
Thread Manager Reference
Carbon > Process Management

2007-04-04



Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Switcher is a trademark of Apple Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Thread Manager Reference 7

Overview 7
Functions by Task 7

Creating and Disposing of Threads 7
Creating and Getting Information About Thread Pools 8
Getting Information About Specific Threads 8
Getting Information and Scheduling Threads During Interrupts 8
Installing Custom Scheduling, Switching, Terminating, and Debugging Functions 8
Preventing Scheduling 9
Scheduling Threads 9
Miscellaneous 9

Functions 10
CreateThreadPool 10
DisposeDebuggerDisposeThreadUPP 12
DisposeDebuggerNewThreadUPP 12
DisposeDebuggerThreadSchedulerUPP 13
DisposeThread 13
DisposeThreadEntryUPP 14
DisposeThreadSchedulerUPP 15
DisposeThreadSwitchUPP 15
DisposeThreadTerminationUPP 16
GetCurrentThread 16
GetDefaultThreadStackSize 17
GetThreadCurrentTaskRef 17
GetThreadState 18
GetThreadStateGivenTaskRef 19
InvokeDebuggerDisposeThreadUPP 20
InvokeDebuggerNewThreadUPP 20
InvokeDebuggerThreadSchedulerUPP 21
InvokeThreadEntryUPP 21
InvokeThreadSchedulerUPP 22
InvokeThreadSwitchUPP 22
InvokeThreadTerminationUPP 23
NewDebuggerDisposeThreadUPP 23
NewDebuggerNewThreadUPP 24
NewDebuggerThreadSchedulerUPP 24
NewThread 24
NewThreadEntryUPP 26
NewThreadSchedulerUPP 27
NewThreadSwitchUPP 27
NewThreadTerminationUPP 28

3
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.



SetDebuggerNotificationProcs 28
SetThreadReadyGivenTaskRef 30
SetThreadScheduler 30
SetThreadState 32
SetThreadStateEndCritical 33
SetThreadSwitcher 34
SetThreadTerminator 35
ThreadBeginCritical 36
ThreadCurrentStackSpace 37
ThreadEndCritical 38
YieldToAnyThread 38
YieldToThread 39

Callbacks 40
DebuggerDisposeThreadProcPtr 40
DebuggerNewThreadProcPtr 41
DebuggerThreadSchedulerProcPtr 42
ThreadEntryProcPtr 42
ThreadSchedulerProcPtr 43
ThreadSwitchProcPtr 44
ThreadTerminationProcPtr 45

Data Types 46
DebuggerDisposeThreadUPP 46
DebuggerDisposeThreadTPP 46
DebuggerNewThreadTPP 46
DebuggerNewThreadUPP 47
DebuggerThreadSchedulerUPP 47
DebuggerThreadSchedulerTPP 47
SchedulerInfoRec 48
ThreadEntryTPP 48
ThreadEntryUPP 49
ThreadSchedulerTPP 49
ThreadSchedulerUPP 49
ThreadSwitchTPP 49
ThreadSwitchUPP 50
ThreadTaskRef 50
ThreadTerminationTPP 50
ThreadTerminationUPP 51

Constants 51
Thread ID Constants 51
Thread Option Constants 52
Thread State Constants 53
Thread Style Constants 53

Result Codes 54
Gestalt Constants 54

4
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

CONTENTS



Appendix A Deprecated Thread Manager Functions 55

Deprecated in Mac OS X v10.3 55
GetFreeThreadCount 55
GetSpecificFreeThreadCount 56

Document Revision History 57

Index 59

5
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

CONTENTS



6
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

CONTENTS



Framework: CoreServices/CoreServices.h

Declared in Threads.h

Overview

You can use the Thread Manager to provide cooperatively scheduled threads, or multiple points of execution,
in an application. You can think of the Thread Manager as an enhancement to the classic Mac OS Process
Manager, which governs how applications work together in the Mac OS cooperative multitasking environment.

Important:  Active development with the Thread Manager is not recommended. The API is intended only
for developers who are porting their applications to Mac OS X and whose code relies on the cooperative
threading model. If you are writing a new Carbon application, you should use POSIX threads or the
Multiprocessing Services API instead. See Threading Programming Guide for more information.

Consider using the Thread Manager for applications with more than one thread if these threads can execute
only in the cooperative multitasking environment of the classic Mac OS Process Manager.

Alternatively, you should consider using the Multiprocessing Services to implement separate paths of execution
for tasks that are reentrant and can therefore can be preemptively scheduled.

Using Thread Manager routines, you can create threads and thread pools and set them up to run; turn
scheduling on and off; work with stacks; create dialog boxes that yield control to other threads; pass
information between threads; install custom scheduling and context-switching functions; and use threads
to make asynchronous I/O calls.

The Thread Manager provides only cooperative threading for PowerPC applications. Applications can use
the Multiprocessing Services API to create preemptively scheduled tasks.

Note that several Thread Manager functions that did not require you to pass universal procedure pointers
(UPPs) for callbacks now require them in Carbon. See the Carbon Porting Notes for more information.

Functions by Task

Creating and Disposing of Threads

DisposeThread  (page 13)
Deletes a thread when it finishes executing.

Overview 7
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



NewThread  (page 24)
Creates a new thread or allocates one from the existing pool of threads.

