
QuickDraw Text Reference
(Not Recommended)

Carbon > Text & Fonts

2006-07-13

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Quartz, and QuickDraw are trademarks of Apple
Inc., registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

QuickDraw Text Reference (Not Recommended) 5

Overview 5
Functions by Task 5

Determining the Caret Position, and Selecting and Highlighting Text 5
Drawing Text 6
Laying Out a Line of Text 6
Measuring Text 6
Setting Text Characteristics 7
Truncating Strings and Breaking Lines 7
Working With Universal Procedure Pointers 8

Callbacks 8
StyleRunDirectionProcPtr 8

Data Types 9
FontInfo 9
FormatOrder 10
StyleRunDirectionUPP 10

Constants 11
Caret Direction Constants 11
Truncation Status Values 11
Style Line Break Values 12
Obsolete Caret Placement Values 13
Style Run Position Constants 13
txFlag Constants 15
Truncation Positions 15

Appendix A Deprecated QuickDraw Text Reference (Not Recommended) Functions 17

Deprecated in Mac OS X v10.4 17
CharExtra 17
CharToPixel 18
CharWidth 20
DisposeStyleRunDirectionUPP 21
DrawChar 21
DrawJustified 22
DrawString 24
DrawText 25
GetFontInfo 26
GetFormatOrder 27
HiliteText 28
InvokeStyleRunDirectionUPP 29
MeasureJustified 30

3
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

MeasureText 32
NewStyleRunDirectionUPP 34
PixelToChar 34
PortionLine 37
SpaceExtra 39
StandardGlyphs 40
StdText 40
stdtext 41
StdTxMeas 41
StringWidth 43
StyledLineBreak 44
TextFace 46
TextFont 46
TextMode 47
TextSize 48
TextWidth 48
TruncString 50
TruncText 50
VisibleLength 51

Document Revision History 53

Index 55

4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Framework: ApplicationServices/ApplicationServices.h

Declared in QuickdrawText.h

Important: The information in this document is obsolete and should not be used for new development.

Overview

You can use the QuickDraw text routines to measure and draw text ranging in complexity from a single glyph
to a line of justified text containing multiple languages and styles. In addition to measuring and drawing
text, the QuickDraw text routines also help you to determine which characters to highlight and where to
position the caret to mark the insertion point. These routines translate pixel locations into byte offsets and
vice versa.

To understand the routines described in this document, it is helpful to be familiar with the other parts of
QuickDraw. It is also helpful to be familiar with the Font Manager, because of the close relationship between
QuickDraw and the Font Manager. To understand the tasks involved in text layout, you should also be
acquainted with the Text Utilities and the Script Manager.

Carbon supports the majority of QuickDraw Text.

Functions by Task

Determining the Caret Position, and Selecting and Highlighting Text

CharToPixel (page 18) Deprecated in Mac OS X v10.4
Returns the screen pixel width from the left edge of a text segment to the glyph of the character
whose byte offset you specify. (Deprecated. Use ATSUI instead.)

HiliteText (page 28) Deprecated in Mac OS X v10.4
Finds all the characters between two byte offsets in a text segment whose glyphs are to be highlighted.
(Deprecated. Use ATSUI instead.)

PixelToChar (page 34) Deprecated in Mac OS X v10.4
Returns the byte offset of a character in a style run, or part of a style run, whose onscreen glyph is
nearest the place where the user clicked the mouse. (Deprecated. Use ATSUI instead.)

Overview 5
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not
Recommended)

Drawing Text

DrawChar (page 21) Deprecated in Mac OS X v10.4
Draws the glyph for a single 1-byte character at the current pen location in the current graphics port.
(Deprecated. Use ATSUI or Quartz instead.)

DrawJustified (page 22) Deprecated in Mac OS X v10.4
Draws the specified text at the current pen location in the current graphics port, taking into account
the adjustment necessary to condense or extend the text by the slop value, appropriately for the
script system. (Deprecated. Use ATSUI instead.)

DrawString (page 24) Deprecated in Mac OS X v10.4
Draws the text of the specified Pascal string at the pen location in the current graphics port (GrafPort
or CGrafPort). (Deprecated. Use ATSUI or Quartz instead.)

DrawText (page 25) Deprecated in Mac OS X v10.4
Draws the specified text at the current pen location in the current graphics port. (Deprecated. Use
ATSUI or Quartz instead.)

StandardGlyphs (page 40) Deprecated in Mac OS X v10.4
This obsolete function doesn’t do anything in Mac OS X. (Deprecated. Use ATSUI to render Unicode
text.)

StdText (page 40) Deprecated in Mac OS X v10.4
Draws text from an arbitrary structure in memory. (Deprecated. Use ATSUI or Quartz instead.)

stdtext (page 41) Deprecated in Mac OS X v10.4
Draws text from an arbitrary structure in memory. (Deprecated. Use ATSUI or Quartz instead.)

Laying Out a Line of Text

GetFormatOrder (page 27) Deprecated in Mac OS X v10.4
Determines the display order of style runs for a line of text containing multiple style runs with mixed
directions. (Deprecated. Use ATSUI instead.)

PortionLine (page 37) Deprecated in Mac OS X v10.4
Determines the correct proportion of extra space to apply to the specified style run in a line of justified
text; that is, how to distribute the total slop value for a line among the style runs on that line.
(Deprecated. Use ATSUI instead.)

VisibleLength (page 51) Deprecated in Mac OS X v10.4
Calculates the length, in bytes, of a given text segment, excluding trailing white space. (Deprecated.
Use ATSUI instead.)

Measuring Text

CharWidth (page 20) Deprecated in Mac OS X v10.4
Returns the width (horizontel extension), in pixels, of the specified character. (Deprecated. Use ATSUI
instead.)

MeasureJustified (page 30) Deprecated in Mac OS X v10.4
Calculates, for text that is expanded, condensed, or scaled, the onscreen width in pixels from the left
edge of the text segment to the glyph of the character. (Deprecated. Use ATSUI instead.)

6 Functions by Task
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

MeasureText (page 32) Deprecated in Mac OS X v10.4
Calculates the width of the character’s glyph in pixels from the left edge of the text segment.
(Deprecated. Use ATSUI instead.)

StdTxMeas (page 41) Deprecated in Mac OS X v10.4
Measures the width of scaled or unscaled text. (Deprecated. Use ATSUI instead.)

StringWidth (page 43) Deprecated in Mac OS X v10.4
Returns the length, in pixels, of the specified text string. (Deprecated. Use ATSUI instead.)

TextWidth (page 48) Deprecated in Mac OS X v10.4
Returns the length, in pixels, of the specified text. (Deprecated. Use ATSUI instead.)

Setting Text Characteristics

CharExtra (page 17) Deprecated in Mac OS X v10.4
Specifies, for a color graphics port (CGrafPort), the number of pixels by which to widen (or narrow)
the glyphs of each nonspace character in a style run. (Deprecated. Use ATSUI instead.)

GetFontInfo (page 26) Deprecated in Mac OS X v10.4
Returns information about the current graphics port’s font, taking into account the style and size in
which the glyphs are to be drawn. (Deprecated. Use ATSUI instead.)

SpaceExtra (page 39) Deprecated in Mac OS X v10.4
Specifies the number of pixels by which to widen (or narrow) each space in a style run to be drawn
in the current graphics port. (Deprecated. Use ATSUI instead.)

TextFace (page 46) Deprecated in Mac OS X v10.4
Sets the style of the font in which the text is to be drawn in the current graphics port. (Deprecated.
Use ATSUI or Quartz instead.)

TextFont (page 46) Deprecated in Mac OS X v10.4
Sets the font of the current graphics port in which the text is to be rendered. (Deprecated. Use ATSUI
or Quartz instead.)

TextMode (page 47) Deprecated in Mac OS X v10.4
Sets the transfer mode for drawing text in the current graphics port. (Deprecated. Use ATSUI or Quartz
instead.)

TextSize (page 48) Deprecated in Mac OS X v10.4
Sets the font size for text drawn in the current graphics port to the specified number of points.
(Deprecated. Use ATSUI or Quartz instead.)

Truncating Strings and Breaking Lines

StyledLineBreak (page 44) Deprecated in Mac OS X v10.4
Returns the proper location to break a line of text, taking into account script and language
considerations, making use of tables in the string-manipulation ('itl2') resource in its computations.
(Deprecated. Use ATSUI instead.)

TruncString (page 50) Deprecated in Mac OS X v10.4
Ensures that a Pascal string fits into the specified pixel width, by truncating the string as necessary.
This function makes use of the current script and font. (Deprecated. Use CFString instead.)

Functions by Task 7
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

TruncText (page 50) Deprecated in Mac OS X v10.4
Ensures that a text string fits into the specified pixel width, by truncating the string as necessary. This
function makes use of the current script and font. (Deprecated. Use CFString instead.)

Working With Universal Procedure Pointers

DisposeStyleRunDirectionUPP (page 21) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a style run direction callback. (Deprecated. Use
ATSUI to handle style runs.)

InvokeStyleRunDirectionUPP (page 29) Deprecated in Mac OS X v10.4
Calls your style run direction callback. (Deprecated. Use ATSUI to handle style runs.)

NewStyleRunDirectionUPP (page 34) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a style run direction callback. (Deprecated. Use
ATSUI to handle style runs.)

