
Resource Manager Reference
Carbon > File Management

2007-10-31

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Resource Manager Reference 7

Overview 7
Functions by Task 7

Checking for Errors 7
Closing Resource Forks 7
Counting and Listing Resource Types 7
Creating Resource Files and Forks 8
Disposing of Resources 8
Getting a Unique Resource ID 9
Getting and Setting Resource Fork Attributes 9
Getting and Setting Resource Information 9
Getting and Setting the Current Resource File 9
Getting Resource Sizes 9
Managing the Resource Chain 10
Modifying Resources 10
Opening Resource Forks 10
Reading and Writing Partial Resources 11
Reading Resources Into Memory 11
Writing to Resource Forks 11
Not Recommended 11

Functions 12
AddResource 12
ChangedResource 13
CloseResFile 14
Count1Resources 15
Count1Types 15
CountResources 16
CountTypes 16
CurResFile 16
DetachResource 17
DetachResourceFile 18
DisposeResErrUPP 18
FSCreateResFile 18
FSCreateResourceFile 19
FSCreateResourceFork 20
FSOpenOrphanResFile 21
FSOpenResFile 21
FSOpenResourceFile 22
FSResourceFileAlreadyOpen 22
Get1IndResource 23
Get1IndType 24

3
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Get1NamedResource 24
Get1Resource 25
GetIndResource 26
GetIndType 27
GetMaxResourceSize 28
GetNamedResource 28
GetNextFOND 29
GetNextResourceFile 29
GetResAttrs 30
GetResFileAttrs 30
GetResInfo 31
GetResource 31
GetResourceSizeOnDisk 32
GetTopResourceFile 33
HomeResFile 33
InsertResourceFile 34
InvokeResErrUPP 34
LoadResource 35
NewResErrUPP 35
ReadPartialResource 36
ReleaseResource 37
RemoveResource 37
ResError 38
SetResAttrs 39
SetResFileAttrs 39
SetResInfo 40
SetResLoad 41
SetResourceSize 42
SetResPurge 43
Unique1ID 43
UniqueID 44
UpdateResFile 45
UseResFile 46
WritePartialResource 47
WriteResource 48

Callbacks 49
ResErrProcPtr 49
ResourceEndianFilterPtr 49

Data Types 49
ResAttributes 49
ResErrUPP 50
ResFileAttributes 50
ResFileRefNum 50
ResID 50
ResType 51

Constants 51

4
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Reference Number Constants 51
Resource Attribute Bits 52
Resource Attribute Masks 53
Resource Chain Location 54
Resource Fork Attribute Bits 55
Resource Fork Attribute Masks 56

Result Codes 56

Appendix A Deprecated Resource Manager Functions 59

Deprecated in Mac OS X v10.5 59
FSpCreateResFile 59
FSpOpenOrphanResFile 59
FSpOpenResFile 60
FSpResourceFileAlreadyOpen 62
HCreateResFile 62
HOpenResFile 63
OpenRFPerm 64

Document Revision History 67

Index 69

5
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

6
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: CoreServices/CoreServices.h

Declared in IOMacOSTypes.h
Resources.h

Overview

The Resource Manager allows applications to create, delete, open, read, modify, and write resources, get
information about them, and alter the Resource Manager’s search path. A resource is data of any kind stored
in a defined format in a resource file. The Resource Manager keeps track of resources in memory and provides
functions for the proper management of the resource chain. In Mac OS X, you should store resources in the
data fork of a resource file.

Carbon applications have used Resource Manager resources to store the descriptions for user interface
elements such as menus, windows, dialogs, controls, and icons. In addition, applications have used resources
to store variable settings, such as the location of a document window at the time the user closes the window.
When the user opens the document again, the application reads the information in the appropriate resource
and restores the window to its previous location.

Functions by Task

Checking for Errors

ResError (page 38)
Determines what error occurred, if any, after calling a Resource Manager function.

Closing Resource Forks

CloseResFile (page 14)
Closes a resource fork before your application terminates.

Counting and Listing Resource Types

Count1Resources (page 15)
Returns the total number of resources of a given type in the current resource file.

Overview 7
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Count1Types (page 15)
Returns the number of resource types in the current resource file.

CountResources (page 16)
Returns the total number of available resources of a given type.

CountTypes (page 16)
Returns the number of resource types in all resource forks open to your application.

Get1IndResource (page 23)
Returns a handle to a resource of a given type in the current resource file.

Get1IndType (page 24)
Gets a resource types available in the current resource file.

GetIndResource (page 26)
Returns a handle to a resource of a given type in resource forks open to your application.

GetIndType (page 27)
Gets a resource type available in resource forks open to your application.

Creating Resource Files and Forks

FSCreateResourceFile (page 19)
Creates a file with a named fork for storing resource data.

FSCreateResourceFork (page 20)
Creates a named fork for storing resource data.

FSCreateResFile (page 18)
Creates a file with an empty resource fork.

FSpCreateResFile (page 59) Deprecated in Mac OS X v10.5
Creates an empty resource fork in a new or existing file. (Deprecated. Use
FSCreateResourceFile (page 19) instead.)

HCreateResFile (page 62) Deprecated in Mac OS X v10.5
Creates an empty resource fork, when the FSpCreateResFile function is not available. (Deprecated.
Use FSCreateResourceFile (page 19) instead.)

Disposing of Resources

DetachResource (page 17)
Sets the value of a resource’s handle in the resource map in memory to NULL while keeping the
resource data in memory.

ReleaseResource (page 37)
Releases the memory a resource occupies when you have finished using it.

RemoveResource (page 37)
Removes a resource’s entry from the current resource file’s resource map in memory.

8 Functions by Task
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Getting a Unique Resource ID

Unique1ID (page 43)
Gets a resource ID that’s unique with respect to resources in the current resource file.

UniqueID (page 44)
Gets a unique resource ID for a resource.

Getting and Setting Resource Fork Attributes

GetResFileAttrs (page 30)
Gets the attributes of a resource fork.

SetResFileAttrs (page 39)
Sets a resource fork’s attributes.

Getting and Setting Resource Information

GetResAttrs (page 30)
Gets a resource’s attributes.

GetResInfo (page 31)
Gets a resource’s resource ID, resource type, and resource name.

SetResAttrs (page 39)
Sets a resource’s attributes in the resource map in memory.

SetResInfo (page 40)
Sets the name and resource ID of a resource.

Getting and Setting the Current Resource File

CurResFile (page 16)
Gets the file reference number of the current resource file.

HomeResFile (page 33)
Gets the file reference number associated with a particular resource.

UseResFile (page 46)
Sets the current resource file.

Getting Resource Sizes

GetMaxResourceSize (page 28)
Returns the approximate size of a resource.

GetResourceSizeOnDisk (page 32)
Returns the exact size of a resource.

Functions by Task 9
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Managing the Resource Chain

InsertResourceFile (page 34)
Inserts a resource file into the current resource chain at the specified location.

DetachResourceFile (page 18)
Removes a resource file from the resource chain.

GetNextResourceFile (page 29)
Retrieves the next resource file in the resource chain.

GetTopResourceFile (page 33)
Retrieves the topmost resource file in the current resource chain.

Modifying Resources

AddResource (page 12)
Adds a resource to the current resource file’s resource map in memory.

ChangedResource (page 13)
Sets a flag in the resource’s resource map entry in memory to show that you’ve made changes to a
resource’s data or to an entry in a resource map.

Opening Resource Forks

FSOpenResourceFile (page 22)
Opens a named fork in an existing resource file.

FSOpenOrphanResFile (page 21)
Opens a resource file that is persistent across all contexts.

FSOpenResFile (page 21)
Opens the resource fork in a file specified with an FSRef structure.

FSResourceFileAlreadyOpen (page 22)
Checks whether a resource file is open.

FSpOpenOrphanResFile (page 59) Deprecated in Mac OS X v10.5
Opens a resource file that is persistent across all contexts. (Deprecated. Use
FSOpenOrphanResFile (page 21) instead.)

FSpOpenResFile (page 60) Deprecated in Mac OS X v10.5
Opens the resource fork in a file specified with an FSSpec structure. (Deprecated. Use
FSOpenResourceFile (page 22) instead.)

FSpResourceFileAlreadyOpen (page 62) Deprecated in Mac OS X v10.5
Checks whether a resource file is open. (Deprecated. Use FSResourceFileAlreadyOpen (page 22)
instead.)

HOpenResFile (page 63) Deprecated in Mac OS X v10.5
Opens a file’s resource fork, when the FSpOpenResFile function is not available. (Deprecated. Use
FSOpenResourceFile (page 22) instead.)

OpenRFPerm (page 64) Deprecated in Mac OS X v10.5
Opens a file’s resource fork, when the FSpOpenResFile and HOpenResFile functions are not
available. (Deprecated. Use FSOpenResourceFile (page 22) instead.)

10 Functions by Task
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Reading and Writing Partial Resources

ReadPartialResource (page 36)
Reads part of a resource into memory and work with a small subsection of a large resource.

SetResourceSize (page 42)
Sets the size of a resource on disk.

WritePartialResource (page 47)
Writes part of a resource to disk when working with a small subsection of a large resource.

Reading Resources Into Memory

Get1NamedResource (page 24)
Gets a named resource in the current resource file.

Get1Resource (page 25)
Gets resource data for a resource in the current resource file.

GetNamedResource (page 28)
Gets a named resource.

GetResource (page 31)
Gets resource data for a resource specified by resource type and resource ID.

LoadResource (page 35)
Gets resource data after you’ve called the SetResLoad function with the load parameter set to
FALSE or when the resource is purgeable.

SetResLoad (page 41)
Enables and disables automatic loading of resource data into memory for functions that return handles
to resources.

Writing to Resource Forks

SetResPurge (page 43)
Tells the Memory Manager to pass the handle of a resource to the Resource Manager before purging
the data specified by that handle.

UpdateResFile (page 45)
Updates the resource map and resource data for a resource fork without closing it.

WriteResource (page 48)
Writes resource data in memory immediately to a file’s resource fork.

Not Recommended

GetNextFOND (page 29)
Gets the next FOND handle.

InvokeResErrUPP (page 34)
Calls your callback function.

NewResErrUPP (page 35)
Creates a new universal procedure pointer (UPP) to your callback function.

Functions by Task 11
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

DisposeResErrUPP (page 18)
Disposes of the universal procedure pointer (UPP) to your callback function.

Functions

AddResource
Adds a resource to the current resource file’s resource map in memory.

void AddResource (
 Handle theData,
 ResType theType,
 ResID theID,
 ConstStr255Param name
);

Parameters
theData

A handle to data in memory to be added as a resource to the current resource file (not a handle to
an existing resource). If the value of this parameter is an empty handle (that is, a handle whose master
pointer is set to NULL), the Resource Manager writes zero-length resource data to disk when it updates
the resource. If its value is either NULL or a handle to an existing resource, the function does nothing,
and the ResError (page 38) function returns the result code addResFailed. If the resource map
becomes too large to fit in memory, the function does nothing, and ResError returns an appropriate
result code. The same is true if the resource data in memory can’t be written to the resource fork (for
example, because the disk is full).

theType
The resource type of the resource to be added.

theID
The resource ID of the resource to be added.

name
The name of the resource to be added.