Creating and Getting Information About Thread Pools

CreateThreadPool  (page 10)
Creates a pool of threads for your application.

GetDefaultThreadStackSize  (page 17)
Determines the default stack size required by a thread.

GetFreeThreadCount  (page 55) Deprecated in Mac OS X v10.3
Determines how many threads are available to be allocated in a thread pool. (Deprecated. There is
no replacement.)

GetSpecificFreeThreadCount  (page 56) Deprecated in Mac OS X v10.3
Determines how many threads with a stack size equal to or greater than the specified size are available
to be allocated in a thread pool. (Deprecated. There is no replacement.)

Getting Information About Specific Threads

GetCurrentThread  (page 16)
Obtains the thread ID of the currently executing thread.

GetThreadState  (page 18)
Obtains the state of a thread.

ThreadCurrentStackSpace  (page 37)
Determines the amount of stack space that is available for any thread in your application.

Getting Information and Scheduling Threads During Interrupts

GetThreadCurrentTaskRef  (page 17)
Obtains a thread task reference.

GetThreadStateGivenTaskRef  (page 19)
Obtains the state of a thread when your application is not necessarily the current process—for example,
during execution of an interrupt function.

SetThreadReadyGivenTaskRef  (page 30)
Changes the state of a thread from stopped to ready when your application is not the current process.

Installing Custom Scheduling, Switching, Terminating, and Debugging
Functions

SetDebuggerNotificationProcs  (page 28)
Installs functions that notify the debugger when a thread is created, disposed of, or scheduled.

SetThreadScheduler  (page 30)
Installs a custom scheduling function (custom scheduler).

8 Functions by Task
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



SetThreadSwitcher  (page 34)
Installs a custom context-switching function for any thread.

SetThreadTerminator  (page 35)
Installs a custom thread-termination function for a thread.

Preventing Scheduling

SetThreadStateEndCritical  (page 33)
Changes the state of the current thread and exits that thread’s critical section at the same time.

ThreadBeginCritical  (page 36)
Indicates that the thread is entering a critical code section.

ThreadEndCritical  (page 38)
Indicates that the thread is leaving a critical code section.

Scheduling Threads

SetThreadState  (page 32)
Changes the state of any thread.

YieldToAnyThread  (page 38)
Relinquishes the current thread’s control.

YieldToThread  (page 39)
Relinquishes the current thread’s control to a particular thread.

Miscellaneous

DisposeDebuggerDisposeThreadUPP  (page 12)
 

DisposeDebuggerNewThreadUPP  (page 12)
 

DisposeDebuggerThreadSchedulerUPP  (page 13)
 

DisposeThreadEntryUPP  (page 14)
 

DisposeThreadSchedulerUPP  (page 15)
 

DisposeThreadSwitchUPP  (page 15)
 

DisposeThreadTerminationUPP  (page 16)
 

InvokeDebuggerDisposeThreadUPP  (page 20)
 

InvokeDebuggerNewThreadUPP  (page 20)
 

Functions by Task 9
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



InvokeDebuggerThreadSchedulerUPP  (page 21)
 

InvokeThreadEntryUPP  (page 21)
 

InvokeThreadSchedulerUPP  (page 22)
 

InvokeThreadSwitchUPP  (page 22)
 

InvokeThreadTerminationUPP  (page 23)
 

NewDebuggerDisposeThreadUPP  (page 23)
 

NewDebuggerNewThreadUPP  (page 24)
 

NewDebuggerThreadSchedulerUPP  (page 24)
 

NewThreadEntryUPP  (page 26)
 

NewThreadSchedulerUPP  (page 27)
 

NewThreadSwitchUPP  (page 27)
 

NewThreadTerminationUPP  (page 28)
 

Functions

CreateThreadPool
Creates a pool of threads for your application.

OSErr CreateThreadPool (
   ThreadStyle threadStyle,
   SInt16 numToCreate,
   Size stackSize
);

Parameters
threadStyle

The type of thread to create for this set of threads in the pool. Cooperative is the only type that you
can specify. Historically, the Thread Manger supported two types of threads, preemptive and
cooperative. However, due to severe limitations on their use, the Thread Manager no longer supports
preemptive threads.

numToCreate
The number of threads to create for the pool.

10 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



stackSize
The stack size for this set of threads in the pool. This stack must be large enough to handle saved
thread context, normal application stack usage, interrupt handling functions, and CPU exceptions.
Specify a stack size of 0 to request the Thread Manager’s default stack size for the specified type of
thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The CreateThreadPool function creates the specified number of threads with the specified stack
requirements. It places the threads that it creates into a pool for use by your application.

When you call CreateThreadPool, if the Thread Manager is unable to create all the threads that you specify,
it does not create any at all and returns the memFullErr result code.

The threads in the pool are indistinguishable except by stack size. That is, you cannot refer to them individually.
When you want to use a thread to execute some code in your application, you allocate a thread of a specific
size from the pool using the NewThread function. The NewThread function assigns a thread ID to the thread
and specifies the function that is the entry point to the thread.

Note that it is not strictly necessary to create a pool of threads before allocating a thread. If you wish, you
can use the NewThread function to create and allocate a thread in one step. The advantage of using
CreateThreadPool is that you can allocate memory for threads early in your application’s execution before
memory is used or fragmented.