Callbacks

StyleRunDirectionProcPtr
Defines a pointer to a style run direction callback function that calculates, for a style run identified by number,
the direction of that style run.

typedef Boolean (*StyleRunDirectionProcPtr)
(
 short styleRunIndex,
 void * dirParam
);

If you name your function MyStyleRunDirectionProc, you would declare it like this:

Boolean StyleRunDirectionProcPtr (
 short styleRunIndex,
 void * dirParam
);

Parameters
styleRunIndex

A value that identifies the style run whose direction is needed.

dirParam
A pointer to an application-defined parameter block that contains the font and script information for
each style run in the text. The contents of this parameter block are used to determine the direction
of the style run. Because of the relationship between the font family ID and the script code, the font
family ID can be used to determine the text direction.

Return Value
A Boolean value that is TRUE for right-to-left text direction, FALSE for left-to-right.

8 Callbacks
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

Discussion
To fill the ordering array (type FormatOrder) for style runs on a line, the GetFormatOrder function calls
MyStyleRunDirectionCallback for each style run numbered from firstFormat to lastFormat.
GetFormatOrder passes MyStyleRunDirectionCallback a number identifying the style run in storage
order, and a pointer to the parameter information block, dirParam, that contains the font and style information
for the style run. Given dirParam and a style run identifier, the application-defined
MyStyleRunDirectionCallback function should be able to determine the style run direction.

You should store your style run information in a way that makes it convenient for
MyStyleRunDirectionCallback. One obvious way to do this is to declare a structure type for style runs
that allows you to save things like font style, font family ID, script number, and so forth. You then can store
these structures in an array. When the time comes for GetFormatOrder to fill the ordering array,
MyStyleRunDirectionCallback can consult the style run array for direction information for each of the
numbered style runs in turn.

For more information, see GetFormatOrder (page 27).

When you provide the Component Manager with a pointer to your function, you should use a universal
procedure pointer (UPP). The definition of the UPP data type for your file identification function is as follows:

typedef (StyleRunDirectionProcPtr) StyleRunDirectionUPP;

Before using your style run direction callback function, you must first create a new universal procedure pointer
to it, using the NewStyleRunDirectionUPP function, as shown here:

StyleRunDirectionUPP MyStyleRunDirectionUPP;

MyStyleRunDirectionUPP = StyleRunDirectionUPP(&MyStyleRunDirectionCallback)

You then pass MyStyleRunDirectionUPP to the function GetFormatOrder. If you wish to call your own
callback function, you can use the InvokeStyleRunDirectionUPP function:

direction = InvokeStyleRunDirectionUPP(styleRunIndex, ¶mInfo,
MyStyleRunDirectionUPP)

When you are finished using your callback function, you should dispose of the universal procedure pointer
associated with it, using the DisposeStyleRunDirectionUPP function.

DisposeStyleRunDirectionUPP(MyStyleRunDirectionUPP);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

Data Types

FontInfo
Contains font metric information.

Data Types 9
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

struct FontInfo {
 short ascent;
 short descent;
 short widMax;
 short leading;
};
typedef struct FontInfo FontInfo;

Fields
ascent

The measurement, in pixels, from the baseline to the ascent line of the font.

descent
The measurement, in pixels, from the baseline to the descent line of the font.

widMax
The width, in pixels, of the largest glyph in the font.

leading
The measurement, in pixels, from the descent line to the ascent line below it.

Discussion
The FontInfo data type defines a font information structure. The GetFontInfo (page 26) function uses
the font information structure to return measurement information based on the font of the current graphics
port. If the current font has an associated font, as do Arabic and Hebrew, GetFontInfo returns information
based on both fonts. The font information structure contains the ascent, the descent, the width of the largest
glyph, and the leading for a given font. The StdTxMeas (page 41) function also uses a structure of type
FontInfo to return information about the current font.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

FormatOrder
Contains and array of display orders for style runs.

typedef FormatOrder[1];

Discussion
The GetFormatOrder (page 27) function fills the supplied format order array with the display order of each
style run.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

StyleRunDirectionUPP
Defines a universal procedure pointer to a style run direction callback.

10 Data Types
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

typedef StyleRunDirectionProcPtr StyleRunDirectionUPP;

Discussion
For more information, see the description of the StyleRunDirectionProcPtr (page 8) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

Constants

Caret Direction Constants
Specify a caret position.

enum {
 leftCaret = 0,
 rightCaret = -1,
 kHilite = 1
};

Constants
leftCaret

Place caret for left-to-right text direction.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

rightCaret
Place caret for right-to-left text direction.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

kHilite
Specifies that the caret position should be determined according to the primary line direction, based
on the value of SysDirection.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Discussion
You can use these constants to specify a value for direction, as used in the CharToPixel (page 18)
function.

Truncation Status Values
Returned as result codes for the functions TruncString and TruncText.

Constants 11
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

enum {
 notTruncated = 0,
 truncated = 1,
 truncErr = -1,
 smNotTruncated = 0,
 smTruncated = 1,
 smTruncErr = -1
};

Constants
notTruncated

Specifies that truncation is not necessary.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

truncated
Specifies that truncation was performed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

truncErr
Specifies a general error occurred.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smNotTruncated
Specifies that truncation is not necessary. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncated
Specifies that truncation was performed. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncErr
Specifies a general error occurred. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Style Line Break Values
Specify a line break.

12 Constants
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

typedef SInt8 StyledLineBreakCode;
enum {
 smBreakWord = 0,
 smBreakChar = 1,
 smBreakOverflow = 2
};

Constants
smBreakWord

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smBreakChar

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smBreakOverflow

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Obsolete Caret Placement Values
Specify where to place a caret.

enum {
 smLeftCaret = 0,
 smRightCaret = -1,
 smHilite = 1
};

Constants
smLeftCaret

Specifies to place caret for left block. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smRightCaret
Specifies to place caret for right block. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smHilite
Specifies the direction is TESysJust. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Style Run Position Constants
Specify style run positions.

Constants 13
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

typedef short JustStyleCode;
enum {
 onlyStyleRun = 0,
 leftStyleRun = 1,
 rightStyleRun = 2,
 middleStyleRun = 3,
 smOnlyStyleRun = 0,
 smLeftStyleRun = 1,
 smRightStyleRun = 2,
 smMiddleStyleRun = 3
};

Constants
onlyStyleRun

This is the only style run on the line.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

leftStyleRun
This is the leftmost of multiple style runs on the line.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

rightStyleRun
This is the rightmost of multiple style runs on the line

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

middleStyleRun
The line and this one is interior: neither leftmost nor rightmost.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smOnlyStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smLeftStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smRightStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smMiddleStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

14 Constants
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

Discussion
Use one of the following constants (defined as type JustStyleCode) in the styleRunPosition parameter
for PortionLine (page 37) DrawJustified (page 22), MeasureJustified (page 30), CharToPixel (page
18), and PixelToChar (page 34).

txFlag Constants
Specify constants for txFlags.

enum {
 tfAntiAlias = 1 << 0,
 tfUnicode = 1 << 1
};

Constants
tfAntiAlias

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

tfUnicode
Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Discussion
These used to be the pad field after txFace.

Truncation Positions
Specify where to truncate a string.

typedef TruncCode;
enum {
 truncEnd = 0,
 truncMiddle = 0x4000,
 smTruncEnd = 0,
 smTruncMiddle = 0x4000
};

Constants
truncEnd

Truncate at end.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

truncMiddle
Truncate in middle.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncEnd
Truncate at end. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Constants 15
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

smTruncMiddle
Truncate in middle. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

16 Constants
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

QuickDraw Text Reference (Not Recommended)

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

CharExtra
Specifies, for a color graphics port (CGrafPort), the number of pixels by which to widen (or narrow) the
glyphs of each nonspace character in a style run. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void CharExtra (
 Fixed extra
);

Parameters
extra

The amount (in pixels or decimal fractions of a pixel) to widen (or narrow) each glyph other than the
space character in a range of text.

Discussion
The CharExtra function sets the value of the chExtra field of the color graphics port structure. This field
contains a number that is in 4.12 fractional notation: four bits of signed integer followed by 12 bits of fraction.
The CharExtra function uses the value of the txSize field, so you must call TextSize to set the font size
of the text before you call CharExtra.

The initial setting is 0. You can pass a negative value for the extra parameter, but be careful not to narrow
glyphs so much that the text is unreadable. The measuring and drawing functions use the value in this field
when an application calls them to measure or draw text. The CharExtra function is available only for color
graphic ports.

Do not use CharExtra for script systems that include zero-width characters, such as diacritical marks, because
intercharacter space is added to all glyphs, separating the diacritical mark from the glyph of the character.
Do not use it for script systems that include contextual forms, such as ligatures or conjunct characters, which
would not be represented properly were intercharacter space added to these glyphs. For example, you should
not use CharExtra for the Devanagari or Arabic languages, whose text is drawn as connected glyphs, or
with the Sonata font because it includes zero-width characters.

The 2-byte script systems use the chExtra field value properly.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
chExtra field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 17
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not
Recommended) Functions

Not available to 64-bit applications.