Discussion
This function sets the resChanged attribute to 1 it does not set any of the resource’s other attributes—that
is, all other attributes are set to 0. If the resChanged attribute of a resource has been set and your application
calls the UpdateResFile (page 45) function or quits, the Resource Manager writes both the resource map
and the resource data for that resource to the resource fork of the corresponding file on disk. If the
resChanged attribute for a resource has been set and your application calls the WriteResource (page 48)
function, the Resource Manager writes only the resource data for that resource to disk.

If you add a resource to the current resource file, the Resource Manager writes the entire resource map to
disk when it updates the file. If you want any of your changes to the resource map or resource data to be
temporary, you must restore the original information before the Resource Manager updates the file on disk.

The function doesn’t verify whether the resource ID you pass in the parameter theID is already assigned to
another resource of the same type. You should call the UniqueID (page 44) or Unique1ID (page 43) function
to get a unique resource ID before adding a resource with this function.

12 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

When your application calls this function, the Resource Manager attempts to reserve disk space for the new
resource. If the new resource data can’t be written to the resource fork (for example, if there’s not enough
room on disk), the resChanged attribute is not set to 1. If this is the case and you call UpdateResFile or
WriteResource, the Resource Manager won’t know that resource data has been added. Thus, the function
won’t write the new resource data to the resource fork and won’t return an error. For this reason, always
make sure that the ResError function returns the result code noErr after a call to AddResource.

To copy an existing resource, get a handle to the resource you want to copy, call the DetachResource (page
17) function, then call AddResource. To add the same resource data to several different resource forks, call
the Memory Manager function HandToHand to duplicate the handle for each resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ChangedResource
Sets a flag in the resource’s resource map entry in memory to show that you’ve made changes to a resource’s
data or to an entry in a resource map.

void ChangedResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose data you’ve changed. The function sets the resChanged attribute
for that resource in the resource map in memory. If the resChanged attribute for a resource has been
set and your application calls the UpdateResFile (page 45) function or quits, the Resource Manager
writes the resource data for that resource (and for all other resources whose resChanged attribute
is set) and the entire resource map to the resource fork of the corresponding file on disk. If the
resChanged attribute for a resource has been set and your application calls the WriteResource (page
48) function, the Resource Manager writes only the resource data for that resource to disk.

If the given handle isn’t a handle to a resource, if the modified resource data can’t be written to the
resource fork, or if the resProtected attribute is set for the modified resource, the function does
nothing. To find out whether any of these errors occurred, call the ResError (page 38) function.

Discussion
If you change information in the resource map with a call to the SetResInfo (page 40) or SetResAttrs (page
39) function and then call ChangedResource and UpdateResFile, the Resource Manager still writes both
the resource map and the resource data to disk. If you want any of your changes to the resource map or
resource data to be temporary, you must restore the original information before the Resource Manager
updates the resource fork on disk.

After writing a resource to disk, the Resource Manager clears the resource’s resChanged attribute in the
appropriate entry of the resource map in memory.

When your application calls this function, the Resource Manager attempts to reserve enough disk space to
contain the changed resource. The function reserves space every time you call it, but the resource is not
actually written until you call WriteResource or UpdateResFile. Thus, if you call ChangedResource

Functions 13
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

several times before the resource is actually written, the function reserves much more space than is needed.
If the resource is large, you may unexpectedly run out of disk space. When the resource is actually written,
the file’s end-of-file (EOF) is set correctly, and the next call to ChangedResource will work as expected.

If the modified resource data can’t be written to the resource fork (for example, if there’s not enough room
on disk), the resChanged attribute is not set to 1. If this is the case and you call UpdateResFile or
WriteResource, the Resource Manager won’t know that the resource data has been changed. Thus, the
function won’t write the modified resource data to the resource fork and won’t return an error. For this reason,
always make sure that the ResError function returns the result code noErr after a call to ChangedResource.

If your application frequently changes the contents of resources (especially large resources), you should call
WriteResource or UpdateResFile immediately after calling ChangedResource.

If you need to make changes to a purgeable resource using functions that may cause the Memory Manager
to purge the resource, you should make the resource temporarily not purgeable. To do so, use the Memory
Manager functions HGetState, HNoPurge, and HSetState to make sure the resource data remains in
memory while you change it and until the resource data is written to disk. (You can’t use the SetResAttrs
function for this purpose, because the changes don’t take effect immediately.) First call HGetState and
HNoPurge, then change the resource as necessary. To make a change to a resource permanent, use
ChangedResource and UpdateResFile or WriteResource; then call HSetState when you’re finished.
Or, instead of calling WriteResource to write the resource data immediately, you can call the
SetResPurge (page 43) function with the install parameter set to TRUE before making changes to
purgeable resource data.

If your application doesn’t make its resources purgeable, or if the changes you are making to a purgeable
resource don’t involve functions that may cause the resource to be purged, you don’t need to take these
precautions

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

CloseResFile
Closes a resource fork before your application terminates.

void CloseResFile (
 ResFileRefNum refNum
);

Parameters
refNum

The file reference number for the resource fork to close. If this parameter does not contain a file
reference number for a file whose resource fork is open, the function does nothing, and the
ResError (page 38) function returns the result code resFNotFound. If the value of this parameter
is 0, it represents the System file and is ignored. You cannot close the System file’s resource fork.

Discussion
This function performs four tasks. First, it updates the file by calling the UpdateResFile (page 45) function.
Second, it releases the memory occupied by each resource in the resource fork by calling the DisposeHandle
function. Third, it releases the memory occupied by the resource map. The fourth task is to close the resource
fork.

14 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

When your application terminates, the Resource Manager automatically closes every resource fork open to
your application except the System file’s resource fork. You need to call this function only if you want to close
a resource fork before your application terminates.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

Count1Resources
Returns the total number of resources of a given type in the current resource file.

ResourceCount Count1Resources (
 ResType theType
);

Parameters
theType

The resource type of the resources to count.

Return Value
The total number of resources of the given type in the current resource file.

Discussion
To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Count1Types
Returns the number of resource types in the current resource file.

ResourceCount Count1Types (
 void
);

Return Value
The total number of unique resource types in the current resource file.

Discussion
To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Functions 15
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Declared In
Resources.h

CountResources
Returns the total number of available resources of a given type.

ResourceCount CountResources (
 ResType theType
);

Parameters
theType

A resource type.

Return Value
The total number of resources of the given type in all resource forks open to your application.

Discussion
To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

CountTypes
Returns the number of resource types in all resource forks open to your application.

ResourceCount CountTypes (
 void
);

Return Value
The total number of unique resource types in all resource forks open to your application.

Discussion
To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

CurResFile
Gets the file reference number of the current resource file.

16 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

ResFileRefNum CurResFile (
 void
);

Return Value
The file reference number associated with the current resource file. You can call this function when your
application starts up (before opening the resource fork of any other file) to get the file reference number of
your application’s resource fork. If the current resource file is the System file, the function returns the actual
file reference number. You can use this number or 0 with functions that take a file reference number for the
System file. All Resource Manager functions recognize both 0 and the actual file reference number as referring
to the System file.

Discussion
Most of the Resource Manager functions assume that the current resource file is the file on whose resource
fork they should operate or, in the case of a search, the file where they should begin. In general, the current
resource file is the last one whose resource fork your application opened unless you specify otherwise.

To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

DetachResource
Sets the value of a resource’s handle in the resource map in memory to NULL while keeping the resource
data in memory.

void DetachResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource which you wish to detach. If this parameter doesn’t contain a handle to a
resource or if the resource’s resChanged attribute is set, the function does nothing. To determine
whether either of these errors occurred, call the ResError (page 38) function.

Discussion
After this call, the Resource Manager no longer recognizes the handle as a handle to a resource. However,
this function does not release the memory used for the resource data, and the master pointer is still valid.
Thus, you can access the resource data directly by using the handle.

If your application subsequently calls a Resource Manager function to get the released resource, the Resource
Manager assigns a new handle. You can use DetachResource if you want to access the resource data directly
without using Resource Manager functions. You can also use the DetachResource function to keep resource
data in memory after closing a resource fork.

To copy a resource and install an entry for the duplicate in the resource map, call DetachResource, then
call the AddResource (page 12) function using a different resource ID.

Functions 17
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Special Considerations

Do not use this function to detach a System resource that might be shared by several applications.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData

Declared In
Resources.h

DetachResourceFile
Removes a resource file from the resource chain.

OSErr DetachResourceFile (
 ResFileRefNum refNum
);

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Discussion
If the file is not currently in the resource chain, this returns resNotFound. Otherwise, the resource file is
removed from the resource chain.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

DisposeResErrUPP
Disposes of the universal procedure pointer (UPP) to your callback function.

void DisposeResErrUPP (
 ResErrUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSCreateResFile
Creates a file with an empty resource fork.

18 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

void FSCreateResFile (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 FSRef *newRef,
 FSSpec *newSpec
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSCreateResourceFile
Creates a file with a named fork for storing resource data.

OSErr FSCreateResourceFile (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 FSRef *newRef,
 FSSpec *newSpec
);

Parameters
parentRef

A pointer to the directory in which the resource file is to be created.

nameLength
The number of Unicode characters in the file's name.

name
A pointer to the Unicode name of the new resource file.

whichInfo
The catalog information fields to set. See the File Manager documentation for a description of the
FSCatalogInfoBitmap data type.

catalogInfo
A pointer to the values for the catalog information fields. This pointer may be set to NULL. See the
File Manager documentation for a description of the FSCatalogInfo data type.

forkNameLength
The number of Unicode characters in the fork’s name.

Functions 19
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

forkName
A pointer to the Unicode name of the fork to initialize. If you pass NULL in this parameter, the data
fork is used.

newRef
A pointer to a variable allocated by the caller, or NULL. On return, the new resource file.

newSpec
A pointer to a variable allocated by the caller, or NULL. On return, the new resource file.

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Discussion
This function creates a new file and initializes the specified fork for storing resource data. If you don’t specify
the fork name, the data fork is used. This function makes it possible to store resources in the data fork of a
file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSCreateResourceFork
Creates a named fork for storing resource data.

OSErr FSCreateResourceFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 UInt32 flags
);

Parameters
ref

A pointer to the file to which to add the fork.

forkNameLength
The number of Unicode characters in the fork’s name.

forkName
A pointer to the Unicode name of the fork to initialize. If you pass NULL in this parameter, the data
fork is used.

flags
A value of type UInt32. You should pass 0.

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Discussion
This function creates the specified fork in an existing file and initializes the fork for storing resources. If the
named fork already exists, this function does nothing and returns errFSForkExists. If you don’t specify
the fork name, the data fork is used. This function makes it possible to store resources in the data fork of a
file.

20 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Resources.h

FSOpenOrphanResFile
Opens a resource file that is persistent across all contexts.

OSErr FSOpenOrphanResFile (
 const FSRef *ref,
 SignedByte permission,
 ResFileRefNum *refNum
);

Parameters
ref

A pointer to the resource file to open.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

refNum
A pointer to a variable allocated by the caller. On return, the reference number for accessing the open
fork.

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Discussion
This function loads a map and all preloaded resources into the system context and detaches the specified
file from the context in which it was opened. If the file is already in the resource chain and a new instance is
not opened, this function returns paramErr. Use this function with care, as it may fail if the map is very large
or many resources are preloaded.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Resources.h

FSOpenResFile
Opens the resource fork in a file specified with an FSRef structure.

ResFileRefNum FSOpenResFile (
 const FSRef *ref,
 SInt8 permission
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Functions 21
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSOpenResourceFile
Opens a named fork in an existing resource file.

