
Text Utilities Reference
Carbon > Text & Fonts

2007-05-29

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, QuickDraw, and SANE are
trademarks of Apple Inc., registered in the
United States and other countries.

Numbers is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Text Utilities Reference 9

Overview 9
Functions by Task 10

Comparing Strings for Equality 10
Converting Between Integers and Strings 10
Converting Between Strings and Floating-Point Numbers 10
Converting Between C and Pascal Strings 10
Defining and Specifying Strings 11
Determining Sorting Order for Strings in Different Languages 11
Determining Sorting Order for Strings in the Same Language 12
Modifying Characters and Diacritical Marks 12
Searching for and Replacing Strings 12
Using Number Format Specification Strings for International Number Formatting 13
Working With Word, Script, and Line Boundaries 13
Working With Universal Procedure Pointers 13
Working With Type Select Records 13

Functions 14
Munger 14

Callbacks 15
IndexToStringProcPtr 15

Data Types 16
BreakTable 16
FormatClass 17
FormatStatus 17
FVector 17
IndexToStringUPP 18
NBreakTable 18
NumFormatString 20
NumFormatStringRec 20
ScriptRunStatus 21
TripleInt 22
TypeSelectRecord 22

Constants 23
Format Result Types 23
TripleInt Index Values 24
NumFormatString Version 25
Implicit Language Codes 25
Type Select Modes 26
Obsolete Language Code Values 27

3
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Appendix A Deprecated Text Utilities Functions 29

Deprecated in Mac OS X v10.4 29
c2pstr 29
C2PStr 29
c2pstrcpy 30
CompareString 30
CompareText 31
CopyCStringToPascal 32
CopyPascalStringToC 32
DisposeIndexToStringUPP 33
EqualString 33
ExtendedToString 34
FindScriptRun 35
FindWordBreaks 36
FormatRecToString 38
GetIndString 39
GetString 40
IdenticalString 41
IdenticalText 41
InvokeIndexToStringUPP 42
LanguageOrder 43
LowercaseText 44
NewIndexToStringUPP 44
NewString 45
NumToString 46
p2cstr 46
P2CStr 47
p2cstrcpy 47
RelString 48
relstring 48
ReplaceText 49
ScriptOrder 50
SetString 51
StringOrder 51
StringToExtended 53
StringToFormatRec 54
StringToNum 55
StripDiacritics 56
TextOrder 57
TypeSelectClear 58
TypeSelectCompare 59
TypeSelectFindItem 60
TypeSelectNewKey 61
UppercaseStripDiacritics 61
UppercaseText 62

4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

UpperString 63
upperstring 64

Appendix B Unsupported Functions 65

Document Revision History 67

Index 69

5
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

6
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Appendix B Unsupported Functions 65

Table B-1 Porting notes for unsupported functions 65

7
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

8
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

TABLES

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in NumberFormatting.h
StringCompare.h
TextUtils.h
TypeSelect.h

Overview

The Text Utilities provide you with an integrated collection of routines for performing a variety of operations
on textual information, ranging from modifying the contents of a string, to sorting strings from different
languages, to converting times, dates, and numbers from internal representations to formatted strings and
back. These routines work in conjunction with QuickDraw text drawing routines to help you display and
modify text in applications that are distributed to an international audience.

The Text Utilities functions are used for numerous text-handling tasks, including

 ■ defining strings–including functions for allocating strings in the heap and for loading strings from
resources

 ■ comparing and sorting strings–including functions for testing whether two strings are equal and functions
for finding the sorting relationship between two strings

 ■ modifying the contents of strings–including routines for converting the case of characters, stripping
diacritical marks, replacing substrings, and truncating strings

 ■ finding breaks and boundaries in text–including routines for finding word and line breaks, and for finding
different script runs in a line of text

 ■ converting and formatting date and time strings–including routines that convert numeric and string
representations of dates and times into record format, and routines that convert numeric and record
representations of dates and times into strings

 ■ converting and formatting numeric strings–including routines that convert string representations of
numbers into numeric representations

Carbon supports the majority of Text Utilities. However, Apple recommends that you use the comparison
and word breaking utilities supplied by Unicode Utilities instead.

A number of obsolete Text Utilities functions-such as those prefixed with iu or IU-are not supported.

Overview 9
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

Functions by Task

Comparing Strings for Equality

EqualString (page 33) Deprecated in Mac OS X v10.4
Compares two Pascal strings for equality, using the comparison rules of the Macintosh file system.
(Deprecated. Use CFStringCompare instead.)

IdenticalString (page 41) Deprecated in Mac OS X v10.4
Compares two Pascal strings for equality, making use of the string comparison information from a
resource that you specify as a parameter. (Deprecated. Use CFStringCompare instead.)

IdenticalText (page 41) Deprecated in Mac OS X v10.4
Compares two text strings for equality, making use of the string comparison information from a
resource that you specify as a parameter. (Deprecated. Use CFStringCompare instead.)

Converting Between Integers and Strings

NumToString (page 46) Deprecated in Mac OS X v10.4
Converts a long integer value into a Pascal string. (Deprecated. Use CFStringCreateWithFormat
instead.)

StringToNum (page 55) Deprecated in Mac OS X v10.4
Converts the Pascal string representation of a base-10 number into a long integer value. (Deprecated.
Use CFStringGetIntValue instead.)

Converting Between Strings and Floating-Point Numbers

ExtendedToString (page 34) Deprecated in Mac OS X v10.4
Converts an internal floating-point representation of a number into a string that can be presented to
the user, using a NumFormatStringRec structure to specify how the output number string is formatted
(Deprecated. Use CFNumberFormatterCreateNumberFromString instead.)

StringToExtended (page 53) Deprecated in Mac OS X v10.4
Converts a string representation of a number into a floating-point number, using a
NumFormatStringRec structure to specify how the input number string is formatted. (Deprecated.
Use CFNumberFormatterCreateStringWithNumber instead.)

Converting Between C and Pascal Strings

c2pstr (page 29) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

C2PStr (page 29) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

10 Functions by Task
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

c2pstrcpy (page 30) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

CopyCStringToPascal (page 32) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

CopyPascalStringToC (page 32) Deprecated in Mac OS X v10.4
Converts a Pascal String to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

p2cstr (page 46) Deprecated in Mac OS X v10.4
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

P2CStr (page 47) Deprecated in Mac OS X v10.4
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

p2cstrcpy (page 47) Deprecated in Mac OS X v10.4
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

Defining and Specifying Strings

GetIndString (page 39) Deprecated in Mac OS X v10.4
Loads a string from a string list ('STR#') resource into memory, given the resource ID of the string
list and the index of the individual string. (Deprecated. Use CFBundleCopyLocalizedString instead.)

GetString (page 40) Deprecated in Mac OS X v10.4
Loads a string from a string ('STR') resource into memory. (Deprecated. Use
CFBundleCopyLocalizedString instead.)

NewString (page 45) Deprecated in Mac OS X v10.4
Allocates memory in the heap for a string, copies its contents, and produces a handle for the heap
version of the string. (Deprecated. Use CFStringCreateCopy instead.)

SetString (page 51) Deprecated in Mac OS X v10.4
Changes the contents of a string referenced by a string handle, replacing the previous contents by
copying the specified string. (Deprecated. Use CFStringCreateWithPascalString and
CFStringReplaceAll.)

Determining Sorting Order for Strings in Different Languages

LanguageOrder (page 43) Deprecated in Mac OS X v10.4
Determines the order in which strings in two different languages should be sorted. (Deprecated. Use
CFStringCompare or UCCompareText instead.)

ScriptOrder (page 50) Deprecated in Mac OS X v10.4
Determines the order in which strings in two different scripts should be sorted. (Deprecated. Use
CFStringCompare or UCCompareText instead.)

StringOrder (page 51) Deprecated in Mac OS X v10.4
Compares two Pascal strings, taking into account the script system and language for each of the
strings. (Deprecated. Use CFStringCompare or UCCompareText instead.)

Functions by Task 11
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

TextOrder (page 57) Deprecated in Mac OS X v10.4
Compares two text strings, taking into account the script and language for each of the strings.
(Deprecated. Use CFStringCompare or UCCompareText instead.)

Determining Sorting Order for Strings in the Same Language

CompareString (page 30) Deprecated in Mac OS X v10.4
Compares two Pascal strings, making use of the string comparison information from a resource that
you specify as a parameter. (Deprecated. Use CFStringCompare or UCCompareText instead.)

CompareText (page 31) Deprecated in Mac OS X v10.4
Compares two text strings, making use of the string comparison information from a resource that
you specify as a parameter. (Deprecated. Use CFStringCompare or UCCompareText instead.)

RelString (page 48) Deprecated in Mac OS X v10.4
Compares two Pascal strings using the string comparison rules of the Macintosh file system and
returns a value that indicates the sorting order of the first string relative to the second string.
(Deprecated. Use CFStringCompare or UCCompareText instead.)

relstring (page 48) Deprecated in Mac OS X v10.4
Compares two strings. (Deprecated. Use CFStringCompare or UCCompareText instead.)

Modifying Characters and Diacritical Marks

LowercaseText (page 44) Deprecated in Mac OS X v10.4
Converts any uppercase characters in a text string into their lowercase equivalents. (Deprecated. Use
CFStringLowercase instead.)