Declared In
QuickdrawText.h

CharToPixel
Returns the screen pixel width from the left edge of a text segment to the glyph of the character whose byte
offset you specify. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

short CharToPixel (
 Ptr textBuf,
 long textLength,
 Fixed slop,
 long offset,
 short direction,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textBuf

A pointer to the beginning of the text segment.

textLength
The length in bytes of the entire text segment pointed to by textBuf. The CharToPixel function
requires the context of the complete text in order to determine the correct value.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how smuch the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

offset
The offset from textBuf to the character within the text segment whose display pixel location is to
be measured. For 2-byte script systems, if the character whose position is to be measured is 2 bytes
long, this is the offset of the first byte.

direction
This parameter specifies whether CharToPixel is to return the caret position for a character with a
direction of left-to-right or right-to-left. A direction value of hilite indicates that CharToPixel is
to use the caret position for the character direction that matches the primary line direction as specified
by the SysDirection global variable.

18 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 13) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Return Value
The screen pixel width from the left edge of a text segment to the glyph of the character whose byte offset
you specify.

Discussion
You use CharToPixel to find the onscreen pixel location at which to draw a caret and to identify the selection
points for highlighting. The CharToPixel function returns the horizontal distance in pixels from the start
of the range of text beginning with the byte offset at textBuf to the glyph corresponding to the character
whose byte offset is specified by the offset parameter. The pixel location is relative to the beginning of
the text segment, not the left margin of the display line. To get the actual display line pixel location of the
glyph relative to the left margin, you add the pixel value that CharToPixel returns to the pixel location at
the end of the previous style run (on the left) in display order. In other words, you need to know the length
of the text in pixels on the display line up to the beginning of the range of text that you call CharToPixel
for, and then you add in the screen pixel width that CharToPixel returns.

Deprecated in Mac OS X v10.4 19
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

You specify a value for textLen that is equal to the entire visible part of the style run on a line and includes
trailing spaces if and only if they are displayed. They may not be displayed, for example, for the last style run
in memory order, which is part of the line. Do not confuse the textLen parameter with the offset, which
is the byte offset of the character within the text segment whose pixel location CharToPixel is to return.

If you use CharToPixel to get a caret position to mark the insertion point, you specify a value of leftCaret
or rightCaret for the direction parameter. You can use the value of the PixelToChar leadingEdge
flag to determine the direction parameter value.

If the leadingEdge flag is FALSE, you base the value of the direction parameter on the direction of the
character at the byte offset in memory that precedes the one that PixelToChar returns; if leadingEdge
is TRUE, you base the value of the direction parameter on the direction of the character at the byte offset
that PixelToChar returns. If there isn’t a character at the byte offset, you base the value of the direction
parameter on the primary line direction as determined by the SysDirection global variable.

Be sure to pass the same values for styleRunPosition and the scaling factors (numer and denom) to
CharToPixel that you pass to any of the other justification functions for this style run.

The CharToPixel function works with text in all script systems. For 1-byte contextual script systems,
CharToPixel calculates the widths of any ligatures, reversals, and compound characters that need to be
drawn.

Note that textLen is the number of bytes to be drawn, not the number of characters. Because 2-byte script
systems also include characters consisting of only one byte, do not simply multiply the number of characters
by 2 to determine this value; you must determine and specify the correct number of bytes.

Special Considerations

The CharToPixel function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

CharWidth
Returns the width (horizontel extension), in pixels, of the specified character. (Deprecated in Mac OS X v10.4.
Use ATSUI instead.)

short CharWidth (
 CharParameter ch
);

Parameters
ch

The character whose width is to be measured.

Return Value
The width (horizontel extension), in pixels, of the specified character.

20 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Discussion
The CharWidth function includes the effects of the stylistic variations for the text set in the current graphics
port. If you change any of these attributes after determining the glyph width but before actually drawing it,
the predetermined width may not be correct. For a space character, CharWidth also includes the effect of
SpaceExtra. For a nonspace character, CharWidth includes the effect of CharExtra.

Because it takes a single-byte value as the ch parameter, CharWidth works only for 1-byte simple script
systems.

A series of calls to CharWidth in a contextual 1-byte font may give incorrect results, because the width of a
text segment may be different from the sum of its individual character widths. In that case, to measure a line
of text you should call TextWidth.

Do not use the CharWidth function for 2-byte script systems. If you want to measure the width of a single
glyph in a 2-byte font, you should use TextWidth.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

DisposeStyleRunDirectionUPP
Disposes of a universal procedure pointer (UPP) to a style run direction callback. (Deprecated in Mac OS X
v10.4. Use ATSUI to handle style runs.)

void DisposeStyleRunDirectionUPP (
 StyleRunDirectionUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawText.h

DrawChar
Draws the glyph for a single 1-byte character at the current pen location in the current graphics port.
(Deprecated in Mac OS X v10.4. Use ATSUI or Quartz instead.)

Deprecated in Mac OS X v10.4 21
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

void DrawChar (
 CharParameter ch
);

Parameters
ch

The character code whose glyph is to be drawn.

Discussion
The DrawChar function draws a single character’s glyph and then advances the pen by the width of the
glyph. If the glyph isn’t in the font, the font’s missing symbol is drawn.

If you’re drawing more than one character, it’s faster to make one DrawString or DrawText call rather than
a series of DrawChar calls.

Because it takes a single-byte value as the ch parameter, DrawChar works only for 1-byte script systems. If
you want to draw the glyph of a single character in a 2-byte script, call either DrawText, DrawString, or
DrawJustified.

A series of calls to DrawChar in a 1-byte complex script system can give incorrect results because a text string
is not always a simple concatenation of a series of characters. In a contextual script, two different glyphs may
be used to represent a single character in its contextual form and alone. To draw a sequence of text in a
1-byte complex script system, use DrawText, DrawString, or DrawJustified instead.

For 1-byte complex scripts, you can use DrawChar for special purposes, such as to include the isolated glyph
of a character in a book’s index, for example, to show a single glyph as it exists apart from contextual
transformations.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

DrawJustified
Draws the specified text at the current pen location in the current graphics port, taking into account the
adjustment necessary to condense or extend the text by the slop value, appropriately for the script system.
(Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void DrawJustified (
 Ptr textPtr,
 long textLength,
 Fixed slop,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textPtr

A pointer to the memory location of the beginning of the text to be drawn.

22 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

textLength
The number of bytes of text to be drawn.

Note that textLength is the number of bytes to be drawn, not the number of characters. Because
2-byte script systems also include characters consisting of only 1 byte, do not simply multiply the
number of characters by 2 to determine this value; you must determine and specify the correct number
of bytes.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment. Pass the value assessed for this style run based on the proportion
returned for it from PortionLine.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how much the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs. Be sure to pass the same
value that you pass to PortionLine.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 13) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need to
specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1. Be sure to pass the same value that you pass to PortionLine.

denom
A point giving the denominator for the horizontal and vertical scaling factors. Be sure to pass the
same value that you pass to PortionLine.

Deprecated in Mac OS X v10.4 23
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Discussion
The DrawJustified function is similar to the DrawText function, except that you use it to draw text that
is expanded or condensed by the number of pixels specified by slop. The DrawJustified function is most
commonly used to draw a line of justified text.

The DrawJustified function draws the specified text in the font, size, and style of the current graphics
port, taking into account any scaling factors, and it distributes the slop appropriately for the script system.
Regardless of the line direction of the text to be drawn, you place the pen at the left edge of the line before
calling DrawJustified for the first style run. For all subsequent style runs on that line, QuickDraw advances
the pen appropriately.

If DrawJustified changes the width of spaces, it temporarily resets the space extra (spExtra) value. It
adds to the current value of the field, if any, the amount of extra space to be applied to each space character
within the range of text in order to justify the text, based on calculations that take into account the slop
value and all of the text characteristics. On exit, DrawJustified restores the original value.

The DrawJustifie d function works with text in all script systems. For example, to depict justified Arabic
text, DrawJustified uses extension bars to create the additional width that is distributed as slop within a
style run.

For 1-byte complex script systems, DrawJustified substitutes the proper ligatures, reversals, and compound
characters as needed.

For 2-byte script systems that do not use space characters to delimit words, DrawJustified distributes the
slop value in a manner appropriate to the script system. For script systems, such as Japanese, that use
ideographic characters, DrawJustified distributes the additional screen pixel width appropriately for the
text representation.

Special Considerations

The DrawJustified function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

DrawString
Draws the text of the specified Pascal string at the pen location in the current graphics port (GrafPort or
CGrafPort). (Deprecated in Mac OS X v10.4. Use ATSUI or Quartz instead.)

void DrawString (
 ConstStr255Param s
);

Parameters
s

A Pascal string consisting of the text to be drawn.

24 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Discussion
The DrawString function draws the string with its left edge at the current pen location, extending right.
The final position of the pen location, after the text is drawn, is to the right of the rightmost glyph in the
string. QuickDraw does not do any formatting, such as handling of carriage returns or line feeds.

Note that you can use DrawString only for a Pascal string containing a single style run.

QuickDraw temporarily stores on the stack all of the text you ask it to draw, even if the text is to be clipped.
When drawing large font sizes or complex style variations, draw only what is visible on the screen. You can
determine the number of characters whose corresponding glyphs actually fit on the screen by calling the
StringWidth function to determine the length of the string before calling DrawString.

If you specify values in the graphics port spExtra or chExtra fields to change the width of space or nonspace
characters, DrawString takes these values into account.

For right-to-left text, such as Hebrew or Arabic, QuickDraw draws the final (leftmost) glyph first, then moves
to the right through all the glyphs, drawing the initial (rightmost) glyph last.