Before making any calls to CreateThreadPool, be certain that you first have called the Memory Manager
function MaxApplZone to extend the application heap to its limit. You must call MaxApplZone from the
main application thread before any other threads in your application run.

To allocate a thread from the pool created with CreateThreadPool, use the NewThread (page 24) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 11
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



DisposeDebuggerDisposeThreadUPP

void DisposeDebuggerDisposeThreadUPP (
   DebuggerDisposeThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeDebuggerNewThreadUPP

void DisposeDebuggerNewThreadUPP (
   DebuggerNewThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

12 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



DisposeDebuggerThreadSchedulerUPP

void DisposeDebuggerThreadSchedulerUPP (
   DebuggerThreadSchedulerUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeThread
Deletes a thread when it finishes executing.

OSErr DisposeThread (
   ThreadID threadToDump,
   void *threadResult,
   Boolean recycleThread
);

Parameters
threadToDump

The thread ID of the thread to delete.

threadResult
A pointer to the thread’s result. The DisposeThread function places this result to an address which
you originally specify with the threadResult parameter of the NewThread function when you create
or allocate the thread. Pass a value of NULL if you are not interested in obtaining a function result.

recycleThread
A Boolean value that specifies whether to return the thread to the allocation pool or to remove it
entirely. Specify False to dispose of the thread entirely and True to return it to the thread pool.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
When a thread finishes executing, the Thread Manager automatically calls DisposeThread to delete it.
Therefore, the only reason for you to explicitly call DisposeThread is to recycle a terminating thread. To do
so, set the recycleThread parameter to True. The Thread Manager clears out the thread’s internal data
structure, resets it, and puts the thread in the thread pool where it can be used again as necessary.

The DisposeThread function sets the threadResult parameter to the thread’s function result. You allocate
the storage for the thread result when you create or allocate a thread with the NewThread function.

Functions 13
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



You cannot explicitly dispose of the main application thread. If you attempt to do so, DisposeThread returns
the threadProtocolErr result code.

When your application terminates, the Thread Manager calls DisposeThread to terminate any active threads.
It terminates stopped and ready threads first but in no special order. It terminates the currently running
thread last. This thread should always be the main application thread.

To install a callback function to do special cleanup when a thread terminates, use the
SetThreadTerminator (page 35) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeThreadEntryUPP

void DisposeThreadEntryUPP (
   ThreadEntryUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

14 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



DisposeThreadSchedulerUPP

void DisposeThreadSchedulerUPP (
   ThreadSchedulerUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeThreadSwitchUPP

void DisposeThreadSwitchUPP (
   ThreadSwitchUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 15
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



DisposeThreadTerminationUPP

void DisposeThreadTerminationUPP (
   ThreadTerminationUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetCurrentThread
Obtains the thread ID of the currently executing thread.

OSErr GetCurrentThread (
    ThreadID * currentThreadID
);

Parameters
currentThreadID

On return, a pointer to the thread ID of the current thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
You can use the thread ID obtained by GetCurrentThread in functions such as GetThreadState and
SetThreadState to get and set the state of a thread.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

16 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



GetDefaultThreadStackSize
Determines the default stack size required by a thread.

OSErr GetDefaultThreadStackSize (
   ThreadStyle threadStyle,
   Size *stackSize
);

Parameters
threadStyle

The type of thread to get information about. Cooperative is the only type that you can specify.
Historically, the Thread Manger supported two types of threads, preemptive and cooperative, but the
Thread Manager no longer supports preemptive threads.

stackSize
On return, a pointer to the default stack size (in bytes). When you create a thread pool or an individual
thread, this is the stack size that the Thread Manager allocates when you specify the default size.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
Keep in mind that the default stack size is not an absolute value that you must use but is a rough estimate.

To determine how much stack space is available for a particular thread, use the
ThreadCurrentStackSpace (page 37) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetThreadCurrentTaskRef
Obtains a thread task reference.

OSErr GetThreadCurrentTaskRef (
   ThreadTaskRef *threadTRef
);

Parameters
threadTRef

On return, a pointer to a thread task reference.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Functions 17
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Discussion
The thread task reference is somewhat of a misnomer because it identifies your application context, not a
particular thread. Identifying your application context is necessary in situations where you aren’t guaranteed
that your application is the current context—such as during the execution of an interrupt function. In such
cases, you need both the thread ID to identify the thread and the thread task reference to identify the
application context.

After you obtain the thread task reference, you can use it in the GetThreadStateGivenTaskRef (page 19)
and SetThreadReadyGivenTaskRef (page 30) functions to get and set information about specific threads
in your application at times when you are not guaranteed that your application is the current context.

To get information about a thread when your application is not the current process, use the
GetThreadStateGivenTaskRef function.

To change the state of a thread from stopped to ready when your application is not the current process, use
the SetThreadReadyGivenTaskRef function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetThreadState
Obtains the state of a thread.

OSErr GetThreadState (
   ThreadID threadToGet,
   ThreadState *threadState
);

Parameters
threadToGet

The thread ID of the thread about which you want information.

threadState
On return, a pointer to the state of the thread specified by threadToGet.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
A thread can be in one of three states: ready to execute ( kReadyThreadState), stopped (
kStoppedThreadState), or executing ( kRunningThreadState).

To change the state of a specified thread, use SetThreadState (page 32).

