The DisposePixPat function disposes of the data handle, expanded data handle, and pixel map handle
allocated to the pixel pattern that you specify in the ppat parameter.

The DisposePixPat function is also available as the DisposPixPat function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposePort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposePort (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

196 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

DisposeQDArcUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDArcUPP (
 QDArcUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDBitsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDBitsUPP (
 QDBitsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDCommentUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDCommentUPP (
 QDCommentUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDGetPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 197
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeQDGetPicUPP (
 QDGetPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDJShieldCursorUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDJShieldCursorUPP (
 QDJShieldCursorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDLineUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDLineUPP (
 QDLineUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDOpcodeUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

198 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeQDOpcodeUPP (
 QDOpcodeUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDOvalUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDOvalUPP (
 QDOvalUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDPolyUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDPolyUPP (
 QDPolyUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDPutPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 199
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeQDPutPicUPP (
 QDPutPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDRectUPP (
 QDRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDRgnUPP (
 QDRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDRRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

200 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeQDRRectUPP (
 QDRRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDStdGlyphsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDStdGlyphsUPP (
 QDStdGlyphsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDTextUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDTextUPP (
 QDTextUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDTxMeasUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 201
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void DisposeQDTxMeasUPP (
 QDTxMeasUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeRegionToRectsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeRegionToRectsUPP (
 RegionToRectsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawAPI.h

DisposeScreenBuffer
Disposes an offscreen graphics world. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void DisposeScreenBuffer (
 PixMapHandle offscreenPixMap
);

Parameters
offscreenPixMap

A handle to an existing offscreen PixMap structure.

Discussion
Generally, applications do not need to use DisposeScreenBuffer. The DisposeGWorld (page 194) function
uses the DisposeScreenBuffer function when disposing of an offscreen graphics world.

The DisposeScreenBuffer function disposes of the memory allocated for the base address of an offscreen
pixel image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

202 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QDOffscreen.h

DrawPicture
Draws a picture on any type of output device. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void DrawPicture (
 PicHandle myPicture,
 const Rect *dstRect
);

Parameters
myPicture

A handle to the picture to be drawn. You must access a picture through its handle.

When creating pictures, the OpenCPicture (page 309) and OpenPicture (page 311) functions return
their handles. You can use the GetPicture (page 236) function to get a handle to a QuickDraw picture
stored in a 'PICT' resource. To get a handle to a QuickDraw picture stored in a 'PICT' file, you must
use File Manager functions. To get a picture stored in the scrap, use the Scrap Manager function
GetScrap to get a handle to its data and then coerce this handle to one of type PicHandle.

dstRect
A destination rectangle, specified in coordinates local to the current graphics port, in which to draw
the picture. The DrawPicture function shrinks or expands the picture as necessary to align the
borders of its bounding rectangle with the rectangle you specify in this parameter. To display a picture
at a resolution other than that at which it was created, your application should compute an appropriate
destination rectangle by scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it at 75 dpi, then your
application should compute the destination rectangle width and height as 1/4 of those of the picture’s
bounding rectangle. Use the GetPictInfo function to gather information about a picture. The
PictInfo structure returned by GetPictInfo returns the picture’s resolution in its hRes and vRes
fields. The sourceRect field contains the bounding rectangle for displaying the image at its optimal
resolution.

Discussion
Within the rectangle that you specify in the dstRect parameter, the DrawPicture function draws the
picture that you specify in the myPicture parameter.

The DrawPicture function passes any picture comments to the StdComment function pointed to by the
commentProc field of the CQDProcs or QDProcs structure, which in turn is pointed to by the grafProcs
field of a CGrafPort or GrafPort structure. The default StdComment function provided by QuickDraw does
no comment processing whatsoever. If you want to process picture comments when drawing a picture, use
the SetStdCProcs function to assist you in changing the CQDProcs structure and use the SetStdProcs
function to assist you in changing the QDProcs structure.

Special Considerations

Always use the ClipRect function to specify a clipping region appropriate for your picture before defining
it with the OpenCPicture (or OpenPicture) function. If you do not use ClipRect to specify a clipping
region, OpenCPicture uses the clipping region specified in the current graphics port. If the clipping region
is very large (as it is when a graphics port is initialized) and you want to scale the picture, the clipping region
can become invalid when DrawPicture scales the clipping region—in which case, your picture will not be

Deprecated in Mac OS X v10.4 203
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

drawn. On the other hand, if the graphics port specifies a small clipping region, part of your drawing may
be clipped when DrawPicture draws it. Setting a clipping region equal to the port rectangle of the current
graphics port always sets a valid clipping region.

When it scales, DrawPicture changes the size of the font instead of scaling the bits. However, the widths
used by bitmap fonts are not always linear. For example, the 12-point width isn’t exactly 1/2 of the 24-point
width. This can cause lines of text to become slightly longer or shorter as the picture is scaled. The difference
is often insignificant, but if you are trying to draw a line of text that fits exactly into a box (a spreadsheet cell,
for example), the difference can become noticeable to the user—most typically, at print time. The easiest
way to avoid such problems is to specify a destination rectangle that is the same size as the bounding
rectangle for the picture. Otherwise, your application may need to directly process the opcodes in the picture
instead of using DrawPicture.

You may also have disappointing results if the fonts contained in an image are not available on the user’s
system. Before displaying a picture, your application may want to use the Picture Utilities to determine what
fonts are contained in the picture, and then use Font Manager functions to determine whether the fonts are
available on the user’s system. If they are not, you can use Dialog Manager functions to display an alert box
warning the user of display problems.

If there is insufficient memory to draw a picture in Color QuickDraw, the QDError function returns the result
code noMemForPictPlaybackErr.

The DrawPicture function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseArc
Erases a wedge. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

204 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
Using the patCopy pattern mode, the EraseArc function draws a wedge of the oval bounded by the
rectangle that you specify in the r parameter with the background pattern for the current graphics port. As
in FrameArc (page 219) , use the startAngle and arcAngle parameters to define the arc of the wedge.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseOval
Erases an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
Using the background pattern for the current graphics port and the patCopy pattern mode, the EraseOval
function draws the interior of an oval just inside the bounding rectangle that you specify in the r parameter.
This effectively erases the oval bounded by the specified rectangle.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 205
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

ErasePoly
Erases a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void ErasePoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to erase. The OpenPoly (page 312) function returns this handle when you
first create the polygon.

Discussion
Using the patCopy pattern mode, the ErasePoly function draws the interior of the polygon whose handle
you pass in the poly parameter with the background pattern for the current graphics port.

This function leaves the location of the graphics pen unchanged.

This function temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 291) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Special Considerations

The ErasePoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseRect
Erases a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseRect (
 const Rect *r
);

Parameters
r

The rectangle to erase.

206 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
Using the patCopy pattern mode, the EraseRect function draws the interior of the rectangle that you
specify in the r parameter with the background pattern for the current graphics port. This effectively erases
the rectangle, making the shape blend into the background pattern of the graphics port. For example, use
EraseRect to erase the port rectangle for a window before redrawing into the window.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

Declared In
QuickdrawAPI.h

EraseRgn
Erases a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseRgn (
 RgnHandle rgn
);

Parameters
rgn

The region to erase.

Discussion
Using the patCopy pattern mode, the EraseRgn function draws the interior of the region whose handle
you pass in the rgn parameter with the background pattern for the current graphics port.

This function leaves the location of the graphics pen unchanged.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Special Considerations

The EraseRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Deprecated in Mac OS X v10.4 207
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseRoundRect
Erases a rounded rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void EraseRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Discussion
Using the patCopy pattern mode, the EraseRoundRect function draws the interior of the rounded rectangle
bounded by the rectangle that you specify in the r parameter with the background pattern of the current
graphics port. This effectively erases the rounded rectangle. Use the ovalWidth and ovalHeight parameters
to specify the diameters of curvature for the corners of the rounded rectangle.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseRoundRect function may move or purge memory blocks in the application; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillArc
Fills a wedge with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

208 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void FillArc (
 const Rect *r,
 short startAngle,
 short arcAngle,
 const Pattern *pat
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The bit pattern to use for the fill.

pat
The angle indicating the arc’s extent.

Discussion
Using the patCopy pattern mode and the pattern defined in the Pattern (page 126) structure that you
specify in the pat parameter, the FillArc function draws a wedge of the oval bounded by the rectangle
that you specify in therparameter. As inFrameArc (page 219) use thestartAngle andarcAngleparameters
to define the arc of the wedge.

This function leaves the location of the graphics pen unchanged.

Use GetPattern (page 234) and GetIndPattern (page 231) to get a pattern stored in a resource.

Use PaintArc (page 315) to draw a wedge with the pen pattern for the current graphics port.

To fill a wedge with a pixel pattern, use the FillCArc function.

Special Considerations

The FillArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCArc
Fills a wedge with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 209
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void FillCArc (
 const Rect *r,
 short startAngle,
 short arcAngle,
 PixPatHandle pp
);

Parameters
r

The rectangle that defines the oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
Use the startAngle and arcAngle parameters to define the arc of the wedge. This function ignores the
pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen location unchanged.

Special Considerations

The FillCArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCOval
Fills an oval with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCOval (
 const Rect *r,
 PixPatHandle pp
);

Parameters
r

The rectangle containing the oval to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

210 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The FillCOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCPoly
Fills a polygon with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCPoly (
 PolyHandle poly,
 PixPatHandle pp
);

Parameters
poly

A handle to the polygon to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCRect
Fills a rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 211
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void FillCRect (
 const Rect *r,
 PixPatHandle pp
);

Parameters
r

The rectangle to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCRgn
Fills a region with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCRgn (
 RgnHandle rgn,
 PixPatHandle pp
);

Parameters
rgn

A handle to the region to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

212 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCRoundRect
Fills a rounded rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight,
 PixPatHandle pp
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature for the corners. This
function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen location
unchanged.

Special Considerations

The FillCRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillOval
Fills an oval with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 213
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void FillOval (
 const Rect *r,
 const Pattern *pat
);

Parameters
r

The rectangle that defines the oval’s boundaries.

pat
The bit pattern to use for the fill.

Discussion
Using the patCopy pattern mode and the bit pattern defined in the Pattern (page 126) structure that you
specify in the pat parameter, the FillOval function draws the interior of an oval just inside the bounding
rectangle that you specify in the r parameter. The pen location does not change.

Use GetPattern (page 234) and GetIndPattern (page 231) , to get a pattern stored in a resource. Use the
PaintOval (page 316) function to draw the interior of an oval with the pen pattern for the current graphics
port.

To fill an oval with a pixel pattern, use the FillCOval function.

Special Considerations

The FillOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillPoly
Fills a polygon with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void FillPoly (
 PolyHandle poly,
 const Pattern *pat
);

Parameters
poly

A handle to the polygon to fill. The OpenPoly (page 312) function returns this handle when you first
create the polygon.

pat
The bit pattern to use for the fill.

214 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
Using the patCopy pattern mode, the FillPoly function draws the interior of the polygon whose handle
you pass in the poly parameter with the pattern defined in the Pattern (page 126) structure that you specify
in the pat parameter.

This function leaves the location of the graphics pen unchanged.

This function temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 291) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Use GetPattern (page 234) and GetIndPattern (page 231) to get a pattern stored in a resource.

Use PaintPoly (page 316) to draw the interior of a polygon with the pen pattern for the current graphics
port. To fill a polygon with a pixel pattern, use the FillCPoly function.

Special Considerations

The FillPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillRect
Fills a rectangle with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void FillRect (
 const Rect * r,
 const Pattern * pat
);

Parameters
r

The rectangle to fill.

pat
The bit pattern to use for the fill.

Deprecated in Mac OS X v10.4 215
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
Using the patCopy pattern mode, the FillRect function draws the interior of the rectangle that you specify
in the r parameter with the pattern defined in the Pattern (page 126) structure that you specify in the pat
parameter. This function leaves the pen location unchanged.

Use GetPattern (page 234) and GetIndPattern (page 231) , to get a pattern stored in a resource.

Use the PaintRect (page 317) to draw the interior of a rectangle with the pen pattern for the current graphics
port. To fill a rectangle with a pixel pattern, use the FillCRect function.

Special Considerations

The FillRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillRgn
Fills a region with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FillRgn (
 RgnHandle rgn,
 const Pattern * pat
);

Parameters
rgn

A handle to the region to fill.

pat
The bit pattern to use for the fill.

Discussion
Using the patCopy pattern mode, the FillRgn function draws the interior of the region with the pattern
defined in the Pattern (page 126) structure that you specify in the pat parameter.

This function leaves the location of the graphics pen unchanged.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Use GetPattern (page 234) and GetIndPattern (page 231) to get a pattern stored in a resource.

216 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Use PaintRgn (page 318) to draw the interior of a region with the pen pattern for the current graphics port.
To fill a region with a pixel pattern, use the FillCRegion function.

Special Considerations

The FillRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillRoundRect
Fills a rounded rectangle with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void FillRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight,
 const Pattern *pat
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

pat
The bit pattern to use for the fill.

Discussion
Using the patCopy pattern mode, the FillRoundRect function draws the interior of the rounded rectangle
bounded by the rectangle that you specify in the r parameter with the bit pattern defined in the Pattern
structure that you specify in the pat parameter. Use the ovalWidth and ovalHeight parameters to specify
the diameters of curvature for the corners. The pen location does not change.

To fill a rounded rectangle with a pixel pattern, use the FillCRoundRect function.

Use GetPattern (page 234) and GetIndPattern (page 231) to get a pattern stored in a resource. Use
PaintRoundRect (page 318) to draw the interior of a rounded rectangle with the pen pattern for the current
graphics port.

Special Considerations

The FillRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Deprecated in Mac OS X v10.4 217
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ForeColor
Changes the color of the “ink” used for framing, painting, and filling on computers that support only basic
QuickDraw. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

void ForeColor (
 long color
);

Parameters
color

One of eight color values. See “Color Constants” (page 145).

Discussion
By default, the foreground color of a GrafPort is black.

The ForeColor function sets the foreground color for the current graphics port to the color that you specify
in the color parameter. When you draw with the patCopy and srcCopy transfer modes, for example, black
pixels are drawn in the color you specify with ForeColor.

When printing, use the ColorBit (page 178) function to set the foreground color.

All nonwhite colors appear as black on black-and-white screens. Before you use ForeColor, use the
DeviceLoop function to determine the color characteristics of the current screen.

Special Considerations

The ForeColor function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Version Notes
In System 7, you may instead use the color QuickDraw function RGBForeColor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
QuickdrawAPI.h

218 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

FrameArc
Draws an arc of the oval that fits inside a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void FrameArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the FrameArc
function draws an arc of the oval bounded by the rectangle that you specify in the r parameter. Use the
startAngle parameter to specify where the arc begins as modulo 360. Use the arcAngle parameter to
specify how many degrees the arc covers. Specify whether the angles are in positive or negative degrees a
positive angle goes clockwise, while a negative angle goes counterclockwise. Zero degrees is at 12 o’clock
high, 90 (or –270) is at 3 o’clock, 180 (or –180) is at 6 o’clock, and 270 (or –90) is at 9 o’clock. Measure other
angles relative to the bounding rectangle.

A line from the center of the rectangle through its upper-right corner is at 45, even if the rectangle is not
square a line through the lower-right corner is at 135, and so on.

The arc is as wide as the pen width and as tall as the pen height. The pen location does not change.

Special Considerations

The FrameArc function differs from other QuickDraw functions that frame shapes in that the arc is not
mathematically added to the boundary of a region that’s open and being formed.

The FrameArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameOval
Draws an outline inside an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 219
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void FrameOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the FrameOval
function draws an outline just inside the oval with the bounding rectangle that you specify in the r parameter.
The outline is as wide as the pen width and as tall as the pen height. The pen location does not change.

If a region is open and being formed, the outside outline of the new oval is mathematically added to the
region’s boundary.

Special Considerations

The FrameOval function may move or purge memory blocks in the application; do not call this function at
interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FramePoly
Draws the outline of a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void FramePoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to draw. The OpenPoly (page 312) function returns this handle when you
first create the polygon.

Discussion
Using the current graphics port’s pen pattern, pattern mode, and size, the FramePoly function plays back
the line-drawing commands that define the polygon whose handle you pass in the poly parameter.

The graphics pen hangs below and to the right of each point on the boundary of the polygon. Thus, the
drawn polygon extends beyond the right and bottom edges of the polygon’s bounding rectangle (which is
stored in the polyBBox field of the Polygon structure) by the pen width and pen height, respectively. All
other graphics operations, such as painting a polygon with the PaintPoly function, occur strictly within
the boundary of the polygon.

If a polygon is open and being formed, FramePoly affects the outline of the polygon just as if the line-drawing
functions themselves had been called. If a region is open and being formed, the outside outline of the polygon
being framed is mathematically added to the region’s boundary.

220 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

The result of this function is undefined whenever any horizontal or vertical line through the polygon would
intersect the polygon’s outline more than 50 times.

Special Considerations

The FramePoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameRect
Draws an outline inside a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FrameRect (
 const Rect * r
);

Parameters
r

The rectangle to frame.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the FrameRect
function draws an outline just inside the rectangle that you specify in the r parameter. The outline is as wide
as the pen width and as tall as the pen height. The pen location does not change.

If a region is open and being formed, the outside outline of the new rectangle is mathematically added to
the region’s boundary.

Special Considerations

The FrameRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameRgn
Draws an outline inside a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 221
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void FrameRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to frame.

Discussion
Using the current graphics port’s pen pattern, pattern mode, and pen size, the FrameRgn function draws an
outline just inside the region whose handle you pass in the rgn parameter. The outline never goes outside
the region boundary. The pen location does not change.

If a region is open and being formed, the outside outline of the region being framed is mathematically added
to that region’s boundary.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined. The FrameRgn function in particular requires that
there would be no more than 25 such intersections.

Special Considerations

The FrameRgn function calls the functions CopyRgn, InsetRgn, and DiffRgn, so FrameRgnmay temporarily
use heap space that’s three times the size of the original region.

The FrameRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameRoundRect
Draws an outline inside a rounded rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void FrameRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

222 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the
FrameRoundRect function draws an outline just inside the rounded rectangle bounded by the rectangle
that you specify in the r parameter. The outline is as wide as the pen width and as tall as the pen height.
The pen location does not change.

Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature for the corners of
the rounded rectangle.

If a region is open and being formed, the outside outline of the new rounded rectangle is mathematically
added to the region’s boundary.

Special Considerations

The FrameRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GDeviceChanged
Notifies QuickDraw that the content of a GDevice structure has been modified. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GDeviceChanged (
 GDHandle gdh
);

Discussion
If your application changes the pmTable field of the PixMap structure specified in a GDevice structure, call
GDeviceChanged. If your application changes the content of the ColorTable structure referenced by the
PixMap structure, call both GDeviceChanged and CTabChanged.

Your application should never need to directly modify a GDevice structure and use the GDeviceChanged
function; instead, your application should use the QuickDraw functions described in this book for manipulating
the values in a GDevice structure.

Special Considerations

The GDeviceChanged function may move or purge memory in the application heap; do not call the
GDeviceChanged function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 223
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

GetBackColor
Obtains the background color of the current graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetBackColor (
 RGBColor *color
);

Parameters
color

On return, the RGBColor structure for the current background color.

Discussion
This function operates for graphics ports defined by both the GrafPort and CGrafPort structures. If the
current graphics port is defined by a CGrafPort structure, the returned value is taken directly from the
rgbBkColor field.

If the current graphics port is defined by a GrafPort structure, then only eight possible colors can be returned.
These eight colors are determined by the values in a global variable named QDColors, which is a handle to
a color table containing the current QuickDraw colors.

Use the RGBBackColor (page 343) function to change the background color.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetCCursor
Loads a color cursor resource into memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

CCrsrHandle GetCCursor (
 short crsrID
);

Parameters
crsrID

The resource ID of the cursor that you want to display.

Return Value
A handle to the new CCrsr structure. To display this cursor on the screen, call SetCCursor. If a resource
with the specified ID isn’t found, then this function returns a NULL handle.

224 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
The GetCCursor function creates a new CCrsr (page 107) structure and initializes it using the information
in the ‘crsr’ resource with the specified ID.

Since the GetCCursor function creates a new CCrsr structure each time it is called, do not call the
GetCCursor function before each call to the SetCCursor function. Unlike the way GetCursor and
SetCursor are normally used, GetCCursor does not dispose of or detach the resource, so resources of type
'crsr' should typically be purgeable. Call the DisposeCCursor (page 192) function when you are finished
using the color cursor created with GetCCursor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetCPixel
Determines the color of an individual pixel specified in the h and v parameters. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetCPixel (
 short h,
 short v,
 RGBColor *cPix
);

Parameters
h

The horizontal coordinate of the point at the upper-left corner of the pixel.

v
The vertical coordinate of the point at the upper-left corner of the pixel.

cPix
On return, the RGBColor structure for the pixel color.

Discussion
Use the SetCPixel (page 352) function to change the color of this pixel.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetCTable
Obtains a color table stored in a 'clut' resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 225
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

CTabHandle GetCTable (
 short ctID
);

Parameters
ctID

The resource ID of a 'clut' resource.

Return Value
A handle to the color table. If the 'clut' resource with that ID is not found, GetCTable returns NULL. Before
you place this handle in the pmTable field of a PixMap structure, first use the DisposeCTable function to
dispose of the handle already there.

Discussion
Before you modify a ColorTable structure, change its ctSeed field to invalidate it. To do this, use the
CTabChanged (page 187) function.

The GetCTable function recognizes a number of standard 'clut' resource IDs. You can obtain the default
grayscale color table for a given pixel depth by calling GetCTable, adding 32 (decimal) to the pixel depth,
and passing these values in the ctID parameter:

 ■ A pixel depth of 1. Pass a resource ID of 33. Color table composition: black, white.

 ■ A pixel depth of 2. Pass a resource ID of 34. Color table composition: black, 33% gray, 66% gray, white.

 ■ A pixel depth of 4. Pass a resource ID of 36. Color table composition: black, 14 shades of gray, white.

 ■ A pixel depth of 8. Pass a resource ID of 40. Color table composition: black, 254 shades of gray, white.

For full color, obtain the default color tables by adding 64 to the pixel depth and passing these values in the
ctID parameter:

 ■ A pixel depth of 2. Pass a resource ID of 66. Color table composition: black, 50% gray, highlight color,
white.

 ■ A pixel depth of 4. Pass a resource ID of 68. Color table composition: black, 14 colors including the
highlight color, white.

 ■ A pixel depth of 8. Pass a resource ID of 72. Color table composition: black, 254 colors including the
highlight color, white.

Special Considerations

The GetCTable function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

226 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetCTSeed
Obtains a unique seed value for a color table created by your application. This function is used by system
software and your application should not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

long GetCTSeed (
 void
);

Return Value
A unique seed value that you can use in the ctSeed field of a color table created by your application. It is
greater than the value stored in the constant minSeed.

Discussion
The seed value guarantees that the color table is recognized as distinct from the destination, and that color
table translation is performed properly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetCursor
Loads a cursor resource into memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

CursHandle GetCursor (
 short cursorID
);

Parameters
cursorID

The resource ID for the cursor you want to display. You can supply one of the “Cursor ID
Constants” (page 146) to get a handle to one of the standard cursors.

Return Value
A handle to a Cursor structure for the cursor with the resource ID that you specify in the cursorID parameter.
If the resource cannot be read into memory, GetCursor returns NULL.

Discussion
To get a handle to a color cursor, use the GetCCursor (page 224) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 227
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetDeviceList
Obtains a handle to the first GDevice structure in the device list. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetDeviceList (
 void
);

Return Value
A handle to the first GDevice structure in the global variable DeviceList.

Discussion
All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

Special Considerations

The GetDeviceList function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetForeColor
Obtains the color of the foreground color for the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetForeColor (
 RGBColor *color
);

Parameters
color

On return, the RGBColor structure for the current foreground color.

Discussion
This function operates for graphics ports defined by both the GrafPort and CGrafPort structures. If the
current graphics port is defined by a CGrafPort structure, the returned value is taken directly from the
rgbFgColor field.

If the current graphics port is defined by a GrafPort structure, then only eight possible RGB values can be
returned. These eight values are determined by the values in a global variable named QDColors, which is a
handle to a color table containing the current QuickDraw colors.

Use the RGBForeColor (page 344) function to change the foreground color.

Availability
Available in Mac OS X v10.0 and later.

228 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

GetGDevice
Obtains a handle to the GDevice structure for the current device. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetGDevice (
 void
);

Return Value
A handle to the current device.

Discussion
At any given time, exactly one video device is the current device—that is, the one on which drawing is actually
taking place.

Color QuickDraw stores a handle to the current device in the global variable TheGDevice.

All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

You can also use the GetGWorld function to get a handle to the GDevice structure for the current device.

Special Considerations

The GetGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetGWorldDevice
Obtains a handle to the GDevice structure associated with an offscreen graphics world. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 229
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GDHandle GetGWorldDevice (
 GWorldPtr offscreenGWorld
);

Parameters
offscreenGWorld

A pointer to an offscreen graphics world. The pointer returned to your application by the NewGWorld
function.

Return Value
A handle to the GDevice structure associated with the offscreen graphics world specified by the
offscreenGWorld parameter.

If you created the offscreen world by specifying the noNewDevice flag, the GDevice structure is for one of
the screen devices or is the GDevice structure that you specified to NewGWorld or UpdateGWorld.

If you point to a GrafPort or CGrafPort structure in the offscreenGWorld parameter, GetGWorldDevice
returns the current device.