StripDiacritics (page 56) Deprecated in Mac OS X v10.4
Strips any diacritical marks from a text string. (Deprecated. Use CFStringTransform instead.)

UppercaseStripDiacritics (page 61) Deprecated in Mac OS X v10.4
Converts any lowercase characters in a text string into their uppercase equivalents and strips any
diacritical marks from the text. (Deprecated. Use CFStringTransform instead.)

UppercaseText (page 62) Deprecated in Mac OS X v10.4
Converts any lowercase characters in a text string into their uppercase equivalents. (Deprecated. Use
CFStringUppercase instead.)

UpperString (page 63) Deprecated in Mac OS X v10.4
Converts any lowercase letters in a Pascal string to their uppercase equivalents, using the Macintosh
file system rules. (Deprecated. Use CFStringUppercase instead.)

upperstring (page 64) Deprecated in Mac OS X v10.4
Converts any lowercase letters in a Pascal string to their uppercase equivalents. (Deprecated. Use
CFStringUppercase instead.)

Searching for and Replacing Strings

Munger (page 14)
Searches text for a specified string pattern and replaces it with another string.

12 Functions by Task
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

ReplaceText (page 49) Deprecated in Mac OS X v10.4
Searches text on a character-by-character basis, replacing all instances of a string in that text with
another string. (Deprecated. Use CFStringReplace instead.)

Using Number Format Specification Strings for International Number
Formatting

FormatRecToString (page 38) Deprecated in Mac OS X v10.4
Converts an internal representation of number formatting information into a number format
specification string, which can be displayed and modified. (Deprecated. Use
CFNumberFormatterGetFormat instead.)

StringToFormatRec (page 54) Deprecated in Mac OS X v10.4
Creates a number format specification string structure from a number format specification string that
you supply in a Pascal string. (Deprecated. Use CFNumberFormatterSetFormat instead.)

Working With Word, Script, and Line Boundaries

FindScriptRun (page 35) Deprecated in Mac OS X v10.4
Finds the next block of subscript text within a script run. (Deprecated. There is no replacement function
because this capability is no longer needed in Mac OS X.)

FindWordBreaks (page 36) Deprecated in Mac OS X v10.4
Determines the beginning and ending boundaries of a word in a text string. (Deprecated. Use
UCFindTextBreak instead.)

Working With Universal Procedure Pointers

DisposeIndexToStringUPP (page 33) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer to an index-to-string callback.

InvokeIndexToStringUPP (page 42) Deprecated in Mac OS X v10.4
Call an index-to-string callback.

NewIndexToStringUPP (page 44) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to an index-to-string callback.

Working With Type Select Records

TypeSelectClear (page 58) Deprecated in Mac OS X v10.4
Clears the key list and resets the type select record. (Deprecated. Use
UCTypeSelectFlushSelectorData instead.)

TypeSelectCompare (page 59) Deprecated in Mac OS X v10.4
Compares a text buffer to the keystroke buffer. (Deprecated. Use UCTypeSelectCompare instead.)

TypeSelectFindItem (page 60) Deprecated in Mac OS X v10.4
Finds the closest match between a specified list of characters and the keystrokes stored in the type
select record. (Deprecated. Use UCTypeSelectFindItem instead.)

Functions by Task 13
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

TypeSelectNewKey (page 61) Deprecated in Mac OS X v10.4
Creates a new type select record. (Deprecated. Use UCTypeSelectCreateSelector instead.)

Functions

Munger
Searches text for a specified string pattern and replaces it with another string.

long Munger (
 Handle h,
 long offset,
 const void *ptr1,
 long len1,
 const void *ptr2,
 long len2
);

Parameters
h

A handle to the text string that is being manipulated.

offset
The byte offset in the destination string at which Munger begins its operation.

ptr1
A pointer to the first character in the string for which Munger is searching.

len1
The number of bytes in the string for which Munger is searching.

ptr2
A pointer to the first character in the substitution string.

len2
The number of bytes in the substitution string.

Return Value
A negative value if Munger cannot find the designated string.

Discussion
Munger manipulates bytes in a string to which you specify a handle in the h parameter. The manipulation
begins at a byte offset, specified in offset, in the string. Munger searches for the string specified by ptr1
and len1; when it finds an instance of that string, it replaces it with the substitution string, which is specified
by ptr2 and len2.

Munger operates on a byte-by-byte basis, which can produce inappropriate results for 2-byte script systems.
The ReplaceText (page 49) function works properly for all languages. You are encouraged to use
ReplaceText instead of Munger whenever possible.

Munger takes special action if either of the specified pointer values is NULL or if either of the length values
is 0.

 ■ If ptr1 is NULL, Munger replaces characters without searching. It replaces len1 characters starting at
the offset location with the substitution string.

14 Functions
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

 ■ If ptr1 is NULL and len1 is negative, Munger replaces all of the characters from the offset location
to the end of the string with the substitution string.

 ■ If len1 is 0, Munger inserts the substitution string without replacing anything. Munger inserts the string
at the offset location and returns the offset of the first byte past where the insertion occurred.

 ■ If ptr2 is NULL, Munger searches but does not replace. In this case, Munger returns the offset at which
the string was found.

 ■ If len2 is 0 and ptr2 is not NULL, Munger searches and deletes. In this case, Munger returns the offset
at which it deleted.

 ■ If the portion of the string from the offset location to its end matches the beginning of the string that
Munger is searching for, Munger replaces that portion with the substitution string.

Be careful not to specify an offset with a value that is greater than the length of the destination string.
Unpredictable results may occur.

Munger calls the GetHandleSize and SetHandleSize functions to access or modify the length of the
string it is manipulating.

Special Considerations

Munger may move memory; your application should not call this function at interrupt time.

The destination string must be in a relocatable block that was allocated by the Memory Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextUtils.h

Callbacks

IndexToStringProcPtr
Defines a pointer to your index-to-string callback function that retrieves the string associated with an index
value.

Not recommended.

typedef Boolean (*IndexToStringProcPtr)
(
 short item,
 ScriptCode * itemsScript,
 StringPtr * itemsStringPtr,
 void * yourDataPtr
);

If you name your function MyIndexToStringProc, you would declare it like this:

Boolean MyIndexToStringProcPtr (
 short item,
 ScriptCode * itemsScript,

Callbacks 15
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

 StringPtr * itemsStringPtr,
 void * yourDataPtr
);

Parameters
item

The index value for which the TypeSelect function requests a string.

itemsScript
The script code of the string specified by itemsStringPtr.

itemsStringPtr
On return, points to the string that matches the index specify by the item parameter.

yourDataPtr
A pointer to your data structure. This is passed to your index-to-string callback, and can be NULL,
depending on how you implement your callback function.

Return Value
Returns true if a string matching that index value was found; false otherwise.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Availability
Not recommended. Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
TypeSelect.h

Data Types

BreakTable
Contains information used to determine the boundaries of a word.

struct BreakTable {
 char charTypes[256];
 short tripleLength;
 short triples[1];
};
typedef struct BreakTable BreakTable;
typedef BreakTable * BreakTablePtr;

Discussion
You can supply a BreakTable as a parameter to the function FindWordBreaks (page 36).

16 Data Types
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

FormatClass
Defines a data type used to access entries in a triple integer array.

typedef SInt8 FormatClass;

Discussion
Each of the three FVector entries in a triple integer array is accessed by one of the values of the FormatClass
type. See FVector (page 17) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

FormatStatus
Defines a data type used to denote the confidence level for a conversion.

typedef short FormatStatus;

Discussion
A FormatStatus value is returned by the functions ExtendedToString (page 34),
StringToExtended (page 53), FormatRecToString (page 38), and StringToFormatRec (page 54).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

FVector
Contains position and length information for one portion of a formatted numeric string.

struct FVector {
 short start;
 short length;
};
typedef struct FVector FVector;
typedef FVector TripleInt[3];

Fields
start

The starting byte position in the string of the specification information.

Data Types 17
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

length
The number of bytes used in the string for the specification information.

Discussion
The FVector data structure is used in the TripleInt (page 22) array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

IndexToStringUPP
Defines a universal procedure pointer to an index-to-string callback.

typedef IndexToStringProcPtr IndexToStringUPP;

Discussion
For more information, see the description of the IndexToStringProcPtr (page 15) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TypeSelect.h

NBreakTable
Contains information used by the FindWordBreaks function to determine word boundaries.

struct NBreakTable {
 SInt8 flags1;
 SInt8 flags2;
 short version;
 short classTableOff;
 short auxCTableOff;
 short backwdTableOff;
 short forwdTableOff;
 short doBackup;
 short length;
 char charTypes[256];
 short tables[1];
};
typedef struct NBreakTable NBreakTable;
typedef NBreakTable * NBreakTablePtr;

Fields
flags1

The high-order byte of the break table format flags. If the high-order bit of this byte is set to 1, this
break table is in the format used by FindWordBreaks.