18 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetThreadStateGivenTaskRef
Obtains the state of a thread when your application is not necessarily the current process—for example,
during execution of an interrupt function.

OSErr GetThreadStateGivenTaskRef (
   ThreadTaskRef threadTRef,
   ThreadID threadToGet,
   ThreadState *threadState
);

Parameters
threadTRef

The thread task reference of the application containing the thread whose state you want to determine.

threadToGet
The thread ID of the thread whose state you want to determine.

threadState
A pointer to a thread state variable in which the function places the state of the specified thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
You can use GetThreadStateGivenTaskRef at times when you aren’t guaranteed that your application
is the current context, such as during execution of an interrupt function. In such cases you must identify the
thread task reference (the application context) as well as the thread ID.

To determine the thread task reference (application context) for your application, use the
GetThreadCurrentTaskRef (page 17) function.

To change the state of a thread from stopped to ready when your application is not the current process, use
the SetThreadReadyGivenTaskRef (page 30) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Functions 19
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Declared In
Threads.h

InvokeDebuggerDisposeThreadUPP

void InvokeDebuggerDisposeThreadUPP (
   ThreadID threadDeleted,
   DebuggerDisposeThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

InvokeDebuggerNewThreadUPP

void InvokeDebuggerNewThreadUPP (
   ThreadID threadCreated,
   DebuggerNewThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

20 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



InvokeDebuggerThreadSchedulerUPP

ThreadID InvokeDebuggerThreadSchedulerUPP (
   SchedulerInfoRecPtr schedulerInfo,
   DebuggerThreadSchedulerUPP userUPP
);

Parameters
schedulerInfo
userUPP

Return Value
See the description of the ThreadID data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

InvokeThreadEntryUPP

voidPtr InvokeThreadEntryUPP (
   void *threadParam,
   ThreadEntryUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 21
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



InvokeThreadSchedulerUPP

ThreadID InvokeThreadSchedulerUPP (
   SchedulerInfoRecPtr schedulerInfo,
   ThreadSchedulerUPP userUPP
);

Parameters
schedulerInfo
userUPP

Return Value
See the description of the ThreadID data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

InvokeThreadSwitchUPP

void InvokeThreadSwitchUPP (
   ThreadID threadBeingSwitched,
   void *switchProcParam,
   ThreadSwitchUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

22 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



InvokeThreadTerminationUPP

void InvokeThreadTerminationUPP (
   ThreadID threadTerminated,
   void *terminationProcParam,
   ThreadTerminationUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewDebuggerDisposeThreadUPP

DebuggerDisposeThreadUPP NewDebuggerDisposeThreadUPP (
   DebuggerDisposeThreadProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the DebuggerDisposeThreadUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 23
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



NewDebuggerNewThreadUPP

DebuggerNewThreadUPP NewDebuggerNewThreadUPP (
   DebuggerNewThreadProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the DebuggerNewThreadUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewDebuggerThreadSchedulerUPP

DebuggerThreadSchedulerUPP NewDebuggerThreadSchedulerUPP (
   DebuggerThreadSchedulerProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the DebuggerThreadSchedulerUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThread
Creates a new thread or allocates one from the existing pool of threads.

Modified

24 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



OSErr NewThread (
   ThreadStyle threadStyle,
   ThreadEntryTPP threadEntry,
   void *threadParam,
   Size stackSize,
   ThreadOptions options,
   void **threadResult,
   ThreadID *threadMade
);

Parameters
threadStyle

The type of thread to create. Cooperative is the only type that you can specify. Historically, the Thread
Manger supported two types of threads, preemptive and cooperative, but the Thread Manager no
longer supports preemptive threads.

threadEntry
A pointer to the thread entry function.

threadParam
A pointer to a value that the Thread Manager passes as a parameter to the thread entry function.
Specify NULL if you are passing no information.

stackSize
The stack size (in bytes) to allocate for this thread. This stack must be large enough to handle saved
thread context, normal application stack usage, interrupt handling functions, and CPU exceptions.
Specify a stack size of 0 (zero) to request the Thread Manager’s default stack size.

options
Options that define characteristics of the new thread. See the Thread Option Constants (page
52) data type for details on the options. You sum the options together to create a single options
parameter.

threadResult
On return, a pointer to the address of a location to hold the function result provided by the Thread
Option Constants (page 52) function when the thread terminates. Specify NULL for this parameter
if you are not interested in the function result.

threadMade
On return, a pointer to the thread ID of the newly created or allocated thread. If there is an error,
threadMade points to a value of kNoThreadID.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The NewThread function obtains a thread ID that you can use in other Thread Manager functions to identify
the thread. If you want to allocate a thread from the pool of threads, specify the kUsePremadeThread option
of the options parameter. Otherwise, NewThread creates a new thread.

When you request a thread from the existing pool, the Thread Manager allocates one that best fits your
specified stack size. If you specify the kExactMatchThread option of the options parameter, the Thread
Manager allocates a thread whose stack exactly matches your stack-size requirement or, if it can’t allocate
one because no such thread exists, it returns the threadTooManyReqsErr result code.

Before making any calls to NewThread, be certain that you first have called the Memory Manager function
MaxApplZone to extend the application heap to its limit. You must call MaxApplZone from the main
application thread before any other threads in your application run.