Special Considerations

The GetGWorldDevice function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
WhackedTV

Declared In
QDOffscreen.h

GetGWorldPixMap
Obtains the pixel map created for an offscreen graphics world. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixMapHandle GetGWorldPixMap (
 GWorldPtr offscreenGWorld
);

Parameters
offscreenGWorld

A pointer to an offscreen graphics world. Pass the pointer returned to your application by the
NewGWorld (page 64) function when you created the offscreen graphics world.

Return Value
A handle to the pixel map created for an offscreen graphics world. Your application can, in turn, pass the
handle returned by GetGWorldPixMap as a parameter to other QuickDraw functions that accept a handle
to a pixel map.

230 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

On a system running only basic QuickDraw, the GetGWorldPixMap function returns the handle to a 1-bit
pixel map that your application can supply as a parameter to the other functions related to offscreen graphics
worlds. However, your application should not supply this handle to color QuickDraw functions.

Special Considerations

To ensure compatibility on systems running basic QuickDraw instead of Color QuickDraw, use
GetGWorldPixMap whenever you need to gain access to the bitmap created for a graphics world—that is,
do not dereference the GWorldPtr structure for that graphics world.

Version Notes
The GetGWorldPixMap function is not available in systems preceding System 7. You can make sure that the
GetGWorldPixMap function is available by using the Gestalt function with the gestaltSystemVersion
selector. Test the low-order word in the response parameter; if the value is $0700 or greater, then
GetGWorldPixMap is available.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell
WhackedTV

Declared In
QDOffscreen.h

GetIndPattern
Obtains a pattern stored in a pattern list ('PAT#') resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetIndPattern (
 Pattern *thePat,
 short patternListID,
 short index
);

Parameters
thePat

On return, a pointer to a Pattern (page 126) structure for the pattern stored in the specified pattern
list resource.

patternListID
The resource ID for a resource of type 'PAT#'.

index
The index number for the desired pattern within the pattern list ('PAT#') resource. The index number
can range from 1 to the number of patterns in the pattern list resource.

Discussion
The GetIndPattern function calls the following Resource Manager function with these parameters:

GetResource('PAT#', patternListID);

Deprecated in Mac OS X v10.4 231
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

There is a pattern list resource in the System file that contains the standard Macintosh patterns used by
MacPaint. The resource ID is represented by the constant sysPatListID.

Special Considerations

The GetIndPattern function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetMainDevice
Obtains a handle to the GDevice structure for the main screen. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetMainDevice (
 void
);

Return Value
A handle to the device for the main screen, which is the device containing the menu bar.

Discussion
A handle to the main device is kept in the global variable MainDevice.

All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

Special Considerations

The GetMainDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetMaskTable
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

232 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Ptr GetMaskTable (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetMaxDevice
Obtains a handle to the GDevice structure for the video device with the greatest pixel depth. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetMaxDevice (
 const Rect *globalRect
);

Parameters
globalRect

A rectangle, in global coordinates, that intersects the graphics devices that you are searching to find
the one with the greatest pixel depth.

Return Value
A handle to the device with the greatest pixel depth.

Discussion
All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

Special Considerations

The GetMaxDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetNextDevice
Returns a handle to the next GDevice structure in the device list. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 233
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GDHandle GetNextDevice (
 GDHandle curDevice
);

Parameters
curDevice

A handle to the GDevice structure at which you want the search to begin.

Return Value
A handle to the next device. If there are no more GDevice structures in the list, NULL.

Discussion
After using any of the functions GetDeviceList (page 228) , GetGDevice (page 229) , GetMainDevice (page
232) , or GetMaxDevice (page 233) to obtain a handle to a GDevice structure, use the GetNextDevice
function to obtain a handle to the next GDevice structure in the list.

Special Considerations

The GetNextDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPattern
Obtains a pattern ('PAT') resource stored in a resource file. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

PatHandle GetPattern (
 short patternID
);

Parameters
patternID

The resource ID for a resource of type ‘PAT’.

Return Value
a handle to the pattern having the resource ID that you specify in the patID parameter. If a pattern resource
with the ID that you request does not exist, the GetPattern function returns NULL.

Discussion
The GetPattern function calls the following Resource Manager function with these parameters:

GetResource('PAT', patID);

When you are finished using the pattern, dispose of its handle with the Memory Manager function
DisposeHandle.

234 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The GetPattern function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPen
Determines the location of the graphics pen. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void GetPen (
 Point *pt
);

Parameters
pt

On return, a pointer to the graphics pen’s current position in the current graphics port. The point
returned is in the local coordinates of the current graphics port.

Discussion
In the pt parameter, the GetPen procedure returns the current pen position. The point returned is in the local
coordinates of the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPenState
Determines the graphics pen’s location, size, pattern, and pattern mode. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetPenState (
 PenState *pnState
);

Parameters
pnState

On return, a pointer to a PenState structure holding information about the graphics pen. The
GetPenState function saves the location, size, pattern, and pattern mode of the graphics pen for
the current graphics port in this structure.

Deprecated in Mac OS X v10.4 235
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
After changing the graphics pen as necessary, restore these pen states with the SetPenState (page 357)
function.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPicture
Obtains a handle to a picture stored in a 'PICT' resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

PicHandle GetPicture (
 short pictureID
);

Parameters
pictureID

The resource ID for a 'PICT' resource.

Return Value
A handle to the picture in the specified ‘PICT’ resource. To draw the picture stored in the resource, pass this
handle to the DrawPicture (page 203) function. If the resource cannot be read, GetPicture returns NULL.

Discussion
The GetPicture function calls the Resource Manager function GetResource as follows:

GetResource(‘PICT’, picID)

Special Considerations

To release the memory occupied by a picture stored in a 'PICT' resource, use the Resource Manager function
ReleaseResource.

The GetPicture function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

236 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetPixBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * GetPixBounds (
 PixMapHandle pixMap,
 Rect *bounds
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPixDepth
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPixDepth (
 PixMapHandle pixMap
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPixel
Determines whether the pixel associated with a point is black or white. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 237
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Boolean GetPixel (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the point for the pixel to be tested.

v
The vertical coordinate of the point for the pixel to be tested.

Return Value
Returns TRUE if the pixel is black or FALSE if it is white.

Discussion
The selected pixel is immediately below and to the right of the point whose coordinates you supply in the
h and v parameters, in the local coordinates of the current graphics port. There’s no guarantee that the
specified pixel actually belongs to the current graphics port, however it may have been drawn in a graphics
port overlapping the current one. To see if the point indeed belongs to the current graphics port, you could
use the PtInRgn function to test whether the point is in the current graphics port’s visible region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPixelsState
Saves the current information about the memory allocated for an offscreen pixel image. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GWorldFlags GetPixelsState (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. To get a handle to an offscreen pixel map, use the
GetGWorldPixMap (page 230) function.

Return Value
Information about the memory allocated for the base address for an offscreen pixel image. This result can
be either of the constants, pixelsPurgeable or pixelsLocked. If the pixelsPurgeable flag is not
returned, then the base address for the offscreen pixel image is unpurgeable. If the pixelsLocked flag is
not returned, then the base address for the offscreen pixel image is unlocked.

Discussion
After using GetPixelsState to save this state information, use the SetPixelsState (page 358) function
to restore this state to the offscreen graphics world.

238 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

After using GetPixelsState and before using SetPixelsState, temporarily use the
AllowPurgePixels (page 168) function to make the base address for an offscreen pixel image purgeable,
the NoPurgePixels (page 306) function to make it unpurgeable, the LockPixels (page 288) function to
prevent it from being moved, and the UnlockPixels (page 381) function to allow it to be moved.

Special Considerations

The GetPixelsState function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

GetPixPat
Obtains a pixel pattern ('ppat') resource stored in a resource file. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixPatHandle GetPixPat (
 short patID
);

Parameters
patID

The resource ID for a resource of type 'ppat'.

Return Value
A handle to the pixel pattern having the resource ID you specify in the patID parameter. The GetPixPat
function calls the following Resource Manager function with these parameters:

GetResource('ppat', patID);

If a 'ppat' resource with the ID that you request does not exist, the GetPixPat function returns NULL.

Discussion
When you are finished with the pixel pattern, use the DisposePixPat (page 196) function. For more
information on the pixel pattern resource, see 'ppat'.

Pixel patterns can use colors at any pixel depth and can be of any width and height that’s a power of 2. To
create a pixel pattern, you typically define it in a 'ppat' resource, which you store in a resource file. To
retrieve the pixel pattern stored in a 'ppat' resource, you can use the GetPixPat function.

Special Considerations

The GetPixPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 239
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

GetPixRowBytes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt32 GetPixRowBytes (
 PixMapHandle pm
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

GetPort
Saves the current graphics port (basic or color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void GetPort (
 GrafPtr *port
);

Parameters
port

On return, a pointer to a GrafPort structure for the current graphics port. If the current graphics
port is a color graphics port, GetPort coerces its CGrafPort structure into a GrafPort structure.

Discussion
When your application runs in Color QuickDraw or uses offscreen graphics worlds, it should use the GetGWorld
function instead of GetPort. The GetGWorld function saves the current graphics port for basic and color
graphics ports as well as offscreen graphics worlds.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

240 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetPortBackColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortBackColor (
 CGrafPtr port,
 RGBColor *backColor
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortBackPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

PixPatHandle GetPortBackPixPat (
 CGrafPtr port,
 PixPatHandle backPattern
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortBitMapForCopyBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 241
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

const BitMap * GetPortBitMapForCopyBits (
 CGrafPtr port
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * GetPortBounds (
 CGrafPtr port,
 Rect *rect
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

GetPortChExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortChExtra (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

242 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

GetPortClipRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle GetPortClipRegion (
 CGrafPtr port,
 RgnHandle clipRgn
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortCustomXFerProc
(Deprecated in Mac OS X v10.4.)

Not recommended

OSErr GetPortCustomXFerProc (
 CGrafPtr port,
 CustomXFerProcPtr *proc,
 UInt32 *flags,
 UInt32 *refCon
);

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 243
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetPortFillPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

PixPatHandle GetPortFillPixPat (
 CGrafPtr port,
 PixPatHandle fillPattern
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortForeColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortForeColor (
 CGrafPtr port,
 RGBColor *foreColor
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortFracHPenLocation
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

244 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

short GetPortFracHPenLocation (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortGrafProcs
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

CQDProcsPtr GetPortGrafProcs (
 CGrafPtr port
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortHiliteColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortHiliteColor (
 CGrafPtr port,
 RGBColor *hiliteColor
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 245
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetPortOpColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortOpColor (
 CGrafPtr port,
 RGBColor *opColor
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenLocation
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * GetPortPenLocation (
 CGrafPtr port,
 Point *penLocation
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

246 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SInt32 GetPortPenMode (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

PixPatHandle GetPortPenPixPat (
 CGrafPtr port,
 PixPatHandle penPattern
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * GetPortPenSize (
 CGrafPtr port,
 Point *penSize
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 247
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenVisibility
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortPenVisibility (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPixMap
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

PixMapHandle GetPortPixMap (
 CGrafPtr port
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortSpExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

248 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Fixed GetPortSpExtra (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortTextFace
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Style GetPortTextFace (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortTextFont
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortTextFont (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 249
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetPortTextMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortTextMode (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortTextSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortTextSize (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortVisibleRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle GetPortVisibleRegion (
 CGrafPtr port,
 RgnHandle visRgn
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

250 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsArrow
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Cursor * GetQDGlobalsArrow (
 Cursor *arrow
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsBlack
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsBlack (
 Pattern *black
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsDarkGray
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 251
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Pattern * GetQDGlobalsDarkGray (
 Pattern *dkGray
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsGray
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsGray (
 Pattern *gray
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsLightGray
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsLightGray (
 Pattern *ltGray
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

252 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetQDGlobalsRandomSeed
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

long GetQDGlobalsRandomSeed (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsScreenBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

BitMap * GetQDGlobalsScreenBits (
 BitMap *screenBits
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsThePort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

CGrafPtr GetQDGlobalsThePort (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 253
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GetQDGlobalsWhite
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsWhite (
 Pattern *white
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetSubTable
Searches one color table for the best matches to colors in another color table. Your application should not
need to call this function; it is used by system software only. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetSubTable (
 CTabHandle myColors,
 short iTabRes,
 CTabHandle targetTbl
);

Parameters
myColors

A handle to a color table containing the colors for which you want matches.

iTabRes
The resolution of the inverse table to be used.

targetTbl
A handle to a color table whose colors are to be matched. If you supply NULL for targetTbl, then
the Color Manager searches the current GDevice data structure’s CLUT, and uses its inverse table.
Otherwise a temporary inverse table is built, with a resolution of the value in the iTabRes parameter.

Discussion
The Color Manager uses the Color2Index (page 178) function for each RGBColor data structure in the color
table of the myColors parameter. It determines the best match in the target table and stores that index
value in the value field of the color table of the myColors parameter.

Depending on the requested resolution, building the inverse table can require large amounts of temporary
space in the application heap: twice the size of the table itself, plus a fixed overhead of 3–15 KB for each
inverse table resolution.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

254 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

GlobalToLocal
Converts the coordinates of a point from global coordinates to the local coordinates of the current graphics
port (basic or color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

void GlobalToLocal (
 Point *pt
);

Parameters
pt

A pointer to a point expressed in global coordinates (where the upper-left corner of the main screen
has coordinates [0,0]). On return, this point is converted to local coordinates.

Discussion
The GlobalToLocal procedure takes a point expressed in global coordinates (where the upper-left corner of
the main screen has coordinates [0,0]) and converts it into the local coordinates of the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GrafDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void GrafDevice (
 short device
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

HidePen
Makes the graphics pen invisible, so that pen drawing doesn’t show on the screen. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 255
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void HidePen (
 void
);

Discussion
TheHidePen function is called by theOpenRgn (page 312) ,OpenPicture, andOpenPoly (page 312) functions
so that you can create regions, pictures, and polygons without drawing on the screen.

The HidePen function decrements the pnVis field of the current graphics port. The pnVis field is initialized
to 0 by the OpenPort function. Whenever pnVis is negative, the pen does not draw on the screen. The
pnVis field keeps track of the number of times the pen has been hidden to compensate for nested calls to
the HidePen and ShowPen functions.

Every call to HidePen should be balanced by a subsequent call to ShowPen (page 369).

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

HiliteColor
Changes the highlight color for the current color graphics port. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void HiliteColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure that defines the highlight color.

Discussion
All drawing operations that use the hilite transfer mode use the highlight color. When a color graphics
port is created, its highlight color is initialized from the global variable HiliteRGB.

If the current graphics port is a basic graphics port, HiliteColor has no effect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

256 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Index2Color
Obtains the RGBColor data structure corresponding to an index value in the color table of the current
GDevice data structure. Your application should not need to call this function; it is used by system software
only. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void Index2Color (
 long index,
 RGBColor *aColor
);

Parameters
index

The index value whose color entry is sought; you should supply a long integer in which the high-order
word is padded with zeros.

aColor
A pointer to the returned RGBColor data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InitGDevice
Initializes a GDevice structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void InitGDevice (
 short qdRefNum,
 long mode,
 GDHandle gdh
);

Parameters
qdRefNum

Reference number of the graphics device. System software sets this number at system startup time
for most graphics devices.

mode
The device configuration mode. Used by the screen driver, this value sets the pixel depth and specifies
color or black and white.

gdh
The handle, returned by the NewGDevice function, to the GDevice (page 119) structure to be initialized.

Discussion
The InitGDevice function sets the graphics device whose driver has the reference number specified in the
gdRefNum parameter to the mode specified in the mode parameter. The InitGDevice function then fills
out the GDevice structure, previously created with the NewGDevice function, to contain all information
describing that mode.

Deprecated in Mac OS X v10.4 257
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

The mode parameter determines the configuration of the device. Possible modes for a device are determined
by interrogating the video device’s ROM through Slot Manager functions. The information describing the
device’s mode is primarily contained in the video device’s ROM. If the video device has a fixed color table,
then that table is read directly from the ROM. If the video device has a variable color table, then InitGDevice
uses the default color table defined in a 'clut' resource, contained in the System file, that has a resource
ID equal to the video device’s pixel depth.

In general, your application should never need to call InitGDevice. All video devices are initialized at start
time, and users change modes through the Monitors control panel.

If your program uses NewGDevice to create a graphics device without a driver, InitGDevice does nothing;
instead, your application must initialize all fields of the GDevice structure. After your application initializes
the color table for the GDevice structure, call the Color Manager function MakeITable to build the inverse
table for the graphics device.

Special Considerations

The InitGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertArc
Inverts the pixels of a wedge. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void InvertArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
The InvertArc function inverts the pixels enclosed by a wedge of the oval bounded by the rectangle that
you specify in the r parameter. Every white pixel becomes black and every black pixel becomes white. As in
FrameArc (page 219) , use the startAngle and arcAngle parameters to define the arc of the wedge.

This function leaves the location of the graphics pen unchanged.

258 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The InvertArc function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with direct devices or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color
table represented by the global variable QDColors. To display those eight basic QuickDraw colors on an
indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that
best map to the colors in the QDColors color table. Because the index, not the color value, is inverted, the
results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertColor
Finds the complement of an RGBColor data structure. This function is used only by system software.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvertColor (
 RGBColor *myColor
);

Parameters
myColor

A pointer to the RGBColor data structure for which the complement is to be found. The InvertColor
function returns the complement of an absolute color, using the list of complement functions in the
current device data structure. The default complement function uses the one’s complement of each
component of the given color.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 259
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

InvertOval
Inverts the pixels enclosed by an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void InvertOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
The InvertOval function inverts the pixels enclosed by an oval just inside the bounding rectangle that you
specify in the r parameter. Every white pixel becomes black and every black pixel becomes white. The pen
location does not change.

Special Considerations

The InvertOval function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with direct devices or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color
table represented by the global variable QDColors. To display those eight basic QuickDraw colors on an
indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that
best map to the colors in the QDColors color table. Because the index, not the color value, is inverted, the
results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertOval function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertPoly
Inverts the pixels enclosed by a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

260 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void InvertPoly (
 PolyHandle poly
);

Parameters
poly

A handle to a polygon, the pixels of which you want to invert. The OpenPoly (page 312) function
returns this handle when you first create the polygon.

Discussion
The InvertPoly function inverts the pixels enclosed by the polygon whose handle you pass in the poly
parameter. Every white pixel becomes black and every black pixel becomes white.

This function leaves the location of the graphics pen unchanged.

InvertPoly temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 291) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Special Considerations

The InvertPoly function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with 1-bit or direct pixels. For indexed
pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results depend entirely
on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color table represented
by the global variable QDColors. To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best map to the colors
in the QDColors color table. Because the index, not the color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertPoly function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertRect
Inverts the pixels enclosed by a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 261
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void InvertRect (
 const Rect * r
);

Parameters
r

The rectangle whose enclosed pixels are to be inverted.

Discussion
The InvertRect function inverts the pixels enclosed by the rectangle that you specify in the r parameter.
Every white pixel becomes black and every black pixel becomes white. The pen location does not change.

Special Considerations

The InvertRect function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with direct pixels or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color
table represented by the global variable QDColors. To display those eight basic QuickDraw colors on an
indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that
best map to the colors in the QDColors color table. Because the index, not the color value, is inverted, the
results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertRgn
Inverts the pixels enclosed by a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void InvertRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region whose pixels are to invert.

Discussion
The InvertRgn function inverts the pixels enclosed by the region whose handle you pass in the rgn
parameter. Every white pixel becomes black and every black pixel becomes white.

This function leaves the location of the graphics pen unchanged.

262 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Special Considerations

The InvertRgn function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with 1-bit or direct pixels. For indexed
pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results depend entirely
on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color table represented
by the global variable QDColors. To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best map to the colors
in the QDColors color table. Because the index, not the color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertRoundRect
Inverts the pixels enclosed by a rounded rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void InvertRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Deprecated in Mac OS X v10.4 263
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
The InvertRoundRect function inverts the pixels enclosed by the rounded rectangle bounded by the
rectangle that you specify in the r parameter. Every white pixel becomes black and every black pixel becomes
white. The ovalWidth and ovalHeight parameters specify the diameters of curvature for the corners. The
pen location does not change.

Special Considerations

The InvertRoundRect function was designed for 1-bit images in basic graphics ports. This function operates
on color pixels in color graphics ports, but the results are predictable only with direct devices or 1-bit pixel
maps. For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the
results depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in
a color table represented by the global variable QDColors. To display those eight basic QuickDraw colors
on an indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT
that best map to the colors in the QDColors color table. Because the index, not the color value, is inverted,
the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertRoundRect function may move or purge memory blocks in the application; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvokeColorComplementUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean InvokeColorComplementUPP (
 RGBColor *rgb,
 ColorComplementUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeColorSearchUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

264 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Boolean InvokeColorSearchUPP (
 RGBColor *rgb,
 long *position,
 ColorSearchUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeDeviceLoopDrawingUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeDeviceLoopDrawingUPP (
 short depth,
 short deviceFlags,
 GDHandle targetDevice,
 SRefCon userData,
 DeviceLoopDrawingUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeDragGrayRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeDragGrayRgnUPP (
 DragGrayRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

Deprecated in Mac OS X v10.4 265
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

InvokeQDArcUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDArcUPP (
 GrafVerb verb,
 const Rect *r,
 short startAngle,
 short arcAngle,
 QDArcUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDBitsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDBitsUPP (
 const BitMap *srcBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn,
 QDBitsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDCommentUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDCommentUPP (
 short kind,
 short dataSize,
 Handle dataHandle,
 QDCommentUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

266 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDGetPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDGetPicUPP (
 void *dataPtr,
 short byteCount,
 QDGetPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDJShieldCursorUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDJShieldCursorUPP (
 short left,
 short top,
 short right,
 short bottom,
 QDJShieldCursorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDLineUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 267
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void InvokeQDLineUPP (
 Point newPt,
 QDLineUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDOpcodeUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDOpcodeUPP (
 const Rect *fromRect,
 const Rect *toRect,
 UInt16 opcode,
 SInt16 version,
 QDOpcodeUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDOvalUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDOvalUPP (
 GrafVerb verb,
 const Rect *r,
 QDOvalUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

268 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

InvokeQDPolyUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDPolyUPP (
 GrafVerb verb,
 PolyHandle poly,
 QDPolyUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDPutPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDPutPicUPP (
 const void *dataPtr,
 short byteCount,
 QDPutPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDRectUPP (
 GrafVerb verb,
 const Rect *r,
 QDRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

Deprecated in Mac OS X v10.4 269
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

InvokeQDRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDRgnUPP (
 GrafVerb verb,
 RgnHandle rgn,
 QDRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDRRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDRRectUPP (
 GrafVerb verb,
 const Rect *r,
 short ovalWidth,
 short ovalHeight,
 QDRRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDStdGlyphsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus InvokeQDStdGlyphsUPP (
 void *dataStream,
 ByteCount size,
 QDStdGlyphsUPP userUPP
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

270 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawTypes.h

InvokeQDTextUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDTextUPP (
 short byteCount,
 const void *textBuf,
 Point numer,
 Point denom,
 QDTextUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDTxMeasUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short InvokeQDTxMeasUPP (
 short byteCount,
 const void *textAddr,
 Point *numer,
 Point *denom,
 FontInfo *info,
 QDTxMeasUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeRegionToRectsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 271
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

OSStatus InvokeRegionToRectsUPP (
 UInt16 message,
 RgnHandle rgn,
 const Rect *rect,
 void *refCon,
 RegionToRectsUPP userUPP
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawAPI.h

IsPortClipRegionEmpty
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortClipRegionEmpty (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortColor (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

272 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

IsPortOffscreen
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortOffscreen (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortPictureBeingDefined
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortPictureBeingDefined (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortPolyBeingDefined
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortPolyBeingDefined (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 273
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

IsPortRegionBeingDefined
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortRegionBeingDefined (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortVisibleRegionEmpty
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortVisibleRegionEmpty (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsValidPort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsValidPort (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

274 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

KillPicture
Releases the memory occupied by a picture not stored in a 'PICT' resource. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void KillPicture (
 PicHandle myPicture
);

Parameters
myPicture

A handle to the picture whose memory can be released.

Discussion
Use this function only when you are completely finished with a picture.

Special Considerations

If you use the Window Manager function SetWindowPic to store a picture handle in the window structure,
use the Window Manager function DisposeWindow or CloseWindow to release the memory allocated to
the picture. These functions automatically call KillPicture for the picture.

If the picture is stored in a 'PICT' resource, use the Resource Manager function ReleaseResource instead
of KillPicture. The Window Manager functions DisposeWindow and CloseWindow will not delete it.
Instead, call ReleaseResource before calling DisposeWindow or CloseWindow.

The KillPicture function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

KillPoly
Releases the memory occupied by a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void KillPoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to dispose of.

Discussion
Use KillPoly only when you are completely through with a polygon.

Special Considerations

The KillPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Deprecated in Mac OS X v10.4 275
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Line
Draws a line a specified distance from the graphics pen’s current location in the current graphics port.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void Line (
 short dh,
 short dv
);

Parameters
dh

The horizontal distance of the graphics pen’s movement.

dv
The vertical distance of the graphics pen’s movement.

Discussion
Starting at the current location of the graphics pen, the Line function draws a line the horizontal distance
that you specify in the dh parameter and the vertical distance that you specify in the dv parameter. The Line
function calls

LineTo(h+dh,v+dv)

where (h,v) is the current location in local coordinates. The pen location becomes the coordinates of the
end of the line after the line is drawn. If you are using Line to draw a region or polygon, its outline is infinitely
thin and is not affected by the values of the pnSize, pnMode, and pnPat fields of the graphics port.

Special Considerations

The Line function may move or purge memory blocks in the application heap; do not call this function at
interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LineTo
Draws a line from the graphics pen’s current location to a new location. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

276 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LineTo (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the graphics pen’s new location.

v
The vertical coordinate of the graphics pen’s new location.