18 Data Types
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

flags2
The low-order byte of the break table format flags. If the value in this byte is 0, the break table belongs
to a 1-byte script system; in this case FindWordBreaks does not check for 2-byte characters.

version
The version of this break table.

classTableOff
The offset in bytes from the beginning of the break table to the beginning of the class table.

auxCTableOff
The offset in bytes from the beginning of the break table to the beginning of the auxiliary class table.

backwdTableOff
The offset in bytes from the beginning of the break table to the beginning of the backward-processing
table.

forwdTableOff
The offset in bytes from the beginning of the break table to the beginning of the forward-processing
table.

doBackup
The minimum byte offset into the buffer for doing backward processing. If the selected character for
FindWordBreaks has a byte offset less than doBackup, FindWordBreaks skips backward processing
altogether and starts from the beginning of the buffer.

length
The length in bytes of the entire break table, including the individuals tables.

charTypes
The class table.

tables
The data of the auxiliary class table, backward table, and forward table.

Discussion
The tables have this format and content:

 ■ The class table is an array of 256 signed bytes. Offsets into the table represent byte values; if the entry
at a given offset in the table is positive, it means that a byte whose value equals that offset is a single-byte
character, and the entry at that offset is the class number for the character. If the entry is negative, it
means that the byte is the first byte of a 2-byte character code, and the auxiliary class table must be
used to determine the character class. Odd negative numbers are handled differently from even negative
numbers.

 ■ The auxiliary class table assigns character classes to 2-byte characters. It is used when the class table
determines that a byte value represents the first byte of a 2-byte character.

 ❏ The auxiliary class table handles odd negative values from the class table as follows. If the first word
of the auxiliary class table is equal to or greater than zero, it represents the default class number for
2-byte character codes—the class assigned to every odd negative value from the class table. If the
first word is less than zero, it is the negative of the offset from the beginning of the auxiliary class
table to a first-byte class table (a table of 2-byte character classes that can be determined from just
the first byte). The value from the class table is negated, 1 is subtracted from it to obtain an even
offset, and the value at that offset into the first-byte class table is the class to be assigned.

 ❏ The auxiliary class table handles even negative values from the class table as follows. The auxiliary
class table begins with a variable-length word array. The words that follow the first word are offsets
to row tables. Row tables have the same format as the class table, but are used to map the second
byte of a 2-byte character code to a class number. If the entry in the class table for a given byte is
an even negative number, FindWordBreaks negates this value to obtain the offset from the

Data Types 19
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

beginning of the auxiliary class table to the appropriate word, which in turn contains an offset to
the appropriate row table. That row table is then used to map the second byte of the character to
a class number.

 ■ The backward-processing table is a state table used by FindWordBreaks for backward searching. Using
the backward-processing table, FindWordBreaks starts at a specified character, moving backward as
necessary until it encounters a word boundary.

 ■ The forward-processing table is a state table used by FindWordBreaks for forward searching. Using
the forward-processing table, FindWordBreaks starts at one word boundary and moves forward until
it encounters another word boundary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

NumFormatString
Contains data that represents the internal number formatting specification.

struct NumFormatString {
 UInt8 fLength;
 UInt8 fVersion;
 char data[254];
};
typedef struct NumFormatString NumFormatString;
typedef NumFormatString NumFormatStringRec;

Fields
fLength

The number of bytes in the data actually used for this number formatting specification.

fVersion
The version number of the number formatting specification.

data
The data that comprises the number formatting specification.

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

NumFormatStringRec
Defines an internal numeric representation that is independent of region, language, and other multicultural
consideration.

20 Data Types
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

typedef NumFormatString NumFormatStringRec;

Discussion
To allow for all of the international variations in numeric presentation styles, you need to include in your
function calls a number parts table from a tokens ('itl4') resource. You can usually use the number parts
table in the standard tokens resource that is supplied with the system. You also need to define the format
of input and output numeric strings, including which characters (if any) to use as thousand separators, whether
to indicate negative values with a minus sign or by enclosing the number in parentheses, and how to display
zero values.

To make it possible to map a number that was formatted for one specification into another format, the Mac
OS defines an internal numeric representation that is independent of region, language, and other multicultural
considerations: the NumFormatStringRec structure. This structure is created from a number format
specification string that defines the appearance of numeric strings.

Four of the numeric string functions use the number formatting specification, defined by the
NumFormatStringRec data type: StringToFormatRec (page 54), FormatRecToString (page 38),
StringToExtended (page 53), and ExtendedToString (page 34). The number format specification
structure contains the data that represents the internal number formatting specification information. This
data is stored in a private format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

ScriptRunStatus
Contains script-specific information for a script run.

struct ScriptRunStatus {
 SInt8 script;
 SInt8 runVariant;
};
typedef struct ScriptRunStatus ScriptRunStatus;

Fields
script

The script code of the subscript run. Zero indicates the Roman script system.

runVariant
Script-specific information about the run, in the same format as that returned by the CharacterType
function. This information includes the type of subscript—for example, Kanji, Katakana, or Hiragana
for a Japanese script system.

Discussion
The FindScriptRun (page 35) function returns the script run status structure, defined by the
ScriptRunStatus data type, when it completes its processing, which is to find a run of subscript text in a
string.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 21
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

Declared In
TextUtils.h

TripleInt
Defines a data type used to return the position and length information for three different portions of a
formatted numeric string.

typedef FVector TripleInt[3];

Discussion
The FormatRecToString (page 38) function uses the triple-integer array, defined by the TripleInt data
type, to return the starting position and length in a string of three different portions of a formatted numeric
string: the positive value string, the negative value string, and the zero value string. Each element of the
triple integer array is an FVector structure. Each of the three FVector entries in the triple integer array is
accessed by one of the values of the FormatClass type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

TypeSelectRecord
Contains a buffer of keystrokes, the script code associated with the keystrokes, and timer information.

struct TypeSelectRecord {
 unsigned long tsrLastKeyTime;
 ScriptCode tsrScript;
 Str63 tsrKeyStrokes;
};
typedef struct TypeSelectRecord TypeSelectRecord;

Fields
tsrLastKeyTime

A value that indicates timeout information.

tsrScript
A script code.

tsrKeyStrokes
The keystroke buffer.

Discussion
The TypeSelectRecord data structure is passed as a parameter to the functions TypeSelectNewKey (page
61), TypeSelectFindItem (page 60), TypeSelectCompare (page 59), and TypeSelectClear (page
58).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TypeSelect.h

22 Data Types
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

Constants

Format Result Types
Specify values that can be returned in the low byte of a format status (FormatStatus) value.

enum {
 fFormatOK = 0,
 fBestGuess = 1,
 fOutOfSynch = 2,
 fSpuriousChars = 3,
 fMissingDelimiter = 4,
 fExtraDecimal = 5,
 fMissingLiteral = 6,
 fExtraExp = 7,
 fFormatOverflow = 8,
 fFormStrIsNAN = 9,
 fBadPartsTable = 10,
 fExtraPercent = 11,
 fExtraSeparator = 12,
 fEmptyFormatString = 13
};
typedef SInt8 FormatResultType;

Constants
fFormatOK

Specifies format is okay.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fBestGuess
Specifies the format is the best guess.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fOutOfSynch
Specifies the format is out of sync.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fSpuriousChars
Specifies the format contains spurious characters.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fMissingDelimiter
Specifies a missing delimiter.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Constants 23
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

fExtraDecimal
Specifies the format contains an extra decimal sign.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fMissingLiteral
Specifies the format is missing a literal.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraExp
Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fFormatOverflow
Specifies a format overflow.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fFormStrIsNAN
Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fBadPartsTable
Specifies the parts table is bad.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraPercent
Specifies the format contains an extra percent sign.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraSeparator
Specifies an extra separator.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fEmptyFormatString
Specifies the format string is empty.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Discussion
A format result type is returned in the low byte of a format status (FormatStatus) value. A
FormatStatus (page 17) value is returned by the functions ExtendedToString (page 34),
StringToExtended (page 53), FormatRecToString (page 38), and StringToFormatRec (page 54). A
format status value denotes the confidence level for a conversion.

TripleInt Index Values
Specify an index for a TripleInt array.

24 Constants
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

enum {
 fPositive = 0,
 fNegative = 1,
 fZero = 2
};

Constants
fPositive

Specifies the positive value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fNegative
Specifies the negative value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fZero
Specifies the zero value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Discussion
See TripleInt (page 22) for more information.

NumFormatString Version
Specifies the first version of the NumFormatString data structure.

enum {
 fVNumber = 0
};

Discussion
See NumFormatString (page 20) for more information.

Implicit Language Codes
Specify implicit language codes.

Constants 25
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

enum {
 systemCurLang = -2,
 systemDefLang = -3,
 currentCurLang = -4,
 currentDefLang = -5,
 scriptCurLang = -6,
 scriptDefLang = -7
};

Constants
systemCurLang

Specifies the current language for system script (from 'itlb').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

systemDefLang
Specifies the default language for system script (from 'itlm').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

currentCurLang
Specifies the current language for current script (from 'itlb').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

currentDefLang
Specifies the default language for current script (from 'itlm').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

scriptCurLang
Specifies the current language for specified script (from 'itlb')

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

scriptDefLang
Specifies the default language for specified script (from 'itlm')

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

Discussion
The functions LanguageOrder (page 43), StringOrder (page 51), and TextOrder (page 57) accept as
parameters implicit language codes listed here, as well as explicit language codes.

Type Select Modes
Contains type-select code information.