Functions 25
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



When you call the NewThread function, you pass, as the threadEntry parameter, a pointer to the name of
the entry function to the thread. When the newly created thread runs initially, it begins by executing this
function.

You can use the threadParam parameter to pass thread-specific information to a newly created or allocated
thread. In the data structure pointed to by this parameter, you could place something like A5 information
or the address of a window to update. You could also use this parameter to specify a place for a thread’s
local storage.

Be sure to create the storage for the threadResult parameter in a place that is guaranteed to be available
when the thread terminates—for example, in an application global variable or in a local variable of the
application’s main function (the main thread, by definition, cannot be disposed of so it is always available).
Do not create the storage in a local variable of a subfunction that completes before the thread terminates
or the storage will become invalid.

For Carbon applications, the pointer to your thread entry function must be a universal procedure pointer
(UPP).

To dispose of a thread, use the DisposeThread function.

See the description of the Thread Option Constants (page 52) data type for details on the characteristics
you can specify in the options parameter.

For more information about the thread entry function, see the ThreadEntryProcPtr (page 42) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the new
thread callback. Use the NewThreadEntryUPP (page 26) and DisposeThreadEntryUPP (page 14) functions
to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadEntryUPP

ThreadEntryUPP NewThreadEntryUPP (
   ThreadEntryProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadEntryUPP data type.

26 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadSchedulerUPP

ThreadSchedulerUPP NewThreadSchedulerUPP (
   ThreadSchedulerProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadSchedulerUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadSwitchUPP

ThreadSwitchUPP NewThreadSwitchUPP (
   ThreadSwitchProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadSwitchUPP data type.

Functions 27
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadTerminationUPP

ThreadTerminationUPP NewThreadTerminationUPP (
   ThreadTerminationProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadTerminationUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetDebuggerNotificationProcs
Installs functions that notify the debugger when a thread is created, disposed of, or scheduled.

Modified

OSErr SetDebuggerNotificationProcs (
   DebuggerNewThreadTPP notifyNewThread,
   DebuggerDisposeThreadTPP notifyDisposeThread,
   DebuggerThreadSchedulerTPP notifyThreadScheduler
);

Parameters
notifyNewThread

A pointer to the callback function that notifies the debugger when a thread is created.

28 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



notifyDisposeThread
A pointer to the callback function that notifies the debugger when a thread is disposed of. This
function is called whether you manually dispose of a thread with the DisposeThread function or if
a thread disposes of itself automatically when it returns from its highest level of code.

notifyThreadScheduler
A pointer to the callback function that notifies the debugger when a thread is scheduled.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
You generally use this function only during development of an application.

The SetDebuggerNotificationProcs function installs three separate callback functions that return the
thread ID of a newly created thread, the thread ID of a newly disposed of thread, and the thread ID of a newly
scheduled thread.

The SetDebuggerNotificationProcs function always installs all three of the debugging functions. You
cannot set only one or two of these functions, nor can you chain them together. These restrictions ensure
that the function that calls SetDebuggerNotificationProcs owns all three of the debugging functions.
If you want to prevent one or two of these debugging functions from being called, you can do so by setting
them to NULL.

To guarantee that the debugger is getting an accurate view of scheduling, the Thread Manager doesn’t call
the scheduling-notification callback function until both the generic Thread Manager scheduler and any
custom thread scheduler have decided on a thread to schedule.

For Carbon applications, the pointers you pass to specify the callbacks must be universal procedure pointers
(UPPs).

To create or allocate a new thread, use the NewThread (page 24) function.

To dispose of a thread, use the DisposeThread function.

To schedule a thread, you can use a yield function such as YieldToAnyThread (page 38) or
YieldToThread (page 39) or a function to change the state of a thread, such as SetThreadState (page
32).

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the
notification callbacks. You must use the designated UPP creation and disposal functions. For example, for
the new thread notifier, you call the NewDebuggerNewThreadUPP (page 24) and
DisposeDebuggerNewThreadUPP (page 12) functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 29
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



SetThreadReadyGivenTaskRef
Changes the state of a thread from stopped to ready when your application is not the current process.

OSErr SetThreadReadyGivenTaskRef (
   ThreadTaskRef threadTRef,
   ThreadID threadToSet
);

Parameters
threadTRef

The thread task reference of the application containing the thread whose state you want to change.

threadToSet
The thread ID of the thread whose state you want to change.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
When you mark a thread as ready to run with this function, the Thread Manager does not put it immediately
into the scheduling queue but does so the next time it reschedules threads.

You can use SetThreadStateGivenTaskRef at times when you aren’t guaranteed that your application
is the current context, such as during execution of an interrupt function. In such cases you must identify the
thread task reference (the application context) as well as the thread ID.

You obtain the thread task reference for your application with the GetThreadCurrentTaskRef (page 17)
function.

The SetThreadReadyGivenTaskRef function allows you to do one thing only—change a thread from
stopped to ready to execute. You cannot change the state of an executing thread to ready or stopped, nor
can you change the state of a ready thread to executing or stopped with this call.

To determine the state of a thread when your application is not the current process, use the
GetThreadStateGivenTaskRef (page 19) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadScheduler
Installs a custom scheduling function (custom scheduler).