Discussion
The LineTo function draws a line from the graphics pen’s current location in the current graphics port to
the new location (h,v), which you specify in the local coordinates of the current graphics port. If you are
using LineTo to draw a region or polygon, its outline is infinitely thin and is not affected by the values of
the pnSize, pnMode, or pnPat field of the graphics port.

Special Considerations

The LineTo function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetCursorNew
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean LMGetCursorNew (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetDeviceList
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 277
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GDHandle LMGetDeviceList (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetFractEnable
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

UInt8 LMGetFractEnable (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetHiliteMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

UInt8 LMGetHiliteMode (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetHiliteRGB
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

278 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LMGetHiliteRGB (
 RGBColor *hiliteRGBValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetLastFOND
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetLastFOND (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetLastSPExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt32 LMGetLastSPExtra (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetMainDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 279
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GDHandle LMGetMainDevice (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetQDColors
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetQDColors (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetScrHRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt16 LMGetScrHRes (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetScrVRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

280 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SInt16 LMGetScrVRes (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetTheGDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

GDHandle LMGetTheGDevice (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetWidthListHand
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetWidthListHand (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetWidthPtr
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 281
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Ptr LMGetWidthPtr (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetWidthTabHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetWidthTabHandle (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetCursorNew
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetCursorNew (
 Boolean value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetDeviceList
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

282 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LMSetDeviceList (
 GDHandle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetFractEnable
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetFractEnable (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetHiliteMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetHiliteMode (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetHiliteRGB
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 283
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LMSetHiliteRGB (
 const RGBColor *hiliteRGBValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetLastFOND
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetLastFOND (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetLastSPExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetLastSPExtra (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetMainDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

284 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LMSetMainDevice (
 GDHandle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetQDColors
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetQDColors (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetScrHRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetScrHRes (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetScrVRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 285
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LMSetScrVRes (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetTheGDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetTheGDevice (
 GDHandle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetWidthListHand
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetWidthListHand (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetWidthPtr
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

286 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void LMSetWidthPtr (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetWidthTabHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetWidthTabHandle (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LocalToGlobal
Converts a point’s coordinates from the local coordinates of the current graphics port (basic or color) to
global coordinates. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

void LocalToGlobal (
 Point *pt
);

Parameters
pt

A pointer to a point in local coordinates. On return, this point is converted to global coordinates.

Discussion
The LocalToGlobal function converts the given point from the current graphics port’s local coordinate
system into the global coordinate system (where the upper-left corner of the main screen has coordinates
[0,0]). This global point can then be compared to other global points, or it can be changed into the local
coordinates of another graphics port.

Because a rectangle is defined by two points, you can convert a rectangle into global coordinates with two
calls to LocalToGlobal. In conjunction with LocalToGlobal, you can use the OffsetRect, OffsetRgn,
or OffsetPoly functions to convert a rectangle, region, or polygon into global coordinates.

Deprecated in Mac OS X v10.4 287
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LockPixels
Prevents the base address for an offscreen pixel image from being moved while you draw into or copy from
its pixel map. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Boolean LockPixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. To get a handle to an offscreen pixel map, use the
GetGWorldPixMap (page 230) function .

Return Value
If the base address for an offscreen pixel image hasn’t been purged by the Memory Manager or is not
purgeable, LockPixels returns TRUE as its function result, and your application can draw into or copy from
the offscreen pixel map. However, if the base address for an offscreen pixel image has been purged,
LockPixels returns FALSE to indicate that you can perform no drawing to or copying from the pixel map.
At that point, your application should either call the UpdateGWorld (page 384) function to reallocate the
offscreen pixel image and then reconstruct it, or draw directly in a window instead of preparing the image
in an offscreen graphics world.

Discussion
You must call LockPixels before drawing to or copying from an offscreen graphics world.

The baseAddr field of the PixMap structure for an offscreen graphics world contains a handle instead of a
pointer (which is what the baseAddr field for an onscreen pixel map contains). The LockPixels function
dereferences the PixMap handle into a pointer. When you use the UnlockPixels function the handle is
recovered.

As soon as you are finished drawing into and copying from the offscreen pixel image, call the
UnlockPixels (page 381) function.

Special Considerations

The LockPixels function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
ASCIIMoviePlayerSample

288 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

QTCarbonShell
WhackedTV

Declared In
QDOffscreen.h

LockPortBits
Acquires an exclusive lock on the back buffer for a Carbon window. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr LockPortBits (
 GrafPtr port
);

Parameters
port

A window port.

Return Value
A result code. If noErr, the window’s back buffer is locked and available for direct access.

Discussion
In Mac OS X, a Carbon window’s port bits are in a back buffer shared by the application and the Quartz
compositor (sometimes called the window server). When an application needs to update this buffer, the
Quartz compositor must be locked out temporarily. You can use this function together with
UnlockPortBits (page 382) to acquire and release an exclusive lock.

If you’re using QuickDraw or Quartz 2D to draw in a window, you do not need to call this function—buffer
locks are handled for you automatically. If you’re writing code that reads or modifies the port bits directly,
you should bracket your code with calls to this function and UnlockPortBits (page 382).

Nested calls to this function for the same port are permitted. For a given port, if you call LockPortBits n
times, the lock is actually released after the nth balancing call to UnlockPortBits (page 382).

You should not call any QuickTime functions while holding the lock. To avoid degrading the user experience,
you should release the lock as quickly as possible.

In Mac OS 9, this function does nothing and returns noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 289
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

MakeITable
Generates an inverse table for a color table. Your application should not need to call this function; it is used
by system software only. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void MakeITable (
 CTabHandle cTabH,
 ITabHandle iTabH,
 short res
);

Parameters
cTabH

The color table for which an inverse table is to be generated. Passing NULL substitutes an appropriate
handle from the current GDevice data structure.

iTabH
The generated inverse table. Passing NULL substitutes an appropriate handle from the current GDevice
data structure.

res
The resolution needed for the inverse table. Passing 0 substitutes the current GDevice data structure’s
inverse table resolution.

Discussion
The MakeITable function generates an inverse table based on the current contents of the color table pointed
to by the cTabH parameter, with a resolution specified by the value in the res parameter. Reserved color
table pixel values are not included in the resulting color table. MakeITable tests its input parameters and
returns an error in QDError if the resolution is less than three or greater than five.

This function allows maximum precision in mapping colors, even if colors in the color table differ by less than
the resolution of the inverse table. Five-bit inverse tables are not needed when drawing in normal Color
QuickDraw modes. However, Color QuickDraw transfer modes such as add, subtract, and blend may require
a 5-bit inverse table for best results with certain color tables. The 'mitq' resource governs how much memory
is allocated for temporary internal structures; this resource type is for internal use only.

Depending on the requested resolution, building the inverse table can require large amounts of temporary
space in the application heap: twice the size of the table itself, plus a fixed overhead of 3–15 KB for each
inverse table resolution.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MakeRGBPat
Creates the appearance of otherwise unavailable colors on indexed devices. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

290 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void MakeRGBPat (
 PixPatHandle pp,
 const RGBColor *myColor
);

Parameters
pp

On return, a handle to the generated pixel pattern.

myColor
An RGBColor structure that defines the color you want to approximate.

Discussion
The MakeRGBPat function generates a PixPat (page 131) structure that approximates the color you specify
in the myColor parameter. For example, if your application draws to an indexed device that supports 4 bits
per pixel, you only have 16 colors available if you simply set the foreground color and draw. If you use
MakeRGBPat to create a pattern, and then draw using that pattern, you effectively get 125 different colors.
If the graphics device has 8 bits per pixel, you effectively get 2197 colors. (More color are theoretically possible;
this implementation opted for a fast pattern selection rather than the best possible pattern selection.)

For a pixel pattern, the (** patMap).bounds field of the PixPat structure always contains the values (0,0,8,8),
and the (** patMap).rowbytes field equals 2.

Because patterns produced with MakeRGBPat aren’t usually solid—they provide a selection of colors by
alternating between colors, with up to four colors in a pattern— lines that are only one pixel wide may not
look good.

When MakeRGBPat creates a ColorTable structure, it fills in only the rgb fields of its ColorSpec structures;
the value fields are computed at the time the drawing actually takes place, using the current pixel depth
for the system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MapPoly
Maps and scales a polygon within one rectangle to another rectangle. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void MapPoly (
 PolyHandle poly,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
poly

A handle to a polygon. Upon input, this is the polygon to map. Upon completion, this polygon is the
one mapped to a new location.

Deprecated in Mac OS X v10.4 291
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

srcRect
The rectangle containing the polygon.

dstRect
The rectangle in which the new region will be mapped.

Discussion
The MapPoly function takes a polygon within one rectangle and maps and scales it to another rectangle. In
the poly parameter, you specify a handle to a polygon that lies within the rectangle that you specify in the
srcRect parameter. By calling the MapPt function to map all the points that define the polygon specified
in the poly parameter, MapPoly maps and scales it to the rectangle that you specify in the dstRect
parameter. The MapPoly function returns the result in the polygon whose handle you initially passed in the
poly parameter.

Similar to the MapRgn function described in the previous section, the MapPoly function is useful for
determining whether a polygon operation will exceed available memory.

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Move
Moves the graphics pen a particular distance. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void Move (
 short dh,
 short dv
);

Parameters
dh

The horizontal distance of the graphics pen’s movement.

dv
The vertical distance of the graphics pen’s movement.

Discussion
The Move function moves the graphics pen from its current location in the current graphics port a horizontal
distance that you specify in the dh parameter and a vertical distance that you specify in the dv parameter.
The Move function calls

292 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

MoveTo(h+dh,v+dv)

where (h,v) is the graphics pen’s current location in local coordinates. The Move function performs no
drawing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MovePortTo
Changes the position of the port rectangle of the current graphics port (basic or color). (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void MovePortTo (
 short leftGlobal,
 short topGlobal
);

Parameters
leftGlobal

The horizontal distance to move the port rectangle.

topGlobal
The vertical distance to move the port rectangle.

Discussion
The MovePortTo function is normally called only by the Window Manager. The MovePortTo function changes
the position of the current graphics port’s port rectangle: the leftGlobal and topGlobal parameters set
the distance between the upper-left corner of the boundary rectangle and the upper-left corner of the new
port rectangle.

This does not affect the screen; it merely changes the location at which subsequent drawing inside the
graphics port appears. Like the PortSize function, MovePortTo doesn’t change the clipping or visible
region, nor does it affect the local coordinate system of the graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MoveTo
Moves the graphics pen to a particular location in the current graphics port. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 293
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void MoveTo (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the graphics pen’s new position.

v
The vertical coordinate of the graphics pen’s new position.

Discussion
The MoveTo function changes the graphics pen’s current location to the new horizontal coordinate you
specify in the h parameter and the new vertical coordinate you specify in the v parameter. Specify the new
location in the local coordinates of the current graphics port. The MoveTo function performs no drawing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
QuickdrawAPI.h

NewColorComplementUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

ColorComplementUPP NewColorComplementUPP (
 ColorComplementProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewColorSearchUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

294 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

ColorSearchUPP NewColorSearchUPP (
 ColorSearchProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewDeviceLoopDrawingUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

DeviceLoopDrawingUPP NewDeviceLoopDrawingUPP (
 DeviceLoopDrawingProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewDragGrayRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

DragGrayRgnUPP NewDragGrayRgnUPP (
 DragGrayRgnProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewGDevice
Creates a new GDevice structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 295
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

GDHandle NewGDevice (
 short refNum,
 long mode
);

Parameters
refNum

Reference number of the graphics device for which you are creating a GDevice structure. For most
video devices, this information is set at system startup.

mode
The device configuration mode. Used by the screen driver, this value sets the pixel depth and specifies
color or black and white.

Return Value
A handle to the new GDevice (page 119) structure. If the request is unsuccessful, NewGDevice returns NULL.

Discussion
Generally, you do not need to use NewGDevice, because Color QuickDraw uses this function to create
GDevice structures for your application automatically. When the system starts up, it allocates and initializes
one handle to a GDevice structure for each video device it finds. When you use the NewGWorld function,
QuickDraw automatically creates a GDevice structure for the new offscreen graphics world.

For the graphics device whose driver is specified in the refNum parameter and whose mode is specified in
the mode parameter, the NewGDevice function allocates a new GDevice structure and all of its handles, and
then calls the InitGDevice function to initialize the structure.

NewGDevice allocates the new GDevice structure and all of its handles in the system heap, and the
NewGDevice function sets all attributes in the gdFlags field of the GDevice structure to FALSE. If your
application creates a GDevice structure, use the SetDeviceAttribute (page 353) function to change the
flag bits in the gdFlags field of the GDevice structure to TRUE. Your application should never directly change
the gdFlags field of the GDevice structure. Instead, use only the SetDeviceAttribute function.

If your application creates a GDevice structure without a driver, set the mode parameter to –1. In this case,
InitGDevice cannot initialize the GDevice structure, so your application must perform all initialization of
the structure. A GDevice structure’s default mode is defined as 128. This is assumed to be a black-and-white
mode. If you specify a value other than 128 in the mode parameter, the structure’s gdDevType bit in the
gdFlags field of the GDevice structure is set to TRUE to indicate that the graphics device is capable of
displaying color.

The NewGDevice function does not automatically insert the GDevice structure into the device list. In general,
your application should not create GDevice structures, and if it ever does, it should never add them to the
device list.

If your program uses NewGDevice to create a graphics device without a driver, InitGDevice does nothing;
instead, your application must initialize all fields of the GDevice structure. After your application initializes
the color table for the GDevice structure, call the Color Manager function MakeITable to build the inverse
table for the graphics device.

Special Considerations

The NewGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

296 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NewGWorldFromPtr
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDErr NewGWorldFromPtr (
 GWorldPtr *offscreenGWorld,
 UInt32 PixelFormat,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags,
 Ptr newBuffer,
 SInt32 rowBytes
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

NewPixMap
Creates a new, initialized PixMap structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

PixMapHandle NewPixMap (
 void
);

Return Value
A handle to the new PixMap structure.

Discussion
All fields of the PixMap structure are copied from the current device’s PixMap structure except the color
table. In System 7, the hRes and vRes fields are set to 72 dpi, no matter what values the current device’s
PixMap structure contains. A handle to the color table is allocated but not initialized.

Typically, you do not need to call this function because PixMap structures are created for you when you
create a window using the Window Manager functions NewCWindow and GetNewCWindow and when you
create an offscreen graphics world with the NewGWorld function.

Deprecated in Mac OS X v10.4 297
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

If your application creates a pixel map, your application must initialize the PixMap structure’s color table to
describe the pixels. Use the GetCTable (page 225) function to read such a table from a resource file. Use the
DisposeCTable (page 193) function to dispose of the PixMap structure’s color table and replace it with the
one returned by GetCTable.

Special Considerations

The NewPixMap function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
LiveVideoMixer2

Declared In
QuickdrawAPI.h

NewPixPat
Creates a new pixel pattern. Generally, however, your application should create a pixel pattern in a 'ppat'
resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

PixPatHandle NewPixPat (
 void
);

Return Value
A handle to the new PixPat (page 131) structure created by the NewPixPat function.

Discussion
This function calls the NewPixMap (page 297) function to allocate the pattern’s PixMap structure and initializes
it to the same settings as the pixel map of the current GDevice structure. NewPixPat also sets the pat1Data
field of the new PixPat structure to a 50 percent gray pattern. NewPixPat allocates new handles for the
PixPat structure’s data, expanded data, expanded map, and color table but does not initialize them instead,
your application must initialize them.

Set the rowBytes, bounds, and pixelSize fields of the pattern’s PixMap structure to the dimensions of
the desired pattern. The rowBytes value should be equal to

(width of bounds) x pixelSize/8

The rowBytes value need not be even. The width and height of the bounds must be a power of 2. Each scan
line of the pattern must be at least 1 byte in length—that is, ([width of bounds] x pixelSize) must be at
least 8.

Your application can explicitly specify the color corresponding to each pixel value with a color table. The
color table for the pattern must be placed in the pmTable field in the pattern’s PixMap structure.

298 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Including the PixPat structure itself, NewPixPat allocates a total of five handles. The sizes of the handles
to the PixPat and PixMap structures are the sizes of their respective data structures. The other three handles
are initially small in size. Once the pattern is drawn, the size of the expanded data is proportional to the size
of the pattern data, but adjusted to the depth of the screen. The color table size is the size of the structure
plus 8 bytes times the number of colors in the table.

When you are finished using the pixel pattern, use the DisposePixPat (page 196) function to make the
memory used by the pixel pattern available again.

Special Considerations

The NewPixPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NewQDArcUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDArcUPP NewQDArcUPP (
 QDArcProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDBitsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDBitsUPP NewQDBitsUPP (
 QDBitsProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 299
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawTypes.h

NewQDCommentUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDCommentUPP NewQDCommentUPP (
 QDCommentProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDGetPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDGetPicUPP NewQDGetPicUPP (
 QDGetPicProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDJShieldCursorUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDJShieldCursorUPP NewQDJShieldCursorUPP (
 QDJShieldCursorProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

300 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawTypes.h

NewQDLineUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDLineUPP NewQDLineUPP (
 QDLineProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDOpcodeUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDOpcodeUPP NewQDOpcodeUPP (
 QDOpcodeProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDOvalUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDOvalUPP NewQDOvalUPP (
 QDOvalProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 301
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawTypes.h

NewQDPolyUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDPolyUPP NewQDPolyUPP (
 QDPolyProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDPutPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDPutPicUPP NewQDPutPicUPP (
 QDPutPicProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRectUPP NewQDRectUPP (
 QDRectProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

302 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawTypes.h

NewQDRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRgnUPP NewQDRgnUPP (
 QDRgnProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDRRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRRectUPP NewQDRRectUPP (
 QDRRectProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDStdGlyphsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDStdGlyphsUPP NewQDStdGlyphsUPP (
 QDStdGlyphsProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 303
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawTypes.h

NewQDTextUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDTextUPP NewQDTextUPP (
 QDTextProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDTxMeasUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDTxMeasUPP NewQDTxMeasUPP (
 QDTxMeasProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewRegionToRectsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RegionToRectsUPP NewRegionToRectsUPP (
 RegionToRectsProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

304 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

NewScreenBuffer
Creates an offscreen PixMap structure and allocates memory for the base address of its pixel image.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDErr NewScreenBuffer (
 const Rect *globalRect,
 Boolean purgeable,
 GDHandle *gdh,
 PixMapHandle *offscreenPixMap
);

Parameters
globalRect

The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable
A value of TRUE to make the memory block for the offscreen pixel map purgeable, or a value of FALSE
to make it unpurgeable.

gdh
On return, a pointer to the handle to the GDevice structure for the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles intersect the rectangle specified
in the globalRect parameter.

offscreenPixMap
On return, a pointer to a handle to the new offscreen PixMap structure.

Return Value
A result code.

Discussion
Applications generally do not need to use NewScreenBuffer. The NewGWorld (page 64) function uses the
NewScreenBuffer function to create and allocate memory for an offscreen pixel image.

Special Considerations

The NewScreenBuffer function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

Deprecated in Mac OS X v10.4 305
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

NewTempScreenBuffer
Creates an offscreen PixMap structure and allocate temporary memory for the base address of its pixel image
applications generally don’t need to use NewTempScreenBuffer. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDErr NewTempScreenBuffer (
 const Rect *globalRect,
 Boolean purgeable,
 GDHandle *gdh,
 PixMapHandle *offscreenPixMap
);

Parameters
globalRect

The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable
A value of TRUE to make the memory block for the offscreen pixel map purgeable, or a value of FALSE
to make it unpurgeable.

gdh
On return, a pointer to the handle to the GDevice structure for the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles intersect the rectangle specified
in the globalRect parameter.

offscreenPixMap
On return, a pointer to the handle to the new offscreen PixMap structure.

Return Value
A result code.

Discussion
The NewTempScreenBuffer function performs the same functions as NewScreenBuffer except that it
creates the base address for the offscreen pixel image in temporary memory. When an application passes it
the useTempMem flag, the NewGWorld function uses NewTempScreenBuffer instead of NewScreenBuffer.

Your application should not need to use this function.

Special Considerations

The NewTempScreenBuffer function may move or purge memory blocks in the application heap. Your
application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

NoPurgePixels
Prevents the Memory Manager from purging the base address for an offscreen pixel image. (Deprecated in
Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

306 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void NoPurgePixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map.

Discussion
The NoPurgePixels function marks the base address for an offscreen pixel image as unpurgeable.

To get a handle to an offscreen pixel map, use the GetGWorldPixMap (page 230) function. Then supply this
handle for the pm parameter of NoPurgePixels.

Special Considerations

The NoPurgePixels function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

OffscreenVersion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt32 OffscreenVersion (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

OffsetPoly
Moves a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Deprecated in Mac OS X v10.4 307
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void OffsetPoly (
 PolyHandle poly,
 short dh,
 short dv
);

Parameters
poly

A handle to a polygon to move.

dh
The horizontal distance to move the polygon.

dv
The vertical distance to move the polygon.

Discussion
The OffsetPoly function moves the polygon whose handle you pass in the poly parameter by adding the
value you specify in the dh parameter to the horizontal coordinates of its points, and by adding the value
you specify in the dv parameter to the vertical coordinates of all points of its region boundary. If the values
of dh and dv are positive, the movement is to the right and down; if either is negative, the corresponding
movement is in the opposite direction. The region retains its size and shape. This does not affect the screen
unless you subsequently call a function to draw the region.

OffsetPoly is an especially efficient operation, because the data defining a polygon is stored relative to
the first point of the polygon and so is not actually changed by OffsetPoly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpColor
Sets the maximum color values for the addPin and subPin arithmetic transfer modes and the weight color
for the blend arithmetic transfer mode. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void OpColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure that defines a color.

Discussion
Specify the red, green, and blue values in the RGBColor structure and specify this structure in the color
parameter.

If the current graphics port is defined by a GrafPort structure, OpColor has no effect.

308 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpenCPicture
Begins defining a picture in extended version 2 format. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

PicHandle OpenCPicture (
 const OpenCPicParams *newHeader
);

Parameters
newHeader

An OpenCPicParams structure.

Return Value
A handle to a new Picture structure. OpenCPicture collects your subsequent drawing commands in this
structure. Use this handle when referring to the picture in subsequent functions, such as the DrawPicture
function.

Discussion
When defining a picture, you can use all other QuickDraw drawing functions, with the exception of CopyMask,
CopyDeepMask, SeedFill, SeedCFill, CalcMask, and CalcCMask. You can also use the PicComment (page
323) function to include picture comments in your picture definition.

The OpenCPicture function creates a pictures in the extended version 2 format. This format permits your
application to specify resolutions when creating images.

Use the OpenCPicParams (page 125) structure you pass in the newHeader parameter to specify the horizontal
and vertical resolution for the picture, and specify an optimal bounding rectangle for displaying the picture
at this resolution. When you later call the DrawPicture (page 203) function to play back the saved picture,
supply a destination rectangle, and DrawPicture scales the picture so that it is completely aligned with the
destination rectangle. To display a picture at a resolution other than that at which it was created, compute
an appropriate destination rectangle by scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it at 75 dpi, then your application
should compute the destination rectangle width and height as 1/4 of those of the picture’s bounding rectangle.

The OpenCPicture function calls the HidePen function, so no drawing occurs on the screen while the
picture is open (unless you call the ShowPen function just after OpenCPicture, or you called ShowPen
previously without balancing it by a call to HidePen).

After defining the picture, close it by using the ClosePicture (page 176) function.

After creating the picture, use the GetPictInfo function to gather information about it. The PictInfo
structure returned by GetPictInfo returns the picture’s resolution and optimal bounding rectangle.

Deprecated in Mac OS X v10.4 309
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

When creating a picture, use the ClosePicture function to finish it before you open the Printing Manager
with the PrOpen function. There are two main reasons for this. First, you should allow the printing driver to
use as much memory as possible. Second, the Printing Manager creates its own type of graphics port, one
that replaces the standard QuickDraw drawing operations stored in the grafProcs field of a CGrafPort or
GrafPort structure. To avoid unexpected results when creating a picture, draw into a graphics port created
with QuickDraw instead of drawing into a printing port created by the Printing Manager.

After calling OpenCPicture, be sure to finish your picture definition by calling ClosePicture before you
call OpenCPicture again. You cannot nest calls to OpenCPicture.

Always use the ClipRect procedure to specify a clipping region appropriate for your picture before you call
OpenCPicture. If you do not use ClipRect to specify a clipping region, OpenCPicture uses the clipping
region specified in the current graphics port. If the clipping region is very large (as it is when a graphics port
is initialized) and you scale the picture when drawing it, the clipping region can become invalid when
DrawPicture scales the clipping region—in which case, your picture will not be drawn.

The OpenCPicture function may move or purge memory; do not call at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpenCursorComponent
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr OpenCursorComponent (
 Component c,
 ComponentInstance *ci
);

Return Value
Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

310 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

OpenPicture
Creates a picture which allows you to specify resolutions for your pictures. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PicHandle OpenPicture (
 const Rect *picFrame
);

Parameters
picFrame

The bounding rectangle for the picture. The DrawPicture function uses this rectangle to scale the
picture if you draw it into a destination rectangle of a different size.

Return Value
A handle to a new Picture structure. OpenPicture collects your subsequent drawing commands in this
structure. Use this handle when referring to the picture in subsequent functions, such as the DrawPicture
function.

Discussion
The OpenPicture function, which was created for earlier versions of system software, is described here for
completeness. Use the OpenPicture function to begin defining a picture.