26 Constants
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

typedef SInt16 TSCode;
enum {
 tsPreviousSelectMode = -1,
 tsNormalSelectMode = 0,
 tsNextSelectMode = 1
};

Constants
tsPreviousSelectMode

Specifies previous-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

tsNormalSelectMode
Specifies normal-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

tsNextSelectMode
Specifies next-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

Discussion
This structure is passed as a parameter to the function TypeSelectFindItem (page 60).

Obsolete Language Code Values
Specify language code values that are no longer used.

enum {
 iuSystemCurLang = systemCurLang,
 iuSystemDefLang = systemDefLang,
 iuCurrentCurLang = currentCurLang,
 iuCurrentDefLang = currentDefLang,
 iuScriptCurLang = scriptCurLang,
 iuScriptDefLang = scriptDefLang
};

Constants 27
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

28 Constants
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Text Utilities Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

c2pstr
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

StringPtr c2pstr (
 char *aStr
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

C2PStr
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

StringPtr C2PStr (
 Ptr cString
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Deprecated in Mac OS X v10.4 29
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

c2pstrcpy
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void c2pstrcpy (
 Str255 dst,
 const char *src
);

Parameters
dst

On output, the Pascal string.

src
The C string you want to convert.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
SoftVDigX

Declared In
TextUtils.h

CompareString
Compares two Pascal strings, making use of the string comparison information from a resource that you
specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short CompareString (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 Handle itl2Handle
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

itl2Handle
The handle to the string-manipulation resource that contains string comparison information. If the
value of this parameter is NULL, CompareString makes use of the resource for the current script.
The string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

30 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

Special Considerations

CompareString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

CompareText
Compares two text strings, making use of the string comparison information from a resource that you specify
as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short CompareText (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 Handle itl2Handle
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information. If
the value of this parameter is NULL, CompareText makes use of the resource for the current script.
The string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string.

Deprecated in Mac OS X v10.4 31
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

Special Considerations

CompareText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

CopyCStringToPascal
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void CopyCStringToPascal (
 const char *src,
 Str255 dst
);

Parameters
src

The C string you want to convert.

dst
On output, the Pascal string.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
TextUtils.h

CopyPascalStringToC
Converts a Pascal String to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

32 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

void CopyPascalStringToC (
 ConstStr255Param src,
 char *dst
);

Parameters
src

The Pascal string you want to convert.

dst
On output, the C string.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

DisposeIndexToStringUPP
Disposes of a universal procedure pointer to an index-to-string callback. (Deprecated in Mac OS X v10.4.)

void DisposeIndexToStringUPP (
 IndexToStringUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback IndexToStringProcPtr (page 15) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

EqualString
Compares two Pascal strings for equality, using the comparison rules of the Macintosh file system. (Deprecated
in Mac OS X v10.4. Use CFStringCompare instead.)

Deprecated in Mac OS X v10.4 33
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Boolean EqualString (
 ConstStr255Param str1,
 ConstStr255Param str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

One of the Pascal strings to be compared.

str2
The other Pascal string to be compared.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison. If the value of
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If it is FALSE, case information is ignored.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.
If the value of diacSens is TRUE, characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the comparison. If it is FALSE, diacritical
marks are ignored.

Return Value
TRUE if the two strings are equal and FALSE if they are not equal. If its value is TRUE, EqualString
distinguishes uppercase characters from the corresponding lowercase characters. If its value is FALSE,
EqualString ignores diacritical marks during the comparison.

Discussion
The comparison is a simple, character-by-character value comparison. This function does not make use of
any script or language information (i.e., is not localizable); it assumes the use of a Roman script system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ExtendedToString
Converts an internal floating-point representation of a number into a string that can be presented to the
user, using a NumFormatStringRec structure to specify how the output number string is formatted
(Deprecated in Mac OS X v10.4. Use CFNumberFormatterCreateNumberFromString instead.)

34 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

FormatStatus ExtendedToString (
 const extended80 *x,
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 Str255 outString
);

Parameters
x

A pointer to a floating-point value in 80-bit SANE representation.

myCanonical
A pointer to the internal representation of the formatting information for numbers, as produced by
the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

outString
On output, contains the number formatted according to the information in myFormatRec.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of ExtendedToString to a
type FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
ExtendedToString creates a string representation of a floating-point number, using the formatting
information in the myFormatRec parameter (which was created by a previous call to StringToFormatRec)
to determine how the number should be formatted for output. It uses the number parts table to determine
the component parts of the number string.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

FindScriptRun
Finds the next block of subscript text within a script run. (Deprecated in Mac OS X v10.4. There is no
replacement function because this capability is no longer needed in Mac OS X.)

Deprecated in Mac OS X v10.4 35
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

ScriptRunStatus FindScriptRun (
 Ptr textPtr,
 long textLen,
 long *lenUsed
);

Parameters
textPtr

A pointer to the text string to be analyzed.

textLen
The number of bytes in the text string.

lenUsed
On output, a pointer to the length, in bytes, of the script run that begins with the first character in
the string; this length is always greater than or equal to 1, unless the string passed in is of length 0.

Return Value
Identifies the run as either native text, Roman, or one of the defined subscripts of the script system and
returns a structure of type ScriptRunStatus (page 21). See the description of the ScriptRunStatus data
type.

Discussion
The FindScriptRun function is used to identify blocks of subscript text in a string, taking into account script
and language considerations, making use of tables in the string-manipulation ('itl2') resource in its
computations. Some script systems include subscripts, which are character sets that are subsidiary to the
main character set. One useful subscript is the set of all character codes that have the same meaning in
Roman as they do in a non-Roman script. For other scripts such as Japanese, there are additional useful
subscripts. For example, a Japanese script system might include some Hiragana characters that are useful
for input methods.

FindScriptRun computes the length of the current run of subscript text in the text string specified by
textPtr and textLen. It assigns the length, in bytes, to the lenUsed parameter and returns a status code.
You can advance the text pointer by the value of lenUsed to make subsequent calls to this function. You
can use this function to identify runs of subscript characters so that you can treat them separately.

Word processors and other applications can call FindScriptRun to separate style runs of native text from
non-native text. You can use this capability to extract those characters and apply a different font to them.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

FindWordBreaks
Determines the beginning and ending boundaries of a word in a text string. (Deprecated in Mac OS X v10.4.
Use UCFindTextBreak instead.)

36 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

void FindWordBreaks (
 Ptr textPtr,
 short textLength,
 short offset,
 Boolean leadingEdge,
 BreakTablePtr breaks,
 OffsetTable offsets,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be examined.

textLength
The number of bytes in the text string.

offset
A byte offset into the text. This parameter plus the leadingEdge parameter determine the position
of the character at which to start the search.

leadingEdge
A flag that specifies which character should be used to start the search. If leadingEdge is TRUE, the
search starts with the character specified in the offset parameter; if it is FALSE, the search starts
with the character preceding the offset.

breaks
A pointer to a word-break table of type NBreakTable or BreakTable. If the value of this pointer is
0, the default word-break table of the script system specified by the script parameter is used. If the
value of this pointer is –1, the default line-break table of the specified script system is used.

offsets
On output, the values in this table indicate the boundaries of the word that has been found.

script
The script code for the script system whose tables are used to determine where word boundaries
occur.

Discussion
FindWordBreaks searches for a word in a text string, taking into account script and language considerations,
making use of tables in the string-manipulation ('itl2') resource in its computations. The textPtr and
textLength parameters specify the text string that you want searched. The offset parameter and
leadingEdge parameter together indicate where the search begins.

FindWordBreaks searches backward through the text string for one of the word boundaries and forward
through the text string for its other boundary. It uses the definitions in the table specified by nbreaks to
determine what constitutes the boundaries of a word. Each script system’s word-break table is part of its
string-manipulation ('itl2') resource.

FindWordBreaks returns its results in an OffsetTable structure. FindWordBreaks uses only the first
element of this three-element table. Each element is a pair of integers: offFirst and offSecond.

FindWordBreaks places the offset from the beginning of the text string to just before the leading edge of
the character of the word that it finds in the offFirst field.

FindWordBreaks places the offset from the beginning of the text string to just after the trailing edge of the
last character of the word that it finds in the offSecond field. For example, if the text “This is it” is passed
with offset set to 0 and leadingEdge set to TRUE, then FindWordBreaks returns the offset pair (0,4).

Deprecated in Mac OS X v10.4 37
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

If leadingEdge is TRUE and the value of offset is 0, then FindWordBreaks returns the offset pair (0,0).
If leadingEdge is FALSE and the value of offset equals the value of textLength, then FindWordBreaks
returns the offset pair with values (textLength, textLength).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

FormatRecToString
Converts an internal representation of number formatting information into a number format specification
string, which can be displayed and modified. (Deprecated in Mac OS X v10.4. Use
CFNumberFormatterGetFormat instead.)

FormatStatus FormatRecToString (
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 Str255 outString,
 TripleInt positions
);

Parameters
myCanonical

A pointer to the internal representation of number formatting information, as created by a previous
call to the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

outString
On output, contains the number format specification string.

positions
An array that specifies the starting position and length of each of the three possible format strings
(positive, negative, or zero) in the number format specification string. Semicolons are used as separators
in the string.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of FormatRecToString to
a type FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
FormatRecToString is the inverse operation of StringToFormatRec (page 54). The internal representation
of the formatting information in myFormatRec must have been created by a prior call to the
StringToFormatRec function. The information in the number parts table specifies how to build the string
representation.