OSErr FSOpenResourceFile (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 SInt8 permissions,
 ResFileRefNum *refNum
);

Parameters
ref

A pointer to the file containing the fork to open.

forkNameLength
The number of Unicode characters in the fork’s name.

forkName
A pointer to the Unicode name of the fork to open. If you pass NULL in this parameter, the data fork
is used.

permissions
A constant indicating the type of access with which to open the fork. For a description of the types
of access you can request, see File Access Permission Constants in File Manager Reference.

refNum
A pointer to a variable allocated by the caller. On return, the reference number for accessing the open
fork.

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Discussion
This function allows any named fork of a file to be used for storing resources. Passing in a null fork name will
result in the data fork being used. You should use a file’s data fork to store resource data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSResourceFileAlreadyOpen
Checks whether a resource file is open.

22 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Boolean FSResourceFileAlreadyOpen (
 const FSRef *resourceFileRef,
 Boolean *inChain,
 ResFileRefNum *refNum
);

Parameters
resourceFileRef

The resource file to check.

inChain
A pointer to a variable allocated by the caller. On return, true if the resource file is in the resource
chain, false otherwise.

refNum
A pointer to a variable allocated by the caller. On return, the reference number of the file if it is open.

Return Value
This function returns true if the resource file is already open and known by the Resource Manager—for
example, it is either in the current resource chain or it is a detached resource file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1IndResource
Returns a handle to a resource of a given type in the current resource file.

Handle Get1IndResource (
 ResType theType,
 ResourceIndex index
);

Parameters
theType

A resource type.

index
An integer ranging from 1 to the number of resources of a given type returned by the
Count1Resources (page 15) function, which is the number of resources of that type in the current
resource file.

Return Value
A handle to a resource of the given type. If you call Get1IndResource repeatedly over the entire range of
the index, it returns handles to all resources of the given type in the current resource file. If you provide an
index that is either 0 or negative, the function returns NULL, and the ResError (page 38) function returns
the result code resNotFound. If the given index is larger than the value returned by Count1Resources (page
15), Get1IndResource (page 23) returns NULL, and ResError (page 38) returns the result code
resNotFound. If the resource to be read won’t fit into memory, the function returns NULL, and
ResError (page 38) returns the appropriate result code.

Functions 23
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Discussion
The function reads the resource data into memory if it’s not already there, unless you’ve called the
SetResLoad (page 41) function with the load parameter set to FALSE. If you’ve called SetResLoad with
the load parameter set to FALSE and the data isn’t already in memory, Get1IndResource (page 23) returns
an empty handle (that is, a handle whose master pointer is set to NULL). This can also happen if you read
resource data for a purgeable resource into memory and then call SetResLoad (page 41) with the load
parameter set to FALSE. If the resource data is later purged and you call the Get1IndResource (page 23)
function, the function returns an empty handle. You should test for an empty handle in these situations. To
make the handle a valid handle to resource data in memory, you can call the LoadResource (page 35)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1IndType
Gets a resource types available in the current resource file.

void Get1IndType (
 ResType *theType,
 ResourceIndex index
);

Parameters
theType

On return, the resource type with the specified index in the current resource file.

You can call this function repeatedly over the entire range of the index to get all the resource types
available in the current resource file. If the given index isn’t in the range from 1 to the number of
resource types as returned by Count1Types, this parameter contains four null characters (ASCII code
0).

index
An integer ranging from 1 to the number of resource types in the current resource file, as returned
by the Count1Types (page 15) function.

Discussion
To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1NamedResource
Gets a named resource in the current resource file.

24 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Handle Get1NamedResource (
 ResType theType,
 ConstStr255Param name
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

name
A name that uniquely identifies the resource about which you wish to retrieve data.

Return Value
If the function finds an entry for the resource in the current resource file’s resource map and the entry contains
a valid handle, the function returns that handle. If the entry contains a handle whose value is NULL, and if
you haven’t called the SetResLoad (page 41) function with the load parameter set to FALSE,
Get1NamedResource attempts to read the resource into memory. If it can’t find the resource data, the
function returns NULL, and the ResError (page 38) function returns the result code resNotFound. The
Get1NamedResource function also returns NULL if the resource data to be read into memory won’t fit, in
which case ResError returns an appropriate Memory Manager result code.

If you call this function with a resource type that can’t be found in the resource map of the current resource
file, the function returns NULL, but ResError returns the result code noErr. You should always check that
the value of the returned handle is not NULL.

Discussion
The function searches the current resource file’s resource map in memory for the specified resource. You can
change the search order by calling the UseResFile (page 46) function before Get1NamedResource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1Resource
Gets resource data for a resource in the current resource file.

Handle Get1Resource (
 ResType theType,
 ResID theID
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

theID
An integer that uniquely identifies the resource about which you wish to retrieve data.

Return Value
If the function finds an entry for the resource in the current resource file’s resource map and the entry contains
a valid handle, it returns that handle. If the entry contains a handle whose value is NULL, and if you haven’t
called the SetResLoad (page 41) function with the load parameter set to FALSE, Get1Resource attempts
to read the resource into memory.

Functions 25
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

If the function can’t find the resource data, it returns NULL, and ResError returns the result code
resNotFound. The Get1Resource function also returns NULL if the resource data to be read into memory
won’t fit, in which case ResError returns an appropriate Memory Manager result code.

If you call this function with a resource type that can’t be found in the resource map of the current resource
file, the function returns NULL, but ResError returns the result code noErr. You should always check that
the value of the returned handle is not NULL.

Discussion
The function searches the current resource file’s resource map in memory for the specified resource.

You can change the resource map search order by calling the UseResFile (page 46) function before
Get1Resource.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData

Declared In
Resources.h

GetIndResource
Returns a handle to a resource of a given type in resource forks open to your application.

Handle GetIndResource (
 ResType theType,
 ResourceIndex index
);

Parameters
theType

A resource type.

index
An integer ranging from 1 to the number of resources of a given type returned by the
CountResources (page 16) function, which is the number of resources of that type in all resource
forks open to your application.

Return Value
A handle to a resource of the given type. If you call this function repeatedly over the entire range of the
index, it returns handles to all resources of the given type in all resource forks open to your application. The
function returns handles for all resources in the most recently opened resource fork first, and then for those
in resource forks opened earlier in reverse chronological order. If you provide an index to that is either 0 or
negative, the function returns NULL, and the ResError (page 38) function returns the result code
resNotFound. If the given index is larger than the value returned by CountResources, the function returns
NULL, and ResError (page 38) returns the result code resNotFound. If the resource to be read won’t fit
into memory, the function returns NULL, and ResError (page 38) returns the appropriate result code.

Discussion
This function reads the resource data into memory if it’s not already there, unless you’ve called the
SetResLoad (page 41) function with the load parameter set to FALSE.

26 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

If you’ve called SetResLoad (page 41) with the load parameter set to FALSE and the data isn’t already in
memory, the function returns an empty handle (a handle whose master pointer is set to NULL). This can also
happen if you read resource data for a purgeable resource into memory and then call SetResLoad with the
load parameter set to FALSE. If the resource data is later purged and you call the GetIndResource function,
the function returns an empty handle. You should test for an empty handle in these situations. To make the
handle a valid handle to resource data in memory, you can call the LoadResource (page 35) function.

The UseResFile (page 46) function affects which file the Resource Manager searches first when looking
for a particular resource; this is not the case when you use GetIndResource to get an indexed resource.

If you want to find out how many resources of a given type are in a particular resource fork, set the current
resource file to that resource fork, then call the Count1Resources (page 15) function and use the
Get1IndResource (page 23) function to get handles to the resources of that type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetIndType
Gets a resource type available in resource forks open to your application.

void GetIndType (
 ResType *theType,
 ResourceIndex index
);

Parameters
theType

On return, a pointer to the resource type for the specified index among all the resource forks open
to your application.

You can call this function repeatedly over the entire range of the index to get all the resource types
available in all resource forks open to your application. If the given index isn’t in the range from 1 to
the number of resource types as returned by CountTypes, this parameter contains four null characters
(ASCII code 0).

index
An integer ranging from 1 to the number of resource types in all resource forks open to your
application, as returned by CountTypes (page 16) function.

Discussion
To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Functions 27
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

GetMaxResourceSize
Returns the approximate size of a resource.

long GetMaxResourceSize (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose size you wish to retrieve.

Return Value
The approximate size, in bytes, of the resource. Unlike the GetResourceSizeOnDisk (page 32) function,
this function does not check the resource on disk instead, it either checks the resource size in memory or, if
the resource is not in memory, calculates its size on the basis of information in the resource map in memory.
This gives you an approximate size for the resource that you can count on as the resource’s maximum size.
It’s possible that the resource is actually smaller than the offsets in the resource map indicate because the
file has not yet been compacted. If you want the exact size of a resource on disk, either call
GetResourceSizeOnDisk or call the UpdateResFile (page 45) function before calling
GetMaxResourceSize. If the handle isn’t a handle to a valid resource, the function returns –1, and the
ResError (page 38) function returns the result code resNotFound.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetNamedResource
Gets a named resource.

Handle GetNamedResource (
 ResType theType,
 ConstStr255Param name
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

name
A name that uniquely identifies the resource about which you wish to retrieve data. Strings passed
in this parameter are case-sensitive.

Return Value
If the function finds the specified resource entry in one of the resource maps and the entry contains a valid
handle, the function returns that handle. If the entry contains a handle whose value is NULL, and if you haven’t
called the SetResLoad (page 41) function with the load parameter set to FALSE, GetNamedResource
attempts to read the resource into memory.

If the function can’t find the resource data, it returns NULL, and the ResError (page 38) function returns
the result code resNotFound. The function also returns NULL if the resource data to be read into memory
won’t fit, in which case ResError returns an appropriate Memory Manager result code. If you call

28 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

GetNamedResource with a resource type that can’t be found in any of the resource maps of the open
resource forks, the function returns NULL as well, but ResError returns the result code noErr. You should
always check that the value of the returned handle is not NULL.

Discussion
The function searches the resource maps in memory for the specified resource. The resource maps in memory,
which represent all the open resource forks, are arranged as a linked list. When the function searches this
list, it starts with the current resource file and progresses through the list in order (that is, in reverse
chronological order in which the resource forks were opened) until it finds the resource’s entry in one of the
resource maps.

You can change the resource map search order by calling the UseResFile (page 46) function before
GetNamedResource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetNextFOND
Gets the next FOND handle.

Handle GetNextFOND (
 Handle fondHandle
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetNextResourceFile
Retrieves the next resource file in the resource chain.

OSErr GetNextResourceFile (
 ResFileRefNum curRefNum,
 ResFileRefNum *nextRefNum
);

Parameters
curRefNum

A value of type SInt16 representing the current reference number of a resource file.

nextRefNum
A pointer to a value of type SInt16. On return, this points to the next resource file in the resource
chain.

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Functions 29
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Discussion
GetNextResourceFile can be used to iterate over resource files in the resource chain. By passing a valid
reference number in the curRefNum parameter, the function returns the reference number of the next file
in the resource chain. If the resource file specified by the curRefNum parameter is not found in the resource
chain, the GetNextResourceFile function returns the error code resFNotFound. When the end of the
chain is reached GetNextResourceFile returns noErr and the value of the nextRefNum parameter is NIL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResAttrs
Gets a resource’s attributes.