The OpenPicture function calls the HidePen function, so no drawing occurs on the screen while the picture
is open (unless you call the ShowPen function just after OpenPicture or you called ShowPen previously
without balancing it by a call to HidePen).

The OpenPicture function creates pictures in the version 2 format on computers with Color QuickDraw
when the current graphics port is a color graphics port. Pictures created in this format support color drawing
operations at 72 dpi. On computers supporting only basic QuickDraw, or when the current graphics port is
a basic graphics port, this function creates pictures in version 1 format. Pictures created in version 1 format
support only black-and-white drawing operations at 72 dpi.

When defining a picture, you can use all other QuickDraw drawing functions, with the exception of CopyMask,
CopyDeepMask, SeedFill, SeedCFill, CalcMask, and CalcCMask. You can also use the PicComment (page
323) function to include picture comments in your picture definition.

After defining the picture, close it by using the ClosePicture (page 176) function. To draw the picture, use
the DrawPicture (page 203) function.

Special Considerations

The version 2 and version 1 picture formats support only 72-dpi resolution. The OpenCPicture function
creates pictures in the extended version 2 format. The extended version 2 format, which is created by the
OpenCPicture function on all Macintosh computers running System 7, permits your application to specify
additional resolutions when creating images.

Version 1 pictures are limited to 32 KB. You can determine the picture size while it is being formed by calling
the Memory Manager function GetHandleSize.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 311
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

OpenPoly
Begins defining a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PolyHandle OpenPoly (
 void
);

Return Value
A handle to a new polygon.

Discussion
The OpenPoly function starts saving lines for processing as a polygon definition. While a polygon is open,
all calls to the Line and LineTo functions affect the outline of the polygon. Only the line endpoints affect
the polygon definition; the pattern mode, pattern, and size do not affect it. The OpenPoly function calls the
HidePen function, so no drawing occurs on the screen while the polygon is open (unless you call the ShowPen
function just after calling OpenPoly, or you called ShowPen previously without balancing it by a call to
HidePen).

A polygon should consist of a sequence of connected lines. The OpenPoly function stores the definition for
a polygon in a Polygon structure.

When a polygon is open, the current graphics port’s polySave field contains a handle to information related
to the polygon definition. If you want to temporarily disable the polygon definition, you can save the current
value of this field, set the field to NULL, and later restore the saved value to resume the polygon definition.

Even though the onscreen presentation of a polygon is clipped, the definition of a polygon is not; you can
define a polygon anywhere on the coordinate plane.

When you are finished calling the line-drawing functions that define your polygon, use the ClosePoly (page
176) function.

Special Considerations

Do not call OpenPoly while a region or another polygon is already open.

Polygons are limited to 64 KB. You can determine the polygon size while it is being formed by calling the
Memory Manager function GetHandleSize.

The OpenPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpenRgn
Begins defining a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

312 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void OpenRgn (
 void
);

Discussion
The OpenRgn function allocates temporary memory to start saving lines and framed shapes for processing
as a region definition. Call OpenRgn only after initializing a region with the NewRgn function.

The NewRgn function stores the definition for a region in a Region structure.

While a region is open, all calls to Line, LineTo, and the functions that draw framed shapes (except arcs)
affect the outline of the region. Only the line endpoints and shape boundaries affect the region definition—the
pattern mode, pattern, and size do not affect it.

When you are finished defining the region, call the CloseRgn (page 177) function.

The OpenRgn function calls HidePen, so no drawing occurs on the screen while the region is open (unless
you call ShowPen just after OpenRgn, or you called ShowPen previously without balancing it by a call to
HidePen). Since the pen hangs below and to the right of the pen location, drawing lines with even the
smallest pen changes pixels that lie outside the region you define.

The outline of a region is mathematically defined and infinitely thin, and it separates the bit or pixel image
into two groups of pixels: those within the region and those outside it.

A region should consist of one or more closed loops. Each framed shape itself constitutes a loop. Any lines
drawn with the Line or LineTo function should connect with each other or with a framed shape. Even if
the onscreen presentation of a region is clipped, the definition of a region is not; you can define a region
anywhere on the coordinate plane with complete disregard for the location of various graphics port entities
on that plane.

When a region is open, the current graphics port’s rgnSave field contains a handle to information related
to the region definition. If you want to temporarily disable the collection of lines and shapes, you can save
the current value of this field, set the field to NULL, and later restore the saved value to resume the region
definition. Also, calling SetPort while a region is being formed discontinues formation of the region until
another call to SetPort resets the region’s original graphics port.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw. You can determine
the current size of an existing region by calling the Memory Manager function GetHandleSize. When you
structure drawing operations in an open region, the resulting region description may overflow the 32 KB or
64 KB limit. Should this happen in Color QuickDraw, the QDError function returns the result code
regionTooBigError.

Do not call OpenRgn while another region or a polygon is already open. When you are finished constructing
the region, use the CloseRgn function, which is described next.

The OpenRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Deprecated in Mac OS X v10.4 313
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PackBits
Compresses a data buffer stored in RAM. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void PackBits (
 Ptr *srcPtr,
 Ptr *dstPtr,
 short srcBytes
);

Parameters
srcPtr

On entry, a pointer to the first byte of a buffer of data to be compressed. On exit, a pointer to the first
byte following the bytes compressed.

dstPtr
On entry, a pointer to the first byte in which to store compressed data. On exit, a pointer to the first
byte following the compressed data.

srcBytes
The number of bytes of uncompressed data to be compressed. In versions of software prior to version
6.0.2, this number must be 127 or less.

Discussion
You must allocate memory for the destination buffer itself. Allocate enough memory for a worst-case scenario
where the destination buffer is 128 bytes long for each block of source data up to 127 bytes. Use the following
formula to determine how much space to allocate for the destination buffer:

maxDstBytes := srcBytes + (srcBytes+126) DIV 127;

where maxDstBytes stands for the maximum number of destination bytes.

The PackBits algorithm is most effective on data buffers in which there are likely to be series of bytes
containing the same value. For example, resources of many formats often contain many consecutive zeros.
If you have a data buffer in which there are only likely to be a series of words or long words containing the
same values, PackBits is unlikely to be effective.

Special Considerations

Because your application must allocate memory for the source and destination buffers, PackBits does not
move relocatable blocks. Thus, you can call it at interrupt time.

Because PackBits changes the values of the srcPtr and dstPtr parameters, you should pass to PackBits
only copies of the pointers to the source and destination buffers. This allows you to access the beginning of
the source and destination buffers after PackBits returns. Also, if the source or destination buffer is stored
in an unlocked, relocatable block, this technique prevents PackBits from changing the value of a master
pointer, which would make the original handle invalid.

314 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintArc
Paints a wedge of the oval that fits inside a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void PaintArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
Using the pen pattern and pattern mode of the current graphics port, the PaintArc function draws a wedge
of the oval bounded by the rectangle that you specify in the r parameter. As in the FrameArc function, use
the startAngle and arcAngle parameters to define the arc of the wedge.

The pen location does not change.

Use FillArc (page 208) , to draw a wedge with a pattern different from that specified in the pnPat field of
the current graphics port.

Special Considerations

The PaintArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 315
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

PaintOval
Paints an oval with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
Using the pen pattern and pattern mode for the current graphics port, the PaintOval function draws the
interior of an oval just inside the bounding rectangle that you specify in the r parameter. The pen location
does not change.

Use FillOval (page 213) to draw the interior of an oval with a pen pattern different from that for the current
graphics port.

Special Considerations

The PaintOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintPoly
Paints a polygon with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintPoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to paint. The OpenPoly (page 312) function returns this handle when you
first create the polygon.

Discussion
Using the pen pattern and pattern mode for the current graphics port, the PaintPoly function draws the
interior of a polygon whose handle you pass in the poly parameter. The pen location does not change.

This function temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

316 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 291) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Use the FillPoly (page 214) function to draw the interior of a polygon with a pattern different from that
specified in the pnPat field of the current graphics port.

Special Considerations

Do not create a height or width for the polygon greater than 32,767 pixels, or PaintPoly will crash.

The PaintPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintRect
Paints a rectangle with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintRect (
 const Rect *r
);

Parameters
r

The rectangle to paint.

Discussion
The PaintRect function draws the interior of the rectangle that you specify in the r parameter with the
pen pattern for the current graphics port, according to the pattern mode for the current graphics port. The
pen location does not change.

Use the FillRect (page 215) to draw the interior of a rectangle with a pen pattern different from that for
the current graphics port.

Special Considerations

The PaintRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 317
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
QuickdrawAPI.h

PaintRgn
Paints a region with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to paint.

Discussion
Using the pen pattern and pattern mode for the current graphics port, the PaintRgn function draws the
interior of the region whose handle you pass in the rgn parameter. The pen location does not change.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Use FillRgn (page 216) to draw the interior of a region with a pen pattern different from that for the current
graphics port.

Special Considerations

The PaintRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintRoundRect
Paints a rounded rectangle with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

318 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void PaintRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Discussion
Using the pattern and pattern mode of the graphics pen for the current graphics port, the PaintRoundRect
function draws the interior of the rounded rectangle bounded by the rectangle that you specify in the r
parameter. Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature for the
corners of the rounded rectangle.

The pen location does not change.

Use FillRoundRect (page 217) to draw the interior of a rounded rectangle with a pen pattern different from
that for the current graphics port.

Special Considerations

The PaintRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenMode
Sets the pattern mode of the graphics pen in the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenMode (
 short mode
);

Parameters
mode

The pattern mode. See “Source, Pattern, and Arithmetic Transfer Mode Constants” (page 158).

Discussion
Using the pattern mode you specify in the mode parameter, the PenMode function sets the manner in which
the pattern of the graphics pen is transferred onto the bitmap (or pixel map) when you draw lines or shapes
in the current graphics port.

Deprecated in Mac OS X v10.4 319
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

If you specify a source mode (such as one used with the CopyBits function) instead of a pattern mode, no
drawing is performed.

The current pattern mode is stored in the pnMode field of the current graphics port. The initial pattern mode
value is patCopy, in which the pen pattern is copied directly to the bitmap.

To use highlighting, add the hilite constant or its value to the source or pattern mode:

With highlighting, QuickDraw replaces the background color with the highlight color when your application
draws or copies images between graphics ports. This has the visual effect of using a highlighting pen to
select the object. (The global variable HiliteRGB is read from parameter RAM when the machine starts.
Basic graphics ports use the color stored in the HiliteRGB global variable as the highlight color. Color
graphics ports default to the HiliteRGB global variable, but can be overridden by the HiliteColor function.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Special Considerations

When your application draws with a pixel pattern, Color QuickDraw ignores the pattern mode and simply
transfers the pattern directly to the pixel map without regard to the foreground and background colors.

The results of inverting a pixel are predictable only with direct pixels or 1-bit pixel maps. For indexed pixels,
Color QuickDraw performs the inversion on the pixel indexes, which means the results depend entirely on
the contents of the color table. The eight colors used in basic QuickDraw are stored in a color table represented
by the global variable QDColors. To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best map to the colors
in the QDColors color table. Because the index, not the color value, is inverted, the results are unpredictable.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenNormal
Sets the size, pattern, and pattern mode of the graphics pen in the current graphics port to their initial values.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void PenNormal (
 void
);

Discussion
The PenNormal function restores the size, pattern, and pattern mode of the graphics pen in the current
graphics port to their initial values: a size of 1 pixel by 1 pixel, a pattern mode of patCopy, and a pattern of
black. The pen location does not change.

320 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The PenNormal function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenPat
Sets the bit pattern to be used by the graphics pen in the current graphics port. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenPat (
 const Pattern *pat
);

Parameters
pat

A bit pattern, as defined by a Pattern structure.

Discussion
The PenPat function sets the graphics pen to use the bit pattern defined in the Pattern (page 126) structure
that you specify in the pat parameter. (The standard patterns white, black, gray, ltGray, and dkGray
are predefined; the initial bit pattern for the pen is black.) This pattern is stored in the pnPat field of a
GrafPort structure. The QuickDraw painting functions (such as PaintRect) also use the pen’s pattern when
drawing a shape.

The PenPat function also sets a bit pattern for the graphics pen in a color graphics port. The PenPat function
creates a handle, of type PixPatHandle, for the bit pattern and stores this handle in the pnPixPat field of
the CGrafPort structure. This pattern always uses the graphics port’s current foreground and background
colors.

To define your own patterns, you typically create pattern, ‘PAT’, or pattern list, ‘PAT#’, resources.

Special Considerations

The PenPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 321
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

PenPixPat
Sets the pixel pattern used by the graphics pen in the current color graphics port. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenPixPat (
 PixPatHandle pp
);

Parameters
pp

A handle to the pixel pattern to use as the pen pattern.

Discussion
The PenPixPat function is similar to the basic QuickDraw function PenPat, except that you pass PenPixPat
a handle to a multicolored pixel pattern rather than a bit pattern.

The PenPixPat function stores the handle to the pixel pattern in the pnPixPat field of the CGrafPort
structure, therefore, you should not dispose of this handle since QuickDraw removes all references to your
pattern from an existing graphics port when you dispose of it.

If you use PenPixPat to set a pixel pattern in a basic graphics port, the data in the pat1Data field of the
PixPat (page 131) structure is placed into the pnPat field of the GrafPort structure.

To define your own pixel pattern, you can create a pixel pattern resource, which is described in 'ppat', or
you can use the NewPixPat (page 298) function. To set the pen to use a bit pattern, you can also use the
QuickDraw function PenPat.

Special Considerations

The PenPixPat function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenSize
Sets the dimensions of the graphics pen in the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenSize (
 short width,
 short height
);

Parameters
width

The pen width, as an integer from 0 to 32,767. If you set the value to 0, the pen does not draw. Values
less than 0 are undefined.

322 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

height
The pen height, as an integer from 0 to 32,767. If you set the value to 0, the pen does not draw. Values
less than 0 are undefined.

Discussion
The PenSize function sets the width that you specify in the width parameter and the height that you specify
in the height parameter for the graphics pen in the current graphics port. All subsequent calls to the Line
and LineTo functions and to the functions that draw framed shapes in the current graphics port use the
new pen dimensions.

You can get the current pen dimensions from the pnSize field of the current graphics port, where the width
and height are stored as a Point structure.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PicComment
Inserts a picture comment into a picture that you are defining or into your printing code. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PicComment (
 short kind,
 short dataSize,
 Handle dataHandle
);

Parameters
kind

The type of comment.

dataSize
Size of any additional data passed in the dataHandle parameter. If no additional data is used, specify
0 in this parameter.

dataHandle
A handle to additional data, if used. If no additional data is used, specify NULL in this parameter.

Discussion
When used after your application begins creating a picture with the OpenCPicture (or OpenPicture)
function, the PicComment function inserts the specified comment into the Picture structure. When sent
to a printer driver after your application uses the PrOpenPage function, PicComment passes the data or
commands in the specified comment directly to the printer.

Picture comments contain data or commands for special processing by output devices, such as printers.

Deprecated in Mac OS X v10.4 323
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Usually printer drivers process picture comments, but applications can also do so. For your application to
process picture comments, it must replace the StdComment function pointed to by the commentProc field
of the CQDProcs or QDProcs structure, which in turn is pointed to by the grafProcs field of a CGrafPort
or GrafPort structure. The default StdComment function provided by QuickDraw does no comment
processing whatsoever. You can use the SetStdCProcs function to assist you in changing the CQDProcs
structure, and you can use the SetStdProcs function to assist you in changing the QDProcs structure.

If you create and process your own picture comments, you should define comments so that they contain
information that identifies your application (to avoid using the same comments as those used by Apple or
by other third-party products). You should define a comment as an ApplicationComment comment type
with a kind value of 100. The first 4 bytes of the data for the comment should specify your application’s
signature. You can use the next 2 bytes to identify the type of comment—that is, to specify a kind value to
your own application.

Suppose your application signature were 'WAVE', and you wanted to use the value 128 to identify a kind
value to your own application. You would supply values to the kind and data parameters to PicComment
as follows:

kind = 100; data = 'WAVE' [4 bytes] + 128 [2 bytes] + additional data [n bytes]

Your application can then parse the first 6 bytes of the comment to determine whether and how to process
the rest of the data in the comment. It is up to you to publish information about your comments if you wish
them to be understood and used by other applications.

Special Considerations

These former picture comments are now obsolete: SetGrayLevel, ResourcePS, PostScriptFile, and
TextIsPostScript.

The PicComment function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PixMap32Bit
Determines whether a pixel map requires 32-bit addressing mode for access to its pixel image. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean PixMap32Bit (
 PixMapHandle pmHandle
);

Parameters
pmHandle

A handle to an offscreen pixel map.

Return Value
TRUE if a pixel map requires 32-bit addressing mode for access to its pixel image. If your application is in
24-bit mode, you must change to 32-bit mode.

324 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
To get a handle to an offscreen pixel map, first use the GetGWorldPixMap (page 230) function. Then supply
this handle for the pm parameter of PixMap32Bit.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

PixPatChanged
Notifies QuickDraw that the content of a PixPat structure, including its PixMap structure or the image in
its patData field, has been modified. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void PixPatChanged (
 PixPatHandle ppat
);

Parameters
ppat

A handle to the changed pixel pattern.

Discussion
The PixPatChanged function sets the patXValid field of the PixPat structure specified in the ppat
parameter to –1 and notifies QuickDraw of the change.

If your application changes the pmTable field of a pixel pattern’s PixMap structure, it should call
PixPatChanged. However, if your application changes the content of the color table referenced by the
PixMap structure’s pmTable field, it should call both the PixPatChanged and the CTabChanged functions.

Your application should never need to directly modify a PixPat structure and use the PixPatChanged
function; instead, your application should use the QuickDraw functions for manipulating the values in a
PixPat structure.

Special Considerations

The PixPatChanged function may move or purge memory in the application heap; do not call the
PixPatChanged function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

Deprecated in Mac OS X v10.4 325
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

PortChanged
Notifies QuickDraw that the content of a GrafPort structure or CGrafPort structure, including any of the
data structures specified by handles within the structure, has been modified. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PortChanged (
 GrafPtr port
);

Parameters
port

A pointer to the GrafPort structure that you have changed.

Discussion
If your application has changed a CGrafPort structure, it must coerce the CGrafPtr so it will point to a
GrafPtr before passing the pointer in the port parameter.

You generally should not directly change any of the PixPat structures specified in a CGrafPort structure,
but instead use the PenPixPat and BackPixPat functions. However, if your application does change the
content of a PixPat structure, it should call the PixPatChanged function and the PortChanged function.

If your application changes the pmTable field of the PixMap structure specified in the graphics port, your
application should call PortChanged. If your application changes the content of the ColorTable structure
referenced by the pmTable field, it should call CTabChanged also.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

PortSize
Changes the size of the port rectangle of the current graphics port (basic or color). (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PortSize (
 short width,
 short height
);

Parameters
width

The width of the reset port rectangle.

height
The height of the reset port rectangle.

326 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
The PortSize function is normally called only by the Window Manager. The PortSize function changes
the size of the current graphics port’s port rectangle. The upper-left corner of the port rectangle remains at
its same location the width and height of the port rectangle are set to the given width and height. In other
words, PortSize moves the lower-right corner of the port rectangle to a position relative to the upper-left
corner.

The PortSize function doesn’t change the clipping or visible region of the graphics port, nor does it affect
the local coordinate system of the graphics port it changes only the width and height of the port rectangle.
Remember that all drawing occurs only in the intersection of the boundary rectangle and the port rectangle,
after being cropped to the visible region and the clipping region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ProtectEntry
Adds protection to or removes protection from an entry in the current GDevice data structure’s color table.
This function is used by system software and your application should not need to call it. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ProtectEntry (
 short index,
 Boolean protect
);

Parameters
index

The index to the entry whose protection is to be changed.

protect
A Boolean value: specify true to protect the entry, false to remove protection.

Discussion
A protected entry can not be changed by other applications. ProtectEntry returns a protection error in
QDErr if you attempt to protect an already protected entry. However, it can remove protection from any
entry, even an already unprotected one.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 327
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

QDAddRectToDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDAddRectToDirtyRegion (
 CGrafPtr inPort,
 const Rect *inBounds
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDAddRegionToDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDAddRegionToDirtyRegion (
 CGrafPtr inPort,
 RgnHandle inRegion
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDDisplayWaitCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void QDDisplayWaitCursor (
 Boolean forceWaitCursor
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

328 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

QDDisposeRegionBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDDisposeRegionBits (
 QDRegionBitsRef regionBits
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDDone
Determines whether QuickDraw has completed drawing in a given graphics port. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean QDDone (
 GrafPtr port
);

Parameters
port

The GrafPort structure for a graphics port in which your application has begun drawing; if you pass
NULL, QDDone tests all open graphics ports.

Return Value
TRUE if all drawing operations have finished in the graphics port specified in the port parameter, FALSE if
any remain to be executed. If you pass NULL in the port parameter, then QDDone returns TRUE only if drawing
operations have completed in all ports.

Discussion
The QDDone function may be useful if a graphics accelerator is present and operating asynchronously. You
can use it to ensure that all drawing is done before issuing new drawing commands, and to avoid the
possibility that the new drawing operations might be overlaid by previously issued but unexecuted operations.

Special Considerations

If a graphics port draws a clock or some other continuously operating drawing process, QDDone may never
return TRUE.

To determine whether all drawing in a color graphics port has completed, you must coerce its CGrafPort
structure to a GrafPort structure, which you pass in the port parameter.

Deprecated in Mac OS X v10.4 329
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

QDError
Obtains a result code from the last applicable QuickDraw function that you called. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

short QDError (
 void
);

Return Value
The error result. On a system with only basic QuickDraw, QDError always returns noErr.

Discussion
The QDError function is helpful in determining whether insufficient memory caused a drawing operation -
particularly those involving regions, polygons, pictures, and images copied with CopyBits - to fail.

Basic QuickDraw uses stack space for work buffers. For complex operations such as depth conversion, dithering,
and image resizing, stack space may not be sufficient. QuickDraw attempts to get temporary memory from
other parts of the system. If that is still not enough, QDError returns the nsStackErr error. If your application
receives this result, reduce the memory required by the operation.

When you structure drawing operations in an open region, the resulting region description may overflow
the 64 KB limit. In this case, QDError returns regionTooBigError. Since the resulting region is potentially
corrupt, the CloseRgn function returns an empty region if it detects QDError has returned
regionTooBigError. A similar error, rgnTooBigErr, occurs when using the BitMapToRegion function
to convert a bitmap to a region.

The BitMapToRegion function also generates the pixmapTooDeepErr error if a PixMap structure is supplied
that is greater than 1 bit per pixel. You may be able to recover from this problem by coercing your PixMap
structure into a 1-bit PixMap structure and calling the BitMapToRegion function again.

Special Considerations

The QDError function does not report errors returned by basic QuickDraw.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

330 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

QDFlushPortBuffer
Calls the Quartz compositor to flush all new drawing in a Carbon window to the display. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void QDFlushPortBuffer (
 CGrafPtr port,
 RgnHandle region
);

Parameters
port

A window port. If the port has no back buffer, or if the port is an offscreen or printing port, this function
does nothing.

region
An update region. Under normal conditions, you should pass NULL to avoid the overhead of additional
region operations.

Discussion
In Mac OS X, drawing in a window port updates a back buffer associated with the window. Updates to this
buffer are accumulated in a list called the dirty region.

The back buffer is automatically flushed to the display each time through the event loop. When the event
loop does not get control soon enough—for example, during an animation sequence—you can call this
function to flush the port buffer to the device immediately.

When you call this function, there are several different execution paths:

1. If the regionparameter is NULL, the dirty region is flushed—along with any Quartz 2D drawing operations
marked for update by calls to CGContextSynchronize—and the dirty region is set to empty.

2. If the region parameter specifies an update region, the intersection of the dirty region and the update
region is flushed—along with any Quartz 2D drawing operations marked for update by calls to
CGContextSynchronize—and the flushed region is subtracted from the dirty region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

QDGetCursorData
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 331
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

OSStatus QDGetCursorData (
 Boolean contextCursor,
 PixMapHandle *crsrData,
 Point *hotSpot
);

Return Value
Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGetDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDGetDirtyRegion (
 CGrafPtr port,
 RgnHandle rgn
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGetPatternOrigin
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void QDGetPatternOrigin (
 Point *origin
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

332 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

QDGetPictureBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * QDGetPictureBounds (
 PicHandle picH,
 Rect *outRect
);

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGlobalToLocalPoint
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * QDGlobalToLocalPoint (
 CGrafPtr port,
 Point *point
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDGlobalToLocalRect
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * QDGlobalToLocalRect (
 CGrafPtr port,
 Rect *bounds
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 333
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

QDGlobalToLocalRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle QDGlobalToLocalRegion (
 CGrafPtr port,
 RgnHandle region
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDIsNamedPixMapCursorRegistered
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDIsNamedPixMapCursorRegistered (
 const char name[128]
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDIsPortBufferDirty
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDIsPortBufferDirty (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

334 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDIsPortBuffered
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDIsPortBuffered (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDLocalToGlobalPoint
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * QDLocalToGlobalPoint (
 CGrafPtr port,
 Point *point
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDLocalToGlobalRect
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * QDLocalToGlobalRect (
 CGrafPtr port,
 Rect *bounds
);

Availability
Available in Mac OS X v10.2 and later.

Deprecated in Mac OS X v10.4 335
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDLocalToGlobalRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle QDLocalToGlobalRegion (
 CGrafPtr port,
 RgnHandle region
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDRegisterNamedPixMapCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDRegisterNamedPixMapCursor (
 PixMapHandle crsrData,
 PixMapHandle crsrMask,
 Point hotSpot,
 const char name[128]
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

336 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

QDRestoreRegionBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDRestoreRegionBits (
 RgnHandle region,
 QDRegionBitsRef regionBits
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSaveRegionBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRegionBitsRef QDSaveRegionBits (
 RgnHandle region
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSetCursorScale
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDSetCursorScale (
 float scale
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 337
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

QDSetDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDSetDirtyRegion (
 CGrafPtr port,
 RgnHandle rgn
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSetNamedPixMapCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDSetNamedPixMapCursor (
 const char name[128]
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSetPatternOrigin
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void QDSetPatternOrigin (
 Point origin
);

Availability
Available in Mac OS X v10.1 and later.