38 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

The output number format specification string in outString specifies how numbers appear. This string
contains three parts, which are separated by semicolons. The first part is the positive number format, the
second is the negative number format, and the third part is the zero number format.

The positions parameter is an array of three integers (a TripleInt value), which specifies the starting
position in outString of each of three formatting specifications:

 ■ positions[fPositive]. The index in outString of the first byte of the formatting specification for
positive number values.

 ■ positions[fNegative]. The index in outString of the first byte of the formatting specification for
negative number values.

 ■ positions[fZero]. The index in outString of the first byte of the formatting specification for zero
number values.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

GetIndString
Loads a string from a string list ('STR#') resource into memory, given the resource ID of the string list and
the index of the individual string. (Deprecated in Mac OS X v10.4. Use CFBundleCopyLocalizedString
instead.)

void GetIndString (
 Str255 theString,
 short strListID,
 short index
);

Parameters
theString

On output, the Pascal string result; specifically, a copy of the string from a string list that has the
resource ID provided in the strListID parameter. If the resource that you specify cannot be read
or the index that you specify is out of range for the string list, GetIndString sets theString to an
empty string.

strListID
The resource ID of the 'STR#' resource that contains the string list.

index
The index of the string in the list. This is a value from 1 to the number of strings in the list that is
referenced by the strListID parameter.

Deprecated in Mac OS X v10.4 39
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Discussion
If necessary, GetIndString reads the string list from the resource file by calling the Resource Manager
function GetResource. GetIndString accesses the string specified by the index parameter and copies it
into theString.

Special Considerations

GetIndString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

GetString
Loads a string from a string ('STR') resource into memory. (Deprecated in Mac OS X v10.4. Use
CFBundleCopyLocalizedString instead.)

StringHandle GetString (
 short stringID
);

Parameters
stringID

The resource ID of the string ('STR ') resource containing the string.

Return Value
A handle to a string with the specified resource ID. If necessary, GetString reads the handle form the
resource file. If GetString cannot read the resource, it returns NULL.

Discussion
GetString calls the GetResource function of the Resource Manager to access the string. This means that
if the specified resource is already in memory, GetString simply returns its handle.

Like the NewString (page 45) function, GetString returns a handle whose size is based upon the actual
length of the string.

If your application uses a large number of strings, it is more efficient to store them in a string list ('STR#')
resource than as individual resources in the resource file. You then use the GetIndString (page 39) function
to access each string in the list.

Special Considerations

GetString does not create a copy of the string.

GetString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

40 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Declared In
TextUtils.h

IdenticalString
Compares two Pascal strings for equality, making use of the string comparison information from a resource
that you specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare instead.)

short IdenticalString (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 Handle itl2Handle
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information.

The itl2Handle parameter is used to specify a string-manipulation resource. If the value of this
parameter is NULL, IdenticalString makes use of the resource for the current script. The
string-manipulation resource includes tables for modifying string comparison and tables for case
conversion and stripping of diacritical marks.

Return Value
Returns 0 if the two strings are equal; 1 if they are not equal. It compares the two strings without regard for
secondary sorting order, the meaning of which depends on the language of the strings. For example, for the
English language, using only primary differences means that IdenticalString ignores diacritical marks
and does not distinguish between lowercase and uppercase. For example, if the two strings are 'Rose' and
'rosé', IdenticalString considers them equal and returns 0.

Discussion
IdenticalString uses only primary differences in its comparison.

Special Considerations

IdenticalString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

IdenticalText
Compares two text strings for equality, making use of the string comparison information from a resource
that you specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare instead.)

Deprecated in Mac OS X v10.4 41
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

short IdenticalText (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 Handle itl2Handle
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information.

The itl2Handle parameter is used to specify a string-manipulation resource. If the value of this
parameter is NULL, IdenticalText makes use of the resource for the current script. The
string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
0 if the two text strings are equal; 1 if they are not equal. It compares the strings without regard for secondary
sorting order, which means that it ignores diacritical marks and does not distinguish between lowercase and
uppercase. For example, if the two text strings are 'Rose' and 'rosé', IdenticalText considers them
equal and returns 0.

Discussion
IdenticalText uses only primary sorting order in its comparison.

Special Considerations

IdenticalText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

InvokeIndexToStringUPP
Call an index-to-string callback. (Deprecated in Mac OS X v10.4.)

42 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Boolean InvokeIndexToStringUPP (
 short item,
 ScriptCode *itemsScript,
 StringPtr *itemsStringPtr,
 void *yourDataPtr,
 IndexToStringUPP userUPP
);

Discussion
You should not need to use the function InvokeIndexToStringUPP, as the system calls your index-to-string
callback function for you. See the callback IndexToStringProcPtr (page 15) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

LanguageOrder
Determines the order in which strings in two different languages should be sorted. (Deprecated in Mac OS
X v10.4. Use CFStringCompare or UCCompareText instead.)

short LanguageOrder (
 LangCode language1,
 LangCode language2
);

Parameters
language1

The language code of the first language.

language2
The language code of the second language.

Return Value
A value that indicates the sorting order: –1 if strings in the first language should be sorted before sorting
text in the second language, 1 if strings in the first language should be sorted after sorting strings in the
second language, or 0 if the sorting order does not matter (that is, if the languages are the same).

Discussion
LanguageOrder takes a pair of language codes and determines in which order strings from the first language
should be sorted relative to strings from the second language.

“Implicit Language Codes” (page 25) are listed in the Constants section. The implicit language codes
scriptCurLang and scriptDefLang are not valid for LanguageOrder because the script system being
used is not specified as a parameter to this function.

Special Considerations

LanguageOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.4 43
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

LowercaseText
Converts any uppercase characters in a text string into their lowercase equivalents. (Deprecated in Mac OS
X v10.4. Use CFStringLowercase instead.)

void LowercaseText (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The number of bytes in the text string. The text string can be up to 32 KB in length.

script
The script code for the script system whose resources are used to determine the results of converting
characters.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
LowercaseText traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It converts any uppercase characters in the text into lowercase.

If LowercaseText cannot access the specified resource, it generates an error code and does not modify the
string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

LowercaseText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

NewIndexToStringUPP
Creates a new universal procedure pointer (UPP) to an index-to-string callback. (Deprecated in Mac OS X
v10.4.)

44 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

IndexToStringUPP NewIndexToStringUPP (
 IndexToStringProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your index-to-string callback.

Return Value
On return, a UPP to the index-to-string callback.

Discussion
See the callback IndexToStringProcPtr (page 15) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

NewString
Allocates memory in the heap for a string, copies its contents, and produces a handle for the heap version
of the string. (Deprecated in Mac OS X v10.4. Use CFStringCreateCopy instead.)

StringHandle NewString (
 ConstStr255Param theString
);

Parameters
theString

A Pascal string that you want copied onto the heap.

Return Value
A handle to the newly allocated string. If the string cannot be allocated, NewString returns NULL. The size
of the allocated string is based on the actual length of theString, which may not be 255 bytes.

Discussion
Before using Pascal string functions that can change the length of the string, it is a good idea to maximize
the size of the string object on the heap. You can call either the SetString (page 51) function or the Memory
Manager function SetHandleSize to modify the string’s size.

Special Considerations

NewString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Deprecated in Mac OS X v10.4 45
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

NumToString
Converts a long integer value into a Pascal string. (Deprecated in Mac OS X v10.4. Use
CFStringCreateWithFormat instead.)

void NumToString (
 long theNum,
 Str255 theString
);

Parameters
theNum

A long integer value. If the value of the number in the parameter theNum is negative, the string begins
with a minus sign; otherwise, the sign is omitted.

theString
On output, contains the Pascal string representation of the number. Leading zeros are suppressed,
except that a value of 0 produces the string “0”. NumToString does not include thousand separators
or decimal points in its formatted output.

Discussion
NumToString creates a string representation of theNum as a base-10 value and returns the result in
theString.

Unless patched by a script system with different rules, this function assumes that you are using standard
numeric token processing, meaning that the Roman script system number processing rules are used.

For functions that make use of the token-processing information that is found in the tokens ('itl4') resource
of script systems for converting numbers, see the sections “Using Number Format Specification Strings for
International Number Formatting” and “Converting Between Strings and Floating-Point Numbers”.

Special Considerations

NumToString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

p2cstr
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

char * p2cstr (
 StringPtr aStr
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

46 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Declared In
TextUtils.h

P2CStr
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

Ptr P2CStr (
 StringPtr pString
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

p2cstrcpy
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void p2cstrcpy (
 char *dst,
 ConstStr255Param src
);

Parameters
dst

On output, the C string.

src
The Pascal string you want to convert.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Deprecated in Mac OS X v10.4 47
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

RelString
Compares two Pascal strings using the string comparison rules of the Macintosh file system and returns a
value that indicates the sorting order of the first string relative to the second string. (Deprecated in Mac OS
X v10.4. Use CFStringCompare or UCCompareText instead.)

short RelString (
 ConstStr255Param str1,
 ConstStr255Param str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

One of the Pascal strings to be compared.

str2
The other Pascal string to be compared.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison. If the value of
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If it is FALSE, case information is ignored.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.
If the value of diacSensitive is TRUE, characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the comparison. If it is FALSE, diacritical
marks are ignored.