ResAttributes GetResAttrs (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose attributes you wish to retrieve. If the value of this parameter isn’t a
handle to a valid resource, the function does nothing, and the ResError (page 38) function returns
the result code resNotFound.

Return Value
The resource’s attributes as recorded in its entry in the resource map in memory. The function returns the
resource’s attributes in the low-order byte of the function result. Each attribute is identified by a specific bit
in the low-order byte. If the bit corresponding to an attribute contains 1, then that attribute is set if the bit
contains 0, then that attribute is not set.

Discussion
To change a resource’s attributes in the resource map in memory, use the SetResAttrs (page 39) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResFileAttrs
Gets the attributes of a resource fork.

ResFileAttributes GetResFileAttrs (
 ResFileRefNum refNum
);

Parameters
refNum

A file reference number for the resource fork whose attributes you want to get. Specify 0 in this
parameter to get the attributes of the System file’s resource fork.

30 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Return Value
The attributes of the file’s resource fork. If there’s no open resource fork for the given file reference number,
the function does nothing, and the ResError (page 38) function returns the result code resFNotFound.
Like individual resources, resource forks have attributes that are specified by bits in the low-order byte of a
word.

Discussion
The Resource Manager sets the mapChanged attribute for the resource fork when you call the
ChangedResource (page 13), the AddResource (page 12), or the RemoveResource (page 37) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResInfo
Gets a resource’s resource ID, resource type, and resource name.

void GetResInfo (
 Handle theResource,
 ResID *theID,
 ResType *theType,
 Str255 name
);

Parameters
theResource

A handle to the resource for which you want to retrieve information. If the handle isn’t a valid handle
to a resource, the function does nothing to determine whether this has occurred, call the
ResError (page 38) function.

theID
On return, a pointer to the resource ID of the specified resource.

theType
On return, a pointer to the resource type of the specified resource.

name
On return, the name of the specified resource.

Discussion
To set a resource’s ID, resource type, or resource name, use the SetResInfo (page 40) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResource
Gets resource data for a resource specified by resource type and resource ID.

Functions 31
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Handle GetResource (
 ResType theType,
 ResID theID
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

theID
An integer that uniquely identifies the resource about which you wish to retrieve data.

Return Value
If the function finds the specified resource entry in one of the resource maps and the entry contains a valid
handle, it returns that handle. If the entry contains a a handle whose value is NULL, and if you haven’t called
the SetResLoad (page 41) function with the load parameter set to FALSE, GetResource attempts to read
the resource into memory.

If the function can’t find the resource data, it returns NULL, and the ResError (page 38) function returns
the result code resNotFound. The GetResource function also returns NULL if the resource data to be read
into memory won’t fit, in which case ResError returns an appropriate Memory Manager result code. If you
call GetResource with a resource type that can’t be found in any of the resource maps of the open resource
forks, the function returns NULL, but ResError returns the result code noErr. You should always check that
the value of the returned handle is not NULL.

Discussion
The function searches the resource maps in memory for the specified resource. The resource maps in memory,
which represent all the open resource forks, are arranged as a linked list. When searching this list, the function
starts with the current resource file and progresses through the list (that is, searching the resource maps in
reverse order of opening) until it finds the resource’s entry in one of the resource maps.

Before reading the resource data into memory, the Resource Manager calls the Memory Manager to allocate
a relocatable block for the resource data. The Memory Manager allocates the block, assigns a master pointer
to the block, and returns to the Resource Manager a pointer to the master pointer. The Resource Manager
then installs this handle in the resource map.

You can change the resource map search order by calling the UseResFile (page 46) function before calling
GetResource.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

GetResourceSizeOnDisk
Returns the exact size of a resource.

32 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

long GetResourceSizeOnDisk (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose size you wish to retrieve.

Return Value
The exact size, in bytes, of the resource. If the handle isn’t a handle to a valid resource, the function returns
–1, and the ResError (page 38) function returns the result code resNotFound.

Discussion
This function checks the resource on disk, not in memory. You can call this function before reading a resource
into memory to make sure there’s enough memory available to do so successfully.

The GetResourceSizeOnDisk function is also available as the SizeResource function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetTopResourceFile
Retrieves the topmost resource file in the current resource chain.

OSErr GetTopResourceFile (
 ResFileRefNum *refNum
);

Parameters
refNum

A pointer to a value of type SInt16. On return, this points to the top most resource file in the current
resource chain.

Return Value
A result code. See “Resource Manager Result Codes” (page 56). If the resource chain is empty, resFNotFound
is returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

HomeResFile
Gets the file reference number associated with a particular resource.

Functions 33
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

ResFileRefNum HomeResFile (
 Handle theResource
);

Parameters
theResource

A handle to the resource for which you wish to get the associated file reference number.

Return Value
The file reference number for the resource fork containing the specified resource. If the given handle isn’t a
handle to a resource, the function returns –1, and the ResError (page 38) function returns the result code
resNotFound. If HomeResFile returns 0, the resource is in the System file’s resource fork. If it returns 1, the
resource is ROM-resident.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

InsertResourceFile
Inserts a resource file into the current resource chain at the specified location.

OSErr InsertResourceFile (
 ResFileRefNum refNum,
 RsrcChainLocation where
);

Parameters
refNum

A value of type SInt16 indicating the reference number of the resource file to insert into the resource
chain.

where
A value of type RsrcChainLocation indicating where in the resource chain the resource file should be
inserted. See the RsrcChainLocation data type.

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Discussion
If the file is already in the resource chain, it is removed and reinserted at the specified location. If the file has
been detached, it is added to the resource chain at the specified location Returns resFNotFound if it's not
currently open.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

InvokeResErrUPP
Calls your callback function.

34 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

void InvokeResErrUPP (
 OSErr thErr,
 ResErrUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

LoadResource
Gets resource data after you’ve called the SetResLoad function with the load parameter set to FALSE or
when the resource is purgeable.

void LoadResource (
 Handle theResource
);

Parameters
theResource

A handle to a resource. Given this handle, the function reads the resource data into memory. If the
resource is already in memory, or if the this parameter doesn’t contain a handle to a resource, then
the function does nothing. To determine whether either of these situations occurred, call the
ResError (page 38) function. If the resource is already in memory, ResError returns noErr; if the
handle is not a handle to a resource, ResError returns resNotFound.

Discussion
If you’ve changed the resource data for a purgeable resource and the resource is purged before being written
to the file, the changes will be lost. In this case, this function rereads the original resource from the file’s
resource fork. You should use the ChangedResource (page 13) or SetResPurge (page 43) function before
calling LoadResource to ensure that changes made to purgeable resources are written to the resource fork.

Availability
Available in Mac OS X 10.0 and later.

Declared In
Resources.h

NewResErrUPP
Creates a new universal procedure pointer (UPP) to your callback function.

ResErrUPP NewResErrUPP (
 ResErrProcPtr userRoutine
);

Return Value
See ResErrUPP (page 50) for more information.

Availability
Available in Mac OS X v10.0 and later.

Functions 35
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Declared In
Resources.h

ReadPartialResource
Reads part of a resource into memory and work with a small subsection of a large resource.

void ReadPartialResource (
 Handle theResource,
 long offset,
 void *buffer,
 long count
);

Parameters
theResource

A handle to the resource you wish to read.

offset
The beginning of the resource subsection to be read, measured in bytes from the beginning of the
resource.

buffer
A pointer to the buffer into which the partial resource is to be read. Your application is responsible
for the buffer’s memory management. You cannot use the ReleaseResource (page 37) function
to release the memory the buffer occupies.

count
The length of the resource subsection.

Discussion
This function always tries to read resources from disk. If a resource is already in memory, the Resource Manager
still reads it from disk, and the ResError (page 38) function returns the result code resourceInMemory.
If you try to read past the end of a resource or the value of the offset parameter is out of bounds, ResError
returns the result code inputOutOfBounds. If the handle in the parameter theResource doesn’t refer to
a resource in an open resource fork, ResError returns the result code resNotFound.

You may experience problems if you have a copy of a resource in memory when you are using the partial
resource functions. If you have modified the copy in memory and then access the resource on disk using this
function, the function reads the data on disk, not the data in memory, which is referenced through the
resource’s handle.

When using partial resource functions, you should call the SetResLoad (page 41) function, specifying FALSE
for the load parameter, before you call GetResource. Using the SetResLoad function prevents the Resource
Manager from reading the entire resource into memory. Be sure to restore the normal state by calling
SetResLoad again, with the load parameter set to TRUE, immediately after you call the GetResource (page
31) function. Then use ReadPartialResource to read a portion of the resource into a buffer.

If the entire resource is in memory and you want only part of its data, it’s faster to use the Memory Manager
function BlockMove instead of the ReadPartialResource function. If you read a partial resource into
memory and then change its size, you can use the SetResourceSize (page 42) function to change the
entire resource’s size on disk as necessary

Availability
Available in Mac OS X v10.0 and later.

36 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Declared In
Resources.h

ReleaseResource
Releases the memory a resource occupies when you have finished using it.

void ReleaseResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource which you wish to release. The function sets the master pointer of the
resource’s handle in the resource map in memory to NULL. If your application previously obtained a
handle to that resource, the handle is no longer valid. If your application subsequently calls the
Resource Manager to get the released resource, the Resource Manager assigns a new handle.

If the given resource isn’t a handle to a resource, the function does nothing, and the ResError (page
38) function returns the result code resNotFound. Be aware that ReleaseResource won’t release
a resource whose resChanged attribute has been set, but ResError still returns the result code
noErr.

Special Considerations

Do not use this function to release a System resource that might be shared by several applications.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

RemoveResource
Removes a resource’s entry from the current resource file’s resource map in memory.

void RemoveResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource which you wish to detach. If the resProtected attribute for the resource
is set or if this parameter doesn’t contain a handle to a resource, the function does nothing, and the
ResError (page 38) function returns the result code rmvResFailed.

Discussion
The RemoveResource function does not dispose of the handle you pass into it; to do so you must call the
Memory Manager function DisposeHandle after calling RemoveResource. You should dispose the handle
if you want to release the memory before updating or closing the resource fork.

Functions 37
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

If you’ve removed a resource, the Resource Manager writes the entire resource map when it updates the
resource fork, and all changes made to the resource map become permanent. If you want any of the changes
to be temporary, you should restore the original information before the Resource Manager updates the
resource fork.

The RemoveResource function is also available as the RmveResource function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResError
Determines what error occurred, if any, after calling a Resource Manager function.

OSErr ResError (
 void
);

Return Value
A result code. See “Resource Manager Result Codes” (page 56). If no error occurred, the function returns
noErr. If an error occurs at the Resource Manager level, the function returns one of the result codes specific
to the Resource Manager. If an error occurs at the Operating System level, the function returns an Operating
System result code. In certain cases, the ResError function returns noErr even though a Resource Manager
function was unable to perform the requested operation. See the individual function descriptions for details
about the circumstances under which this happens.

Discussion
Resource Manager functions do not report error information directly. Instead, after calling a Resource Manager
function, your application should call this function to determine whether an error occurred. You also can use
this function to check for an error after application startup (system software opens the resource fork of your
application during application startup).