Modified

30 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



OSErr SetThreadScheduler (
   ThreadSchedulerTPP threadScheduler
);

Parameters
threadScheduler

A pointer to a custom scheduler. Specify NULL if you want to remove an installed custom scheduler
and use the default Thread Manager scheduling mechanism.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The SetThreadScheduler function installs a custom scheduler that runs in conjunction with the default
Thread Manager scheduling mechanism. The Thread Manager uses a scheduler information structure to pass
the custom scheduler the ID of the current thread and the ID of the thread that the Thread Manager has
scheduled to run next.

A custom scheduler should return to the Thread Manager the ID of the thread that it determines to schedule.
If it does not determine a particular thread to schedule, it should return the constant kNoThreadID and the
Thread Manager default scheduling mechanism schedules the next thread.

If you already have a custom scheduler installed when you call SetThreadScheduler, it replaces the old
one with a new one. If you want to remove your custom scheduler and return to using the default Thread
Manager scheduling mechanism, call SetThreadScheduler and specify a value of NULL for the parameter.

The SetThreadScheduler function automatically disables scheduling to avoid any reentrancy problems
with the custom scheduling function. Therefore, in your custom scheduling function, you should make no
yield calls or other calls that would cause scheduling to occur.

For Carbon applications, the pointer to your thread scheduler function must be a universal procedure pointer
(UPP).

For more information on the custom scheduling function, see the ThreadSchedulerProcPtr (page 43)
function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the thread
scheduler callback. Use the NewThreadSchedulerUPP (page 27) and DisposeThreadSchedulerUPP (page
15) functions to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 31
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



SetThreadState
Changes the state of any thread.

OSErr SetThreadState (
   ThreadID threadToSet,
   ThreadState newState,
   ThreadID suggestedThread
);

Parameters
threadToSet

The thread ID of the thread whose state is to be changed.

newState
The new state for the thread. You can specify ready to execute (kReadyThreadState), stopped
(kStoppedThreadState), or executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread if you are changing the state of the
currently executing thread to stopped or ready to run. Pass kNoThreadID if you do not want to
specify a particular thread to run next. In this case, the Thread Manager schedules the next available
thread to run.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The effect of SetThreadState depends on whether the thread you specify for changing is the currently
executing thread or another thread. If you specify the current thread and thus change the state to stopped
or ready, SetThreadState invokes the Thread Manager scheduling mechanism. The current thread
relinquishes control (it is put in the state you specify, stopped or ready) and the Thread Manager schedules
the thread that you specify with the suggestedThread parameter. If this thread is unavailable for running,
or if you passed kNoThreadID, the Thread Manager schedules the next available thread.

If you change the state of the current thread to ready, the Thread Manager suspends it awaiting of the CPU.
When it is rescheduled, SetThreadState regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of the suspended thread.

If you specify a thread other than the currently executing thread, no rescheduling occurs. If you change the
state from ready to stopped, the thread is removed from the scheduling queue. The Thread Manager does
not schedule this thread for execution again until you change its state to ready. On the other hand, if you
change the state from stopped to ready, you have in effect put the thread in the scheduling queue, and the
Thread Manager gives it CPU time as soon as it reaches the top of the scheduling queue.

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the application was launched.

To obtain the state of any thread, use the GetThreadState (page 18) function.

To relinquish control to the next available thread, use the YieldToAnyThread (page 38) function. To
relinquish control to a specific thread, use the YieldToThread (page 39) function.

To set the state of the current thread before it exits a critical section of code, use the
SetThreadStateEndCritical (page 33) function.

32 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadStateEndCritical
Changes the state of the current thread and exits that thread’s critical section at the same time.

OSErr SetThreadStateEndCritical (
   ThreadID threadToSet,
   ThreadState newState,
   ThreadID suggestedThread
);

Parameters
threadToSet

The thread ID of the thread whose state is to be changed.

newState
The new state for the thread. You can specify ready to execute (kReadyThreadState), stopped
(kStoppedThreadState) or executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread if you are changing the state of the
currently executing thread to stopped or ready to run. Pass kNoThreadID if you do not want to
specify a particular thread to run next. In this case, the Thread Manager schedules the next available
thread to run.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The SetThreadStateEndCritical function does in one step the same thing that ThreadEndCritical
and SetThreadState functions do in two steps.

Historically, the primary purpose of the SetThreadStateEndCritical function was to close the scheduling
window at the end of a critical section. A preemptive thread that was waiting while the critical section of
code was executing could begin executing before you changed the state of the current thread to stopped
with the SetThreadState function. Obviously, because the Thread Manager no longer supports preemptive
threads, this function is no longer necessary to close the scheduling window, but you can still use it to change
the state of a thread and exit a critical section in one step instead of two.

When you change the state of the currently executing thread, the Thread Manager schedules the thread you
specify with the suggestedThread parameter. If this thread is unavailable or if you pass kNoThreadID, the
Thread Manager schedules the next available thread.

Functions 33
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



To mark a section of code as critical, use the ThreadBeginCritical (page 36) and the
ThreadEndCritical (page 38) functions.

To change the state of any thread, use the SetThreadState (page 32) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadSwitcher
Installs a custom context-switching function for any thread.

Modified

OSErr SetThreadSwitcher (
   ThreadID thread,
   ThreadSwitchTPP threadSwitcher,
   void *switchProcParam,
   Boolean inOrOut
);

Parameters
thread

The thread ID of the thread to associate with a context-switching function.

threadSwitcher
A pointer to the context-switching function.

switchProcParam
A pointer to a thread-specific parameter that you pass to the context-switching function.

inOrOut
A Boolean value that indicates whether the Thread Manager calls the context-switching function
when the specified thread switches in (True) or when it is switched out by another thread (False).