Return Value
Returns –1 if the first string is less than the second string, 0 if the two strings are equal, and 1 if the first string
is greater than the second string. It compares the two strings in the same manner as does the EqualString
function, by simply looking at the ASCII values of their characters. However, RelString provides more
information about the two strings—it indicates their relationship to each other, rather than determining if
they are exactly equal.

Discussion
This function does not make use of any script or language information; it assumes the original Macintosh
character set only.

Special Considerations

The RelString function is not localizable and does not work properly with non-Roman script systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

relstring
Compares two strings. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

48 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Not recommended

short relstring (
 const char *str1,
 const char *str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

The string to be compared to str2.

str2
The string to be compared to str1.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.

Return Value
Returns –1 if the first string is less than the second string, 0 if the two strings are equal, and 1 if the first string
is greater than the second string.

Discussion
This function is not recommended. Instead, see the function RelString (page 48).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ReplaceText
Searches text on a character-by-character basis, replacing all instances of a string in that text with another
string. (Deprecated in Mac OS X v10.4. Use CFStringReplace instead.)

short ReplaceText (
 Handle baseText,
 Handle substitutionText,
 Str15 key
);

Parameters
baseText

A handle to the string in which ReplaceText is to substitute text.

substitutionText
A handle to the string that ReplaceText uses as substitute text.

key
A Pascal string of less than 16 bytes that ReplaceText searches for.

Deprecated in Mac OS X v10.4 49
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Return Value
An integer value; if positive, it indicates the number of substitutions performed; if negative, it indicates an
error. The constant noErr is returned if there was no error and no substitutions were performed.

Discussion
ReplaceText searches the text specified by the baseText parameter for instances of the string in the key
parameter and replaces each instance with the text specified by the substitutionText parameter.
ReplaceText searches on a character-by-character basis (as opposed to byte-by-byte), so it works properly
for all script systems, including 2-byte script systems. It recognizes 2-byte characters in script systems that
contain them and advances the search appropriately after encountering a 2-byte character.

Special Considerations

ReplaceText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ScriptOrder
Determines the order in which strings in two different scripts should be sorted. (Deprecated in Mac OS X
v10.4. Use CFStringCompare or UCCompareText instead.)

short ScriptOrder (
 ScriptCode script1,
 ScriptCode script2
);

Parameters
script1

The script code of the first script.

script2
The script code of the second script.

Return Value
A value that indicates the sorting order: –1 if strings in the first script should be sorted before strings in the
second script are sorted, 1 if strings in the first script should be sorted after strings in the second script are
sorted, or 0 if the sorting order does not matter (that is, if the scripts are the same).

Discussion
Text of the system script is always first in a sorted list, regardless of the result returned by this function. When
determining the order in which text from two different script systems should be sorted, the system script
always sorts first, and scripts that are not enabled and installed always sort last. Invalid script or language
codes always sort after valid ones.

Special Considerations

ScriptOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

50 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

SetString
Changes the contents of a string referenced by a string handle, replacing the previous contents by copying
the specified string. (Deprecated in Mac OS X v10.4. Use CFStringCreateWithPascalString and
CFStringReplaceAll.)

void SetString (
 StringHandle theString,
 ConstStr255Param strNew
);

Parameters
theString

A Pascal string.

strNew
A handle to the string in memory whose contents you are replacing. If the new string (theString)
is larger than the string originally referenced by strNew, SetString automatically resizes the handle
and copies in the contents of the specified string.

Special Considerations

SetString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

StringOrder
Compares two Pascal strings, taking into account the script system and language for each of the strings.
(Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

Deprecated in Mac OS X v10.4 51
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

short StringOrder (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 ScriptCode aScript,
 ScriptCode bScript,
 LangCode aLang,
 LangCode bLang
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

aScript
The script code for the second string.

bScript
The script code for the first string.

aLang
The language code for the first string.

bLang
The language code for the second string.

Return Value
–1 if the first string is less than the second string, 0 if the first string is equal to the second string, and 1 if the
first string is greater than the second string. The ordering of script and language codes, which is based on
information in the script-sorting resource, is considered in determining the relationship of the two strings.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates whether the first string is less than, equal to, or greater than the second string.

“Implicit Language Codes” (page 25) are listed in the Constants section. Most applications specify the language
code scriptCurLang for both the aLang and bLang values.

StringOrder first calls ScriptOrder (page 50); if the result of ScriptOrder is not 0 (that is, if the strings
use different scripts), StringOrder returns the same result.

StringOrder next calls LanguageOrder (page 43); if the result of LanguageOrder is not 0 (that is, if the
strings use different languages), StringOrder returns the same result.

At this point, StringOrder has two strings that are in the same script and language, so it compares them
by using the sorting rules for that script and language, applying both the primary and secondary sorting
orders. If that script is not installed and enabled, it uses the sorting rules specified by the system script or
the font script, depending on the state of the international resources selection flag.

The StringOrder function is primarily used to insert Pascal strings in a sorted list; for sorting, rather than
using this function, it may be faster to sort first by script and language by using the ScriptOrder and
LanguageOrder functions, and then to call the CompareString (page 30) function, to sort strings within
a script or language group.

Special Considerations

StringOrder may move memory; your application should not call this function at interrupt time.

52 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

StringToExtended
Converts a string representation of a number into a floating-point number, using a NumFormatStringRec
structure to specify how the input number string is formatted. (Deprecated in Mac OS X v10.4. Use
CFNumberFormatterCreateStringWithNumber instead.)

FormatStatus StringToExtended (
 ConstStr255Param source,
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 extended80 *x
);

Parameters
source

A Pascal string that contains the string representation of a number.

myCanonical
A pointer to the internal representation of the formatting information for numbers, as produced by
the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

x
On output, contains a pointer to the 80-bit SANE representation of the floating-point number.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of StringToExtended to a
type FormatResultType before working with it. StringToExtended returns an 80-bit, not a 96-bit,
representation. See the description of the FormatStatus data type.

Discussion
StringToExtended uses the internal representation of number formatting information that was created
by a prior call to StringToFormatRec to parse the input number string. It uses the number parts table to
determine the components of the number string that is being converted. StringToExtended parses the
string and then converts the string to a simple form, stripping nondigits and replacing the decimal point
before converting it into a floating-point number. If the input string does not match any of the patterns, then
StringToExtended parses the string as well as it can and returns a confidence level result that indicates
the parsing difficulties.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Deprecated in Mac OS X v10.4 53
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StringToFormatRec
Creates a number format specification string structure from a number format specification string that you
supply in a Pascal string. (Deprecated in Mac OS X v10.4. Use CFNumberFormatterSetFormat instead.)

FormatStatus StringToFormatRec (
 ConstStr255Param inString,
 const NumberParts *partsTable,
 NumFormatString *outString
);

Parameters
inString

A Pascal string that contains the number formatting specification.

The inString parameter contains a number format specification string that specifies how numbers
appear. This string contains up to three specifications, separated by semicolons. The positive number
format is specified first, the negative number format is second, and the zero number format is last. If
the string contains only one part, that is the format of all three types of numbers. If the string contains
two parts, the first part is the format for positive and zero number values, and the second part is the
format for negative numbers.

partsTable
A pointer to a structure, usually obtained from the tokens ('itl4') resource, that shows the
correspondence between generic number part separators (tokens) and their localized version (for
example, a thousand separator is a comma in the United States and a decimal point in France).

outString
On output, a pointer to a NumFormatStringRec structure that contains the values that form the
internal representation of the format specification. The format of the data in this structure is private.

Return Value
A value that denotes the confidence level for the conversion that was performed. The low byte of the value
is of type FormatResultType. Be sure to cast the result of StringToFormatRec to a type
FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
StringToFormatRec converts a number format specification string into the internal representation contained
in a number format string structure. It uses information in the current script’s tokens resource to determine
the components of the number. StringToFormatRec checks the validity both of the input format string
and of the number parts table (since this table can be programmed by the application). StringToFormatRec
ignores spurious characters.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

54 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Special Considerations

StringToFormatRec may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StringToNum
Converts the Pascal string representation of a base-10 number into a long integer value. (Deprecated in Mac
OS X v10.4. Use CFStringGetIntValue instead.)

void StringToNum (
 ConstStr255Param theString,
 long *theNum
);

Parameters
theString

A Pascal string representation of a base-10 number. The numeric string can be padded with leading
zeros or with a sign.

theNum
On output, contains a pointer to the numeric value.

Discussion
Unless patched by a script system with different rules, this function assumes that you are using standard
numeric token processing, meaning that the Roman script system number processing rules are used.

For functions that make use of the token-processing information that is found in the tokens ('itl4') resource
of script systems for converting numbers, see the sections “Using Number Format Specification Strings for
International Number Formatting” and “Converting Between Strings and Floating-Point Numbers”.

The 32-bit result is negated if the string begins with a minus sign. Integer overflow occurs if the magnitude
is greater than or equal to 2 raised to the 31st power. StringToNum performs the negation using the two’s
complement method: the state of each bit is reversed and then 1 is added to the result. For example, here
are possible results produced by StringToNum:

 ■ The value of theString is “-23”. StringToNum returns the value -23 in theNum.