Resource Manager functions usually return NULL or –1 as the function result when there’s an error. For
Resource Manager functions that return –1, your application can call the ResError function to determine
the specific error that occurred. For Resource Manager functions that return handles, your application should
always check whether the value of the returned handle is NULL. If it is, your application can use this function
to obtain specific information about the nature of the error. Note, however, that in some cases ResError
returns noErr even though the value of the returned handle is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData
Simple DrawSprocket

Declared In
Resources.h

38 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

SetResAttrs
Sets a resource’s attributes in the resource map in memory.

void SetResAttrs (
 Handle theResource,
 ResAttributes attrs
);

Parameters
theResource

A handle to the resource whose attributes you wish to set. If the value of this parameter isn’t a valid
handle to a resource, the function does nothing, and the ResError (page 38) function returns the
result code resNotFound.

attrs
The resource attributes to set. The resProtected attribute changes immediately. Other attribute
changes take effect the next time the specified resource is read into memory but are not made
permanent until the Resource Manager updates the resource fork.

Each attribute is identified by a specific bit in the low-order byte of a word. If the bit corresponding
to an attribute contains 1, then that attribute is set; if the bit contains 0, then that attribute is not set.

Discussion
This function changes the information in the resource map in memory, not in the file on disk. If you want
the Resource Manager to write the modified resource map to disk after a subsequent call to the
UpdateResFile (page 45) function or when your application terminates, call the ChangedResource (page
13) function after you call SetResAttrs.

Do not use this function to change a purgeable resource. If you make a purgeable resource nonpurgeable
by setting the resPurgeable attribute with this function, the resource doesn’t become nonpurgeable until
the next time the specified resource is read into memory. Thus, the resource might be purged while you’re
changing it.

You can check for errors using the ResError function. SetResAttrs does not return an error if you are
setting the attributes of a resource in a resource file that has a read-only resource map. To find out whether
this is the case, use the GetResAttrs (page 30) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResFileAttrs
Sets a resource fork’s attributes.

Functions 39
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

void SetResFileAttrs (
 ResFileRefNum refNum,
 ResFileAttributes attrs
);

Parameters
refNum

A file reference number for the resource fork whose attributes you want to set. If this value is 0, it
represents the System file’s resource fork. However, you shouldn’t change the attributes of the System
file’s resource fork. If there’s no resource fork with the given reference number, the function does
nothing, and the ResError (page 38) function returns the result code noErr.

attrs
The attributes to set. Like individual resources, resource forks have attributes that are specified by
bits in the low-order byte of a word. When the Resource Manager first creates a resource fork after a
call to FSpOpenResFile (page 60) or a related function, it does not set any of the resource fork’s
attributes—that is, they are all set to 0.

Discussion
The Resource Manager sets the mapChanged attribute for the resource fork when you call the
ChangedResource (page 13), the AddResource (page 12), or the RemoveResource (page 37) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResInfo
Sets the name and resource ID of a resource.

void SetResInfo (
 Handle theResource,
 ResID theID,
 ConstStr255Param name
);

Parameters
theResource

A handle to the resource whose name and ID you wish to set.

theID
The new resource ID. If the parameter theResource doesn’t contain a handle to an existing resource,
the function does nothing, and the ResError (page 38) function returns the result code resNotFound.

name
The new name of the specified resource. If you pass an empty string for the name parameter, the
resource name is not changed.

Discussion
The function changes the information in the resource map in memory, not in the resource file itself. Do not
change a system resource’s resource ID or name. Other applications may already access the resource and
may not work properly if you change the resource ID, resource name, or both.

40 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

If the resource map becomes too large to fit in memory (for example, after an unnamed resource is given a
name), this function does nothing, and ResError returns an appropriate Memory Manager result code. The
same is true if the resource data in memory can’t be written to the resource fork (for example, because the
disk is full). If the resProtected attribute is set for the resource, SetResInfo does nothing, and ResError
returns the result code resAttrErr.

If you want to write changes to the resource map on disk after updating the resource map in memory, call
the ChangedResource (page 13) function for the same resource after you call SetResInfo. Even if you
don’t call ChangedResource after using this function to change the name and resource ID of a resource,
the change may be written to disk when the Resource Manager updates the resource fork. If you call
ChangedResource for any resource in the same resource fork, or if you add or remove a resource, the
Resource Manager writes the entire resource map to disk after a call to the UpdateResFile (page 45)
function or when your application terminates. In these cases, all changes to resource information in the
resource map become permanent. If you want any of the changes to be temporary, you should restore the
original information before the resource is updated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResLoad
Enables and disables automatic loading of resource data into memory for functions that return handles to
resources.

void SetResLoad (
 Boolean load
);

Parameters
load

Determines whether Resource Manager functions should read resource data into memory. If you set
this parameter to TRUE, Resource Manager functions that return handles will, during subsequent calls,
automatically read resource data into memory if it is not already in memory; if you set this parameter
to FALSE, Resource Manager functions will not automatically read resource data into memory. Instead,
such functions return a handle whose master pointer is set to NULL unless the resource is already in
memory. In addition, when first opening a resource fork the Resource Manager won’t load into memory
resources whose resPreload attribute is set. The default setting is TRUE.

If you call the function with this parameter set to FALSE, be sure to call SetResLoad with this
parameter set to TRUE as soon as possible. Other parts of system software that call the Resource
Manager expect this value to be TRUE, and some functions won’t work if resources are not loaded
automatically.

Discussion
You can use the SetResLoad function when you want to read from the resource map without reading the
resource data into memory. To read the resource data into memory after a call to this function, call the
LoadResource function.

To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Functions 41
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

SetResourceSize
Sets the size of a resource on disk.

void SetResourceSize (
 Handle theResource,
 long newSize
);

Parameters
theResource

A handle to the resource which you wish to change.

newSize
The size, in bytes, that you want the resource to occupy on disk. If the specified size is smaller than
the resource’s current size on disk, you lose any data from the cutoff point to the end of the resource.
If the specified size is larger than the resource’s current size on disk, all data is preserved, but the
additional area is uninitialized (arbitrary data).

Discussion
This function is normally used only with the ReadPartialResource (page 36) and
WritePartialResource (page 47) functions.

This function sets the size field of the specified resource on disk without writing the resource data. You can
change the size of any resource, regardless of the amount of memory you have available.

If you read a partial resource into memory and then change its size, you must use this function to change
the entire resource’s size on disk as necessary. For example, suppose the entire resource occupies 1 MB and
you use ReadPartialResource to read in a 200 KB portion of the resource. If you then increase the size of
this partial resource to 250 KB, you must call SetResourceSize to set the size of the resource on disk to
1.05 MB. Note that in this case you must also keep track of the resource data on disk and move any data that
follows the original partial resource on disk. Otherwise, there will be no space for the additional 50 KB when
you call WritePartialResource to write the modified partial resource to disk.

Under certain circumstances, the Resource Manager overrides the size you set with a call to this function.
For instance, suppose you read an entire resource into memory by calling GetResource (page 31) or related
functions, then use SetResourceSize successfully to set the resource size on disk, and finally attempt to
write the resource to disk using the UpdateResFile (page 45) or WriteResource (page 48) functions. In
this case, the Resource Manager adjusts the resource size on disk to conform with the size of the resource
in memory.

If the disk is locked or full, or the file is locked, this function does nothing, and the ResError (page 38)
function returns an appropriate File Manager result code. If the resource is in memory, the Resource Manager
tries to set the size of the resource on disk. If the attempt succeeds, ResError returns the result code
resourceInMemory, and the Resource Manager does not update the copy in memory. If the attempt fails,
ResError returns an appropriate File Manager result code.

Availability
Available in Mac OS X v10.0 and later.

42 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Declared In
Resources.h

SetResPurge
Tells the Memory Manager to pass the handle of a resource to the Resource Manager before purging the
data specified by that handle.

void SetResPurge (
 Boolean install
);

Parameters
install

Specifies whether the Memory Manager checks with the Resource Manager before purging a resource
handle.

Specify TRUE to make the Memory Manager pass the handle for a resource to the Resource Manager
before purging the resource data to which the handle points. The Resource Manager determines
whether the handle points to a resource in the application heap. It also checks if the resource’s
resChanged attribute is set to 1. If these two conditions are met, the Resource Manager calls the
WriteResource (page 48) function to write the resource’s resource data to the resource fork before
returning control to the Memory Manager.

If you call this function with this parameter set to TRUE and then call the Memory Manager function
MoveHHi to move a handle to a resource, the Resource Manager calls the WriteResource function
to write the resource data to disk even if the data has not been changed. To prevent this, call
SetResPurge with this parameter set to FALSE before you call MoveHHi, then call SetResPurge
again with this parameter set to TRUE immediately after you call MoveHHi.

Whenever you call this function with this parameter set to TRUE, the Resource Manager installs its
own purge-warning function, overriding any purge-warning function you’ve specified to the Memory
Manager.

Specify FALSE to restore the normal state, so that the Memory Manager purges resource data when
it needs to without calling the Resource Manager.

Discussion
You can use this function in applications that modify purgeable resources. You should also take precautions
in such applications to ensure that the resource won’t be purged while you’re changing it.

To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Unique1ID
Gets a resource ID that’s unique with respect to resources in the current resource file.

Functions 43
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

ResID Unique1ID (
 ResType theType
);

Parameters
theType

A resource type.

Return Value
A resource ID greater than 0 that isn’t currently assigned to any resource of the specified type in the current
resource file.

Discussion
You should use this function before adding a new resource to ensure that you don’t duplicate a resource ID
and override an existing resource.

To check for errors, call the ResError (page 38) function.

For more information about restrictions on resource IDs for specific resource types, see ResID (page 50).

In versions of system software earlier than System 7, this function may return a resource ID in the range 0
through 127, which is generally reserved for system resources. You should check that the resource ID returned
is not in this range. If it is, call Unique1ID again, and continue doing so until you get a resource ID greater
than 127.

In System 7 and later versions, this function won’t return a resource ID of less than 128.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

UniqueID
Gets a unique resource ID for a resource.

ResID UniqueID (
 ResType theType
);

Parameters
theType

A resource type.

Return Value
A resource ID greater than 0 that isn’t currently assigned to any resource of the specified type in any open
resource fork.

Discussion
You should use this function before adding a new resource to ensure that you don’t duplicate a resource ID
and override an existing resource.

To check for errors, call the ResError (page 38) function.

For more information about restrictions on resource IDs for specific resource types, see ResID (page 50).

44 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

In versions of system software earlier than System 7, this function may return a resource ID in the range 0
through 127, which is generally reserved for system resources. You should check that the resource ID returned
is not in this range. If it is, call UniqueID again, and continue doing so until you get a resource ID greater
than 127.

Version Notes
In System 7 and later versions, UniqueID won’t return a resource ID of less than 128.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

UpdateResFile
Updates the resource map and resource data for a resource fork without closing it.

void UpdateResFile (
 ResFileRefNum refNum
);

Parameters
refNum

A file reference number for a resource fork. If there’s no open resource fork with the given reference
number, the function does nothing, and the ResError (page 38) function returns the result code
resNotFound. If the value of the refNum parameter is 0, it represents the System file’s resource fork.
If you call this function but the mapReadOnly attribute of the resource fork is set, the function does
nothing, and the ResError function returns the result code resAttrErr.

Discussion
Given the reference number of a file whose resource fork is open, this function performs three tasks. The first
task is to change, add, or remove resource data in the file’s resource fork to match the resource map in
memory. Changed resource data for each resource is written only if that resource’s resChanged bit has been
set by a successful call to the ChangedResource (page 13) or AddResource (page 12) function. The
UpdateResFile function calls the WriteResource (page 48) function to write changed or added resources
to the resource fork.