Note that you should not change the width of nonspace characters for 1-byte simple script systems with
zero-width characters or 1-byte complex script systems. For more information, see CharExtra (page 17).

For contextual script systems, DrawString substitutes the proper ligatures, reversals, and compound
characters as needed. Inside a picture definition, DrawString can’t have a byteCount greater than 255.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
QuickdrawText.h

DrawText
Draws the specified text at the current pen location in the current graphics port. (Deprecated in Mac OS X
v10.4. Use ATSUI or Quartz instead.)

void DrawText (
 const void * textBuf,
 short firstByte,
 short byteCount
);

Parameters
textBuf

A pointer to a buffer containing the text to be drawn.

firstByte
An offset from the start of the text buffer (textBuf) to the first byte of the text to be drawn.

Deprecated in Mac OS X v10.4 25
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

byteCount
The number of bytes of text to be drawn. Inside a picture definition, DrawText cannot have a
byteCount greater than 255.

For 2-byte script systems, note that byteCount is the number of bytes to be drawn, not the number
of glyphs. Because 2-byte script systems also include characters consisting of only 1 byte, do not
simply multiply the number of characters by 2 to determine this value; you must determine and
specify the correct number of bytes.

Discussion
The DrawText function draws the text with the leftmost glyph at the current pen location, extending right.
After QuickDraw draws the text, it sets the pen location to the right of the rightmost glyph.

QuickDraw temporarily stores on the stack all of the text you ask it to draw, even if the text is to be clipped.
When drawing a range of text, it’s best to draw only what is visible on the screen. If an entire text string does
not fit on a line, truncate the text at a word boundary. If possible, avoid truncating within a style run. You
can determine the number of characters whose glyphs actually fit on the screen by calling the TextWidth
function before calling DrawText.

If you specify values in the graphics port spExtra and chExtra fields to change the width of nonspace and
space characters, both TextWidth and DrawText take these values into account.

For 1-byte complex script systems, DrawText substitutes the proper ligatures, reversals, and compound
characters as needed.

For right-to-left text, such as Hebrew or Arabic, QuickDraw draws the final (leftmost) glyph first, then moves
to the right through all the characters, drawing the initial (rightmost) glyph last.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

GetFontInfo
Returns information about the current graphics port’s font, taking into account the style and size in which
the glyphs are to be drawn. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void GetFontInfo (
 FontInfo *info
);

Parameters
info

Pointer to a font information structure that contains the font measurement information, in integer
values.

Discussion
The GetFontInfo function returns the ascent, descent, leading, and width of the largest glyph of the font
in the text font, size, and style specified in the current graphics port. If the script system specified by the
current graphics port txFont field has an associated font, as do Hebrew and Arabic, GetFontInfo returns
combined information based on both fonts. This is to accommodate text written in the Roman script when

26 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

the primary script system is non-Roman. However, even if all of the text is written in a non-Roman script, if
there is an associated font, GetFontInfo always bases its information on the combined fonts. You can
determine the line height, in pixels, by adding the values of the ascent, descent, and leading fields.

The GetFontInfo function is similar to the Font Manager’s FontMetrics function, except that the
GetFontInfo function returns integer values. See FontInfo (page 9) for a description of the structure
and its fields.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

GetFormatOrder
Determines the display order of style runs for a line of text containing multiple style runs with mixed directions.
(Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void GetFormatOrder (
 FormatOrderPtr ordering,
 short firstFormat,
 short lastFormat,
 Boolean lineRight,
 StyleRunDirectionUPP rlDirProc,
 Ptr dirParam
);

Parameters
ordering

A pointer to a format order array, with (lastFormat – firstFormat + 1) entries. The function
fills the array with the display order of each style run. On exit, the array contains a permuted list of
the numbers from firstFormat to lastFormat.

The first entry in the array is the number of the style run to draw first; this is the leftmost style run in
display order. The last entry in the array is the number of the entry to draw last, the rightmost style
run in display order.

Upon completion of the call, the FormatOrder (page 10) array contains the numbers identifying the
style runs in display order.

firstFormat
A number greater than or equal to 0 identifying the first style run in storage order that is part of the
line for which you are calling GetFormatOrder.

lastFormat
A number greater than or equal to 0 identifying the last style run in storage order that is part of the
line for which you are calling GetFormatOrder.

lineRight
A flag that you set to TRUE if the primary line direction is right-to-left.

Deprecated in Mac OS X v10.4 27
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

rlDirProc
A pointer to a callback function that calculates the correct direction, given the style run identifier. The
GetFormatOrder function calls the application-defined rlDirProc function for each identifier from
firstFormat to lastFormat.

This function returns TRUE for right-to-left text direction and FALSE for left-to-right. Given dirParam
and a style run identifier, the callback function should be able to determine the style run direction.
For more information, see StyleRunDirectionProcPtr (page 8).

dirParam
A pointer to a parameter block that contains the font and script information for each style run in the
text. This parameter block is used by the application-supplied function.

Discussion
The GetFormatOrder function helps you determine how to draw text that contains multiple style runs with
mixed directions. For mixed-directional text, after you determine where to break the line, you need to call
GetFormatOrder to determine the display order. When you call GetFormatOrder, you supply a Boolean
function, and reference it using the rlDirProc parameter. This function calculates the direction of each
style run identified by number. Do not call GetFormatOrder if there is only one style run on the line.

You must index the style runs in storage order. You pass GetFormatOrder numbers identifying the first and
last style runs of the line in storage order and the primary line direction. The GetFormatOrder function
returns to you an equivalent sequence in display order.

If you do not explicitly define the primary line direction of the text, base the lineRight parameter on the
value of the SysDirection global variable. (The SysDirection global variable is set to -1 if the system
direction is right to left, and 0 if the system direction is left to right.)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

HiliteText
Finds all the characters between two byte offsets in a text segment whose glyphs are to be highlighted.
(Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void HiliteText (
 Ptr textPtr,
 short textLength,
 short firstOffset,
 short secondOffset,
 OffsetTable offsets
);

Parameters
textPtr

A pointer to a buffer that contains the text to be highlighted.

textLength
The length in bytes of the entire text segment pointed to by textPtr.

28 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

firstOffset
The byte offset from textPtr to the first character to be highlighted.

secondOffset
The byte offset from textPtr to the last character to be highlighted.

offsets
A table that, upon completion of the call, specifies the boundaries of the text to be highlighted.

Discussion
The HiliteText function returns three pairs of byte offsets that mark the onscreen ranges of text to be
highlighted. This is because for bidirectional text, although the characters are contiguous in memory, their
displayed glyphs can include up to three separate ranges of text.

The HiliteText function takes into account the fact that to highlight the complete range of text whose
beginning and ending byte offsets you pass it, it must return byte offsets that encompass the glyphs of the
first and last characters in the text segment. To determine the correct offset pairs, HiliteText relies on the
primary line direction as specified by the SysDirection global variable.

Before calling HiliteText, you must set up an offset table (of type OffsetTable) in your application to
hold the results. You can consider the offset table to be a set of three offset pairs.

If the two offsets in any pair are equal, the pair is empty and you can ignore it. Otherwise the pair identifies
a run of characters whose glyphs are to be highlighted.

The offsets that HiliteText returns depend on the primary line direction as defined by the SysDirection
global variable. If you change the value of SysDirection, HiliteText returns the offset that is meaningful
according to the primary line direction for ambiguous offsets on the boundary of right-to-left and left-to-right
text.

Special Considerations

The HiliteText function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

InvokeStyleRunDirectionUPP
Calls your style run direction callback. (Deprecated in Mac OS X v10.4. Use ATSUI to handle style runs.)

Boolean InvokeStyleRunDirectionUPP (
 short styleRunIndex,
 void *dirParam,
 StyleRunDirectionUPP userUPP
);

Parameters
userUPP

Return Value
A Boolean value that indicates whether the callback was invoked successfully.

Deprecated in Mac OS X v10.4 29
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Discussion
You should not need to use the function InvokeStyleRunDirectionUPP as the system calls your style run
direction callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawText.h

MeasureJustified
Calculates, for text that is expanded, condensed, or scaled, the onscreen width in pixels from the left edge
of the text segment to the glyph of the character. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void MeasureJustified (
 Ptr textPtr,
 long textLength,
 Fixed slop,
 Ptr charLocs,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textPtr

A pointer to the memory location of the beginning of the text to be measured.

textLength
The number of bytes of text to be measured. The text length should equal the entire visible part of
the text on a line, including trailing spaces if and only if they are displayed. Otherwise, the results for
the last glyph on the line may be invalid.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how much the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

charLocs
A pointer to an application-defined array of textLength + 1 integers.

30 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 13) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you
can specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Discussion
The MeasureJustified function is similar to the MeasureText function, except that it is used to find the
pixel location of a character’s glyph in text that is expanded or condensed. The function calculates the
onscreen pixel width of the glyph of each character, beginning from the left edge of the text segment, taking
into account slop value, scaling, and style run position.

On return, the first element in the charLocs array contains 0 and the last element contains the total width
of the text segment, when the primary line direction is left to right and the text is unidirectional. When the
primary line direction is right to left and the text is unidirectional, the first element in the array contains the
total width of the text segment, and the last element in the array contains 0. When the text is bidirectional,
at a direction boundary, MeasureJustified selects the character whose direction maps to that of the
primary line direction.