338 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSwapPort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDSwapPort (
 CGrafPtr inNewPort,
 CGrafPtr *outOldPort
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

QDSwapPortTextFlags
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

UInt32 QDSwapPortTextFlags (
 CGrafPtr port,
 UInt32 newFlags
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSwapTextFlags
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 339
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

UInt32 QDSwapTextFlags (
 UInt32 newFlags
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDUnregisterNamedPixMapCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDUnregisterNamedPixMapCursor (
 const char name[128]
);

Return Value
Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Random
Obtains a pseudorandom integer. (Deprecated in Mac OS X v10.4. Use the Standard C Library random(3)
function instead.)

short Random (
 void
);

Return Value
A pseudorandom integer, uniformly distributed in the range -32767 to 32767.

Discussion
The value Random returns depends solely on the global variable randSeed, which the QuickDraw InitGraf
function initializes to 1. Each time the Random function executes, it uses a numerical algorithm to change
the value of randSeed to prevent it from returning the same value each time it is called.

To prevent your application from generating the same sequence of pseudo-random numbers each time it
is executed, initialize the randSeed global variable, when your application starts up, to a volatile long word
variable such as the current date and time. If you would like to generate the same sequence of pseudo-random
numbers twice, on the other hand, simply set randSeed to the same value before calling Random for each
sequence.

340 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RealColor
Determines whether a given RGBColor data structure exists in the current device’s color table. This function
is used by system software and your application should not need to call it. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean RealColor (
 const RGBColor *color
);

Parameters
color

The RGBColor data structure to be tested.

Discussion
The RealColor function determines whether the color is available in the current GDevice data structure’s
CLUT, basing its search on the current resolution of the inverse table. For example, if the current value of the
iTabRes field is 4, RealColor returns true if there exists a color that exactly matches the top 4 bits of red,
green, and blue. (See the iTabRes field of the inverse table, ITab (page 123).)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ReserveEntry
Reserves or removes reservation from an entry in the current GDevice data structure’s color table. This
function is used by system software and your application should not need to call it. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ReserveEntry (
 short index,
 Boolean reserve
);

Parameters
index

The index to the entry.

reserve
True to reserve the entry, false to remove the reservation.

Deprecated in Mac OS X v10.4 341
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
A reserved entry cannot be matched by another application’s search function, and Color2Index (or other
functions that depend on it such as RGBForeColor, RGBBackColor, and SetCPixel) never return that
entry to another client. You could use this function to selectively protect a color for color table animation.

The ReserveEntry function copies the low byte of the gdID field of the current GDevice data structure
into the low byte of the ColorSpec.value field of the color table when reserving an entry, and leaves the
high byte alone. ReserveEntry acts like selective protection and does not allow any changes if the current
gdID field is different than the one in the ColorSpec.value field of the reserved entry. If a requested match
is already reserved, ReserveEntry returns a protection error. It can remove reservation from any entry, even
if a requested match is already not reserved.

Carbon Porting Notes

This function does nothing useful on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RestoreEntries
Restores a selection of color table entries. This function is used by system software and your application
should not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void RestoreEntries (
 CTabHandle srcTable,
 CTabHandle dstTable,
 ReqListRec *selection
);

Parameters
srcTable

The color table containing entries to be restored.

dstTable
The color table in which to restore the entries. If dstTable is NULL, or points to the current GDevice
data structure’s color table, RestoreEntries changes the device’s color table and the hardware
CLUT to these new colors.

selection
A pointer to the ReqListRec (page 142) data structure. The entries to be restored are enumerated
as offsets into a ColorTable data structure, not the contents of the ColorSpec.value field.

Discussion
The RestoreEntries function does not rebuild the inverse table.

If a request is beyond the end of the destination color table, RestoreEntries sets that position in the
requestList data structure to colReqErr, and returns an error. RestoreEntries assumes that the color
table specified by the srcTable parameter and the request list specified by the selection parameter have
the same number of entries.

342 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

RestoreEntries does not change the color table’s seed, so no invalidation occurs (which may cause
RGBForeColor to act strangely). RestoreEntries ignores protection and reservation of color table entries.

You generally should use the Palette Manager to give your application its own set of colors; use of
RestoreEntries should be limited to special-purpose applications. RestoreEntries allows you to change
a color table without changing its ctSeed field. You can execute the application code and then use
RestoreEntries to put the original colors back in. However, in some cases things in the background may
appear in the wrong colors, since they were never redrawn. To avoid this, your application must build its
own new inverse table and redraw the background. If you then use RestoreEntries, you should call the
CTabChanged function to clean up correctly.

Carbon Porting Notes

This function does nothing useful on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RGBBackColor
Changes the background color. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void RGBBackColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure.

Discussion
If the current port is defined by a CGrafPort structure, QuickDraw supplies its rgbBkColor field with the
RGB value that you specify in the color parameter, and places the pixel value most closely matching that
color in the bkColor field. For indexed devices, the pixel value is an index to the current device’s CLUT. F or
direct devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort structure, basic QuickDraw supplies its fgColor field with a
color value determined by taking the high bit of each of the red, green, and blue components of the color
that you supply in the color parameter. Basic QuickDraw uses that 3-bit number to select a color from its
eight-color system.

You can also use Palette Manager functions to set the background color.

To determine the current background color, use the GetBackColor (page 224) function.

Deprecated in Mac OS X v10.4 343
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Because a pixel pattern already contains color, QuickDraw ignores the background color and foreground
colors when your application draws with a pixel pattern. Use the PenPixPat function to assign a pixel pattern
to the foreground pattern used by the graphics pen. Use the BackPixPat function to assign a pixel pattern
as the background pattern for the current color graphics port. Use the FillCRect, FillCOval,
FillCRoundRect, FillCArc, FillCRgn, and FillCPoly functions to fill shapes with a pixel pattern.

Special Considerations

The RGBBackColor function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RGBForeColor
Changes the color of the “ink” used for framing and painting. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void RGBForeColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure.

Discussion
If the current port is defined by a CGrafPort structure, QuickDraw supplies its rgbFgColor field with the
RGB value that you specify in the color parameter, and places the pixel value most closely matching that
color in the fgColor field. For indexed devices, the pixel value is an index to the current device’s CLUT. For
direct devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort structure, basic QuickDraw supplies its fgColor field with a
color value determined by taking the high bit of each of the red, green, and blue components of the color
that you supply in the color parameter. Basic QuickDraw uses that 3-bit number to select a color from its
eight-color system.

You can also use Palette Manager functions to set the foreground color.

To determine the current foreground color, use the GetForeColor (page 228) function.

QuickDraw ignores the foreground and background colors when your application draws with a pixel pattern.
Assign a pixel pattern to the foreground pattern used by the graphics pen; by using the BackPixPat function
to assign a pixel pattern as the background pattern for the current color graphics port; and by using the
FillCRect, FillCOval, FillCRoundRect, FillCArc, FillCRgn, and FillCPoly functions to fill shapes
with a pixel pattern.

344 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The RGBForeColor function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

SaveEntries
Saves a selection of color table entries. This function is used by system software and your application should
not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void SaveEntries (
 CTabHandle srcTable,
 CTabHandle resultTable,
 ReqListRec *selection
);

Parameters
srcTable

The color table containing entries to be saved. If you supply NULL, SaveEntries uses the current
device’s color table as the source.

resultTable
The color table in which to save the entries.

selection
A pointer to the ReqListRec (page 142) data structure. The entries to be set are enumerated as offsets
into a ColorTable data structure, not the contents of the ColorSpec.value field.) If an entry is
not present in srcTable, then SaveEntries sets that position of the selection parameter to
colReqErr, and that position of resultTable contains random values.

Discussion
If SaveEntries can not find one or more entries, then it posts an error code to QDError; however, for every
entry in selection which is not colReqErr, the values in resultTable are valid. SaveEntries assumes
that the color table specified by the srcTable parameter and the request list specified by the selection
parameter have the same number of entries.

The output of SaveEntries is the same as the input for RestoreEntries, except for the order.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 345
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

ScreenRes
Determines the resolution of the main device. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void ScreenRes (
 short *scrnHRes,
 short *scrnVRes
);

Parameters
scrnHRes

On return, the number of horizontal pixels per inch displayed by the current device.

scrnVRes
On return, the number of vertical pixels per inch displayed by the current device.

Discussion
To determine the resolutions of all available graphics devices, examine their GDevice (page 119) structures.
The horizontal and vertical resolutions for a graphics device are stored in the hRes and vRes fields, respectively,
of the PixMap structure for the device’s GDevice structure.

Currently, QuickDraw and the Printing Manager always assume a screen resolution of 72 dpi.

Do not use the actual screen resolution as a scaling factor when drawing into a printing graphics port. Instead,
always use 72 dpi as the scaling factor. See the Printing Manager documentation for more information about
drawing into a printing graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ScrollRect
Scroll the pixels of a specified portion of a basic graphics port’s bitmap (or a color graphics port’s pixel map).
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

346 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void ScrollRect (
 const Rect *r,
 short dh,
 short dv,
 RgnHandle updateRgn
);

Parameters
r

The pointer to the rectangle defining the area to be scrolled.

dh
The horizontal distance to be scrolled.

dv
The vertical distance to be scrolled.

updateRgn
A handle to the region of the window that needs to be updated.

Discussion
The ScrollRect function shifts pixels that are inside the specified rectangle of the current graphics port.
No other pixels or the bits they represent are affected. The pixels are shifted a distance of dh horizontally
and dv vertically. The positive directions are to the right and down. The pixels that are shifted out of the
specified rectangle are not displayed, and the bits they represent are not saved. It is up to your application
to save this data.

The empty area created by the scrolling is filled with the graphics port’s background pattern, and the update
region is changed to this filled area.

The ScrollRect function doesn’t change the local coordinate system of the graphics port it simply moves
the rectangle specified in the r parameter to different coordinates. Notice that ScrollRect doesn’t move
the graphics pen or the clipping region. However, because the document has moved, they’re in different
positions relative to the document.

By creating an update region for the window, ScrollRect forces an update event. After using ScrollRect,
your application should use its own window-updating code to draw into the update region of the window.

The ScrollRect function may move or purge memory blocks in the application heap. Your application
should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SectRegionWithPortClipRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 347
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SectRegionWithPortClipRegion (
 CGrafPtr port,
 RgnHandle ioRegion
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SectRegionWithPortVisibleRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SectRegionWithPortVisibleRegion (
 CGrafPtr port,
 RgnHandle ioRegion
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SeedCFill
Determines how far filling will extend to pixels matching the color of a particular pixel. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SeedCFill (
 const BitMap *srcBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short seedH,
 short seedV,
 ColorSearchUPP matchProc,
 long matchData
);

Parameters
srcBits

The source image. If the image is in a pixel map, you must coerce its PixMap structure to a BitMap
structure.

dstBits
On return, the destination mask.

348 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

srcRect
The rectangle of the source image.

dstRect
The rectangle of the destination image.

seedH
The horizontal position of the seed point.

seedV
The vertical position of the seed point.

matchProc
An optional color search function.

matchData
Data for the optional color search function.

Discussion
The SeedCFill function generates a mask showing where the pixels in an image can be filled from a starting
point, like the paint pouring from the MacPaint paint-bucket tool. This mask is a bitmap filled with 1’s to
indicate all pixels adjacent to a seed point whose colors do not exactly match the RGBColor structure for
the pixel at the seed point. You can then use this mask with the CopyBits, CopyMask, and CopyDeepMask
functions.

You specify a source image in the srcBits parameter and, in the srcRect parameter, specify a rectangle
within that source image. You specify where to begin seeding in the seedH and seedV parameters, which
must be the horizontal and vertical coordinates of a point in the local coordinate system of the source bitmap.
By default, the 1’s returned in the mask indicate all pixels adjacent to the seed point whose pixel values do
not exactly match the pixel value of the pixel at the seed point. To use this default, set the matchProc and
matchData parameters to 0.

In generating the mask, SeedCFill uses the CopyBits function to convert the source image to a 1-bit mask.
The SeedCFill function installs a default color search function that returns 0 if the pixel value matches that
of the seed point all other pixel values return 1’s.

The SeedCFill function does not scale so the source and destination rectangles must be the same size.
Calls to SeedCFill are not clipped to the current port and are not stored into QuickDraw pictures.

To customize SeedCFill,write your own color search function and point to it in the matchProc parameter;
SeedCFill will then use your function instead of the default.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SeedFill
Determines how far filling will extend from a seeding point. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 349
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SeedFill (
 const void *srcPtr,
 void *dstPtr,
 short srcRow,
 short dstRow,
 short height,
 short words,
 short seedH,
 short seedV
);

Parameters
srcPtr

A pointer to the source bit image.

dstPtr
On input, a pointer to the destination bit image; upon return, a pointer to the bitmap containing the
resulting mask.

srcRow
Row width of the source bitmap.

dstRow
Row width of the destination bitmap.

height
Height (in pixels) of the fill rectangle.

words
Width (in words) of the fill rectangle.

seedH
The horizontal offset (in pixels) at which to begin filling the destination bit image.

seedV
The vertical offset (in pixels) at which to begin filling the destination bit image.

Discussion
The SeedFill function produces a mask showing where bits in an image can be filled from a starting point,
like the paint pouring from the MacPaint paint-bucket tool. The SeedFill returns this mask in the dstPtr
parameter. This mask is a bitmap filled with 1’s only where the pixels in the source image can be filled. You
can then use this mask with the CopyBits, CopyMask, and CopyDeepMask functions.

Point to the bit image you want to fill with the srcPtr parameter, which can point to the image’s base
address or a word boundary within the image. Specify a pixel height and word width with the height and
words parameters to define a fill rectangle that delimits the area you want to fill. The fill rectangle can be
the entire bit image or a subset of it. Point to a destination image with the dstPtr parameter. Specify the
row widths of the source and destination bitmaps (their rowBytes values) with the srcRow and dstRow
parameters. (The bitmaps can be different sizes, but they must be large enough to contain the fill rectangle
at the origins specified by the srcPtr and dstPtr parameters.)

You specify where to begin filling with the seedH and seedV parameters: they specify a horizontal and
vertical offset in pixels from the origin of the image pointed to by the srcPtr parameter. The SeedFill
function calculates contiguous pixels from that point out to the boundaries of the fill rectangle, and it stores
the result in the bit image pointed to by the dstPtr parameter.

Calls to SeedFill are not clipped to the current port and are not stored into QuickDraw pictures.

350 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCCursor
Specifies a color cursor for display on the screen. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void SetCCursor (
 CCrsrHandle cCrsr
);

Parameters
cCrsr

A handle to the color cursor to be displayed.

Discussion
At the time the cursor is set, it is expanded to the current screen depth so that it can be drawn rapidly. You
must call GetCCursor before you call SetCCursor; however, you can make several subsequent calls to
SetCCursor once GetCCursor creates the CCrsr structure.

If your application has changed the cursor’s data or its color table, it must also invalidate the crsrXValid
and crsrID fields of the CCrsr structure before calling SetCCursor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetClientID
Sets the gdID field in the current GDevice data structure to identify this client program to its search and
complement functions. This function is used by system software and your application should not need to
call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetClientID (
 short id
);

Parameters
id

The ID to be set in the device data structure.

Deprecated in Mac OS X v10.4 351
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCPixel
Sets the color of an individual pixel to the color that most closely matches the RGB color that you specify in
the cPix parameter. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

void SetCPixel (
 short h,
 short v,
 const RGBColor *cPix
);

Parameters
h

The horizontal coordinate of the point at the upper-left corner of the pixel.

v
The vertical coordinate of the point at the upper-left corner of the pixel.

cPix
An RGBColor structure.

Discussion
On an indexed color system, the SetCPixel function sets the pixel value to the index of the best-matching
color in the current device’s CLUT. In a direct environment, the SetCPixel function sets the pixel value to
a 16-bit or 32-bit direct pixel value.

To determine the color of an individual pixel, use the GetCPixel (page 225) function.

Special Considerations

The SetCPixel function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCursor
Sets the current cursor. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz ProgrammingGuide
for QuickDraw Developers.)

352 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SetCursor (
 const Cursor * crsr
);

Parameters
crsr

A Cursor (page 114) structure for the cursor to be displayed.

Discussion
If the cursor is hidden, it remains hidden and attains its new appearance only when it’s uncovered. If the
cursor is already visible, it changes to the new appearance immediately.

You need to use the InitCursor (page 59) function to initialize the standard arrow cursor and make it
visible on the screen before you call SetCursor to change the cursor’s appearance.

To display a color cursor, use the SetCCursor (page 351) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCursorComponent
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr SetCursorComponent (
 ComponentInstance ci
);

Return Value
Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetDeviceAttribute
Sets the attribute bits of a GDevice structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 353
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SetDeviceAttribute (
 GDHandle gdh,
 short attribute,
 Boolean value
);

Parameters
gdh

A handle to a GDevice structure.

attribute
One of the specific constants, which represent bits in the gdFlags field of a GDevice structure. See
GDevice (page 119) for the values you can use in this parameter.

value
A value of either 0 or 1 for the flag bit specified in the attribute parameter.

Discussion
For the graphics device specified in the gdh parameter, the SetDeviceAttribute function sets the flag bit
specified in the attribute parameter to the value specified in the value parameter.

Your application should never directly change the gdFlags field of the GDevice structure; instead, use only
the SetDeviceAttribute function.

Special Considerations

The SetDeviceAttribute function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetEntries
Sets a group of color table entries for the current GDevice data structure. This function is used by system
software and your application should not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetEntries (
 short start,
 short count,
 CSpecArray aTable
);

Parameters
start

The index of the first entry to be changed.

count
The number of entries to be changed. Note that all values are zero-based; for example, to set three
entries, pass 2 in the count parameter.

354 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

aTable
An array of ColorSpec data structures containing the colors to be used. Directly specify a cSpecArray
structure, not the beginning of a color table. The ColorSpec.value fields of the entries must be in
the logical range for the target device’s assigned pixel depth. Thus, with a 4-bit pixel size, the
ColorSpec.value fields should be in the range 1 to 15. With an 8-bit pixel size, the range is 0 to
255.

Discussion
Instead of using SetEntries, you should use the Palette Manager function SetEntryColor to allow your
application to run in a multiscreen or multitasking environment.

The SetEntries positional information works in logical space rather than in the actual memory space used
by the hardware. Requesting a change at the fourth position in the color table may not modify the fourth
color table entry in the hardware, but it does correctly change the color on the screen for any pixels with a
value of 4 in the video card. The SetEntries mode characterized by a start position and a length is called
sequence mode. In this case, SetEntries sequentially loads new colors into the hardware in the same order
as they appear in the aTable parameter, copies the clientID fields for changed color table entries from
the current GDevice data structure’s gdID field, and ignores the ColorSpec.value fields.

The other SetEntries mode is called index mode. It allows the cSpecArray structure to specify where the
data will be installed on an entry-by-entry basis. To use this mode, pass –1 for the start position, with a valid
count and a pointer to the cSpecArray data structure. Each entry is installed into the color table at the
position specified by the ColorSpec.value field of each entry in the cSpecArray data structure. In the
current GDevice data structure’s color table, the ColorSpec.value fields of all changed entries are assigned
the GDevice data structure’s gdID value.

When the Color Manager changes color table entries, it invalidates all cached fonts, and changes the color
table’s seed number so that the next drawing operation triggers the Color Manager to rebuild the inverse
table. If any of the requested entries are protected or out of range, the Color Manager returns a protection
error, and nothing happens. The Color Manager changes a reserved entry only if the current gdID field of
the current GDevice data structure matches the low byte of the intended ColorSpec.value field in the
color table.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetGDevice
Sets a GDevice structure as the current device. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void SetGDevice (
 GDHandle gd
);

Parameters
gd

A handle to a GDevice structure.

Deprecated in Mac OS X v10.4 355
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
Your application won’t generally need to use this function, because when your application draws into a
window on one or more screens, Color QuickDraw automatically switches GDevice structures as appropriate;
and when your application needs to draw into an offscreen graphics world, it can use the SetGWorld function
to set the graphics port as well as the GDevice structure for the offscreen environment. However, if your
application uses the SetPort function instead of the SetGWorld function to set the graphics port to or from
an offscreen graphics world, then your application must use SetGDevice in conjunction with SetPort.

A handle to the currently active device is kept in the global variable TheGDevice.

Special Considerations

The SetGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetOrigin
Changes the coordinates of the window origin of the port rectangle of the current graphics port (basic or
color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetOrigin (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the upper-left corner of the port rectangle.

v
The vertical coordinate of the upper-left corner of the port rectangle.

Discussion
The SetOrigin function changes the coordinates of the upper-left corner of the current graphics port’s port
rectangle to the values supplied by the h and v parameters. All other points in the current graphics port’s
local coordinate system are calculated from this point. All subsequent drawing and calculation functions use
the new coordinate system.

The SetOrigin function does not affect the screen; it does, however, affect where subsequent drawing
inside the graphics port appears. The SetOrigin function does not offset the coordinates of the clipping
region or the graphics pen, which therefore change position on the screen (unlike the boundary rectangle,
port rectangle, and visible region, which don’t change position onscreen).

Because SetOrigin does not move the window’s clipping region, use the GetClip function to store your
clipping region immediately after your first call to SetOrigin—if you use clipping regions in your windows.
Before calling your own window-drawing function, use the ClipRect function to define a new clipping

356 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

region—to avoid drawing over your scroll bars, for example. After calling your own window-drawing function,
use the SetClip function to restore the original clipping region. You can then call SetOrigin again to
restore the window origin to a horizontal coordinate of 0 and a vertical coordinate of 0 with your original
clipping region intact.

All other functions in the Macintosh Toolbox and Operating System preserve the local coordinate system of
the current graphics port. The SetOrigin function is useful for readjusting the coordinate system after a
scrolling operation.

Note that the Window Manager and Control Manager always assume the window’s upper-left point has a
horizontal coordinate of 0 and a vertical coordinate of 0 when they draw in a window. Therefore, if you use
SetOrigin to change the window origin, be sure to use SetOrigin again to return the window origin to
a horizontal coordinate of 0 and a vertical coordinate of 0 before using any Window Manager or Control
Manager functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPenState
Restores the state of the graphics pen that was saved with the GetPenState function. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetPenState (
 const PenState *pnState
);

Parameters
pnState

A PenState structure previously created with the GetPenState function. The SetPenState function
sets the graphics pen’s location, size, pattern, and pattern mode in the current graphics port to the
values stored in this structure.

Discussion
This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 357
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SetPixelsState
Restores an offscreen pixel image to the state that you saved with the GetPixelsState function. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetPixelsState (
 PixMapHandle pm,
 GWorldFlags state
);

Parameters
pm

A handle to an offscreen pixel map.

state
Flags, which you usually save with the GetPixelsState function. You can use either of the constants
pixelsPurgeable or pixelsLocked here.

Because only an unlocked memory block can be purged, SetPixelsState calls the
UnlockPixels (page 381) and AllowPurgePixels (page 168) functions if the state parameter
specifies the pixelsPurgeable flag. If the state parameter does not specify the pixelsPurgeable
flag, SetPixelsState makes the base address for the offscreen pixel image unpurgeable.

If the state parameter does not specify the pixelsLocked flag, SetPixelsState allows the base
address for the offscreen pixel image to be moved.

Discussion
The SetPixelsState function changes the state of the memory allocated for an offscreen pixel image to
the state indicated in the state parameter.

After using GetPixelsState and before using SetPixelsState, your application can temporarily alter
the offscreen graphics world by using the AllowPurgePixels (page 168) function to temporarily mark the
memory block for its offscreen pixel map as purgeable, the NoPurgePixels (page 306) function to make it
unpurgeable, the LockPixels (page 288) function to prevent it from being moved, and the
UnlockPixels (page 381) function to unlock it.

Special Considerations

The SetPixelsState function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

SetPort
Changes the current graphics port (basic or color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

358 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

virtual void SetPort (
 void *port
);

Parameters
port

A pointer to a GrafPort structure. Typically, you pass a pointer to a GrafPort structure that you
previously saved with the GetPort function. The SetPort function sets this structure to be the
current graphics port.

Discussion
All QuickDraw drawing functions affect the bitmap of, and use the local coordinate system of, the current
graphics port. Each graphics port has its own graphics pen and text characteristics, which remain unchanged
when the graphics port isn’t selected as the current graphics port.

When your application runs in Color QuickDraw or uses offscreen graphics worlds, it should use the SetGWorld
function instead of SetPort. The SetGWorld function restores the current graphics port for basic and color
graphics ports as well as offscreen graphics worlds.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
QTCarbonShell

Declared In
QuickdrawAPI.h

SetPortBackPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortBackPixPat (
 CGrafPtr port,
 PixPatHandle backPattern
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 359
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SetPortBits
Sets the bitmap for the current basic graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void SetPortBits (
 const BitMap *bm
);

Parameters
bm

A pointer to the BitMap structure to set for the current graphics port. Be sure to prepare all fields of
the BitMap structure before you call SetPortBits.

Discussion
You should never need to use this function. This function, created for early versions of QuickDraw, allows
you to perform all normal drawing and calculations on a buffer other than the screen—for example, copying
a small offscreen image onto the screen with the CopyBits function. However, instead of using SetPortBits,
you should use the more powerful offscreen graphics capabilities.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortBounds (
 CGrafPtr port,
 const Rect *rect
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortClipRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

360 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SetPortClipRegion (
 CGrafPtr port,
 RgnHandle clipRgn
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortCustomXFerProc
(Deprecated in Mac OS X v10.4.)