The second task is to compact the resource fork, closing up any empty space created when a resource was
removed, made smaller, or made larger. If a resource is made larger, the Resource Manager writes it at the
end of the resource fork rather than at its original location. It then compacts the space occupied by the
original resource data. The actual size of the resource fork is adjusted when a resource is removed or made
larger, but not when a resource is made smaller.

The third task is to write the resource map in memory to the resource fork if your application has called the
ChangedResource function for any resource listed in the resource map or if it has added or removed a
resource. All changes to resource information in the resource map become permanent at this time; if you
want any of these changes to be temporary, you must restore the original information before calling
UpdateResFile.

Because the CloseResFile (page 14) function calls UpdateResFile before it closes the resource fork, you
need to call UpdateResFile directly only if you want to update the file without closing it.

Functions 45
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

UseResFile
Sets the current resource file.

void UseResFile (
 ResFileRefNum refNum
);

Parameters
refNum

The file reference number for the resource fork which you wish to set as the current resource fork.

Return Value
The function searches the list of files whose resource forks have been opened for the file specified here. If
the specified file is found, the Resource Manager sets the current resource file to the specified file. If there’s
no resource fork open for a file with that reference number, the function does nothing. To set the current
resource file to the System file, use 0 here.

Discussion
Open resource forks are arranged as a linked list with the most recently opened resource fork at the beginning.
When searching open resource forks, the Resource Manager starts with the most recently opened file. You
can call this function to set the current resource file to a file opened earlier, and thereby start subsequent
searches with the specified file. In this way, you can cause any files higher in the resource chain to be left out
of subsequent searches.

When a new resource fork is opened, this action overrides previous calls to this function and the entire list
is searched. For example, if five resource forks are opened in the order R0, R1, R2, R3, and R4, the search order
is R4-R3-R2-R1-R0. Calling UseResFile(R2) changes the search order to R2-R1-R0; R4 and R3 are not searched.
When the resource fork of a new file (R5) is opened, the search order becomes R5-R4-R3-R2-R1-R0.

You typically call the CurResFile (page 16) function to get and save the current resource file, UseResFile
to set the current resource file to the desired file, then (after you are finished using the resource) UseResFile
to restore the current resource file to its previous value. Calling UseResFile(0) causes the Resource Manager
to search only the System file’s resource map. This is useful if you no longer wish to override a system resource
with one by the same name in your application’s resource fork.

Most of the Resource Manager functions assume that the current resource file is the file on whose resource
fork they should operate or, in the case of a search, the file where they should begin. In general, the current
resource file is the last one whose resource fork your application opened unless you specify otherwise.

The FSpOpenResFile (page 60) and HOpenResFile (page 63) functions, which also set the current resource
file, override previous calls to UseResFile.

To check for errors, call the ResError (page 38) function.

Availability
Available in Mac OS X v10.0 and later.

46 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

WritePartialResource
Writes part of a resource to disk when working with a small subsection of a large resource.

void WritePartialResource (
 Handle theResource,
 long offset,
 const void *buffer,
 long count
);

Parameters
theResource

A handle to the resource you wish to write to disk.

offset
The beginning of the resource subsection to write, measured in bytes from the beginning of the
resource.

buffer
A pointer to the buffer containing the data to write. Your application is responsible for the buffer’s
memory management.

count
The length of the resource subsection to write.

Discussion
If the disk or the file is locked, the ResError (page 38) function returns an appropriate File Manager result
code. If you try to write past the end of a resource, the Resource Manager attempts to enlarge the resource.
The ResError function returns the result code writingPastEnd if the attempt succeeds. If the Resource
Manager cannot enlarge the resource, ResError returns an appropriate File Manager result code. If you
pass an invalid value in the offset parameter, ResError returns the result code inputOutOfBounds.

This function tries to write the data from the buffer to disk. If the attempt is successful and the resource data
(referenced through the resource’s handle) is in memory, ResError returns the result code
resourceInMemory. In this situation, be aware that the data of the resource subsection on disk matches
the data from the buffer, not the resource data referenced through the resource’s handle. If the attempt to
write the data from the buffer to the disk fails, ResError returns an appropriate error.

When using partial resource functions, you should call the SetResLoad (page 41) function, specifying FALSE
for the load parameter, before you call the GetResource (page 31) function. Doing so prevents the Resource
Manager from reading the entire resource into memory. Be sure to restore the normal state by calling
SetResLoad again, with the load parameter set to TRUE, immediately after you call GetResource.

If you read a partial resource into memory and then change its size, you must use the SetResourceSize (page
42) function to change the entire resource’s size on disk as necessary before you write the partial resource.

Availability
Available in Mac OS X v10.0 and later.

Functions 47
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Declared In
Resources.h

WriteResource
Writes resource data in memory immediately to a file’s resource fork.

void WriteResource (
 Handle theResource
);

Parameters
theResource

A handle to a resource. The function checks the resChanged attribute of this resource. If the
resChanged attribute is set to 1, such as after a successful call to the ChangedResource (page 13)
or AddResource (page 12) function, WriteResource writes the resource data in memory to the
resource fork, then clears the resChanged attribute in the resource’s resource map in memory.

If the resource is purgeable and has been purged, the function writes zero-length resource data to
the resource fork. If the resource’s resProtected attribute is set to 1, the function does nothing,
and the ResError (page 38) function returns the result code noErr. The same is true if the
resChanged attribute is not set (that is, set to 0). If the given handle isn’t a handle to a resource,
WriteResource does nothing, and ResError returns the result code resNotFound.

Discussion
Note that this function does not write the resource’s resource map entry to disk.

When your application calls ChangedResource or AddResource, the Resource Manager attempts to reserve
disk space for the changed resource. If the modified resource data can’t be written to the resource fork (for
example, if there’s not enough room on disk), the resChanged attribute is not set to 1. If this is the case and
you call WriteResource, the Resource Manager won’t know that the resource data has been changed. Thus,
the function won’t write the modified resource data to the resource fork and won’t return an error. For this
reason, always make sure that the ResError function returns the result code noErr after a call to
ChangedResource or AddResource.

The resource fork is updated automatically when your application quits, when you call the
UpdateResFile (page 45) function, or when you call the CloseResFile (page 14) function. Thus, you
should call WriteResource only if you want to write just one or a few resources immediately.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

48 Functions
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Callbacks

ResErrProcPtr
typedef void (*ResErrProcPtr) (
 OSErr thErr
);

If you name your function MyResErrProc, you would declare it like this:

void MyResErrProc (
 OSErr thErr
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResourceEndianFilterPtr
typedef OSErr (*ResourceEndianFilterPtr) (
 Handle theResource,
 Boolean currentlyNativeEndian
);

If you name your function MyResourceEndianFilter, you would declare it like this:

OSErr MyResourceEndianFilter (
 Handle theResource,
 Boolean currentlyNativeEndian
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Data Types

ResAttributes
typedef short ResAttributes;

Availability
Available in Mac OS X v10.0 and later.

Callbacks 49
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Declared In
Resources.h

ResErrUPP
typedef ResErrProcPtr ResErrUPP;

Discussion
For more information, see the description of the ResErrProcPtr (page 49) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResFileAttributes
typedef short ResFileAttributes;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResFileRefNum
typedef short ResFileRefNum;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResID
Defines a unique identifier for a resource of a given type.

typedef short ResID;

Discussion
A resource is identified by its resource type and resource ID (or, optionally, its resource type and resource
name). The IDs for resources used by the system software and those used by applications are assigned from
separate ranges. By using these ranges correctly, you can avoid resource ID conflicts.

In general, system resources use IDs in the range –32767 through 127, and application resources must use
IDs that fall between 128 and 32767. The IDs for some categories of resources, such as definition functions
and font families, fall in different ranges or in ranges that are broken down for more specific purposes.

50 Data Types
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

You can use a resource name instead of a resource ID to identify a resource of a given type. Like a resource
ID, a resource name should be unique within each type. If you assign the same resource name to two resources
of the same type, the second assignment of the name overrides the first, thereby making the first resource
inaccessible by name. When comparing resource names, the Resource Manager ignores case (but does not
ignore diacritical marks).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResType
Defines a unique identifier for a type of resource.

typedef FourCharCode ResType;

Discussion
The Resource Manager uses the resource type along with the resource ID to identify a resource. A resource
type can be any sequence of four alphanumeric characters, including the space character.

You can define your own resource types, but they must not conflict with any of the standard resource types.
When identifying resource types, the Resource Manager distinguishes between uppercase letters and their
lowercase counterparts. Apple reserves for its own use all resource types that consist of all lowercase letters,
all spaces, or all international characters (characters greater than $7F).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

Constants

Reference Number Constants
enum {
 kResFileNotOpened = -1,
 kSystemResFile = 0
};

Constants
kResFileNotOpened

Indicates the reference number returned as error when opening a resource file.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Constants 51
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

kSystemResFile
Indicates the default reference number to the system file.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Resource Attribute Bits
enum {
 resSysRefBit = 7,
 resSysHeapBit = 6,
 resPurgeableBit = 5,
 resLockedBit = 4,
 resProtectedBit = 3,
 resPreloadBit = 2,
 resChangedBit = 1,
};

Constants
resSysRefBit

If this attribute is set to 1, it is a system reference. If it is set to 0, it is a local reference.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resSysHeapBit
This attribute indicates whether the resource is read into the system heap (resSysHeapBit attribute
is set to 1) or your application’s heap (resSysHeapBit attribute is set to 0).

If you are setting your resource’s attributes with SetResAttrs, you should set this bit to 0 for your
application’s resources. Note that if you do set the resSysHeapBit attribute to 1 and the resource
is too large for the system heap, the bit is cleared and the resource is read into the application heap.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPurgeableBit
If this attribute is set to 1, the resource is purgeable if it’s 0, the resource is nonpurgeable. However,
do not use SetResAttrs to make a purgeable resource nonpurgeable.

Because a locked resource is nonrelocatable and nonpurgeable, the resLockedBit attribute overrides
the resPurgeableBit attribute.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resLockedBit
If this attribute is 1, the resource is nonpurgeable regardless of whether resPurgeableBit is set. If
it’s 0, the resource is purgeable or nonpurgeable depending on the value of the resPurgeableBit
attribute.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

52 Constants
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

resProtectedBit
If this attribute is set to 1, your application can’t use Resource Manager functions to change the
resource ID or resource name, modify the resource contents, or remove the resource from its resource
fork. However, you can use the SetResAttrs function to remove this protection. Note that this
attribute change takes effect immediately.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPreloadBit
If this attribute is set to 1, the Resource Manager reads the resource’s resource data into memory
immediately after opening its resource fork. You can use this setting to make multiple resources
available for your application as soon as possible, rather than reading each one into memory
individually. If both the resPreloadBit attribute and the resLockedBit attribute are set, the
Resource Manager loads the resource as low in the heap as possible.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resChangedBit
If this attribute is set to 1, the resource has been changed. If it’s 0, the resource hasn’t been changed.
This attribute is used only while the resource map is in memory. The resChangedBit attribute must
be 0 in the resource fork on disk.

Do not use SetResAttrs to set the resChangedBit attribute. Be sure the attrs parameter passed
to SetResAttrs doesn’t change the current setting of this attribute. To set the resChangedBit
attribute, call the ChangedResource function.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Discussion
The SetResAttrs (page 39) and GetResAttrs (page 30) functions use these constants to refer to each
attribute.