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The custom switching function allows you to save context information in addition to the default context
information that the Thread Manager automatically saves when it switches contexts. The default context
information consists of the CPU registers, the FPU registers (if any), and the location of the thread’s context.

34 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



You must actually define two context-switching functions, one for leaving a thread and another for entering
a thread. When leaving a thread, you call the outer context-switching function to save additional context
information. When reentering a thread, you call the inner context-switching function to restore the extra
information that was saved on exit. Use the inOrOut parameter of the SetThreadSwitcher function to
specify which type of context-switching function is being installed.

You can pass a different switchProcParam parameter to each thread, which allows you to write a single,
application-wide custom switching function and then pass any thread-specific information when the Thread
Manager calls the switching function for that thread.

The SetThreadSwitcher function automatically disables scheduling to avoid any reentrancy problems
with the custom switching function. Therefore, in the custom switching function, you should make no yield
calls or other calls that would cause scheduling to occur.

For Carbon applications, the pointer to your thread switcher function must be a universal procedure pointer
(UPP).

For more information on the custom context-switching function, see the ThreadSwitchProcPtr (page 44)
function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the thread
switcher callback. Use the NewThreadSwitchUPP (page 27) and DisposeThreadSwitchUPP (page 15)
functions to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadTerminator
Installs a custom thread-termination function for a thread.

Modified

OSErr SetThreadTerminator (
   ThreadID thread,
   ThreadTerminationTPP threadTerminator,
   void *terminationProcParam
);

Parameters
thread

The thread ID of the thread to associate with the thread-termination function.

Functions 35
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



threadTerminator
A pointer to the thread-termination function.

terminationProcParam
A pointer to a thread-specific parameter that you pass to the thread-termination function.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The Thread Manager calls the custom termination function whenever the specified thread completes execution
of its code or when you manually dispose of the thread with the DisposeThread (page 13) function.

You can pass a different terminationProcParam parameter to each thread, which allows you to write a
single, application-wide custom thread-termination function and then pass any thread-specific information
when the Thread Manager calls the termination function for that thread.

For Carbon applications, the pointer to your thread terminator function must be a universal procedure pointer
(UPP).

For more information on the custom thread-termination function, see theThreadTerminationProcPtr (page
45) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the thread
terminator callback. Use the NewThreadTerminationUPP (page 28) and
DisposeThreadTerminationUPP (page 16) functions to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadBeginCritical
Indicates that the thread is entering a critical code section.

OSErr ThreadBeginCritical (
   void
);

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

36 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Discussion
The ThreadBeginCritical function disables scheduling by marking the beginning of a section of critical
code. That is, no other threads in the current application can run—even if the current thread yields
control—until the current thread exits the critical section (by calling the ThreadEndCritical function).
Disabling scheduling allows the currently executing function to look at or change shared or global data safely.
You can nest critical sections within a thread.

To mark the end of a critical code section and turn scheduling back on, use the ThreadEndCritical (page
38) function. If you also need to set the state of the current thread before scheduling is turned back on, use
the SetThreadStateEndCritical (page 33) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadCurrentStackSpace
Determines the amount of stack space that is available for any thread in your application.

OSErr ThreadCurrentStackSpace (
   ThreadID thread,
   ByteCount *freeStack
);

Parameters
thread

The thread ID of the thread about which you want information.

freeStack
On return, a pointer to the amount of stack space (in bytes) that is available to the specified thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
This function is primarily useful during debugging since you determine the maximum amount of stack space
you need for any particular thread before you ship your application. However, if your application calls a
recursive function that could call itself many times, you might want to use ThreadCurrentStackSpace to
keep track of the stack space and take appropriate action if it becomes too low.

To determine the default size that the Thread Manager assigns to threads use the
GetDefaultThreadStackSize (page 17) function.

Functions 37
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadEndCritical
Indicates that the thread is leaving a critical code section.

OSErr ThreadEndCritical (
   void
);

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
After a call to the Thread, all scheduling operations are now available to the application.

Use the ThreadBeginCritical (page 36) function to mark the beginning of a critical code section and
turn scheduling off.

If you need to set the state of the current thread before scheduling is turned back on, use the
SetThreadStateEndCritical (page 33) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

YieldToAnyThread
Relinquishes the current thread’s control.

38 Functions
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



OSErr YieldToAnyThread (
   void
);

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The YieldToAnyThread function invokes the Thread Manager’s scheduling mechanism. The current thread
relinquishes control and the Thread Manager schedules the next available thread.

The current thread is suspended in the ready state and awaits rescheduling when the CPU is available. When
the suspended thread is scheduled again, YieldToAnyThread regains control and returns to the function
that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of the suspended thread.

In each thread you must make one or more strategically placed calls to relinquish control to another thread.
You can either make this yield call or another yield call such as YieldToThread; or you can make a call such
as SetThreadState to explicitly change the state of the thread.

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the application was launched.

To relinquish control to a specific thread, use the YieldToThread (page 39) function.

To change the state of a specified thread, use the SetThreadState (page 32) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

YieldToThread
Relinquishes the current thread’s control to a particular thread.