Not recommended

OSErr SetPortCustomXFerProc (
 CGrafPtr port,
 CustomXFerProcPtr proc,
 UInt32 flags,
 UInt32 refCon
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortFillPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortFillPixPat (
 CGrafPtr port,
 PixPatHandle penPattern
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 361
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

SetPortFracHPenLocation
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortFracHPenLocation (
 CGrafPtr port,
 short pnLocHFrac
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortGrafProcs
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortGrafProcs (
 CGrafPtr port,
 CQDProcsPtr procs
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortOpColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

362 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SetPortOpColor (
 CGrafPtr port,
 const RGBColor *opColor
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPenMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortPenMode (
 CGrafPtr port,
 SInt32 penMode
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPenPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortPenPixPat (
 CGrafPtr port,
 PixPatHandle penPattern
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 363
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPenSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortPenSize (
 CGrafPtr port,
 Point penSize
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPix
Sets the pixel map for the current color graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void SetPortPix (
 PixMapHandle pm
);

Parameters
pm

A handle to the PixMap structure.

Discussion
The SetPortPix function replaces the portPixMap field of the current CGrafPort structure with the
handle you specify in the pm parameter.

Typically, your application does not need to call this function.

The SetPortPix function is analogous to the basic QuickDraw function SetPortBits, which sets the bitmap
for the current basic graphics port. The SetPortPix function has no effect when used with a basic graphics
port. Similarly, SetPortBits has no effect when used with a color graphics port.

Both SetPortPix and SetPortBits allow you to perform drawing and calculations on a buffer other than
the screen. However, instead of using these functions, use the offscreen graphics capabilities.

364 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextFace
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortTextFace (
 CGrafPtr port,
 StyleParameter face
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextFont
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortTextFont (
 CGrafPtr port,
 short txFont
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Deprecated in Mac OS X v10.4 365
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SetPortTextMode (
 CGrafPtr port,
 short mode
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortTextSize (
 CGrafPtr port,
 short txSize
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortVisibleRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortVisibleRegion (
 CGrafPtr port,
 RgnHandle visRgn
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

366 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SetQDError
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetQDError (
 OSErr err
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetQDGlobalsArrow
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetQDGlobalsArrow (
 const Cursor *arrow
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetQDGlobalsRandomSeed
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetQDGlobalsRandomSeed (
 long randomSeed
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 367
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SetStdCProcs
Obtains a CQDProcs structure with fields that point to QuickDraw’s standard low-level functions, which you
can modify to change QuickDraw’s standard low-level behavior. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetStdCProcs (
 CQDProcs *procs
);

Parameters
procs

Upon completion, a CQDProcs structure with fields that point to QuickDraw’s standard low-level
functions. You can change one or more fields to point to your own functions and then set the color
graphics port to use this modified CQDProcs (page 112) structure.

Discussion
For each shape that QuickDraw can draw, certain functions perform basic graphics operations on the shape:
framing, painting, erasing, inverting, and filling. These functions, in turn, call a low-level drawing function
for the shape.

The grafProcs field determines which low-level functions are called. If that field contains a value of NULL,
the standard functions are called. You can set the grafProcs field to point to a structure of pointers to your
own functions, and either completely override the standard ones or call them after your functions have
modified their parameters as necessary.

The SetStdCProcs function sets all the fields of the CQDProcs structure to point to the standard functions.
You can then reset the ones with which you are concerned.

The functions you install in the CDQProcs structure must have the same calling sequences as the standard
basic QuickDraw functions.

When drawing in a color graphics port, your application must always use SetStdCProcs instead of
SetStdProcs.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetStdProcs
Obtains a QDProcs structure with fields that point to basic QuickDraw’s standard low-level functions, which
you can modify to point to your own functions. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

368 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void SetStdProcs (
 QDProcs *procs
);

Parameters
procs

On return, a pointer to a QDProcs structure with fields that point to basic QuickDraw’s standard
low-level functions. You can change one or more fields of this structure to point to your own functions
and then set the basic graphics port to use this modified QDProcs structure. By changing these
pointers, you can install your own functions, and either completely override the standard ones or call
them after your functions have modified their parameters as necessary.

Discussion
The functions you install in this QDProcs structure must have the same calling sequences as the standard
functions.

Special Considerations

The Color QuickDraw function SetStdCProcs is analogous to the SetStdProcs function, which you should
use with computers that support only basic QuickDraw. When drawing in a color graphics port, your application
must always use SetStdCProcs instead of SetStdProcs.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ShowPen
Changes the ink of a graphics pen from invisible to visible, making pen drawing appear on the screen.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void ShowPen (
 void
);

Discussion
ShowPen is called by the functions CloseRgn (page 177) , ClosePoly (page 176) , and ClosePicture.

The ShowPen function increments the pnVis field of the current graphics port. For 0 or positive values, the
pen drawing shows on the screen.

For example, if you have used the HidePen function to decrement the pnVis field from 0 to –1, use the
ShowPen function to make its value 0 so that QuickDraw resumes drawing on the screen. Subsequent calls
to ShowPen increment pnVis beyond 0, so every call to ShowPen should be balanced by a call to HidePen.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Deprecated in Mac OS X v10.4 369
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdArc
QuickDraw’s standard low-level function for drawing an arc or a wedge. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdArc (
 GrafVerb verb,
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
verb

The action to perform. See “Verb Constants” (page 164).

r
The rectangle to contain the arc.

startAngle
The beginning angle.

arcAngle
The ending angle.

Discussion
Using the action specified in the verb parameter, the StdArc function draws an arc or wedge of the oval
that fits inside the rectangle specified in the r parameter. The arc or wedge is bounded by the radii specified
in the startAngle and arcAngle parameters.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

370 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

StdBits
QuickDraw’s standard low-level function for transferring bits and pixels. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdBits (
 const BitMap *srcBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn
);

Parameters
srcBits

A pointer to a bitmap or pixel map containing the image to copy.

srcRect
A pointer to the source rectangle.

dstRect
The destination rectangle.

mode
The source mode for the copy.

maskRgn
A handle to a region acting as a mask for the transfer.

Discussion
The StdBits function transfers a bit or pixel image between the bitmap or pixel map specified in the srcBits
parameter and bitmap of the current graphics port, just as if the CopyBits function were called with the
same parameters and with a destination bitmap equal to (* thePort).portBits.

You should only call this low-level function from your customized QuickDraw functions.

See CopyBits (page 179) for a discussion of the destination bitmap and of the srcBits, srcRect, dstRect,
mode, and maskRgn parameters

Special Considerations

The StdBits function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdComment
QuickDraw’s standard low-level function for processing a picture comment. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Deprecated in Mac OS X v10.4 371
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void StdComment (
 short kind,
 short dataSize,
 Handle dataHandle
);

Parameters
kind

The type of comment.

dataSize
The size of additional data, in bytes.

dataHandle
A handle to additional data.

Discussion
If there’s no additional data for the comment, the value of the dataHandle parameter is NULL and the value
of the dataSize parameter is 0. The StdComment function simply ignores the comment.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdComment function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdGetPic
QuickDraw’s standard low-level function for retrieving information from the definition of a picture. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdGetPic (
 void *dataPtr,
 short byteCount
);

Parameters
dataPtr

On return, a pointer to the collected picture data.

byteCount
The size of the picture data.

Discussion
The StdGetPic function retrieves from the definition of the currently open picture the next number of bytes
as specified in the byteCount parameter.

You should only call this low-level function from your customized QuickDraw functions.

372 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdLine
QuickDraw’s standard low-level function for drawing a line. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdLine (
 Point newPt
);

Parameters
newPt

The point to which to draw the line.

Discussion
The StdLine function draws a line from the current pen location to the location (in local coordinates) specified
in the newPt parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdLine function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdOpcode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void StdOpcode (
 const Rect *fromRect,
 const Rect *toRect,
 UInt16 opcode,
 SInt16 version
);

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 373
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdOval
QuickDraw’s standard low-level function for drawing an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdOval (
 GrafVerb verb,
 const Rect *r
);

Parameters
verb

The action to perform. See “Verb Constants” (page 164).

r
The rectangle to contain the oval.

Discussion
The StdOval function draws an oval inside the given rectangle specified in the r parameter according to
the action specified in the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdPoly
QuickDraw’s standard low-level function for drawing a polygon. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

374 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void StdPoly (
 GrafVerb verb,
 PolyHandle poly
);

Parameters
verb

The action to perform. See “Verb Constants” (page 164).

poly
A handle to the polygon data.

Discussion
The StdPoly function draws the polygon specified in the poly parameter according to the action specified
in the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdPutPic
QuickDraw’s standard low-level function for saving information as the definition of a picture. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdPutPic (
 const void *dataPtr,
 short byteCount
);

Parameters
dataPtr

A pointer to the collected picture data.

byteCount
The size of the picture data.

Discussion
The StdPutPic function saves as the definition of the currently open picture the drawing commands stored
in the data structure pointed to by the dataPtr parameter, starting with the first byte and continuing for
the next number of bytes as specified in the byteCount parameter.

You should only call this low-level function from your customized QuickDraw functions.

Deprecated in Mac OS X v10.4 375
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The StdPutPic function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdRect
QuickDraw’s standard low-level function for drawing a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdRect (
 GrafVerb verb,
 const Rect *r
);

Parameters
verb

The action to perform. See “Verb Constants” (page 164).

r
The rectangle to draw.

Discussion
The StdRect function draws the rectangle specified in the r parameter according to the action specified in
the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdRgn
QuickDraw’s standard low-level function for drawing a region. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

376 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void StdRgn (
 GrafVerb verb,
 RgnHandle rgn
);

Parameters
verb

The action to perform. See “Verb Constants” (page 164).

rgn
A handle to the region data.

Discussion
The StdRgn function draws the region specified in the rgn parameter according to the action specified in
the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdRRect
QuickDraw’s standard low-level function for drawing a rounded rectangle. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdRRect (
 GrafVerb verb,
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
verb

The action to perform. See “Verb Constants” (page 164).

r
The rectangle to draw.

ovalWidth
The width diameter for the corner oval.

ovalHeight
The height diameter for the corner oval.

Deprecated in Mac OS X v10.4 377
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
The StdRRect function draws the rounded rectangle specified in the r parameter according to the action
specified in the verb parameter. The ovalWidth and ovalHeight parameters specify the diameters of
curvature for the corners.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdRRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StuffHex
Sets byte values into memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void StuffHex (
 void *thingPtr,
 ConstStr255Param s
);

Parameters
thingPtr

A pointer to any data structure in memory. If thingPtr is an odd address, then thingPtr is interpreted
as pointing to the next word boundary.

s
A string of characters representing hexadecimal digits. All characters in this string must be hexadecimal
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Otherwise, StuffHex may set bytes in the data structure
pointed to by thingPtr to arbitrary values. If there are an odd number of characters in the string,
the last character is ignored.

Discussion
The StuffHex function sets bytes in memory beginning with that byte specified by the parameter thingPtr.
The total number of bytes set is equivalent to half the length of the string, ignoring the last character if the
number of characters is odd.

Each byte to be set corresponds to two characters in the string. These characters should represent hexadecimal
digits. For example, the string ‘ D41A’ results in 2 bytes being set to the values $D4 and $1A, respectively.

To copy a range of bytes from one memory location to another, you should ordinarily use the Memory
Manager function, BlockMove.

378 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Special Considerations

The StuffHex function does no range checking to ensure that bytes being set are within the bounds of a
certain data structure. If you do not use StuffHex carefully, you may change memory in the partition of
your application or another application in unpredictable ways.

Although the StuffHex function sets the value of individual bytes, it does not move relocatable blocks.
Thus, you can call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SwapPortPicSaveHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle SwapPortPicSaveHandle (
 CGrafPtr port,
 Handle inPicSaveHdl
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SwapPortPolySaveHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle SwapPortPolySaveHandle (
 CGrafPtr port,
 Handle inPolySaveHdl
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Deprecated in Mac OS X v10.4 379
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

SwapPortRegionSaveHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle SwapPortRegionSaveHandle (
 CGrafPtr port,
 Handle inRegionSaveHdl
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SyncCGContextOriginWithPort
Synchronizes the origin in a Quartz context with the lower-left corner of the associated graphics port.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus SyncCGContextOriginWithPort (
 CGContextRef inContext,
 CGrafPtr port
);

Parameters
context

A Quartz context associated with a graphics port. You can obtain such a context by calling
QDBeginCGContext (page 73).

port
The graphics port associated with the context.

Return Value
A result code. If noErr, the context’s origin was successfully changed.

Discussion
If you’re using Quartz 2D to draw in a graphics port and SetOrigin (page 356) is called to change the port’s
origin, you can call this function to maintain the correspondence between the context’s origin and the
lower-left corner of the portBounds rectangle.

When you call this function:

1. The current transformation matrix (CTM) is reset to its default values. Any changes you made to the CTM
prior to calling this function are lost.

2. The CTM is translated to establish the new origin, taking the port’s current origin into account.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

380 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

TestDeviceAttribute
Determines whether the flag bit for an attribute has been set in the gdFlags field of a GDevice structure.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean TestDeviceAttribute (
 GDHandle gdh,
 short attribute
);

Parameters
gdh

A handle to a GDevice structure.

attribute
One of the specific constants, which represent bits in the gdFlags field of a GDevice structure. See
“Device Attribute Constants” (page 147) for a description of the values you can use in this parameter.

Return Value
TRUE if the bit of the graphics device attribute specified in the attribute parameter is set to 1. Otherwise,
TestDeviceAttribute returns FALSE.

Discussion
Use the SetDeviceAttribute (page 353) function to change any of the flags tested by the
TestDeviceAttribute function.

Special Considerations

The TestDeviceAttribute function may move or purge memory blocks in the application heap; do not
call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

UnlockPixels
Allows the Memory Manager to move the base address for the offscreen pixel map that you specify in the
pm parameter. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Deprecated in Mac OS X v10.4 381
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

void UnlockPixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. Pass the same handle that you passed previously to the
LockPixels function.

Discussion
To ensure the integrity of the data in a pixel image, call LockPixels before drawing into or copying from
a pixel map; then, to prevent heap fragmentation, call UnlockPixels as soon as your application finishes
drawing to and copying from the offscreen pixel map.

The baseAddr field of the PixMap structure for an offscreen graphics world contains a handle instead of a
pointer (which is what the baseAddr field for an onscreen pixel map contains). The LockPixels function
dereferences the PixMap handle into a pointer. When you use the UnlockPixels function, the handle is
recovered.

You don’t need to call UnlockPixels if LockPixels returns FALSE, because LockPixels doesn’t lock the
memory for a pixel image if that memory has been purged. However, calling UnlockPixels on purged
memory does no harm.

Special Considerations

The UnlockPixels function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QDOffscreen.h

UnlockPortBits
Releases a previously acquired lock on the back buffer for a Carbon window. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr UnlockPortBits (
 GrafPtr port
);

Parameters
port

A window port specified in a previous call to LockPortBits (page 289).

Return Value
A result code. If noErr, the corresponding lock is released.

382 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Discussion
For more information about this function, see LockPortBits (page 289).

In Mac OS 9, this function does nothing and returns noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

UnpackBits
Decompresses a data buffer containing data compressed by PackBits. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void UnpackBits (
 Ptr *srcPtr,
 Ptr *dstPtr,
 short dstBytes
);

Parameters
srcPtr

On entry, a pointer to the first byte of a buffer of data to be decompressed. On exit, a pointer to the
first byte following the compressed data.

dstPtr
On entry, a pointer to the first byte in which to store decompressed data. On exit, a pointer to the
first byte following the decompressed data.

dstBytes
The number of bytes of the data before compression. Use PackBits to compress data structures of
a fixed size that you can then pass in this parameter to UnpackBits, or store with the compressed
data the original size of the uncompressed data.

Discussion
Because your application must allocate memory for the source and destination buffers, UnpackBits does
not move relocatable blocks. Thus, you can call it at interrupt time.

Because UnpackBits changes the values of the srcPtr and dstPtr parameters, you should pass to
UnpackBits only copies of the pointers to the source and destination buffers. This allows you to access the
beginning of the source and destination buffers after UnpackBits returns. Also, if the source or destination
buffer is stored in an unlocked, relocatable block, this technique prevents UnpackBits from changing the
value of a master pointer, which would make the original handle invalid.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 383
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QuickdrawAPI.h

UpdateGWorld
Changes the pixel depth, boundary rectangle, or color table for an existing offscreen graphics world.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

GWorldFlags UpdateGWorld (
 GWorldPtr *offscreenGWorld,
 short pixelDepth,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags
);

Parameters
offscreenGWorld

On input, a pointer to an existing offscreen graphics world; upon completion, the pointer to the
updated offscreen graphics world.

pixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16, and 32 bits per pixel. If you
specify 0 in this parameter, UpdateGWorld rescans the device list and uses the depth of the screen
with the greatest pixel depth among all screens whose boundary rectangles intersect the rectangle
that you specify in the boundsRect parameter. If you specify 0 in this parameter, UpdateGWorld
also copies the GDevice structure from this device to create an offscreen GDevice structure. The
UpdateGWorld function ignores the value you supply for this parameter if you specify a GDevice
structure in the aGDevice parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel map. This also becomes the boundary
rectangle for the GDevice structure, if NewGWorld creates one. If you specify 0 in the pixelDepth
parameter, NewGWorld interprets the boundaries in global coordinates, with which it determines
which screens intersect the rectangle. (NewGWorld then uses the pixel depth, color table, and GDevice
structure from the screen with the greatest pixel depth from among all screens whose boundary
rectangles intersect this rectangle.) Typically, your application supplies this parameter with the port
rectangle for the onscreen window into which your application will copy the pixel image from this
offscreen world.

cTable
A handle to a ColorTable structure. If you pass NULL in this parameter, UpdateGWorld uses the
default color table for the pixel depth that you specify in the pixelDepth parameter; if you set the
pixelDepth parameter to 0, UpdateGWorld copies and uses the color table of the graphics device
with the greatest pixel depth among all graphics devices whose boundary rectangles intersect the
rectangle that you specify in the boundsRect parameter. The UpdateGWorld function ignores the
value you supply for this parameter if you specify a GDevice structure in the aGDevice parameter.

aGDevice
As an option, a handle to a GDevice structure whose pixel depth and color table you want to use for
the offscreen graphics world. To use the pixel depth and color table that you specify in the pixelDepth
and cTable parameters, set this parameter to NULL.

384 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

flags
Options available to your application. You can set a combination of the flags clipPix, stretchPix,
and ditherPix. If you don’t wish to use any of these flags, specify 0. However, you should pass either
clipPix or stretchPix to ensure that the pixel map is updated to reflect the new color table. See
GWorldFlags (page 123) for a description of the values you can use here.

Return Value
UpdateGWorld returns the gwFlagErr flag if UpdateGWorld was unsuccessful; in this case, the offscreen
graphics world is left unchanged. Use the QDError function to help you determine why UpdateGWorld
failed.

Discussion
You should call UpdateGWorld after every update event and whenever your windows move or change size.

If the LockPixels (page 288) function reports that the Memory Manager has purged the base address for
the offscreen pixel image, use UpdateGWorld to reallocate its memory. Then, reconstruct the pixel image
or draw directly in a window instead of preparing the image in an offscreen graphics world.

The UpdateGWorld function uses the following algorithm when updating the offscreen pixel image:

1. If the color table that you specify in the cTable parameter is different from the previous color table, or
if the color table associated with the GDevice structure that you specify in the aGDevice parameter is
different, Color QuickDraw maps the pixel values in the offscreen pixel map to the new color table.

2. If the value you specify in the pixelDepth parameter differs from the previous pixel depth, Color
QuickDraw translates the pixel values in the offscreen pixel image to those for the new pixel depth.

3. If the rectangle you specify in the boundsRect parameter differs from, but has the same size as, the
previous boundary rectangle, QuickDraw realigns the pixel image to the screen for optimum performance
for the CopyBits function.

4. If the rectangle you specify in the boundsRect parameter is smaller than the previous boundary rectangle
and you specify the clipPix flag, the pixel image is clipped along the bottom and right edges.

5. If the rectangle you specify in the boundsRect parameter is bigger than the previous boundary rectangle
and you specify the clipPix flag, the bottom and right edges of the pixel image are undefined.

6. If the rectangle you specify in the boundsRect parameter is smaller than the previous boundary rectangle
and you specify the stretchPix flag, the pixel image is reduced to the new size.

7. If the rectangle you specify in the boundsRect parameter is bigger than the previous boundary rectangle
and you specify the stretchPix flag, the pixel image is stretched to the new size.

8. If the Memory Manager purged the base address for the offscreen pixel image, UpdateGWorld reallocates
the memory, but the pixel image is lost. You must reconstruct it.

Special Considerations

The UpdateGWorld function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 385
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

Declared In
QDOffscreen.h

386 Deprecated in Mac OS X v10.4
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Functions

This table describes the changes to QuickDraw Reference.

NotesDate

Made minor format and editorial changes.2007-06-29

Added kNativeEndianPixMap to the list of constants in “Graphics World
Flags” (page 151).

Added information about deprecated functions. Documented the
QDGetCGDirectDisplayID function.

2006-07-24

Updated description of the function InitCursor.2005-08-11

Added documentation for the functions and data types in
QDPictToCGContext.h.

2004-06-28

Added or changed the documentation for the following functions:
QDBeginCGContext (page 73), QDEndCGContext (page 74),
ClipCGContextToRegion (page 174),SyncCGContextOriginWithPort (page
380), CreateCGContextForPort (page 185), LockPortBits (page 289),
UnlockPortBits (page 382), QDFlushPortBuffer (page 331),
CreateNewPortForCGDisplayID (page 187), GetIndPattern (page 231),
DeltaPoint (page 190), SubPt (page 91).