The MeasureJustified function returns the same results that an application would get if it called
CharToPixel for each character with a direction parameter value of hilite. Using MeasureJustified
to find the pixel location of a character’s glyph is less efficient than using the CharToPixel function because
the application must define the array pointed to by charLocs, and then walk the array after MeasureText
returns the results.

Deprecated in Mac OS X v10.4 31
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

The MeasureJustified function temporarily resets the space extra (spExtra) value, adding to the current
value of the field, if any, the amount of extra space to be added to space characters in order to fully justify
the text, based on calculations that take into account the slop value and all the text characteristics. On exit,
MeasureJustified restores the original value.

Because MeasureJustified measures text in only the current font, style, and size, you need to call it once
for each individual style run. For additional information about MeasureJustified, contact Developer
Technical Support.

The MeasureJustified function works properly for text in all script systems. For 1-byte complex script
systems, MeasureJustified calculates the widths of any ligatures, reversals, and compound characters
that would need to be drawn.

Note that textLength is the number of bytes to be drawn, not the number of characters. Because 2-byte
script systems also include characters consisting of only one byte, you should not simply multiply the number
of characters by 2 to determine this value; the application must determine and specify the correct number
of bytes.

Some 1-byte script system fonts may have zero-width characters, which are usually overlapping diacritical
marks that typically follow the base character in memory. In this case, MeasureJustified measures both
the glyph of the base character (the high-order, low-address byte) and the width of the diacritical mark. The
charLoc array includes an entry for each, but both entries contain the same value.

For 1-byte complex script systems, MeasureJustified calculates the widths of any ligatures, reversals,
compound characters, and character clusters that need to be drawn. For example, for an Arabic ligature, the
entry that corresponds to the trailing edge of each character that is part of the ligature is the trailing edge
of the entire ligature.

Special Considerations

The MeasureJustified function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

MeasureText
Calculates the width of the character’s glyph in pixels from the left edge of the text segment. (Deprecated
in Mac OS X v10.4. Use ATSUI instead.)

32 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

void MeasureText (
 short count,
 const void *textAddr,
 void *charLocs
);

Parameters
count

The number of bytes (as opposed to characters) to be measured. Because 2-byte script systems also
include characters consisting of only one byte, do not simply multiply the number of characters by
2 to determine this value; you must determine and specify the correct number of bytes.

For 2-byte characters, the charLocs array contains two entries—one corresponding to each byte—but
both entries contain the same pixel-width value.

textAddr
A pointer to the memory location of the beginning of the text to be measured. The value of textAddr
must point directly to the first character whose glyph is to be measured.

charLocs
A pointer to an application-defined array of count + 1 integers. On return, the first element in the
charLocs array contains 0 and the last element contains the total width of the text segment, when
the primary line direction is left to right and the text is unidirectional.

When the primary line direction is right to left, and the text is unidirectional, the first element in the
array contains the total width of the text segment, and the last element in the array contains 0. When
the text is bidirectional, at a direction boundary, MeasureText selects the character whose direction
maps to that of the primary line direction.

Discussion
Provides an array version of the TextWidth function. The MeasureText function calculates the onscreen
pixel width of the glyph of each character, beginning from the left edge of the text segment. The function
returns the same results that an application would get if it called CharToPixel for each character with a
direction parameter value of hilite. Using MeasureText to find the pixel location of a character’s glyph
is less efficient than using the CharToPixel function because the application must define the array pointed
to by charLocs, and then walk the array after MeasureText returns the results.

Because this function measures text in the font, style, and size of the current graphics port, you need to call
it once for each individual style run in any line of text that contains multiple style runs.

Some fonts in 1-byte script systems may have zero-width characters, which are usually overlapping diacritical
marks that typically follow the base character in memory. In this case, MeasureText measures both the
glyph of the base character (the high-order, low-address byte) and the width of the diacritical mark. The
charLoc array includes an entry for each, but both entries contain the same value.

For 1-byte complex script systems, MeasureText calculates the widths of any ligatures, reversals, compound
characters, and character clusters that need to be drawn. For example, for an Arabic ligature, the entry that
corresponds to the trailing edge of each character that is part of the ligature is the trailing edge of the entire
ligature.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

Deprecated in Mac OS X v10.4 33
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

NewStyleRunDirectionUPP
Creates a new universal procedure pointer (UPP) to a style run direction callback. (Deprecated in Mac OS X
v10.4. Use ATSUI to handle style runs.)

StyleRunDirectionUPP NewStyleRunDirectionUPP (
 StyleRunDirectionProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the StyleRunDirectionUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawText.h

PixelToChar
Returns the byte offset of a character in a style run, or part of a style run, whose onscreen glyph is nearest
the place where the user clicked the mouse. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

short PixelToChar (
 Ptr textBuf,
 long textLength,
 Fixed slop,
 Fixed pixelWidth,
 Boolean *leadingEdge,
 Fixed *widthRemaining,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textBuf

A pointer to the start of the text segment.

textLength
The length in bytes of the entire text segment pointed to by textBuf. The PixelToChar function
requires the context of the complete text segment in order to determine the correct value.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how much the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

34 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

pixelWidth
The screen location of the glyph associated with the character whose byte offset is to be returned.
The screen location is measured in pixels beginning from the left edge of the text segment for which
you call PixelToChar.

leadingEdge
Pointer to a Boolean flag that, upon completion of the call, is set to TRUE if the pixel location is on
the leading edge of the glyph, and FALSE if the pixel location is on the trailing edge of the glyph.
The leading edge is the left side if the direction of the character that the glyph represents is left-to-right
(such as a Roman character), and the right side if the character direction is right-to-left (such as an
Arabic or a Hebrew letter).

widthRemaining
Pointer to a location that, upon completion of the call, contains –1 if the pixel location (specified by
the pixelWidth parameter) falls within the style run (represented by the textLen bytes starting at
textBuf). Otherwise, the location contains the amount of pixels by which the input pixel location
(pixelWidth) extends beyond the right edge of the text for which you called PixelToChar.

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 13) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Deprecated in Mac OS X v10.4 35
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Return Value
The byte offset of a character in a style run, or part of a style run, whose onscreen glyph is nearest the place
where the user clicked the mouse.

Discussion
You can use the information that PixelToChar returns for highlighting, word selection, and identifying the
caret position. The PixelToChar function returns a byte offset and a Boolean value that describes whether
the pixel location is on the leading edge or trailing edge of the glyph where the mouse-down event occurred.
When the pixel location falls on a glyph that corresponds to one or more characters that are part of the text
segment, the PixelToChar function uses the direction of the character or characters to determine which
side of the glyph is the leading edge. (A glyph can represent more than one character, for example, for a
ligature. Generally, if a glyph represents more than one character, all of the characters have the same text
direction.)

If the pixel location is on the leading edge, PixelToChar returns the byte offset of the character whose
glyph is at the pixel location. (If the glyph represents multiple characters, it returns the byte offset of the first
of these characters in memory.) If the pixel location is on the trailing edge, PixelToChar returns the byte
offset of the first character in memory following the character or characters represented by the glyph. If the
pixel location is on the trailing edge of the glyph that corresponds to the last character in the text segment,
PixelToChar returns a byte offset equal to the length of the text segment.

When the pixel location is before the leading edge of the first glyph in the displayed text segment,
PixelToChar returns a leading edge value of FALSE and the byte offset of the first character. When the
pixel location is after the trailing edge of the last glyph in the displayed text segment, PixelToChar returns
a leading edge value of TRUE and the next byte offset in memory, the one after the last character in the text
segment. If the primary line direction is left to right, before means to the left of all of the glyphs for the
characters in the text segment, and after means to the right of all these glyphs. If the primary line direction
is right to left, before and after hold the opposite meanings.

You also use the value of the leadingEdge flag to help determine the value of the direction parameter
to pass to CharToPixel, which you call to get the caret position. If the leadingEdge flag is FALSE, you
base the value of the direction parameter on the direction of the character at the byte offset in memory
that precedes the one that PixelToChar returns; if leadingEdge is TRUE, you base the value of the
direction parameter on the direction of the character at the byte offset that PixelToChar returns. If there
isn’t a character at the byte offset, you base the value of the direction parameter on the primary line
direction as determined by the SysDirection global variable.

You specify a value for textLen that is equal to the entire visible part of the style run on a line and includes
trailing spaces if and only if they are displayed. They may not be displayed, for example, for the last style run
in memory order that is part of the current line.

Be sure to pass the same values for styleRunPosition and the scaling factors (numer and denom) to
PixelToChar that you pass to any of the other justification functions for this style run.

You pass PixelToChar a pointer to the byte offset of the character in the text buffer that begins the text
segment or style run containing the character whose glyph is at the pixel location. If you do not know which
style run on the display line contains the character whose glyph is at the pixel location, you can loop through
the style runs until you find the one that contains the pixel location. If the style run contains the character,
PixelToChar returns its byte offset. If it doesn’t, you can use the widthRemaining parameter value to help
determine which style run contains the glyph at the pixel location.

If you pass PixelToChar the pixel width of the display line, you can use the returned value of
widthRemaining to calculate the length of a style run. The widthRemaining parameter contains the length
in pixels from the end of the style run for which you call PixelToChar to the end of the display line, in this

36 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

case, if the style run for which you call it does not include the byte offset whose glyph corresponds to the
pixel location. You subtract the returned widthRemaining value from the screen pixel width of the display
line to get the style run’s length.