 ■ The value of theString is “-0”. StringToNum returns the value 0 in theNum.

 ■ The value of theString is “055”. StringToNum returns the value 55 in theNum.

 ■ The value of theString is “2147483648” (magnitude is 2^31). StringToNum returns the value
–2147483648 in theNum.

 ■ The value of theString is “–2147483648”. StringToNum returns the value –2147483648 in theNum.

 ■ The value of theString is “4294967295” (magnitude is 2^32–1). StringToNum returns the value -1 in
theNum.

 ■ The value of theString is “–4294967295”. StringToNum returns the value 1 in theNum.

Deprecated in Mac OS X v10.4 55
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

StringToNum does not check whether the characters in the string are between 0 and 9; instead, it takes
advantage of the fact that the ASCII values for these characters are $30 through $39, and masks the last four
bits for use as a digit. For example, StringToNum converts 2: to the number 30 since the character code for
the colon (:) is $3A. Because StringToNum operates this way, spaces are treated as zeros (the character code
for a space is $20), and other characters do get converted into numbers. For example, the character codes
for 'C', 'A', and 'T' are $43, $41, and $54 respectively. Hence, the strings ‘CAT’, ‘+CAT’, and ‘-CAT’ would produce
the results 314, 314, and -314.

One consequence of this conversion method is that StringToNum does not ignore thousand separators (the
“,” character in the United States), which can lead to improper conversions. It is a good idea to ensure that
all characters in theString are valid digits before you call StringToNum.

Special Considerations

StringToNum may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StripDiacritics
Strips any diacritical marks from a text string. (Deprecated in Mac OS X v10.4. Use CFStringTransform
instead.)

void StripDiacritics (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be stripped.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

script
The script code for the script system whose rules are used for determining which character results
from stripping a diacritical mark.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
StripDiacritics traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It strips any diacritical marks from the text.

If StripDiacritics cannot access the specified resource, it generates an error code and does not modify
the string. You need to call the ResError function to determine which, if any, error occurred.

56 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Special Considerations

StripDiacritics may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

TextOrder
Compares two text strings, taking into account the script and language for each of the strings. (Deprecated
in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short TextOrder (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 ScriptCode aScript,
 ScriptCode bScript,
 LangCode aLang,
 LangCode bLang
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

aScript
The script code for the first text string.

bScript
The script code for the second text string.

aLang
The language code for the first text string.

bLang
The language code for the second text string.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string. The ordering of script and language codes, which
is based on information in the script-sorting resource, is considered in determining the relationship of the
two strings.

Deprecated in Mac OS X v10.4 57
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates whether the first string is less than, equal to, or greater than the second string.

“Implicit Language Codes” (page 25) are listed in the Constants section. Most applications specify the language
code scriptCurLang for both the aLang and bLang values.

TextOrder first calls ScriptOrder (page 50); if the result of ScriptOrder is not 0 (that is, if the strings
use different scripts), TextOrder returns the same result.

TextOrder next calls LanguageOrder (page 43); if the result of LanguageOrder is not 0 (that is, if the
strings use different languages), TextOrder returns the same result.

At this point, TextOrder has two strings that are in the same script and language, so it compares them by
using the sorting rules for that script and language, applying both the primary and secondary sorting orders.
If that script is not installed and enabled, it uses the sorting rules specified by the system script or the font
script, depending on the state of the international resources selection flag.

The TextOrder function is primarily used to insert text strings in a sorted list; for sorting, rather than using
this function, it may be faster to sort first by script and language by using the ScriptOrder and
LanguageOrder functions, and then to call the CompareText (page 31) function, to sort strings within a
script or language group.

Special Considerations

TextOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

TypeSelectClear
Clears the key list and resets the type select record. (Deprecated in Mac OS X v10.4. Use
UCTypeSelectFlushSelectorData instead.)

Not recommended.

void TypeSelectClear (
 TypeSelectRecord *tsr
);

Parameters
tsr

A pointer to the type-select record you want to clear.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

58 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

TypeSelectCompare
Compares a text buffer to the keystroke buffer. (Deprecated in Mac OS X v10.4. Use UCTypeSelectCompare
instead.)

Not recommended.

short TypeSelectCompare (
 const TypeSelectRecord *tsr,
 ScriptCode testStringScript,
 StringPtr testStringPtr
);

Parameters
tsr

A type select record that contains the keystroke buffer.

testStringScript
The script code of the test string.

testStringPtr
A pointer to the text you want to compare to the keystroke buffer.

Return Value
A numerical value that represents the ordering of the characters in the keystroke buffer with respect to the
test string buffer. The value -1 is returned if characters in the keystroke buffer sort before those in
testStringPtr; 0 if characters in the keystroke buffer are the same as those in testStringPtr, and 1 if
the characters in the keystroke buffer sort after those in testStringPtr.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.4 59
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Declared In
TypeSelect.h

TypeSelectFindItem
Finds the closest match between a specified list of characters and the keystrokes stored in the type select
record. (Deprecated in Mac OS X v10.4. Use UCTypeSelectFindItem instead.)

Not recommended.

short TypeSelectFindItem (
 const TypeSelectRecord *tsr,
 short listSize,
 TSCode selectMode,
 IndexToStringUPP getStringProc,
 void *yourDataPtr
);

Parameters
tsr

A pointer to the type select record that contains the keystrokes you want to compare.

listSize
The size of the list to search through.

selectMode
The select mode. See Type Select Modes (page 26)for a list of the constants you can supply.

getStringProc
A pointer to your index-to-string callback function. See IndexToStringProcPtr (page 15) for more
information.

yourDataPtr
A pointer to your data structure. This is passed to your index-to-string callback, and can be NULL,
depending on how you implement your callback function.

Return Value
Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

60 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

TypeSelectNewKey
Creates a new type select record. (Deprecated in Mac OS X v10.4. Use UCTypeSelectCreateSelector
instead.)

Not recommended.

Boolean TypeSelectNewKey (
 const EventRecord *theEvent,
 TypeSelectRecord *tsr
);

Parameters
theEvent

A pointer to an event record.

tsr
A pointer to a type select record.

Return Value
Returns true if the function executed successfully; false otherwise.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

UppercaseStripDiacritics
Converts any lowercase characters in a text string into their uppercase equivalents and strips any diacritical
marks from the text. (Deprecated in Mac OS X v10.4. Use CFStringTransform instead.)

void UppercaseStripDiacritics (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

Deprecated in Mac OS X v10.4 61
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

script
The script code of the script system whose resources are used to determine the results of converting
characters.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
UppercaseStripDiacritics traverses the characters starting at the address specified by textPtr and
continues for the number of characters specified in len. It converts lowercase characters in the text into their
uppercase equivalents and also strips diacritical marks from the text string. This function combines the effects
of the UppercaseText (page 62) and StripDiacritics (page 56) functions.

If UppercaseStripDiacritics cannot access the specified resource, it generates an error code and does
not modify the string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

UppercaseStripDiacriticsmay move memory; your application should not call this function at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

UppercaseText
Converts any lowercase characters in a text string into their uppercase equivalents. (Deprecated in Mac OS
X v10.4. Use CFStringUppercase instead.)

void UppercaseText (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

62 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

script
The script code of the script system whose case conversion rules are used for determining uppercase
character equivalents.

The conversion uses tables in the string-manipulation ('itl2') resource of the specified script.
You can specify smSystemScript to use the system script and smCurrentScript to use the script
of the current font in the current graphics port.

Discussion
UppercaseText traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It converts any lowercase characters in the text into uppercase.

If UppercaseText cannot access the specified resource, it generates an error code and does not modify the
string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

UppercaseText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

UpperString
Converts any lowercase letters in a Pascal string to their uppercase equivalents, using the Macintosh file
system rules. (Deprecated in Mac OS X v10.4. Use CFStringUppercase instead.)

void UpperString (
 Str255 theString,
 Boolean diacSensitive
);

Parameters
theString

On input, this is the Pascal string to be converted. On output, this contains the string resulting from
the conversion. UpperString traverses the characters in theString and converts any lowercase
characters with character codes in the range 0x00 through 0xD8 into their uppercase equivalents.
UpperString places the converted characters in theString.

diacSensitive
A flag that indicates whether the case conversion is to strip diacritical marks. If the value of this
parameter is TRUE, diacritical marks are considered in the conversion; if it is FALSE, any diacritical
marks are stripped.

Discussion
Only a subset of the Roman character set (character codes with values through $D8) are converted. Use this
function to emulate the behavior of the Macintosh file system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Deprecated in Mac OS X v10.4 63
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

Not available to 64-bit applications.

Declared In
TextUtils.h

upperstring
Converts any lowercase letters in a Pascal string to their uppercase equivalents. (Deprecated in Mac OS X
v10.4. Use CFStringUppercase instead.)

Not recommended

void upperstring (
 char *theString,
 Boolean diacSensitive
);

Parameters
theString

On input, this is the Pascal string to be converted. On output, this contains the string resulting from
the conversion.

diacSensitive
A flag that indicates whether the case conversion is to strip diacritical marks. If the value of this
parameter is TRUE, diacritical marks are considered in the conversion; if it is FALSE, any diacritical
marks are stripped.