Resource Attribute Masks
enum {
 resSysHeap = 64,
 resPurgeable = 32,
 resLocked = 16,
 resProtected = 8,
 resPreload = 4,
 resChanged = 2,
};

Constants
resSysHeap

Use to set or test for the resSysHeapBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPurgeable
Use to set or test for the resPurgeableBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Constants 53
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

resLocked
Use to set or test for the resLockedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resProtected
Use to set or test for the resProtectedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPreload
Use to set or test for the resPreloadBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resChanged
Use to set or test for the resChangedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Resource Chain Location
Specify the location of the resource chain.

typedef SInt16 RsrcChainLocation
enum {
 kRsrcChainBelowSystemMap = 0,
 kRsrcChainBelowApplicationMap = 1,
 kRsrcChainAboveApplicationMap = 2,
 kRsrcChainAboveAllMaps = 4
};

Constants
kRsrcChainBelowSystemMap

Indicates the resource chain is below the system's resource map.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kRsrcChainBelowApplicationMap
Indicates the resource chain is below the application's resource map.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kRsrcChainAboveApplicationMap
Indicates the resource chain is above the application's resource map.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kRsrcChainAboveAllMaps
Indicates the resource chain is above all resource maps.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

54 Constants
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Discussion
These constants and data type are for use with the Resource Manager chain manipulation routines under
Carbon.

Resource Fork Attribute Bits
enum {
 mapReadOnlyBit = 7,
 mapCompactBit = 6,
 mapChangedBit = 5
};

Constants
mapReadOnlyBit

If this bit is set to 1, the Resource Manager doesn’t write anything to the resource fork on disk. It also
doesn’t check whether the resource data can be written to disk when the resource map is modified.
When this attribute is set to 1, the ChangedResource (page 13) and WriteResource (page 48)
functions do nothing, but the function ResError (page 38) returns the result code noErr.

If you set the mapReadOnlyBit attribute but later clear it, the resource data is written to disk even
if there’s no room for it. This operation may destroy the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapCompactBit
If this bit is set to 1, the Resource Manager compacts the resource fork when it updates the file. The
Resource Manager sets this attribute when a resource is removed or when a resource is made larger
and thus must be written at the end of a resource fork. You may want to set the mapCompactBit
attribute to force the Resource Manager to compact a resource fork when your changes have made
resources smaller.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapChangedBit
If this bit is set to 1, the Resource Manager writes the resource map to disk when the file is updated.
For example, you can set mapChangedBit if you’ve changed resource attributes only and don’t want
to call the ChangedResource (page 13) function because you don’t want to write the resource data
to disk.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Constants 55
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

Resource Fork Attribute Masks
enum{
 mapReadOnly = 128,
 mapCompact = 64,
 mapChanged = 32
};

Constants
mapReadOnly

Use to set or test for the mapReadOnlyBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapCompact
Use to set or test for the mapCompactBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapChanged
Use to set or test for the mapChangedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Result Codes

The most common result codes returned by Resource Manager are listed in the table below. The Resource
Manager may also return the following result codes: noErr (0), dirFulErr (-33), dskFulErr (-34), nsvErr
(-35), ioErr (-36), bdNamErr (-37), eofErr (-39), tmfoErr (-42), fnfErr (-43), wPrErr (-44), fLckdErr (-45),
vLckdErr (-46),dupFNErr (-48),opWrErr (-49),permErr (-54),extFSErr (-58),memFullErr (-108),dirNFErr
(-120).

DescriptionValueResult Code

The extended resource has a bad format.-185badExtResource

Available in Mac OS X v10.0 and later.

Can’t decompress a compressed resource.-186CantDecompress

Available in Mac OS X v10.0 and later.

The resource is already in memory.-188resourceInMemory

Available in Mac OS X v10.0 and later.

Writing past the end of file.-189writingPastEnd

Available in Mac OS X v10.0 and later.

The offset or count is out of bounds.-190inputOutOfBounds

Available in Mac OS X v10.0 and later.

56 Result Codes
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

DescriptionValueResult Code

The resource was not found.-192resNotFound

Available in Mac OS X v10.0 and later.

The resource file was not found.-193resFNotFound

Available in Mac OS X v10.0 and later.

The AddResource function failed.-194addResFailed

Available in Mac OS X v10.0 and later.

The RemoveResource function failed.-196rmvResFailed

Available in Mac OS X v10.0 and later.

The attribute is inconsistent with the operation.-198resAttrErr

Available in Mac OS X v10.0 and later.

The map is inconsistent with the operation.-199mapReadErr

Available in Mac OS X v10.0 and later.

Result Codes 57
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

58 Result Codes
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Resource Manager Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

FSpCreateResFile
Creates an empty resource fork in a new or existing file. (Deprecated in Mac OS X v10.5. Use
FSCreateResourceFile (page 19) instead.)

void FSpCreateResFile (
 const FSSpec *spec,
 OSType creator,
 OSType fileType,
 ScriptCode scriptTag
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

FSpOpenOrphanResFile
Opens a resource file that is persistent across all contexts. (Deprecated in Mac OS X v10.5. Use
FSOpenOrphanResFile (page 21) instead.)

OSErr FSpOpenOrphanResFile (
 const FSSpec *spec,
 SignedByte permission,
 ResFileRefNum *refNum
);

Return Value
A result code. See “Resource Manager Result Codes” (page 56).

Deprecated in Mac OS X v10.5 59
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

Discussion
FSpOpenOrphanResFile should be used to open a resource file that is persistent across all contexts.
FSpOpenOrphanResFile loads everything into the system context and detaches the file from the context
in which it was opened. If the file is already in the resource chain and a new instance is not opened,
FSpOpenOrphanResFile will return a paramErr. Use this function with care, as it can and will fail if the
map is very large or a lot of resources are preloaded.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

FSpOpenResFile
Opens the resource fork in a file specified with an FSSpec structure. (Deprecated in Mac OS X v10.5. Use
FSOpenResourceFile (page 22) instead.)

ResFileRefNum FSpOpenResFile (
 const FSSpec *spec,
 SignedByte permission
);

Parameters
spec

A pointer to a file system specification record specifying the name and location of the file whose
resource fork is to be opened. This function also makes the specified file the current resource file.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

Return Value
The file reference number for the resource fork. If the file reference number returned is greater than 0, you
can use this number to refer to the resource fork in some other Resource Manager functions.

If you attempt to use this function to open a resource fork that is already open, it returns the existing file
reference number or a new one, depending on the access permission for the existing access path. For example,
your application receives a new file reference number after a successful request for read-only access to a file
previously opened with write access, whereas it receives the same file reference number in response to a
second request for write access to the same file. In this case, the function doesn’t make that file the current
resource file.

If the function fails to open the specified file’s resource fork (for instance, because there’s no file with the
given file system specification record or because there are permission problems), it returns –1 as the file
reference number. Use the ResError (page 38) function to determine what kind of error occurred.

If an application attempts to open a second access path with write access and the application is different
from the one that originally opened the resource fork, FSpOpenResFile returns –1, and the ResError
function returns the result code opWrErr.

60 Deprecated in Mac OS X v10.5
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

Discussion
This function is available only in System 7 and later versions of system software. You can determine whether
FSpOpenResFile is available by calling the Gestalt function with the gestaltFSAttr selector code. If
this function is not available to your application, you can use HOpenResFile, OpenRFPerm, or OpenResFile
instead. The HOpenResFile (page 63) function is preferred if FSpOpenResFile is not available. The
OpenRFPerm (page 64) function is an earlier version of HOpenResFile that is still supported but is more
restricted in its capabilities.

The Resource Manager reads the resource map from the specified file’s resource fork into memory. It also
reads into memory every resource in the resource fork whose resPreload attribute is set.

You don’t have to call this function to open the System file’s resource fork or an application file’s resource
fork. These resource forks are opened automatically when the system and the application start up, respectively.
To get the file reference number for your application, call the CurResFile (page 16) function after your
application starts up and before you open any other resource forks.

The FSpOpenResFile function checks that the information in the resource map is internally consistent. If
it isn’t, ResError returns the result code mapReadErr.

It’s possible to create multiple, unique, read-only access paths to a resource fork using this function however,
you should avoid doing so. If a resource fork is opened twice—once with read/write permission and once
with read-only permission—two copies of the resource map exist in memory. If you change one of the
resources in memory using one of the resource maps, the two resource maps become inconsistent and the
file will appear damaged to the second resource map.

If you must use this technique for read-only access, call this function immediately before your application
reads information from the file and close the file immediately afterward. Otherwise, your application may
get unexpected results.

If you want to open the resource fork for another application (or any resource fork other than your application’s
that includes 'CODE' resources), you must bracket your calls to this function with calls to the
SetResLoad (page 41) function with the load parameter set to FALSE and then to TRUE. You must also
avoid making intersegment calls while the other application’s resource fork is open. If you don’t do this, the
Segment Loader Manager treats any preloaded 'CODE' resources as your code resources when you make
an intersegment call that triggers a call to the LoadSeg function while the other application is first in the
resource chain. In this case, your application can begin executing the other application’s code, and severe
problems will ensue. If you need to get 'CODE' resources from the other application’s resource fork, you can
still prevent the Segment Loader Manager problem by calling the UseResFile (page 46) function with your
application’s file reference number to make your application the current resource file.

To open a resource fork just for block-level operations, such as copying files without reading the resource
map into memory, use the File Manager function OpenRF.

Special Considerations

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/ write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 61
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

FSpResourceFileAlreadyOpen
Checks whether a resource file is open. (Deprecated in Mac OS X v10.5. Use
FSResourceFileAlreadyOpen (page 22) instead.)

Boolean FSpResourceFileAlreadyOpen (
 const FSSpec *resourceFile,
 Boolean *inChain,
 ResFileRefNum *refNum
);

Parameters
resourceFile

The resource file to check.

inChain
A pointer to a variable allocated by the caller. On return, true if the resource file is in the resource
chain, false otherwise.

refNum
A pointer to a variable allocated by the caller. On return, the reference number of the file if it is open.

Return Value
This function returns true if the resource file is already open and known by the Resource Manager—for
example, it is either in the current resource chain or it is a detached resource file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

HCreateResFile
Creates an empty resource fork, when the FSpCreateResFile function is not available. (Deprecated in Mac
OS X v10.5. Use FSCreateResourceFile (page 19) instead.)

void HCreateResFile (
 FSVolumeRefNum vRefNum,
 long dirID,
 ConstStr255Param fileName
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

62 Deprecated in Mac OS X v10.5
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

HOpenResFile
Opens a file’s resource fork, when the FSpOpenResFile function is not available. (Deprecated in Mac OS X
v10.5. Use FSOpenResourceFile (page 22) instead.)

ResFileRefNum HOpenResFile (
 FSVolumeRefNum vRefNum,
 long dirID,
 ConstStr255Param fileName,
 SInt8 permission
);

Parameters
vRefNum

The volume reference number of the volume on which the file is located.

dirID
The directory ID of the directory where the file is located.

fileName
The name of the file whose resource fork is to be opened.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

Return Value
The file reference number for the file. You can use this file reference number to refer to the file in other
Resource Manager functions. The function also makes this file the current resource file. If the file’s resource
fork is already open, the function returns the file reference number but does not make that file the current
resource file. If the function fails to open the specified file’s resource fork (because there’s no file with the
specified name or because there are permission problems), it returns –1 as the file reference number. Use
the ResError (page 38) function to determine what kind of error occurred.