2004-02-26

Updated to include information about Mac OS X availability.2003-02-01

387
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

388
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AddComp function (Deprecated in Mac OS X v10.4) 167
addMax constant 162
addOver constant 162
addPin constant 162
AddPt function 49
AddSearch function (Deprecated in Mac OS X v10.4) 167
adMin constant 163
alignPix constant 153
allDevices constant 149
allInit constant 148
AllocCursor function (Deprecated in Mac OS X v10.4)

168
AllowPurgePixels function (Deprecated in Mac OS X

v10.4) 168
AngleFromSlope function 50

B

BackColor function (Deprecated in Mac OS X v10.4) 169
BackPat function (Deprecated in Mac OS X v10.4) 170
BackPixPat function (Deprecated in Mac OS X v10.4)

170
BitMap structure 105
BitMapToRegion function (Deprecated in Mac OS X

v10.4) 171
Bits16 data type 106
blackColor constant 145
blend constant 162
blueColor constant 145
burstDevice constant 147

C

CalcCMask function (Deprecated in Mac OS X v10.4) 172
CalcMask function (Deprecated in Mac OS X v10.4) 173
CCrsr structure 107

cDepthErr constant 165
cDevErr constant 165
CGrafPort structure 109
CGrafPtr data type 109
chunky 145
ClipCGContextToRegion function (Deprecated in Mac

OS X v10.4) 174
clipPix constant 154
ClipRect function (Deprecated in Mac OS X v10.4) 175
CloseCursorComponent function (Deprecated in Mac

OS X v10.4) 175
ClosePicture function (Deprecated in Mac OS X v10.4)

176
ClosePoly function (Deprecated in Mac OS X v10.4) 176
CloseRgn function (Deprecated in Mac OS X v10.4) 177
clutType constant 151
cMatchErr constant 165
cNoMemErr constant 165
Color Constants 145
Color2Index function (Deprecated in Mac OS X v10.4)

178
ColorBit function (Deprecated in Mac OS X v10.4) 178
ColorComplementProcPtr callback 94
ColorComplementUPP data type 109
ColorSearchProcPtr callback 94
ColorSearchUPP data type 110
ColorSpec structure 110
ColorTable structure 111
colorXorXFer 146
ConstPatternParam data type 111
CopyBits function (Deprecated in Mac OS X v10.4) 179
CopyDeepMask function (Deprecated in Mac OS X v10.4)

181
CopyMask function (Deprecated in Mac OS X v10.4) 183
CopyPixMap function (Deprecated in Mac OS X v10.4)

184
CopyPixPat function (Deprecated in Mac OS X v10.4)

185
CopyRgn function 50
CProcRec structure 112
cProtectErr constant 165
CQDProcs structure 112

389
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

Index

cRangeErr constant 165
CreateCGContextForPort function (Deprecated in Mac

OS X v10.4) 185
CreateNewPort function (Deprecated in Mac OS X v10.4)

186
CreateNewPortForCGDisplayID function (Deprecated

in Mac OS X v10.4) 187
cResErr constant 165
crossCursor constant 146
CSpecArray data type 114
CTabChanged function (Deprecated in Mac OS X v10.4)

187
cTempMemErr constant 165
Cursor ID Constants 146
Cursor structure 114
CursorComponentChanged function (Deprecated in Mac

OS X v10.4) 188
CursorComponentSetData function (Deprecated in Mac

OS X v10.4) 188
cursorDoesAnimate 147
CursorImageRec structure 115
CursorInfo structure 116
CustomXFerProcPtr callback 95
CustomXFerRec structure 116
CWindowPtr data type 116
cyanColor constant 146

D

DelComp function (Deprecated in Mac OS X v10.4) 189
DelSearch function (Deprecated in Mac OS X v10.4) 189
DeltaPoint function (Deprecated in Mac OS X v10.4)

190
deltapoint function (Deprecated in Mac OS X v10.4)

190
Device Attribute Constants 147
Device Loop Flags 149
deviceIsIndirect 150
DeviceLoop function (Deprecated in Mac OS X v10.4)

191
DeviceLoopDrawingProcPtr callback 96
DeviceLoopDrawingUPP data type 117
DeviceLoopFlags data type 117
DialogPtr data type 117
DiffRgn function 51
directType constant 151
DisposeCCursor function (Deprecated in Mac OS X

v10.4) 192
DisposeColorComplementUPP function (Deprecated in

Mac OS X v10.4) 192
DisposeColorSearchUPP function (Deprecated in Mac

OS X v10.4) 192

DisposeCTable function (Deprecated in Mac OS X v10.4)
193

DisposeDeviceLoopDrawingUPP function (Deprecated
in Mac OS X v10.4) 193

DisposeDragGrayRgnUPP function (Deprecated in Mac
OS X v10.4) 194

DisposeGDevice function (Deprecated in Mac OS X
v10.4) 194

DisposeGWorld function (Deprecated in Mac OS X v10.4)
194

DisposePixMap function (Deprecated in Mac OS X v10.4)
195

DisposePixPat function (Deprecated in Mac OS X v10.4)
196

DisposePort function (Deprecated in Mac OS X v10.4)
196

DisposeQDArcUPP function (Deprecated in Mac OS X
v10.4) 197

DisposeQDBitsUPP function (Deprecated in Mac OS X
v10.4) 197

DisposeQDCommentUPP function (Deprecated in Mac OS
X v10.4) 197

DisposeQDGetPicUPP function (Deprecated in Mac OS
X v10.4) 197

DisposeQDJShieldCursorUPP function (Deprecated in
Mac OS X v10.4) 198

DisposeQDLineUPP function (Deprecated in Mac OS X
v10.4) 198

DisposeQDOpcodeUPP function (Deprecated in Mac OS
X v10.4) 198

DisposeQDOvalUPP function (Deprecated in Mac OS X
v10.4) 199

DisposeQDPolyUPP function (Deprecated in Mac OS X
v10.4) 199

DisposeQDPutPicUPP function (Deprecated in Mac OS
X v10.4) 199

DisposeQDRectUPP function (Deprecated in Mac OS X
v10.4) 200

DisposeQDRgnUPP function (Deprecated in Mac OS X
v10.4) 200

DisposeQDRRectUPP function (Deprecated in Mac OS X
v10.4) 200

DisposeQDStdGlyphsUPP function (Deprecated in Mac
OS X v10.4) 201

DisposeQDTextUPP function (Deprecated in Mac OS X
v10.4) 201

DisposeQDTxMeasUPP function (Deprecated in Mac OS
X v10.4) 201

DisposeRegionToRectsUPP function (Deprecated in
Mac OS X v10.4) 202

DisposeRgn function 52
DisposeScreenBuffer function (Deprecated in Mac OS

X v10.4) 202

390
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

ditherCopy constant 163
ditherPix constant 154
dontMatchSeeds constant 149
Drag Constraint Constants 150
DragConstraint data type 117
DragGrayRgnProcPtr callback 97
DragGrayRgnUPP data type 118
DrawPicture function (Deprecated in Mac OS X v10.4)

203

E

EmptyRect function 53
EmptyRgn function 53
EqualPt function 54
EqualRect function 55
EqualRgn function 55
erase constant 164
EraseArc function (Deprecated in Mac OS X v10.4) 204
EraseOval function (Deprecated in Mac OS X v10.4) 205
ErasePoly function (Deprecated in Mac OS X v10.4) 206
EraseRect function (Deprecated in Mac OS X v10.4) 206
EraseRgn function (Deprecated in Mac OS X v10.4) 207
EraseRoundRect function (Deprecated in Mac OS X

v10.4) 208
ext32Device constant 148

F

fill constant 164
FillArc function (Deprecated in Mac OS X v10.4) 208
FillCArc function (Deprecated in Mac OS X v10.4) 209
FillCOval function (Deprecated in Mac OS X v10.4) 210
FillCPoly function (Deprecated in Mac OS X v10.4) 211
FillCRect function (Deprecated in Mac OS X v10.4) 211
FillCRgn function (Deprecated in Mac OS X v10.4) 212
FillCRoundRect function (Deprecated in Mac OS X

v10.4) 213
FillOval function (Deprecated in Mac OS X v10.4) 213
FillPoly function (Deprecated in Mac OS X v10.4) 214
FillRect function (Deprecated in Mac OS X v10.4) 215
FillRgn function (Deprecated in Mac OS X v10.4) 216
FillRoundRect function (Deprecated in Mac OS X v10.4)

217
fixedType constant 151
ForeColor function (Deprecated in Mac OS X v10.4) 218
frame constant 164
FrameArc function (Deprecated in Mac OS X v10.4) 219
FrameOval function (Deprecated in Mac OS X v10.4) 219
FramePoly function (Deprecated in Mac OS X v10.4) 220

FrameRect function (Deprecated in Mac OS X v10.4) 221
FrameRgn function (Deprecated in Mac OS X v10.4) 221
FrameRoundRect function (Deprecated in Mac OS X

v10.4) 222

G

GammaTbl structure 118
gdDevType constant 151
GDevice structure 119
GDeviceChanged function (Deprecated in Mac OS X

v10.4) 223
GetBackColor function (Deprecated in Mac OS X v10.4)

224
GetCCursor function (Deprecated in Mac OS X v10.4)

224
GetClip function 56
GetCPixel function (Deprecated in Mac OS X v10.4) 225
GetCTable function (Deprecated in Mac OS X v10.4) 225
GetCTSeed function (Deprecated in Mac OS X v10.4) 227
GetCursor function (Deprecated in Mac OS X v10.4) 227
GetDeviceList function (Deprecated in Mac OS X v10.4)

228
GetForeColor function (Deprecated in Mac OS X v10.4)

228
GetGDevice function (Deprecated in Mac OS X v10.4)

229
GetGWorld function 56
GetGWorldDevice function (Deprecated in Mac OS X

v10.4) 229
GetGWorldPixMap function (Deprecated in Mac OS X

v10.4) 230
GetIndPattern function (Deprecated in Mac OS X v10.4)

231
GetMainDevice function (Deprecated in Mac OS X v10.4)

232
GetMaskTable function (Deprecated in Mac OS X v10.4)

232
GetMaxDevice function (Deprecated in Mac OS X v10.4)

233
GetNextDevice function (Deprecated in Mac OS X v10.4)

233
GetPattern function (Deprecated in Mac OS X v10.4)

234
GetPen function (Deprecated in Mac OS X v10.4) 235
GetPenState function (Deprecated in Mac OS X v10.4)

235
GetPicture function (Deprecated in Mac OS X v10.4)

236
GetPixBaseAddr function 57
GetPixBounds function (Deprecated in Mac OS X v10.4)

237

391
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

GetPixDepth function (Deprecated in Mac OS X v10.4)
237

GetPixel function (Deprecated in Mac OS X v10.4) 237
GetPixelsState function (Deprecated in Mac OS X

v10.4) 238
GetPixPat function (Deprecated in Mac OS X v10.4) 239
GetPixRowBytes function (Deprecated in Mac OS X

v10.4) 240
GetPort function (Deprecated in Mac OS X v10.4) 240
GetPortBackColor function (Deprecated in Mac OS X

v10.4) 241
GetPortBackPixPat function (Deprecated in Mac OS X

v10.4) 241
GetPortBitMapForCopyBits function (Deprecated in

Mac OS X v10.4) 241
GetPortBounds function (Deprecated in Mac OS X v10.4)

242
GetPortChExtra function (Deprecated in Mac OS X

v10.4) 242
GetPortClipRegion function (Deprecated in Mac OS X

v10.4) 243
GetPortCustomXFerProc function (Deprecated in Mac

OS X v10.4) 243
GetPortFillPixPat function (Deprecated in Mac OS X

v10.4) 244
GetPortForeColor function (Deprecated in Mac OS X

v10.4) 244
GetPortFracHPenLocation function (Deprecated in

Mac OS X v10.4) 244
GetPortGrafProcs function (Deprecated in Mac OS X

v10.4) 245
GetPortHiliteColor function (Deprecated in Mac OS

X v10.4) 245
GetPortOpColor function (Deprecated in Mac OS X

v10.4) 246
GetPortPenLocation function (Deprecated in Mac OS

X v10.4) 246
GetPortPenMode function (Deprecated in Mac OS X

v10.4) 246
GetPortPenPixPat function (Deprecated in Mac OS X

v10.4) 247
GetPortPenSize function (Deprecated in Mac OS X

v10.4) 247
GetPortPenVisibility function (Deprecated in Mac

OS X v10.4) 248
GetPortPixMap function (Deprecated in Mac OS X v10.4)

248
GetPortSpExtra function (Deprecated in Mac OS X

v10.4) 248
GetPortTextFace function (Deprecated in Mac OS X

v10.4) 249
GetPortTextFont function (Deprecated in Mac OS X

v10.4) 249

GetPortTextMode function (Deprecated in Mac OS X
v10.4) 250

GetPortTextSize function (Deprecated in Mac OS X
v10.4) 250

GetPortVisibleRegion function (Deprecated in Mac
OS X v10.4) 250

GetQDGlobalsArrow function (Deprecated in Mac OS X
v10.4) 251

GetQDGlobalsBlack function (Deprecated in Mac OS X
v10.4) 251

GetQDGlobalsDarkGray function (Deprecated in Mac
OS X v10.4) 251

GetQDGlobalsGray function (Deprecated in Mac OS X
v10.4) 252

GetQDGlobalsLightGray function (Deprecated in Mac
OS X v10.4) 252

GetQDGlobalsRandomSeed function (Deprecated in Mac
OS X v10.4) 253

GetQDGlobalsScreenBits function (Deprecated in Mac
OS X v10.4) 253

GetQDGlobalsThePort function (Deprecated in Mac OS
X v10.4) 253

GetQDGlobalsWhite function (Deprecated in Mac OS X
v10.4) 254

GetRegionBounds function 58
GetSubTable function (Deprecated in Mac OS X v10.4)

254
GlobalToLocal function (Deprecated in Mac OS X v10.4)

255
GrafDevice function (Deprecated in Mac OS X v10.4)

255
GrafPort structure 121
GrafPtr data type 121
GrafVars structure 122
GrafVerb data type 122
Graphics Device Type Constants 151
Graphics World Flags 151
grayishTextOr constant 161
greenColor constant 145
gwFlagErr constant 154
GWorldFlags data type 123
GWorldPtr data type 123

H

HandleToRgn function 58
HideCursor function 59
HidePen function (Deprecated in Mac OS X v10.4) 255
hilite constant 162
HiliteColor function (Deprecated in Mac OS X v10.4)

256

392
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

I

iBeamCursor constant 146
Index2Color function (Deprecated in Mac OS X v10.4)

257
InitCursor function 59
InitGDevice function (Deprecated in Mac OS X v10.4)

257
InsetRect function 60
InsetRgn function 60
invalColReq 155
invert constant 164
InvertArc function (Deprecated in Mac OS X v10.4) 258
InvertColor function (Deprecated in Mac OS X v10.4)

259
InvertOval function (Deprecated in Mac OS X v10.4)

260
InvertPoly function (Deprecated in Mac OS X v10.4)

260
InvertRect function (Deprecated in Mac OS X v10.4)

261
InvertRgn function (Deprecated in Mac OS X v10.4) 262
InvertRoundRect function (Deprecated in Mac OS X

v10.4) 263
InvokeColorComplementUPP function (Deprecated in

Mac OS X v10.4) 264
InvokeColorSearchUPP function (Deprecated in Mac

OS X v10.4) 264
InvokeDeviceLoopDrawingUPP function (Deprecated

in Mac OS X v10.4) 265
InvokeDragGrayRgnUPP function (Deprecated in Mac

OS X v10.4) 265
InvokeQDArcUPP function (Deprecated in Mac OS X

v10.4) 266
InvokeQDBitsUPP function (Deprecated in Mac OS X

v10.4) 266
InvokeQDCommentUPP function (Deprecated in Mac OS

X v10.4) 266
InvokeQDGetPicUPP function (Deprecated in Mac OS X

v10.4) 267
InvokeQDJShieldCursorUPP function (Deprecated in

Mac OS X v10.4) 267
InvokeQDLineUPP function (Deprecated in Mac OS X

v10.4) 267
InvokeQDOpcodeUPP function (Deprecated in Mac OS X

v10.4) 268
InvokeQDOvalUPP function (Deprecated in Mac OS X

v10.4) 268
InvokeQDPolyUPP function (Deprecated in Mac OS X

v10.4) 269
InvokeQDPutPicUPP function (Deprecated in Mac OS X

v10.4) 269

InvokeQDRectUPP function (Deprecated in Mac OS X
v10.4) 269

InvokeQDRgnUPP function (Deprecated in Mac OS X
v10.4) 270

InvokeQDRRectUPP function (Deprecated in Mac OS X
v10.4) 270

InvokeQDStdGlyphsUPP function (Deprecated in Mac
OS X v10.4) 270

InvokeQDTextUPP function (Deprecated in Mac OS X
v10.4) 271

InvokeQDTxMeasUPP function (Deprecated in Mac OS X
v10.4) 271

InvokeRegionToRectsUPP function (Deprecated in Mac
OS X v10.4) 271

IsPortClipRegionEmpty function (Deprecated in Mac
OS X v10.4) 272

IsPortColor function (Deprecated in Mac OS X v10.4)
272

IsPortOffscreen function (Deprecated in Mac OS X
v10.4) 273

IsPortPictureBeingDefined function (Deprecated in
Mac OS X v10.4) 273

IsPortPolyBeingDefined function (Deprecated in Mac
OS X v10.4) 273

IsPortRegionBeingDefined function (Deprecated in
Mac OS X v10.4) 274

IsPortVisibleRegionEmpty function (Deprecated in
Mac OS X v10.4) 274

IsRegionRectangular function 61
IsValidPort function (Deprecated in Mac OS X v10.4)

274
IsValidRgnHandle function 62
ITab structure 123
italicBit 155

K

k1MonochromePixelFormat 155
kCursorComponentInit 155
kCursorComponentsVersion 156
kCursorComponentType 156
kCursorImageMajorVersion 156
keepLocal constant 152
kHorizontalConstraint constant 150
KillPicture function (Deprecated in Mac OS X v10.4)

275
KillPoly function (Deprecated in Mac OS X v10.4) 275
kNativeEndianPixMap constant 153
kNoConstraint constant 150
kPrinterFontStatus 156
kQDCorruptPICTDataErr constant 165
kQDCursorAlreadyRegistered constant 165

393
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

kQDCursorNotRegistered constant 165
kQDGrafVerbFrame 156
kQDNoColorHWCursorSupport constant 165
kQDNoPalette constant 165
kQDParseRegionFromTop 156
kQDRegionToRectsMsgInit 157
kQDUseDefaultTextRendering 157
kRenderCursorInHardware 157
kVerticalConstraint constant 150
kXFer1PixelAtATime 157

L

Line function (Deprecated in Mac OS X v10.4) 276
LineTo function (Deprecated in Mac OS X v10.4) 276
LMGetCursorNew function (Deprecated in Mac OS X

v10.4) 277
LMGetDeviceList function (Deprecated in Mac OS X

v10.4) 277
LMGetFractEnable function (Deprecated in Mac OS X

v10.4) 278
LMGetHiliteMode function (Deprecated in Mac OS X

v10.4) 278
LMGetHiliteRGB function (Deprecated in Mac OS X

v10.4) 278
LMGetLastFOND function (Deprecated in Mac OS X v10.4)

279
LMGetLastSPExtra function (Deprecated in Mac OS X

v10.4) 279
LMGetMainDevice function (Deprecated in Mac OS X

v10.4) 279
LMGetQDColors function (Deprecated in Mac OS X v10.4)

280
LMGetScrHRes function (Deprecated in Mac OS X v10.4)

280
LMGetScrVRes function (Deprecated in Mac OS X v10.4)

280
LMGetTheGDevice function (Deprecated in Mac OS X

v10.4) 281
LMGetWidthListHand function (Deprecated in Mac OS

X v10.4) 281
LMGetWidthPtr function (Deprecated in Mac OS X v10.4)

281
LMGetWidthTabHandle function (Deprecated in Mac OS

X v10.4) 282
LMSetCursorNew function (Deprecated in Mac OS X

v10.4) 282
LMSetDeviceList function (Deprecated in Mac OS X

v10.4) 282
LMSetFractEnable function (Deprecated in Mac OS X

v10.4) 283

LMSetHiliteMode function (Deprecated in Mac OS X
v10.4) 283

LMSetHiliteRGB function (Deprecated in Mac OS X
v10.4) 283

LMSetLastFOND function (Deprecated in Mac OS X v10.4)
284

LMSetLastSPExtra function (Deprecated in Mac OS X
v10.4) 284

LMSetMainDevice function (Deprecated in Mac OS X
v10.4) 284

LMSetQDColors function (Deprecated in Mac OS X v10.4)
285

LMSetScrHRes function (Deprecated in Mac OS X v10.4)
285

LMSetScrVRes function (Deprecated in Mac OS X v10.4)
285

LMSetTheGDevice function (Deprecated in Mac OS X
v10.4) 286

LMSetWidthListHand function (Deprecated in Mac OS
X v10.4) 286

LMSetWidthPtr function (Deprecated in Mac OS X v10.4)
286

LMSetWidthTabHandle function (Deprecated in Mac OS
X v10.4) 287

LocalToGlobal function (Deprecated in Mac OS X v10.4)
287

LockPixels function (Deprecated in Mac OS X v10.4)
288

LockPortBits function (Deprecated in Mac OS X v10.4)
289

M

MacPolygon structure 124
MacRegion structure 124
magentaColor constant 146
mainScreen constant 148
MakeITable function (Deprecated in Mac OS X v10.4)

290
MakeRGBPat function (Deprecated in Mac OS X v10.4)

290
mapPix constant 153
MapPoly function (Deprecated in Mac OS X v10.4) 291
MapPt function 62
MapRect function 63
MapRgn function 63
MatchRec structure 125
Move function (Deprecated in Mac OS X v10.4) 292
MovePortTo function (Deprecated in Mac OS X v10.4)

293
MoveTo function (Deprecated in Mac OS X v10.4) 293

394
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

N

NewColorComplementUPP function (Deprecated in Mac
OS X v10.4) 294

NewColorSearchUPP function (Deprecated in Mac OS X
v10.4) 294

newDepth constant 153
NewDeviceLoopDrawingUPP function (Deprecated in

Mac OS X v10.4) 295
NewDragGrayRgnUPP function (Deprecated in Mac OS X

v10.4) 295
NewGDevice function (Deprecated in Mac OS X v10.4)

295
NewGWorld function 64
NewGWorldFromPtr function (Deprecated in Mac OS X

v10.4) 297
NewPixMap function (Deprecated in Mac OS X v10.4) 297
NewPixPat function (Deprecated in Mac OS X v10.4) 298
NewQDArcUPP function (Deprecated in Mac OS X v10.4)

299
NewQDBitsUPP function (Deprecated in Mac OS X v10.4)

299
NewQDCommentUPP function (Deprecated in Mac OS X

v10.4) 300
NewQDGetPicUPP function (Deprecated in Mac OS X

v10.4) 300
NewQDJShieldCursorUPP function (Deprecated in Mac

OS X v10.4) 300
NewQDLineUPP function (Deprecated in Mac OS X v10.4)

301
NewQDOpcodeUPP function (Deprecated in Mac OS X

v10.4) 301
NewQDOvalUPP function (Deprecated in Mac OS X v10.4)

301
NewQDPolyUPP function (Deprecated in Mac OS X v10.4)

302
NewQDPutPicUPP function (Deprecated in Mac OS X

v10.4) 302
NewQDRectUPP function (Deprecated in Mac OS X v10.4)

302
NewQDRgnUPP function (Deprecated in Mac OS X v10.4)

303
NewQDRRectUPP function (Deprecated in Mac OS X v10.4)

303
NewQDStdGlyphsUPP function (Deprecated in Mac OS X

v10.4) 303
NewQDTextUPP function (Deprecated in Mac OS X v10.4)

304
NewQDTxMeasUPP function (Deprecated in Mac OS X

v10.4) 304
NewRegionToRectsUPP function (Deprecated in Mac OS

X v10.4) 304
NewRgn function 67

newRowBytes constant 153
NewScreenBuffer function (Deprecated in Mac OS X

v10.4) 305
NewTempScreenBuffer function (Deprecated in Mac OS

X v10.4) 306
noDriver constant 148
noMemForPictPlaybackErr constant 165
noNewDevice constant 152
NoPurgePixels function (Deprecated in Mac OS X v10.4)

306
normalBit 157
notPatBic constant 161
notPatCopy constant 161
notPatOr constant 161
notPatXor constant 161
notSrcBic constant 160
notSrcCopy constant 160
notSrcOr constant 160
notSrcXor constant 160
nsStackErr constant 165

O

ObscureCursor function 68
OffscreenVersion function (Deprecated in Mac OS X

v10.4) 307
OffsetPoly function (Deprecated in Mac OS X v10.4)

307
OffsetRect function 69
OffsetRgn function 70
OpColor function (Deprecated in Mac OS X v10.4) 308
OpenCPicParams structure 125
OpenCPicture function (Deprecated in Mac OS X v10.4)

309
OpenCursorComponent function (Deprecated in Mac OS

X v10.4) 310
OpenPicture function (Deprecated in Mac OS X v10.4)

311
OpenPoly function (Deprecated in Mac OS X v10.4) 312
OpenRgn function (Deprecated in Mac OS X v10.4) 312

P

PackBits function (Deprecated in Mac OS X v10.4) 314
paint constant 164
PaintArc function (Deprecated in Mac OS X v10.4) 315
PaintOval function (Deprecated in Mac OS X v10.4) 316
PaintPoly function (Deprecated in Mac OS X v10.4) 316
PaintRect function (Deprecated in Mac OS X v10.4) 317
PaintRgn function (Deprecated in Mac OS X v10.4) 318

395
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

PaintRoundRect function (Deprecated in Mac OS X
v10.4) 318

patBic constant 161
patCopy constant 160
patOr constant 161
Pattern structure 126
patXor constant 161
PenMode function (Deprecated in Mac OS X v10.4) 319
PenNormal function (Deprecated in Mac OS X v10.4) 320
PenPat function (Deprecated in Mac OS X v10.4) 321
PenPixPat function (Deprecated in Mac OS X v10.4) 322
PenSize function (Deprecated in Mac OS X v10.4) 322
PenState structure 127
PicComment function (Deprecated in Mac OS X v10.4)

323
Picture structure 128
Pixel Formats 155
pixelsLocked constant 153
pixelsPurgeable constant 153
PixelType data type 129
PixMap structure 129
PixMap32Bit function (Deprecated in Mac OS X v10.4)

324
pixMapTooDeepErr constant 165
PixPat structure 131
PixPatChanged function (Deprecated in Mac OS X v10.4)

325
pixPurge constant 152
pixPurgeBit 158
plusCursor constant 147
Polygon data type 133
PortChanged function (Deprecated in Mac OS X v10.4)

326
PortSize function (Deprecated in Mac OS X v10.4) 326
PrinterFontStatus structure 133
PrinterScalingStatus structure 134
PrinterStatusOpcode data type 134
ProtectEntry function (Deprecated in Mac OS X v10.4)

327
Pt2Rect function 70
PtInRect function 71
PtInRgn function 72
PtToAngle function 72

Q

QDAddRectToDirtyRegion function (Deprecated in Mac
OS X v10.4) 328

QDAddRegionToDirtyRegion function (Deprecated in
Mac OS X v10.4) 328

QDArcProcPtr callback 97
QDArcUPP data type 134

QDBeginCGContext function 73
QDBitsProcPtr callback 97
QDBitsUPP data type 134
QDByte data type 134
QDCommentProcPtr callback 98
QDCommentUPP data type 135
QDDisplayWaitCursor function (Deprecated in Mac OS

X v10.4) 328
QDDisposeRegionBits function (Deprecated in Mac OS

X v10.4) 329
QDDone function (Deprecated in Mac OS X v10.4) 329
QDEndCGContext function 74
QDErr data type 135
QDError function (Deprecated in Mac OS X v10.4) 330
QDFlushPortBuffer function (Deprecated in Mac OS X

v10.4) 331
QDGetCGDirectDisplayID function 75
QDGetCursorData function (Deprecated in Mac OS X

v10.4) 331
QDGetDirtyRegion function (Deprecated in Mac OS X

v10.4) 332
QDGetPatternOrigin function (Deprecated in Mac OS

X v10.4) 332
QDGetPicProcPtr callback 98
QDGetPictureBounds function (Deprecated in Mac OS

X v10.4) 333
QDGetPicUPP data type 135
QDGlobals structure 136
QDGlobalToLocalPoint function (Deprecated in Mac

OS X v10.4) 333
QDGlobalToLocalRect function (Deprecated in Mac OS

X v10.4) 333
QDGlobalToLocalRegion function (Deprecated in Mac

OS X v10.4) 334
QDIsNamedPixMapCursorRegistered function

(Deprecated in Mac OS X v10.4) 334
QDIsPortBufferDirty function (Deprecated in Mac OS

X v10.4) 334
QDIsPortBuffered function (Deprecated in Mac OS X

v10.4) 335
QDJShieldCursorProcPtr callback 99
QDJShieldCursorUPP data type 136
QDLineProcPtr callback 99
QDLineUPP data type 136
QDLocalToGlobalPoint function (Deprecated in Mac

OS X v10.4) 335
QDLocalToGlobalRect function (Deprecated in Mac OS

X v10.4) 335
QDLocalToGlobalRegion function (Deprecated in Mac

OS X v10.4) 336
QDOpcodeProcPtr callback 100
QDOpcodeUPP data type 136
QDOvalProcPtr callback 100