To truncate a line of text, you can use PixelToChar to find the byte offset of the character where the line
should be broken. To return the correct byte offset associated with the pixel location of a mouse-down event
when the text belongs to a right-to-left script system, the PixelToChar function reorders the text. If
right-to-left text is reordered when you use PixelToChar to determine where to break a line, it returns the
wrong byte offset. To get the correct result, you must turn off reordering before you call PixelToCha r.
Remember to restore reordering after you have determined where to break the line.

The PixelToChar function works with text in all script systems, and for text that is justified or not. For
contextual script systems, PixelToChar takes into account the widths of any ligatures, reversals, and
compound characters that were created when the text was drawn.

Because 2-byte script systems also include characters consisting of only one byte, you should not simply
multiply the number of characters by 2 to determine this value; you must determine and specify the correct
number of bytes.

Special Considerations

The PixelToChar function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

PortionLine
Determines the correct proportion of extra space to apply to the specified style run in a line of justified text;
that is, how to distribute the total slop value for a line among the style runs on that line. (Deprecated in Mac
OS X v10.4. Use ATSUI instead.)

Fixed PortionLine (
 Ptr textPtr,
 long textLen,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textPtr

A pointer to the style run.

textLen
The number of bytes in the text of the style run.

Deprecated in Mac OS X v10.4 37
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 13) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Return Value
A number that represents the portion of the slop to be applied to the style run for which it is called.

Discussion
You use PortionLine in formatting a line of justified text. It helps you determine how to distribute the slop
for a line among its style runs. When you know the total slop for a line of text, you need to determine what
portion of it to attribute to each style run. To do this, you call the PortionLine function once for each style
run on the line. The PortionLine function computes the portion of extra space for a style run, taking into
account the font, size, style, and scaling factors of the style run. It returns a number that represents the portion
of the slop to be applied to the style run for which it is called. You use the value that PortionLine returns
to determine the percentage of slop that you should attribute to a style run.

To determine the percentage of slop to allocate to each style run, you compute what percentage each portion
is of the sum of all portions. To determine the actual slop value in pixels for each style run, you apply the
percentage to the total slop value. The following steps summarize this process:

1. Call PortionLine for each style run on the line.

2. Add the returned values together.

38 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

3. Calculate the percentage of the slop value for each style run using the ratio of the value returned by
PortionLine for that style run and the total of the values returned for all of the style runs on the line.

4. Calculate the number of pixels to be added to each style run by multiplying the percentage of the slop
for each style run by the total number of pixels.

Be sure to pass the same values for styleRunPosition and the scaling factors (numer and denom) to
PortionLine that you pass to any of the other justification functions for this style run.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

SpaceExtra
Specifies the number of pixels by which to widen (or narrow) each space in a style run to be drawn in the
current graphics port. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void SpaceExtra (
 Fixed extra
);

Parameters
extra

The amount (in pixels or binary fractions of a pixel) to widen (or narrow) each space in a style run on
a line.

Discussion
The SpaceExtra function sets the value of the extra space (spExtra) field in the current graphics port
structure. The initial setting is 0. You can pass a negative value for the extra parameter, but be careful not
to narrow spaces so much that the text is unreadable. The value you specify is added to the width of each
space character in the style run. For those script systems that do not use spaces, any value set in the extra
space field is ignored. For those script systems that use spaces as delimiters, if you do not want to justify a
line of text using DrawJustified, you can use the SpaceExtra function to set a fixed number of pixels to
be added to each space character, then call DrawText or DrawString.

When you use the justification functions (MeasureJustified, DrawJustified) to measure or draw justified
text, they temporarily reset the extra space value. They add to the current value of the field, if any, the amount
of extra space to be added to space characters in the specified text in order to justify the text, based on
calculations that take into account the slop value for the range of text and all of the text characteristics. On
exit, these functions restore the original value.

For a color graphics port (CGrafPort), you can use SpaceExtra by itself or in conjunction with the
CharExtra function to format a line of text in the 1-byte simple or 2-byte script systems. You should not
use CharExtra for 1-byte complex script systems.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
spExtra field, rather than directly change the field value.

Deprecated in Mac OS X v10.4 39
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StandardGlyphs
This obsolete function doesn’t do anything in Mac OS X. (Deprecated in Mac OS X v10.4. Use ATSUI to render
Unicode text.)

Not recommended.

OSStatus StandardGlyphs (
 void *dataStream,
 ByteCount size
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StdText
Draws text from an arbitrary structure in memory. (Deprecated in Mac OS X v10.4. Use ATSUI or Quartz
instead.)

void StdText (
 short count,
 const void *textAddr,
 Point numer,
 Point denom
);

Parameters
count

The number of bytes of text to draw.

textAddr
A memory structure containing the text to draw.

numer
Scaling numerator.

denom
Scaling denominator.

40 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Discussion
This is QuickDraw’s standard low-level function for drawing text. The StdText function draws text from the
arbitrary structure in memory specified by the textBuf parameter, starting from the first byte and continuing
for the number of bytes specified in the byteCount parameter. The numer and denom parameters specify
the scaling factor: numer.v over denom.v gives the vertical scaling, and numer.h over denom.h gives the
horizontal scaling factor.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdText function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

stdtext
Draws text from an arbitrary structure in memory. (Deprecated in Mac OS X v10.4. Use ATSUI or Quartz
instead.)

Modified

void stdtext (
 short count,
 const void *textAddr,
 const Point *numer,
 const Point *denom
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StdTxMeas
Measures the width of scaled or unscaled text. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

Deprecated in Mac OS X v10.4 41
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

short StdTxMeas (
 short byteCount,
 const void *textAddr,
 Point *numer,
 Point *denom,
 FontInfo *info
);

Parameters
byteCount

The number of bytes to be counted.

textAddr
A pointer to the beginning of the text in memory.

numer
Pointer to a point giving the numerator for the horizontal and vertical scaling factors. For this function,
numer and denom are reference parameters. On output, these parameters contain additional scaling
to be applied to the text.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
Pointer to a point giving the denominator for the horizontal and vertical scaling factors.

info
Pointer to a font information structure that describes the current font.

Return Value
The width of the text stored in memory, beginning with the first character at textAddr and continuing for
byteCount bytes.

Discussion
The StdTxMeas function is a QuickDraw bottleneck function that the QuickDraw text-measuring functions
use extensively. The StdTxMeas function returns the width of the text stored in memory beginning with the
first character at textAddr and continuing for byteCount bytes. You can call the StdTxMeas function
directly, for example, to measure text that you want to explicitly scale, but not justify. You can also use
StdTxMeas to get the font metrics for scaled text in order to determine the line height, instead of using
GetFontInfo, which doesn’t support scaling.

The high-level QuickDraw text functions provide most of the functionality needed to measure and draw text.
However, if you need to call StdTxMeas directly, you must first check the graphics port grafProcs field to
determine whether the bottleneck functions have been customized, and if so, you must call the customized
function instead of the standard one. The bottleneck functions are always customized for printing.

If the grafProcs field contains NULL, the standard bottleneck functions have not been customized. If the
grafProcs field contains a pointer, the standard bottleneck functions have been replaced by customized
ones. This pointer (of type QDProcPtr) points to a QDProc structure, which contains fields that point to the
bottleneck function to be used for a specific drawing function. If the standard bottleneck function has been
customized, your application needs to use the customized function indicated by the QDProc structure field.

42 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

On input, you need to specify values for numer and denom, even if you are not scaling the text. You can
specify 1,1 scaling factors, in this case, so that no scaling is applied. On return, numer and denom contain the
additional scaling to be applied to the text.

The StdTxtMeas function returns output scaling factors that you need to apply to the text to get the right
measurement if the Font Manager was not able to fully satisfy the scaling request. You can use the Toolbox
Utilities’ FixRound and FixRatio functions to help with this process.

The StdTxMeas function gives the correct results for all script systems. The byteCount parameter is the
number of bytes of the text to be drawn, not characters. When specifying this value, consider that 2-byte
script systems also include characters consisting of only one byte.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StringWidth
Returns the length, in pixels, of the specified text string. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

short StringWidth (
 ConstStr255Param s
);

Parameters
s

A Pascal string containing the text to be measured.

Return Value
The length, in pixels, of the specified text string.

Discussion
You should not call StringWidth to measure scaled text. Although StringWidth takes into account the
graphics port structure settings, it does not accept scaling parameters, and therefore cannot determine the
correct text width result for text to be drawn using scaling factor parameters.

If you specify values in the graphics port spExtra or chExtra fields to change the width of space or nonspace
characters, StringWidth takes these values into account.

Because this function measures text in the font, style, and size of the current graphics port, you need to call
it once for each individual style run in any line of text that contains multiple style runs.

The StringWidth function works with all script systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 43
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawText.h

StyledLineBreak
Returns the proper location to break a line of text, taking into account script and language considerations,
making use of tables in the string-manipulation ('itl2') resource in its computations. (Deprecated in Mac
OS X v10.4. Use ATSUI instead.)

StyledLineBreakCode StyledLineBreak (
 Ptr textPtr,
 SInt32 textLen,
 SInt32 textStart,
 SInt32 textEnd,
 SInt32 flags,
 Fixed *textWidth,
 SInt32 *textOffset
);

Parameters
textPtr

A pointer to the beginning of a script run on the current line to be broken.

textLen
The number of bytes in the script run on the current line to be broken.

textStart
A byte offset to the beginning of a style run within the script run.