Versions of system software before System 7 do not allow you to use this function to open a second access
path, with write access, to a resource fork. In this case, the function returns the reference number already
assigned to the file.

Discussion
The Resource Manager reads the resource map from the resource fork of the specified file into memory. It
also reads into memory every resource whose resPreload attribute is set.

You don’t have to call this function to open the System file’s resource fork or an application file’s resource
fork. These files are opened automatically when the system and the application start up, respectively. To get
the file reference number for your application, call the CurResFile (page 16) function after the application
starts up and before you open the resource forks for any other files.

Deprecated in Mac OS X v10.5 63
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

The HOpenResFile function checks that the information in the resource map is internally consistent. If it
isn’t, ResError returns the result code mapReadErr. It’s possible to create multiple, unique, read-only access
paths to a resource fork using HOpenResFile; however, you should avoid doing so, to prevent inconsistencies
between multiple copies of the resource map. See the discussion of this issue in relation to
FSpOpenResFile (page 60). The HOpenResFile function works the same way.

To open a resource fork just for block-level operations, such as copying files without reading the resource
map into memory, use the File Manager function OpenRF.

If you want to open the resource fork for another application (or any resource fork other than your application’s
that includes 'CODE' resources), you must bracket your calls to HOpenResFile with calls to the
SetResLoad (page 41) function with the load parameter set to FALSE and then to TRUE. You must also
avoid making intersegment calls while the other application’s resource fork is open. The discussion of this
issue in relation to FSpOpenResFile (page 60) also applies to HOpenResFile.

Special Considerations

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

OpenRFPerm
Opens a file’s resource fork, when the FSpOpenResFile and HOpenResFile functions are not available.
(Deprecated in Mac OS X v10.5. Use FSOpenResourceFile (page 22) instead.)

ResFileRefNum OpenRFPerm (
 ConstStr255Param fileName,
 FSVolumeRefNum vRefNum,
 SInt8 permission
);

Parameters
fileName

The name of the file whose resource fork is to be opened.

vRefNum
The volume reference number or directory ID for the volume or directory in which the file is located.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

64 Deprecated in Mac OS X v10.5
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

Return Value
The file reference number for the file whose resource fork it has opened. You can use this file reference
number to refer to the file in other Resource Manager functions. The function also makes this file the current
resource file. If the file’s resource fork is already open, the function returns the file reference number but
does not make that file the current resource file.

If the function fails to open the specified file’s resource fork (because there’s no file with the given name or
because there are permission problems), it returns –1 as the file reference number. Use the ResError (page
38) function to determine what kind of error occurred.

Versions of system software before System 7 do not allow you to use this function to open a second access
path, with write access, to a resource fork. In this case, the function returns the reference number already
assigned to the file.

Discussion
You can use this function if the FSpOpenResFile (page 60) function is not available. You can determine
whether FSpOpenResFile is available by calling the Gestalt function with the gestaltFSAttr selector
code. The HOpenResFile function allows you to specify both a directory ID and a volume reference number,
and is therefore preferred if FSpOpenResFile is not available. The OpenRFPerm is an earlier versions of
HOpenResFile that is still supported but is more restricted in its capabilities.

The Resource Manager reads the resource map from the resource fork for the specified file into memory. It
also reads into memory every resource in the resource fork whose resPreload attribute is set.

You don’t have to call this function to open the System file’s resource fork or an application file’s resource
fork. These files are opened automatically when the system and the application start up, respectively. To get
the file reference number for your application, call the CurResFile (page 16) function after the application
starts up and before you open the resource forks for any other files.

This function checks that the information in the resource map is internally consistent. If it isn’t, ResError
returns the result code mapReadErr. It’s possible to create multiple, unique, read-only access paths to a
resource fork using this function however, you should avoid doing so, to prevent inconsistencies between
multiple copies of the resource map.

To open a resource fork just for block-level operations, such as copying files without reading the resource
map into memory, use the File Manager function OpenRF.

If you want to open the resource fork for another application (or any resource fork other than your application’s
that includes 'CODE' resources), you must bracket your calls to this function with calls to the
SetResLoad (page 41) function with the load parameter set to FALSE and then to TRUE. You must also
avoid making intersegment calls while the other application’s resource fork is open.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

Deprecated in Mac OS X v10.5 65
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

66 Deprecated in Mac OS X v10.5
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Resource Manager Functions

This table describes the changes to Resource Manager Reference.

NotesDate

Moved functions out of the Miscellaneous section. Added information about
the ResType data type.

2007-10-31

Updated for Mac OS X v10.5.2006-09-13

Added new information about file permissions.2005-04-29

Added documentation for the functions FSCreateResourceFile,
FSCreateResourceFork, FSOpenResourceFile,
FSpResourceFileAlreadyOpen, GetNextResourceFile, and
GetTopResourceFile.

2003-02-01

Updated the constants section.

First version of this document.2001-07-01

67
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

addResFailed constant 57
AddResource function 12

B

badExtResource constant 56

C

CantDecompress constant 56
ChangedResource function 13
CloseResFile function 14
Count1Resources function 15
Count1Types function 15
CountResources function 16
CountTypes function 16
CurResFile function 16

D

DetachResource function 17
DetachResourceFile function 18
DisposeResErrUPP function 18

F

FSCreateResFile function 18
FSCreateResourceFile function 19
FSCreateResourceFork function 20
FSOpenOrphanResFile function 21
FSOpenResFile function 21
FSOpenResourceFile function 22

FSpCreateResFile function (Deprecated in Mac OS X
v10.5) 59

FSpOpenOrphanResFile function (Deprecated in Mac
OS X v10.5) 59

FSpOpenResFile function (Deprecated in Mac OS X
v10.5) 60

FSpResourceFileAlreadyOpen function (Deprecated
in Mac OS X v10.5) 62

FSResourceFileAlreadyOpen function 22

G

Get1IndResource function 23
Get1IndType function 24
Get1NamedResource function 24
Get1Resource function 25
GetIndResource function 26
GetIndType function 27
GetMaxResourceSize function 28
GetNamedResource function 28
GetNextFOND function 29
GetNextResourceFile function 29
GetResAttrs function 30
GetResFileAttrs function 30
GetResInfo function 31
GetResource function 31
GetResourceSizeOnDisk function 32
GetTopResourceFile function 33

H

HCreateResFile function (Deprecated in Mac OS X
v10.5) 62

HomeResFile function 33
HOpenResFile function (Deprecated in Mac OS X v10.5)

63

69
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

Index

I

inputOutOfBounds constant 56
InsertResourceFile function 34
InvokeResErrUPP function 34

K

kResFileNotOpened constant 51
kRsrcChainAboveAllMaps constant 54
kRsrcChainAboveApplicationMap constant 54
kRsrcChainBelowApplicationMap constant 54
kRsrcChainBelowSystemMap constant 54
kSystemResFile constant 52

L

LoadResource function 35

M

mapChanged constant 56
mapChangedBit constant 55
mapCompact constant 56
mapCompactBit constant 55
mapReadErr constant 57
mapReadOnly constant 56
mapReadOnlyBit constant 55

N

NewResErrUPP function 35

O

OpenRFPerm function (Deprecated in Mac OS X v10.5) 64

R

ReadPartialResource function 36
Reference Number Constants 51
ReleaseResource function 37
RemoveResource function 37
resAttrErr constant 57

ResAttributes data type 49
resChanged constant 54
resChangedBit constant 53
ResError function 38
ResErrProcPtr callback 49
ResErrUPP data type 50
ResFileAttributes data type 50
ResFileRefNum data type 50
resFNotFound constant 57
ResID data type 50
resLocked constant 54
resLockedBit constant 52
resNotFound constant 57
Resource Attribute Bits 52
Resource Attribute Masks 53
Resource Chain Location 54
Resource Fork Attribute Bits 55
Resource Fork Attribute Masks 56
ResourceEndianFilterPtr callback 49
resourceInMemory constant 56
resPreload constant 54
resPreloadBit constant 53
resProtected constant 54
resProtectedBit constant 53
resPurgeable constant 53
resPurgeableBit constant 52
resSysHeap constant 53
resSysHeapBit constant 52
resSysRefBit constant 52
ResType data type 51
rmvResFailed constant 57

S

SetResAttrs function 39
SetResFileAttrs function 39
SetResInfo function 40
SetResLoad function 41
SetResourceSize function 42
SetResPurge function 43

U

Unique1ID function 43
UniqueID function 44
UpdateResFile function 45
UseResFile function 46

70
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

W

WritePartialResource function 47
WriteResource function 48
writingPastEnd constant 56

71
2007-10-31 | © 2001, 2007 Apple Inc. All Rights Reserved.

INDEX

	Resource Manager Reference
	Contents
	Resource Manager Reference
	Overview
	Functions by Task
	Checking for Errors
	Closing Resource Forks
	Counting and Listing Resource Types
	Creating Resource Files and Forks
	Disposing of Resources
	Getting a Unique Resource ID
	Getting and Setting Resource Fork Attributes
	Getting and Setting Resource Information
	Getting and Setting the Current Resource File
	Getting Resource Sizes
	Managing the Resource Chain
	Modifying Resources
	Opening Resource Forks
	Reading and Writing Partial Resources
	Reading Resources Into Memory
	Writing to Resource Forks
	Not Recommended

	Functions
	AddResource
	ChangedResource
	CloseResFile
	Count1Resources
	Count1Types
	CountResources
	CountTypes
	CurResFile
	DetachResource
	DetachResourceFile
	DisposeResErrUPP
	FSCreateResFile
	FSCreateResourceFile
	FSCreateResourceFork
	FSOpenOrphanResFile
	FSOpenResFile
	FSOpenResourceFile
	FSResourceFileAlreadyOpen
	Get1IndResource
	Get1IndType
	Get1NamedResource
	Get1Resource
	GetIndResource
	GetIndType
	GetMaxResourceSize
	GetNamedResource
	GetNextFOND
	GetNextResourceFile
	GetResAttrs
	GetResFileAttrs
	GetResInfo
	GetResource
	GetResourceSizeOnDisk
	GetTopResourceFile
	HomeResFile
	InsertResourceFile
	InvokeResErrUPP
	LoadResource
	NewResErrUPP
	ReadPartialResource
	ReleaseResource
	RemoveResource
	ResError
	SetResAttrs
	SetResFileAttrs
	SetResInfo
	SetResLoad
	SetResourceSize
	SetResPurge
	Unique1ID
	UniqueID
	UpdateResFile
	UseResFile
	WritePartialResource
	WriteResource

	Callbacks
	ResErrProcPtr
	ResourceEndianFilterPtr

	Data Types
	ResAttributes
	ResErrUPP
	ResFileAttributes
	ResFileRefNum
	ResID
	ResType

	Constants
	Reference Number Constants
	Resource Attribute Bits
	Resource Attribute Masks
	Resource Chain Location
	Resource Fork Attribute Bits
	Resource Fork Attribute Masks

	Result Codes

	Appendix A: Deprecated Resource Manager Functions
	Deprecated in Mac OS X v10.5
	FSpCreateResFile
	FSpOpenOrphanResFile
	FSpOpenResFile
	FSpResourceFileAlreadyOpen
	HCreateResFile
	HOpenResFile
	OpenRFPerm

	Revision History
	Index
	A
	B
	C
	D
	F
	G
	H
	I
	K
	L
	M
	N
	O
	R
	S
	U
	W