396
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

QDOvalUPP data type 137
QDPictCreateWithProvider function 75
QDPictCreateWithURL function 76
QDPictDrawToCGContext function 76
QDPictGetBounds function 77
QDPictGetResolution function 78
QDPictRef data type 137
QDPictRelease function 78
QDPictRetain function 79
QDPolyProcPtr callback 100
QDPolyUPP data type 138
QDPrinterStatusProcPtr callback 101
QDPrinterStatusUPP data type 138
QDProcs structure 138
QDPutPicProcPtr callback 101
QDPutPicUPP data type 139
QDRectProcPtr callback 102
QDRectUPP data type 140
QDRegionBitsRef data type 140
QDRegionParseDirection data type 140
QDRegionToRects function 80
QDRegisterNamedPixMapCursor function (Deprecated

in Mac OS X v10.4) 336
QDRestoreRegionBits function (Deprecated in Mac OS

X v10.4) 337
QDRgnProcPtr callback 102
QDRgnUPP data type 140
QDRRectProcPtr callback 103
QDRRectUPP data type 140
QDSaveRegionBits function (Deprecated in Mac OS X

v10.4) 337
QDSetCursorScale function (Deprecated in Mac OS X

v10.4) 337
QDSetDirtyRegion function (Deprecated in Mac OS X

v10.4) 338
QDSetNamedPixMapCursor function (Deprecated in Mac

OS X v10.4) 338
QDSetPatternOrigin function (Deprecated in Mac OS

X v10.4) 338
QDStdGlyphsProcPtr callback 103
QDStdGlyphsUPP data type 141
QDSwapPort function (Deprecated in Mac OS X v10.4)

339
QDSwapPortTextFlags function (Deprecated in Mac OS

X v10.4) 339
QDSwapTextFlags function (Deprecated in Mac OS X

v10.4) 339
QDTextProcPtr callback 104
QDTextUPP data type 141
QDTxMeasProcPtr callback 104
QDTxMeasUPP data type 141
QDUnregisterNamedPixMapCursor function

(Deprecated in Mac OS X v10.4) 340

R

ramInit constant 148
Random function (Deprecated in Mac OS X v10.4) 340
RealColor function (Deprecated in Mac OS X v10.4) 341
reallocPix constant 154
RectInRgn function 80
RectRgn function 81
redColor constant 145
RegionToRectsProcPtr callback 105
RegionToRectsUPP data type 141
ReqListRec structure 142
ReserveEntry function (Deprecated in Mac OS X v10.4)

341
RestoreEntries function (Deprecated in Mac OS X

v10.4) 342
RGBBackColor function (Deprecated in Mac OS X v10.4)

343
RGBColor structure 142
RGBForeColor function (Deprecated in Mac OS X v10.4)

344
RgnHandle data type 143
RgnToHandle function 82
rgnTooBigErr constant 165

S

SaveEntries function (Deprecated in Mac OS X v10.4)
345

ScalePt function 82
screenActive constant 148
screenDevice constant 148
ScreenRes function (Deprecated in Mac OS X v10.4) 346
ScrollRect function (Deprecated in Mac OS X v10.4)

346
SectRect function 83
SectRegionWithPortClipRegion function (Deprecated

in Mac OS X v10.4) 347
SectRegionWithPortVisibleRegion function

(Deprecated in Mac OS X v10.4) 348
SectRgn function 84
SeedCFill function (Deprecated in Mac OS X v10.4) 348
SeedFill function (Deprecated in Mac OS X v10.4) 349
SetCCursor function (Deprecated in Mac OS X v10.4)

351
SetClientID function (Deprecated in Mac OS X v10.4)

351
SetClip function 85
SetCPixel function (Deprecated in Mac OS X v10.4) 352
SetCursor function (Deprecated in Mac OS X v10.4) 352
SetCursorComponent function (Deprecated in Mac OS

X v10.4) 353

397
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

SetDeviceAttribute function (Deprecated in Mac OS
X v10.4) 353

SetEmptyRgn function 85
SetEntries function (Deprecated in Mac OS X v10.4)

354
SetGDevice function (Deprecated in Mac OS X v10.4)

355
SetGWorld function 86
SetOrigin function (Deprecated in Mac OS X v10.4) 356
SetPenState function (Deprecated in Mac OS X v10.4)

357
SetPixelsState function (Deprecated in Mac OS X

v10.4) 358
SetPort function (Deprecated in Mac OS X v10.4) 358
SetPortBackPixPat function (Deprecated in Mac OS X

v10.4) 359
SetPortBits function (Deprecated in Mac OS X v10.4)

360
SetPortBounds function (Deprecated in Mac OS X v10.4)

360
SetPortClipRegion function (Deprecated in Mac OS X

v10.4) 360
SetPortCustomXFerProc function (Deprecated in Mac

OS X v10.4) 361
SetPortFillPixPat function (Deprecated in Mac OS X

v10.4) 361
SetPortFracHPenLocation function (Deprecated in

Mac OS X v10.4) 362
SetPortGrafProcs function (Deprecated in Mac OS X

v10.4) 362
SetPortOpColor function (Deprecated in Mac OS X

v10.4) 362
SetPortPenMode function (Deprecated in Mac OS X

v10.4) 363
SetPortPenPixPat function (Deprecated in Mac OS X

v10.4) 363
SetPortPenSize function (Deprecated in Mac OS X

v10.4) 364
SetPortPix function (Deprecated in Mac OS X v10.4)

364
SetPortTextFace function (Deprecated in Mac OS X

v10.4) 365
SetPortTextFont function (Deprecated in Mac OS X

v10.4) 365
SetPortTextMode function (Deprecated in Mac OS X

v10.4) 365
SetPortTextSize function (Deprecated in Mac OS X

v10.4) 366
SetPortVisibleRegion function (Deprecated in Mac

OS X v10.4) 366
SetPt function 87
SetQDError function (Deprecated in Mac OS X v10.4)

367

SetQDGlobalsArrow function (Deprecated in Mac OS X
v10.4) 367

SetQDGlobalsRandomSeed function (Deprecated in Mac
OS X v10.4) 367

SetRect function 87
SetRectRgn function 88
SetStdCProcs function (Deprecated in Mac OS X v10.4)

368
SetStdProcs function (Deprecated in Mac OS X v10.4)

368
ShieldCursor function 89
ShowCursor function 90
ShowPen function (Deprecated in Mac OS X v10.4) 369
singleDevices constant 149
singleDevicesBit 158
SlopeFromAngle function 90
Source, Pattern, and Arithmetic Transfer Mode Constants

158
SProcRec structure 143
srcBic constant 160
srcCopy constant 159
srcOr constant 159
srcXor constant 159
StdArc function (Deprecated in Mac OS X v10.4) 370
StdBits function (Deprecated in Mac OS X v10.4) 371
StdComment function (Deprecated in Mac OS X v10.4)

371
StdGetPic function (Deprecated in Mac OS X v10.4) 372
StdLine function (Deprecated in Mac OS X v10.4) 373
StdOpcode function (Deprecated in Mac OS X v10.4) 373
StdOval function (Deprecated in Mac OS X v10.4) 374
StdPoly function (Deprecated in Mac OS X v10.4) 374
StdPutPic function (Deprecated in Mac OS X v10.4) 375
StdRect function (Deprecated in Mac OS X v10.4) 376
StdRgn function (Deprecated in Mac OS X v10.4) 376
StdRRect function (Deprecated in Mac OS X v10.4) 377
stretchPix constant 154
StuffHex function (Deprecated in Mac OS X v10.4) 378
subOver constant 162
subPin constant 162
SubPt function 91
SwapPortPicSaveHandle function (Deprecated in Mac

OS X v10.4) 379
SwapPortPolySaveHandle function (Deprecated in Mac

OS X v10.4) 379
SwapPortRegionSaveHandle function (Deprecated in

Mac OS X v10.4) 380
SyncCGContextOriginWithPort function (Deprecated

in Mac OS X v10.4) 380

398
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

T

TestDeviceAttribute function (Deprecated in Mac OS
X v10.4) 381

transparent constant 163

U

UnionRect function 91
UnionRgn function 92
UnlockPixels function (Deprecated in Mac OS X v10.4)

381
UnlockPortBits function (Deprecated in Mac OS X

v10.4) 382
UnpackBits function (Deprecated in Mac OS X v10.4)

383
UpdateGWorld function (Deprecated in Mac OS X v10.4)

384
updPixMemErr constant 164
useTempMem constant 152

V

Verb Constants 164

W

watchCursor constant 147
whiteColor constant 145
WindowPtr data type 143

X

xColorSpec structure 144
xCSpecArray data type 144
XorRgn function 93

Y

yellowColor constant 146

399
2007-06-29 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

	QuickDraw Reference
	Contents
	QuickDraw Reference
	Overview
	Functions by Task
	Drawing QuickDraw Pictures in a Quartz Context
	Using Quartz 2D to Draw in a Graphics Port
	Other Quartz-Related Functions in QuickDraw
	Calculating Black-and-White Fills
	Calculating Color Fills
	Changing Black-and-White Cursors
	Changing Color Cursors
	Changing the Background Bit Pattern
	Changing the Background Pixel Pattern
	Compressing and Decompressing Data
	Converting Between Angle and Slope Values
	Copying Images
	Creating, Altering, and Disposing of Offscreen Graphics Worlds
	Creating and Disposing of Color Tables
	Creating and Disposing of Pictures
	Creating and Disposing of Pixel Patterns
	Creating and Managing Polygons
	Creating and Managing Rectangles
	Creating and Managing Regions
	Creating, Setting, and Disposing of GDevice Records
	Creating, Setting, and Disposing of Pixel Maps
	Customizing Color QuickDraw Operations
	Customizing QuickDraw Operations
	Determining Current Colors and Best Intermediate Colors
	Determining the Characteristics of a Video Device
	Determining Whether QuickDraw Has Finished Drawing
	Drawing Arcs and Wedges
	Drawing Lines
	Drawing Ovals
	Drawing Pictures
	Drawing Polygons
	Drawing Rectangles
	Drawing Regions
	Drawing Rounded Rectangles
	Drawing With Color QuickDraw Colors
	Drawing With the Eight-Color System
	Getting Pattern Resources
	Getting the Available Graphics Devices
	Hiding and Showing Cursors
	Managing a Color Graphics Pen
	Managing an Offscreen Graphics World’s Pixel Image
	Managing Bitmaps, Port Rectangles, and Clipping Regions
	Managing Color Tables
	Managing Colors
	Managing the Graphics Pen
	Manipulating Points in Graphics Ports
	Obtaining a Pseudorandom Number
	Operations on Search and Complement Functions
	Reporting Data Structure Changes to QuickDraw
	Retrieving Color QuickDraw Result Codes
	Saving and Restoring Graphics Ports
	Saving and Restoring Graphics Ports and Offscreen Graphics Worlds
	Scaling and Mapping Points, Rectangles, Polygons, and Regions
	Miscellaneous

	Functions
	AddPt
	AngleFromSlope
	CopyRgn
	DiffRgn
	DisposeRgn
	EmptyRect
	EmptyRgn
	EqualPt
	EqualRect
	EqualRgn
	GetClip
	GetGWorld
	GetPixBaseAddr
	GetRegionBounds
	HandleToRgn
	HideCursor
	InitCursor
	InsetRect
	InsetRgn
	IsRegionRectangular
	IsValidRgnHandle
	MapPt
	MapRect
	MapRgn
	NewGWorld
	NewRgn
	ObscureCursor
	OffsetRect
	OffsetRgn
	Pt2Rect
	PtInRect
	PtInRgn
	PtToAngle
	QDBeginCGContext
	QDEndCGContext
	QDGetCGDirectDisplayID
	QDPictCreateWithProvider
	QDPictCreateWithURL
	QDPictDrawToCGContext
	QDPictGetBounds
	QDPictGetResolution
	QDPictRelease
	QDPictRetain
	QDRegionToRects
	RectInRgn
	RectRgn
	RgnToHandle
	ScalePt
	SectRect
	SectRgn
	SetClip
	SetEmptyRgn
	SetGWorld
	SetPt
	SetRect
	SetRectRgn
	ShieldCursor
	ShowCursor
	SlopeFromAngle
	SubPt
	UnionRect
	UnionRgn
	XorRgn

	Callbacks
	ColorComplementProcPtr
	ColorSearchProcPtr
	CustomXFerProcPtr
	DeviceLoopDrawingProcPtr
	DragGrayRgnProcPtr
	QDArcProcPtr
	QDBitsProcPtr
	QDCommentProcPtr
	QDGetPicProcPtr
	QDJShieldCursorProcPtr
	QDLineProcPtr
	QDOpcodeProcPtr
	QDOvalProcPtr
	QDPolyProcPtr
	QDPrinterStatusProcPtr
	QDPutPicProcPtr
	QDRectProcPtr
	QDRgnProcPtr
	QDRRectProcPtr
	QDStdGlyphsProcPtr
	QDTextProcPtr
	QDTxMeasProcPtr
	RegionToRectsProcPtr

	Data Types
	BitMap
	Bits16
	CCrsr
	CGrafPort
	CGrafPtr
	ColorComplementUPP
	ColorSearchUPP
	ColorSpec
	ColorTable
	ConstPatternParam
	CProcRec
	CQDProcs
	CSpecArray
	Cursor
	CursorImageRec
	CursorInfo
	CustomXFerRec
	CWindowPtr
	DeviceLoopDrawingUPP
	DeviceLoopFlags
	DialogPtr
	DragConstraint
	DragGrayRgnUPP
	GammaTbl
	GDevice
	GrafPort
	GrafPtr
	GrafVars
	GrafVerb
	GWorldFlags
	GWorldPtr
	ITab
	MacPolygon
	MacRegion
	MatchRec
	OpenCPicParams
	Pattern
	PenState
	Picture
	PixelType
	PixMap
	PixPat
	Polygon
	PrinterFontStatus
	PrinterScalingStatus
	PrinterStatusOpcode
	QDArcUPP
	QDBitsUPP
	QDByte
	QDCommentUPP
	QDErr
	QDGetPicUPP
	QDGlobals
	QDJShieldCursorUPP
	QDLineUPP
	QDOpcodeUPP
	QDOvalUPP
	QDPictRef
	QDPolyUPP
	QDPrinterStatusUPP
	QDProcs
	QDPutPicUPP
	QDRectUPP
	QDRegionBitsRef
	QDRegionParseDirection
	QDRgnUPP
	QDRRectUPP
	QDStdGlyphsUPP
	QDTextUPP
	QDTxMeasUPP
	RegionToRectsUPP
	ReqListRec
	RGBColor
	RgnHandle
	SProcRec
	WindowPtr
	xColorSpec
	xCSpecArray

	Constants
	chunky
	Color Constants
	colorXorXFer
	Cursor ID Constants
	cursorDoesAnimate
	Device Attribute Constants
	Device Loop Flags
	deviceIsIndirect
	Drag Constraint Constants
	Graphics Device Type Constants
	Graphics World Flags
	invalColReq
	italicBit
	Pixel Formats
	k1MonochromePixelFormat
	kCursorComponentInit
	kCursorComponentsVersion
	kCursorComponentType
	kCursorImageMajorVersion
	kPrinterFontStatus
	kQDGrafVerbFrame
	kQDParseRegionFromTop
	kQDRegionToRectsMsgInit
	kQDUseDefaultTextRendering
	kRenderCursorInHardware
	kXFer1PixelAtATime
	normalBit
	pixPurgeBit
	singleDevicesBit
	Source, Pattern, and Arithmetic Transfer Mode Constants
	Verb Constants

	Result Codes

	Appendix A: Deprecated QuickDraw Functions
	Deprecated in Mac OS X v10.4
	AddComp
	AddSearch
	AllocCursor
	AllowPurgePixels
	BackColor
	BackPat
	BackPixPat
	BitMapToRegion
	CalcCMask
	CalcMask
	ClipCGContextToRegion
	ClipRect
	CloseCursorComponent
	ClosePicture
	ClosePoly
	CloseRgn
	Color2Index
	ColorBit
	CopyBits
	CopyDeepMask
	CopyMask
	CopyPixMap
	CopyPixPat
	CreateCGContextForPort
	CreateNewPort
	CreateNewPortForCGDisplayID
	CTabChanged
	CursorComponentChanged
	CursorComponentSetData
	DelComp
	DelSearch
	DeltaPoint
	deltapoint
	DeviceLoop
	DisposeCCursor
	DisposeColorComplementUPP
	DisposeColorSearchUPP
	DisposeCTable
	DisposeDeviceLoopDrawingUPP
	DisposeDragGrayRgnUPP
	DisposeGDevice
	DisposeGWorld
	DisposePixMap
	DisposePixPat
	DisposePort
	DisposeQDArcUPP
	DisposeQDBitsUPP
	DisposeQDCommentUPP
	DisposeQDGetPicUPP
	DisposeQDJShieldCursorUPP
	DisposeQDLineUPP
	DisposeQDOpcodeUPP
	DisposeQDOvalUPP
	DisposeQDPolyUPP
	DisposeQDPutPicUPP
	DisposeQDRectUPP
	DisposeQDRgnUPP
	DisposeQDRRectUPP
	DisposeQDStdGlyphsUPP
	DisposeQDTextUPP
	DisposeQDTxMeasUPP
	DisposeRegionToRectsUPP
	DisposeScreenBuffer
	DrawPicture
	EraseArc
	EraseOval
	ErasePoly
	EraseRect
	EraseRgn
	EraseRoundRect
	FillArc
	FillCArc
	FillCOval
	FillCPoly
	FillCRect
	FillCRgn
	FillCRoundRect
	FillOval
	FillPoly
	FillRect
	FillRgn
	FillRoundRect
	ForeColor
	FrameArc
	FrameOval
	FramePoly
	FrameRect
	FrameRgn
	FrameRoundRect
	GDeviceChanged
	GetBackColor
	GetCCursor
	GetCPixel
	GetCTable
	GetCTSeed
	GetCursor
	GetDeviceList
	GetForeColor
	GetGDevice
	GetGWorldDevice
	GetGWorldPixMap
	GetIndPattern
	GetMainDevice
	GetMaskTable
	GetMaxDevice
	GetNextDevice
	GetPattern
	GetPen
	GetPenState
	GetPicture
	GetPixBounds
	GetPixDepth
	GetPixel
	GetPixelsState
	GetPixPat
	GetPixRowBytes
	GetPort
	GetPortBackColor
	GetPortBackPixPat
	GetPortBitMapForCopyBits
	GetPortBounds
	GetPortChExtra
	GetPortClipRegion
	GetPortCustomXFerProc
	GetPortFillPixPat
	GetPortForeColor
	GetPortFracHPenLocation
	GetPortGrafProcs
	GetPortHiliteColor
	GetPortOpColor
	GetPortPenLocation
	GetPortPenMode
	GetPortPenPixPat
	GetPortPenSize
	GetPortPenVisibility
	GetPortPixMap
	GetPortSpExtra
	GetPortTextFace
	GetPortTextFont
	GetPortTextMode
	GetPortTextSize
	GetPortVisibleRegion
	GetQDGlobalsArrow
	GetQDGlobalsBlack
	GetQDGlobalsDarkGray
	GetQDGlobalsGray
	GetQDGlobalsLightGray
	GetQDGlobalsRandomSeed
	GetQDGlobalsScreenBits
	GetQDGlobalsThePort
	GetQDGlobalsWhite
	GetSubTable
	GlobalToLocal
	GrafDevice
	HidePen
	HiliteColor
	Index2Color
	InitGDevice
	InvertArc
	InvertColor
	InvertOval
	InvertPoly
	InvertRect
	InvertRgn
	InvertRoundRect
	InvokeColorComplementUPP
	InvokeColorSearchUPP
	InvokeDeviceLoopDrawingUPP
	InvokeDragGrayRgnUPP
	InvokeQDArcUPP
	InvokeQDBitsUPP
	InvokeQDCommentUPP
	InvokeQDGetPicUPP
	InvokeQDJShieldCursorUPP
	InvokeQDLineUPP
	InvokeQDOpcodeUPP
	InvokeQDOvalUPP
	InvokeQDPolyUPP
	InvokeQDPutPicUPP
	InvokeQDRectUPP
	InvokeQDRgnUPP
	InvokeQDRRectUPP
	InvokeQDStdGlyphsUPP
	InvokeQDTextUPP
	InvokeQDTxMeasUPP
	InvokeRegionToRectsUPP
	IsPortClipRegionEmpty
	IsPortColor
	IsPortOffscreen
	IsPortPictureBeingDefined
	IsPortPolyBeingDefined
	IsPortRegionBeingDefined
	IsPortVisibleRegionEmpty
	IsValidPort
	KillPicture
	KillPoly
	Line
	LineTo
	LMGetCursorNew
	LMGetDeviceList
	LMGetFractEnable
	LMGetHiliteMode
	LMGetHiliteRGB
	LMGetLastFOND
	LMGetLastSPExtra
	LMGetMainDevice
	LMGetQDColors
	LMGetScrHRes
	LMGetScrVRes
	LMGetTheGDevice
	LMGetWidthListHand
	LMGetWidthPtr
	LMGetWidthTabHandle
	LMSetCursorNew
	LMSetDeviceList
	LMSetFractEnable
	LMSetHiliteMode
	LMSetHiliteRGB
	LMSetLastFOND
	LMSetLastSPExtra
	LMSetMainDevice
	LMSetQDColors
	LMSetScrHRes
	LMSetScrVRes
	LMSetTheGDevice
	LMSetWidthListHand
	LMSetWidthPtr
	LMSetWidthTabHandle
	LocalToGlobal
	LockPixels
	LockPortBits
	MakeITable
	MakeRGBPat
	MapPoly
	Move
	MovePortTo
	MoveTo
	NewColorComplementUPP
	NewColorSearchUPP
	NewDeviceLoopDrawingUPP
	NewDragGrayRgnUPP
	NewGDevice
	NewGWorldFromPtr
	NewPixMap
	NewPixPat
	NewQDArcUPP
	NewQDBitsUPP
	NewQDCommentUPP
	NewQDGetPicUPP
	NewQDJShieldCursorUPP
	NewQDLineUPP
	NewQDOpcodeUPP
	NewQDOvalUPP
	NewQDPolyUPP
	NewQDPutPicUPP
	NewQDRectUPP
	NewQDRgnUPP
	NewQDRRectUPP
	NewQDStdGlyphsUPP
	NewQDTextUPP
	NewQDTxMeasUPP
	NewRegionToRectsUPP
	NewScreenBuffer
	NewTempScreenBuffer
	NoPurgePixels
	OffscreenVersion
	OffsetPoly
	OpColor
	OpenCPicture
	OpenCursorComponent
	OpenPicture
	OpenPoly
	OpenRgn
	PackBits
	PaintArc
	PaintOval
	PaintPoly
	PaintRect
	PaintRgn
	PaintRoundRect
	PenMode
	PenNormal
	PenPat
	PenPixPat
	PenSize
	PicComment
	PixMap32Bit
	PixPatChanged
	PortChanged
	PortSize
	ProtectEntry
	QDAddRectToDirtyRegion
	QDAddRegionToDirtyRegion
	QDDisplayWaitCursor
	QDDisposeRegionBits
	QDDone
	QDError
	QDFlushPortBuffer
	QDGetCursorData
	QDGetDirtyRegion
	QDGetPatternOrigin
	QDGetPictureBounds
	QDGlobalToLocalPoint
	QDGlobalToLocalRect
	QDGlobalToLocalRegion
	QDIsNamedPixMapCursorRegistered
	QDIsPortBufferDirty
	QDIsPortBuffered
	QDLocalToGlobalPoint
	QDLocalToGlobalRect
	QDLocalToGlobalRegion
	QDRegisterNamedPixMapCursor
	QDRestoreRegionBits
	QDSaveRegionBits
	QDSetCursorScale
	QDSetDirtyRegion
	QDSetNamedPixMapCursor
	QDSetPatternOrigin
	QDSwapPort
	QDSwapPortTextFlags
	QDSwapTextFlags
	QDUnregisterNamedPixMapCursor
	Random
	RealColor
	ReserveEntry
	RestoreEntries
	RGBBackColor
	RGBForeColor
	SaveEntries
	ScreenRes
	ScrollRect
	SectRegionWithPortClipRegion
	SectRegionWithPortVisibleRegion
	SeedCFill
	SeedFill
	SetCCursor
	SetClientID
	SetCPixel
	SetCursor
	SetCursorComponent
	SetDeviceAttribute
	SetEntries
	SetGDevice
	SetOrigin
	SetPenState
	SetPixelsState
	SetPort
	SetPortBackPixPat
	SetPortBits
	SetPortBounds
	SetPortClipRegion
	SetPortCustomXFerProc
	SetPortFillPixPat
	SetPortFracHPenLocation
	SetPortGrafProcs
	SetPortOpColor
	SetPortPenMode
	SetPortPenPixPat
	SetPortPenSize
	SetPortPix
	SetPortTextFace
	SetPortTextFont
	SetPortTextMode
	SetPortTextSize
	SetPortVisibleRegion
	SetQDError
	SetQDGlobalsArrow
	SetQDGlobalsRandomSeed
	SetStdCProcs
	SetStdProcs
	ShowPen
	StdArc
	StdBits
	StdComment
	StdGetPic
	StdLine
	StdOpcode
	StdOval
	StdPoly
	StdPutPic
	StdRect
	StdRgn
	StdRRect
	StuffHex
	SwapPortPicSaveHandle
	SwapPortPolySaveHandle
	SwapPortRegionSaveHandle
	SyncCGContextOriginWithPort
	TestDeviceAttribute
	UnlockPixels
	UnlockPortBits
	UnpackBits
	UpdateGWorld

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