When used with unformatted text, textStart can be 0, and textEnd is identical to textLen. With
styled text, the interval between textStart and textEnd specifies a style run. The interval between
textPtr and textLen specifies a script run. Note that the style runs in StyledLineBreak must be
traversed in memory order, not in display order.

textEnd
A byte offset to the end of the style run within the script run.

flags
Reserved for future expansion; must be 0.

textWidth
A pointer to the maximum length of the displayed line in pixels. StyledLineBreak decrements this
value for its own use. You are responsible for setting it before your first call to StyledLineBreak
for a line.

StyledLineBreak automatically decrements the textWidth variable by the width of the style run
for use on the next call. You need to set the value of textWidth before calling it to process a line.

44 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

textOffset
A pointer to the text offset value, which must be nonzero on your first call to StyledLineBreak for
a line, and zero for subsequent calls to StyledLineBreak for that line. This value allows
StyledLineBreak to differentiate between the first and subsequent calls, which is important when
a long word is found (as described below).

The textOffset parameter must be nonzero for the first call on a line and zero for each call to the
function on the line. This allows StyledLineBreak to act differently when a long word is encountered:
if the word is in the first style run on the line, StyledLineBreak breaks the line on a character
boundary within the word; if the word is in a subsequent style run on the line, StyledLineBreak
breaks the line before the start of the word.

On output, textOffset is the count of bytes from textPtr to the location in the text string where
the line break is to occur. When StyledLineBreak finds a line break, it sets the value of textOffset
to the count of bytes that can be displayed starting at textPtr.

When StyledLineBreak is called for the second or subsequent style runs within a script run, the
textOffset value at exit may be less than the textStart parameter (that is, it may specify a line
break before the current style run).

Return Value
Indicates whether the function broke on a word boundary or a character boundary, or if the width extended
beyond the edge of the text. See “Style Line Break Values” (page 12) for a list of the constants that can be
returned.

Discussion
The function StyledLineBreak breaks the line on a word boundary if possible and allows for multiscript
runs and style runs on a single line.

Use the StyledLineBreak function when you are laying out lines in an environment that may include text
from multiple scripts. To use this function, you need to understand how QuickDraw draws text.

You can only use the StyledLineBreak function when you have organized your text in script runs and
style runs within each script run. This type of text organization is used by most text-processing applications
that allow for multiscript text. Use this function when you are displaying text in a screen area to determine
the best place to break each displayed line.

What you do is iterate through your text, a script run at a time starting from the first character past the end
of the previous line. Use StyledLineBreak to check each style run in the script run (in memory order) until
the function determines that it has arrived at a line break. As you loop through each style run, before calling
StyledLineBreak, you must set the text values in the graphics port structure that are used by QuickDraw
to measure the text. These include the font, font size, and font style of the style run.

If the current style run is included in a contiguous sequence of other style runs of the same script, then
textPtr should point to the start of the first style run of the same script on the line, and textLen should
include the last style run of the same script on the line. This is because word boundaries can extend across
style runs, but not across script runs.

Although the offsets are in long integer values and the widths are in fixed values for future extensions, in
the current version the long integer values are restricted to the integer range, and only the integer portion
of the widths is used.

StyledLineBreak always chooses a line break for the last style run on the line in memory order as if all
whitespace in that style run would be stripped. The VisibleLength function, which is a QuickDraw function
used to eliminate trailing spaces from a style run before drawing it, can be called for the style run that is at

Deprecated in Mac OS X v10.4 45
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

the display end of a line. This leads to a potential conflict when both functions are used with mixed-directional
text: if the end of a line in memory order actually occurs in the middle of the displayed line, StyledLineBreak
assumes that the whitespace is stripped from that run, but VisibleLength does not strip the characters.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TextFace
Sets the style of the font in which the text is to be drawn in the current graphics port. (Deprecated in Mac
OS X v10.4. Use ATSUI or Quartz instead.)

void TextFace (
 StyleParameter face
);

Parameters
face

The style for text to be drawn in the current graphics port.

Discussion
The TextFace function sets the value for the style of the font in the text face (txFace) field of the current
graphics port. The Style data type allows you to specify a set of one or more of the following predefined
constants: bold, italic, underline, outline, shadow, condense, and extend. In Pascal, you specify the
constants within square brackets. For example:

TextFace([bold]);
{bold}TextFace([bold,italic]);
{bold and italic}

The style is set to the empty set ([]) by default, which specifies plain.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
txFace field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TextFont
Sets the font of the current graphics port in which the text is to be rendered. (Deprecated in Mac OS X v10.4.
Use ATSUI or Quartz instead.)

46 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

void TextFont (
 short font
);

Parameters
font

The font family ID. The initial font family ID is 0, which represents the system font. The value that you
specify for this field is either an integer or a constant. The range of integers currently defined are from
0 to 32767. Currently, negative font family IDs are not supported, although they may be supported
in the future.

The system font and application font have different font IDs and sizes on various script systems.
However, the special designators 0 and 1 always map to the system font and the application font for
the system script, respectively.

Discussion
The TextFont function sets the value of the graphics port text font (txFont) field. To ensure future
compatibility and benefit from any enhancements, always use this function to modify the txFont field, rather
than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawText.h

TextMode
Sets the transfer mode for drawing text in the current graphics port. (Deprecated in Mac OS X v10.4. Use
ATSUI or Quartz instead.)

void TextMode (
 short mode
);

Parameters
mode

The transfer mode to be used to draw the text.

Discussion
The TextMode function sets the transfer mode in the graphics port txMode field. The transfer mode determines
the interplay between what an application is drawing (the source) and what already exists on the display
device (the destination), resulting in the text display.

There are two basic kinds of modes: pattern (pat) and source (src). Source is the kind that you use for
drawing text. There are four basic Boolean operations: Copy, Or, Xor, and Bic (bit clear), each of which has
an inverse variant in which the source is inverted before the transfer, yielding eight operations in all. Original
QuickDraw supports these eight transfer modes. Color QuickDraw enables your application to achieve color

Deprecated in Mac OS X v10.4 47
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

effects within those basic transfer modes, and offers an additional set of transfer modes that perform arithmetic
operations on the RGB values of the source and destination pixels. Other transfer modes are grayishTextOr,
transparent mode, and text mask mode.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
txMode field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TextSize
Sets the font size for text drawn in the current graphics port to the specified number of points. (Deprecated
in Mac OS X v10.4. Use ATSUI or Quartz instead.)

void TextSize (
 short size
);

Parameters
size

The font size in points (0 to 32,767). The initial setting is 0, which specifies that the font size of the
system font (normally 12 points) is to be used.

Discussion
The TextSize function sets the font size in the text size (txSize) field of the current graphics port structure.
To ensure future compatibility and benefit from any enhancements, always use this function to modify the
txSize field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawText.h

TextWidth
Returns the length, in pixels, of the specified text. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

48 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

short TextWidth (
 const void *textBuf,
 short firstByte,
 short byteCount
);

Parameters
textBuf

A pointer to a buffer that contains the text to be measured.

firstByte
An offset from textBuf to the first byte of the text to be measured.

byteCount
The number of bytes of text to be measured.

Return Value
The length, in pixels, of the specified text.

Discussion
You can use TextWidth to measure the screen pixel width of any text segment that has uniform character
attributes. You can use it to measure the style runs in a line of text, whether you intend to draw the line using
DrawText or DrawJustified. The TextWidth function takes into account the character attributes set in
the graphics port. If you change any of these attributes after determining the text width but before actually
drawing the text, the predetermined width may not be correct. For a space character, TextWidth also
includes the effect of SpaceExtra. For a nonspace character, TextWidth includes the effect of CharExtra.

Because this function measures text in the font, style, and size of the current graphics port, you need to call
it once for each individual style run in any line of text that contains multiple style runs.

The TextWidth function works with text in all script systems because the script management system modifies
the function if necessary to give the proper results.

To draw justified lines of text that include multiple style runs, you calculate the amount of extra pixels, or
slop, that remains to be distributed throughout the line. This process entails measuring the screen pixel width
of each style run on the line: you can use TextWidth for this purpose.

For 1-byte complex script systems, TextWidth calculates the widths of any ligatures, reversals, and compound
characters that need to be drawn.

Note that byteCount is the number of bytes to be measured, not the number of characters. Because 2-byte
script systems also include characters consisting of only one byte, you should not simply multiply the number
of characters by 2 to determine this value; you must determine and specify the correct number of bytes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

Deprecated in Mac OS X v10.4 49
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

TruncString
Ensures that a Pascal string fits into the specified pixel width, by truncating the string as necessary. This
function makes use of the current script and font. (Deprecated in Mac OS X v10.4. Use CFString instead.)

short TruncString (
 short width,
 Str255 theString,
 TruncCode truncWhere
);

Parameters
width

The number of pixels in which the string must be displayed in the current script and font.

theString
The Pascal string to be displayed. On output, contains a version of the string that has been truncated
(if necessary) to fit in the number of pixels specified by width.

truncWhere
A constant that indicates where the string should be truncated. If you supply the truncEnd value,
characters are truncated off the end of the string. If you supply the truncMiddle value, characters
are truncated from the middle of the string; this is useful when displaying pathnames.

See “Truncation Positions” (page 15) for a list of the constants you can supply.