Discussion
You should use the function CFStringUppercase instead of this one.

Carbon Porting Notes

Use UpperString instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

64 Deprecated in Mac OS X v10.4
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Text Utilities Functions

This section lists functions that are unsupported and you should no longer use. Table B-1 provides information
on what you should do in place of using these functions.

Table B-1 Porting notes for unsupported functions

Porting notesUnsupported functions

Use CFStringCompare instead.equalstring

Use UCFindTextBreak instead.FindWord

Use CFStringCompare instead.IUCompPString

Use CFStringCompare instead.iucomppstring

Use CFStringCompare instead.IUCompString

Use CFStringCompare instead.iucompstring

Use CFStringCompare instead.IUEqualPString

Use CFStringCompare instead.iuequalpstring

Use CFStringCompare instead.IUEqualString

Use CFStringCompare instead.iuequalstring

Use CFStringCompare or UCCompareText instead.IULangOrder

Use CFStringCompare instead.IUMagIDPString

Use CFStringCompare instead.IUMagIDString

Use CFStringCompare instead.IUMagPString

Use CFStringCompare instead.IUMagString

Use CFStringCompare or UCCompareText instead.IUScriptOrder

Use CFStringCompare or UCCompareText instead.IUStringOrder

Use CFStringCompare or UCCompareText instead.iustringorder

Use CFStringCompare or UCCompareText instead.IUTextOrder

Use CFStringLowercase instead.LowerText

Use CFStringLowercase instead.LwrText

65
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

Unsupported Functions

Porting notesUnsupported functions

Use CFStringCreateCopy instead.newstring

Use UCFindTextBreak instead.NFindWord

Use CFStringCreateWithFormat instead.numtostring

Use CFStringCreateWithPascalString and CFStringReplaceAll.setstring

Use CFStringGetIntValue instead.stringtonum

Use CFStringTransform instead.StripText

Use CFStringTransform instead.StripUpperText

Use CFStringUppercase instead.UpperText

Use CFStringUppercase instead.UprText

Use CFBundleCopyLocalizedString instead.getindstring

66
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX B

Unsupported Functions

This table describes the changes to Text Utilities Reference.

NotesDate

Made minor formatting changes.2007-05-29

Added deprecation information.2006-07-24

Updated formatting. Added documentation for numerous data types and
constants. Added documentation for type-select functions.

2003-02-12

67
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

BreakTable structure 16

C

C2PStr function (Deprecated in Mac OS X v10.4) 29
c2pstr function (Deprecated in Mac OS X v10.4) 29
c2pstrcpy function (Deprecated in Mac OS X v10.4) 30
CompareString function (Deprecated in Mac OS X v10.4)

30
CompareText function (Deprecated in Mac OS X v10.4)

31
CopyCStringToPascal function (Deprecated in Mac OS

X v10.4) 32
CopyPascalStringToC function (Deprecated in Mac OS

X v10.4) 32
currentCurLang constant 26
currentDefLang constant 26

D

DisposeIndexToStringUPP function (Deprecated in
Mac OS X v10.4) 33

E

EqualString function (Deprecated in Mac OS X v10.4)
33

ExtendedToString function (Deprecated in Mac OS X
v10.4) 34

F

fBadPartsTable constant 24

fBestGuess constant 23
fEmptyFormatString constant 24
fExtraDecimal constant 24
fExtraExp constant 24
fExtraPercent constant 24
fExtraSeparator constant 24
fFormatOK constant 23
fFormatOverflow constant 24
fFormStrIsNAN constant 24
FindScriptRun function (Deprecated in Mac OS X v10.4)

35
FindWordBreaks function (Deprecated in Mac OS X

v10.4) 36
fMissingDelimiter constant 23
fMissingLiteral constant 24
fNegative constant 25
Format Result Types 23
FormatClass data type 17
FormatRecToString function (Deprecated in Mac OS X

v10.4) 38
FormatStatus data type 17
fOutOfSynch constant 23
fPositive constant 25
fSpuriousChars constant 23
FVector structure 17
fZero constant 25

G

GetIndString function (Deprecated in Mac OS X v10.4)
39

GetString function (Deprecated in Mac OS X v10.4) 40

I

IdenticalString function (Deprecated in Mac OS X
v10.4) 41

IdenticalText function (Deprecated in Mac OS X v10.4)
41

69
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

Index

Implicit Language Codes 25
IndexToStringProcPtr callback 15
IndexToStringUPP data type 18
InvokeIndexToStringUPP function (Deprecated in Mac

OS X v10.4) 42

L

LanguageOrder function (Deprecated in Mac OS X v10.4)
43

LowercaseText function (Deprecated in Mac OS X v10.4)
44

M

Munger function 14

N

NBreakTable structure 18
NewIndexToStringUPP function (Deprecated in Mac OS

X v10.4) 44
NewString function (Deprecated in Mac OS X v10.4) 45
NumFormatString structure 20
NumFormatString Version 25
NumFormatStringRec data type 20
NumToString function (Deprecated in Mac OS X v10.4)

46

O

Obsolete Language Code Values 27

P

P2CStr function (Deprecated in Mac OS X v10.4) 47
p2cstr function (Deprecated in Mac OS X v10.4) 46
p2cstrcpy function (Deprecated in Mac OS X v10.4) 47

R

RelString function (Deprecated in Mac OS X v10.4) 48
relstring function (Deprecated in Mac OS X v10.4) 48

ReplaceText function (Deprecated in Mac OS X v10.4)
49

S

scriptCurLang constant 26
scriptDefLang constant 26
ScriptOrder function (Deprecated in Mac OS X v10.4)

50
ScriptRunStatus structure 21
SetString function (Deprecated in Mac OS X v10.4) 51
StringOrder function (Deprecated in Mac OS X v10.4)

51
StringToExtended function (Deprecated in Mac OS X

v10.4) 53
StringToFormatRec function (Deprecated in Mac OS X

v10.4) 54
StringToNum function (Deprecated in Mac OS X v10.4)

55
StripDiacritics function (Deprecated in Mac OS X

v10.4) 56
systemCurLang constant 26
systemDefLang constant 26

T

TextOrder function (Deprecated in Mac OS X v10.4) 57
TripleInt data type 22
TripleInt Index Values 24
tsNextSelectMode constant 27
tsNormalSelectMode constant 27
tsPreviousSelectMode constant 27
Type Select Modes 26
TypeSelectClear function (Deprecated in Mac OS X

v10.4) 58
TypeSelectCompare function (Deprecated in Mac OS X

v10.4) 59
TypeSelectFindItem function (Deprecated in Mac OS

X v10.4) 60
TypeSelectNewKey function (Deprecated in Mac OS X

v10.4) 61
TypeSelectRecord structure 22

U

UppercaseStripDiacritics function (Deprecated in
Mac OS X v10.4) 61

UppercaseText function (Deprecated in Mac OS X v10.4)
62

70
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

INDEX

UpperString function (Deprecated in Mac OS X v10.4)
63

upperstring function (Deprecated in Mac OS X v10.4)
64

71
2007-05-29 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Text Utilities Reference
	Contents
	Tables
	Text Utilities Reference
	Overview
	Functions by Task
	Comparing Strings for Equality
	Converting Between Integers and Strings
	Converting Between Strings and Floating-Point Numbers
	Converting Between C and Pascal Strings
	Defining and Specifying Strings
	Determining Sorting Order for Strings in Different Languages
	Determining Sorting Order for Strings in the Same Language
	Modifying Characters and Diacritical Marks
	Searching for and Replacing Strings
	Using Number Format Specification Strings for International Number Formatting
	Working With Word, Script, and Line Boundaries
	Working With Universal Procedure Pointers
	Working With Type Select Records

	Functions
	Munger

	Callbacks
	IndexToStringProcPtr

	Data Types
	BreakTable
	FormatClass
	FormatStatus
	FVector
	IndexToStringUPP
	NBreakTable
	NumFormatString
	NumFormatStringRec
	ScriptRunStatus
	TripleInt
	TypeSelectRecord

	Constants
	Format Result Types
	TripleInt Index Values
	NumFormatString Version
	Implicit Language Codes
	Type Select Modes
	Obsolete Language Code Values

	Appendix A: Deprecated Text Utilities Functions
	Deprecated in Mac OS X v10.4
	c2pstr
	C2PStr
	c2pstrcpy
	CompareString
	CompareText
	CopyCStringToPascal
	CopyPascalStringToC
	DisposeIndexToStringUPP
	EqualString
	ExtendedToString
	FindScriptRun
	FindWordBreaks
	FormatRecToString
	GetIndString
	GetString
	IdenticalString
	IdenticalText
	InvokeIndexToStringUPP
	LanguageOrder
	LowercaseText
	NewIndexToStringUPP
	NewString
	NumToString
	p2cstr
	P2CStr
	p2cstrcpy
	RelString
	relstring
	ReplaceText
	ScriptOrder
	SetString
	StringOrder
	StringToExtended
	StringToFormatRec
	StringToNum
	StripDiacritics
	TextOrder
	TypeSelectClear
	TypeSelectCompare
	TypeSelectFindItem
	TypeSelectNewKey
	UppercaseStripDiacritics
	UppercaseText
	UpperString
	upperstring

	Appendix B: Unsupported Functions
	Revision History
	Index
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