Discussion
The TruncString function ensures that a Pascal string fits into the pixel width specified by the width
parameter by modifying the string, if necessary, through truncation. TruncString uses the font script to
determine how to perform truncation. If truncation occurs, TruncString inserts a truncation indicator,
which is the ellipsis (…) in the Roman script system. You can specify which token to use for indicating
truncation as the tokenEllipsis token type in the untoken table of a tokens ('itl4') resource.

To determine the width of a string in the current font and script, use the QuickDraw StringWidth function.

Special Considerations

TruncString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TruncText
Ensures that a text string fits into the specified pixel width, by truncating the string as necessary. This function
makes use of the current script and font. (Deprecated in Mac OS X v10.4. Use CFString instead.)

50 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

short TruncText (
 short width,
 Ptr textPtr,
 short *length,
 TruncCode truncWhere
);

Parameters
width

The number of pixels in which the text string must be displayed in the current script and font.

textPtr
A pointer to the text string to be truncated. The text string can be up to 32 KB long.

length
On input, a pointer to a value containing the length, in bytes, of the text string to be truncated. On
output, this value is updated to reflect the length of the (possibly) truncated text.

truncWhere
A constant that indicates where the text string should be truncated. You must set this parameter to
one of the constants truncEnd or truncMiddle. If you supply the truncEnd value, characters are
truncated off the end of the string. If you supply the truncMiddle value, characters are truncated
from the middle of the string; this is useful when displaying pathnames.

See “Truncation Positions” (page 15) for a list of the constants you can supply.

Discussion
You can use the TruncText function to ensure that a string defined by a pointer and a byte length fits into
the specified pixel width, by truncating the string in a manner dependent on the font script.

TruncText uses the font script to determine how to perform truncation. If truncation occurs, TruncText
inserts a truncation indicator which is the ellipsis (…) in the Roman script system. You can specify which
token to use for indicating truncation as the tokenEllipsis token type in the untoken table of a tokens
resource.

To determine the width of a string in the current font and script, use the QuickDraw StringWidth function.

Special Considerations

TruncText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

VisibleLength
Calculates the length, in bytes, of a given text segment, excluding trailing white space. (Deprecated in Mac
OS X v10.4. Use ATSUI instead.)

Deprecated in Mac OS X v10.4 51
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

long VisibleLength (
 Ptr textPtr,
 long textLength
);

Parameters
textPtr

A pointer to a text string.

textLength
The number of bytes in the text segment.

Return Value
The length, in bytes, of a given text segment, excluding trailing white space.

Discussion
The VisibleLength function determines how much of a style run to display, without displaying trailing
spaces. You call VisibleLength for the last style run of a line in memory order. The last style run in memory
order of the text constituting the line is not always the last style run in display order. For a line of unidirectional
left-to-right text, the last style run in memory order is the rightmost style run in display order. For a line of
unidirectional right-to-left text, the last style run in memory order is the leftmost style run in display order.
However, if the text contains mixed directions, the last style run in memory order may be an interior style
run in display order.

The text justification functions do not automatically exclude trailing spaces, so you pass them the value that
VisibleLength returns as the length of the last style run in memory order.

The VisibleLength function behaves differently for various script systems. For simple script systems, such
as Roman and Cryllic, and for 2-byte script systems, VisibleLength does not include in the byte count it
returns trailing spaces that occur at the display end of the text segment. For 2-byte script systems,
VisibleLength does not count them, whether they are 1-byte or 2-byte space characters.

For 1-byte complex script systems, VisibleLength does not include in the byte count that it returns spaces
whose character direction is the same as the primary line direction. For 1-byte complex script systems that
support bidirectional text, Roman spaces take on a character direction based on the primary line direction.
If the Roman spaces then fall at the end of the text, VisibleLength does not include them in the returned
byte count.

The purpose of VisibleLength is to trim off white space at the display end of the line. The VisibleLength
function does not eliminate the white space by removing its character code from memory. Rather, it does
not include white space characters in the count that it returns as the length of the range of text for which
you call it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

52 Deprecated in Mac OS X v10.4
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated QuickDraw Text Reference (Not Recommended) Functions

This table describes the changes to QuickDraw Text Reference.

NotesDate

Made formatting changes.2006-07-13

Added information on deprecated functions.2006-07-24

Added abstracts for two functions: stdtext (page 41) and
StandardGlyphs (page 40).

2003-04-01

Updated formatting.2002-12-03

53
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

54
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

Caret Direction Constants 11
CharExtra function (Deprecated in Mac OS X v10.4) 17
CharToPixel function (Deprecated in Mac OS X v10.4)

18
CharWidth function (Deprecated in Mac OS X v10.4) 20

D

DisposeStyleRunDirectionUPP function (Deprecated
in Mac OS X v10.4) 21

DrawChar function (Deprecated in Mac OS X v10.4) 21
DrawJustified function (Deprecated in Mac OS X v10.4)

22
DrawString function (Deprecated in Mac OS X v10.4) 24
DrawText function (Deprecated in Mac OS X v10.4) 25

F

FontInfo structure 9
FormatOrder data type 10

G

GetFontInfo function (Deprecated in Mac OS X v10.4)
26

GetFormatOrder function (Deprecated in Mac OS X
v10.4) 27

H

HiliteText function (Deprecated in Mac OS X v10.4) 28

I

InvokeStyleRunDirectionUPP function (Deprecated
in Mac OS X v10.4) 29

K

kHilite constant 11

L

leftCaret constant 11
leftStyleRun constant 14

M

MeasureJustified function (Deprecated in Mac OS X
v10.4) 30

MeasureText function (Deprecated in Mac OS X v10.4)
32

middleStyleRun constant 14

N

NewStyleRunDirectionUPP function (Deprecated in
Mac OS X v10.4) 34

notTruncated constant 12

O

Obsolete Caret Placement Values 13
onlyStyleRun constant 14

55
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Index

P

PixelToChar function (Deprecated in Mac OS X v10.4)
34

PortionLine function (Deprecated in Mac OS X v10.4)
37

R

rightCaret constant 11
rightStyleRun constant 14

S

smBreakChar constant 13
smBreakOverflow constant 13
smBreakWord constant 13
smHilite constant 13
smLeftCaret constant 13
smLeftStyleRun constant 14
smMiddleStyleRun constant 14
smNotTruncated constant 12
smOnlyStyleRun constant 14
smRightCaret constant 13
smRightStyleRun constant 14
smTruncated constant 12
smTruncEnd constant 15
smTruncErr constant 12
smTruncMiddle constant 16
SpaceExtra function (Deprecated in Mac OS X v10.4) 39
StandardGlyphs function (Deprecated in Mac OS X

v10.4) 40
StdText function (Deprecated in Mac OS X v10.4) 40
stdtext function (Deprecated in Mac OS X v10.4) 41
StdTxMeas function (Deprecated in Mac OS X v10.4) 41
StringWidth function (Deprecated in Mac OS X v10.4)

43
Style Line Break Values 12
Style Run Position Constants 13
StyledLineBreak function (Deprecated in Mac OS X

v10.4) 44
StyleRunDirectionProcPtr callback 8
StyleRunDirectionUPP data type 10

T

TextFace function (Deprecated in Mac OS X v10.4) 46
TextFont function (Deprecated in Mac OS X v10.4) 46

TextMode function (Deprecated in Mac OS X v10.4) 47
TextSize function (Deprecated in Mac OS X v10.4) 48
TextWidth function (Deprecated in Mac OS X v10.4) 48
tfAntiAlias constant 15
tfUnicode constant 15
truncated constant 12
Truncation Positions 15
Truncation Status Values 11
truncEnd constant 15
truncErr constant 12
truncMiddle constant 15
TruncString function (Deprecated in Mac OS X v10.4)

50
TruncText function (Deprecated in Mac OS X v10.4) 50
txFlag Constants 15

V

VisibleLength function (Deprecated in Mac OS X v10.4)
51

56
Legacy Document | 2006-07-13 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	QuickDraw Text Reference
	Contents
	QuickDraw Text Reference (Not Recommended)
	Overview
	Functions by Task
	Determining the Caret Position, and Selecting and Highlighting Text
	Drawing Text
	Laying Out a Line of Text
	Measuring Text
	Setting Text Characteristics
	Truncating Strings and Breaking Lines
	Working With Universal Procedure Pointers

	Callbacks
	StyleRunDirectionProcPtr

	Data Types
	FontInfo
	FormatOrder
	StyleRunDirectionUPP

	Constants
	Caret Direction Constants
	Truncation Status Values
	Style Line Break Values
	Obsolete Caret Placement Values
	Style Run Position Constants
	txFlag Constants
	Truncation Positions

	Appendix A: Deprecated QuickDraw Text Reference (Not Recommended) Functions
	Deprecated in Mac OS X v10.4
	CharExtra
	CharToPixel
	CharWidth
	DisposeStyleRunDirectionUPP
	DrawChar
	DrawJustified
	DrawString
	DrawText
	GetFontInfo
	GetFormatOrder
	HiliteText
	InvokeStyleRunDirectionUPP
	MeasureJustified
	MeasureText
	NewStyleRunDirectionUPP
	PixelToChar
	PortionLine
	SpaceExtra
	StandardGlyphs
	StdText
	stdtext
	StdTxMeas
	StringWidth
	StyledLineBreak
	TextFace
	TextFont
	TextMode
	TextSize
	TextWidth
	TruncString
	TruncText
	VisibleLength

	Revision History
	Index
	C
	D
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V