OSErr YieldToThread (
   ThreadID suggestedThread
);

Parameters
suggestedThread

The ID of the thread to yield control to.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Functions 39
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Discussion
The YieldToThread function invokes the Thread Manager’s scheduling mechanism. The current thread
relinquishes control and passes the thread ID of a thread for the Thread Manager to schedule. The Thread
Manager schedules this thread if it is available. Otherwise, the Thread Manager schedules the next available
thread.

The current thread is suspended in the ready state and awaits rescheduling when the CPU is available. When
the suspended thread is scheduled again, YieldToThread regains control and returns to the function that
called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of the suspended thread.

In each thread you must make one or more strategically placed calls to relinquish control to another thread.
You can either make this yield call or another yield call such as YieldToAnyThread; or you can make a call
such as SetThreadState to explicitly change the state of the thread.

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the application was launched.

To relinquish control without naming a specific thread, use the YieldToAnyThread (page 38) function.

To change the state of a specified thread, use the SetThreadState (page 32) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Callbacks

DebuggerDisposeThreadProcPtr
Defines a pointer to a dispose thread debugging callback function. A dispose thread debugging callback
function is a debugging function that the Thread Manager calls whenever it disposes of a thread.

typedef void (*DebuggerDisposeThreadProcPtr)
(
    ThreadID threadDeleted
);

If you name your function MyDebuggerDisposeThreadProc, you would declare it like this:

void MyDebuggerDisposeThreadProcPtr (
    ThreadID threadDeleted
);

40 Callbacks
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Parameters
threadDeleted

The thread ID of the thread being disposed of.

Return Value
Discussion
The MyDebuggerDisposeThreadCallback function is one of three debugging functions that you can
install with the SetDebuggerNotificationProcs (page 28) function. The Thread Manager calls
MyDebuggerDisposeThreadCallback whenever an application disposes of a thread. The thread manager
calls this debugging function whether you manually call DisposeThread (page 13) to dispose of a thread
or if a thread finishes executing its code and the Thread Manager automatically disposes of it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerNewThreadProcPtr
Defines a pointer to a new thread debugging callback function. A new thread debugging callback function
is a debugging function that the Thread Manager calls whenever it creates a new thread.

typedef void (*DebuggerNewThreadProcPtr)
(
    ThreadID threadCreated
);

If you name your function MyDebuggerNewThreadProc, you would declare it like this:

void MyDebuggerNewThreadProcPtr (
    ThreadID threadCreated
);

Parameters
threadCreated

The thread ID of the thread being created.

Return Value
Discussion
The MyDebuggerNewThreadCallback function is one of three debugging functions that you can install
with the SetDebuggerNotificationProcs (page 28) function. The Thread Manager calls
MyDebuggerNewThreadCallback whenever an application creates or allocates a new thread with the
NewThread (page 24) function. The Thread Manager does not call MyDebuggerNewThreadCallbackwhen
an application creates a thread pool with the CreateThreadPool function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Callbacks 41
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



DebuggerThreadSchedulerProcPtr
Defines a pointer to a thread scheduler debugging callback function. A thread scheduler debugging callback
function is a debugging function that the Thread Manager calls whenever a thread is scheduled.

typedef ThreadID (*DebuggerThreadSchedulerProcPtr)
(
    SchedulerInfoRecPtr schedulerInfo
);

If you name your function MyDebuggerThreadSchedulerProc, you would declare it like this:

ThreadID MyDebuggerThreadSchedulerProcPtr
(
    SchedulerInfoRecPtr schedulerInfo
);

Parameters
schedulerInfo

A pointer to a scheduler information structure that the SetDebuggerNotificationProcs function
passes to the MyDebuggerThreadSchedulerCallback function. Among other information, the
scheduler information structure contains the ID of the current thread and the ID of the thread that
the Thread Manager has scheduled to run next.

Return Value
See the description of the ThreadID data type.

Discussion
The MyDebuggerThreadSchedulerCallback function is one of three debugging functions that you can
install with the SetDebuggerNotificationProcs (page 28) function. The Thread Manager calls
MyDebuggerThreadSchedulerCallback whenever an application schedules a new thread to run. The
MyDebuggerThreadSchedulerCallback function gets the last look at the thread being scheduled—that
is, the Thread Manager calls this function after the Thread Manager default scheduling mechanism and a
custom scheduler, if you have installed one, decide on the next thread to schedule.

If you wish, you can use this debugging callback function to schedule a different thread than that chosen by
the Thread Manager and any custom scheduling function. The MyDebuggerThreadSchedulerCallback
returns the thread ID of the next thread to schedule. The MyDebuggerThreadSchedulerCallback can
specify kNoThreadID for the thread ID if you do not want to change the decision of the Thread Manager
default scheduler or a custom scheduler.

To schedule a thread, use functions such as YieldToAnyThread (page 38) , YieldToThread (page 39) ,
and SetThreadState (page 32).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadEntryProcPtr
Defines a pointer to a thread entry callback function. Your thread entry callback function provides an entry
point to a thread that you create in your application.

42 Callbacks
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



typedef voidPtr (*ThreadEntryProcPtr)
(
    void * threadParam
);

If you name your function MyThreadEntryProc, you would declare it like this:

voidPtr MyThreadEntryProcPtr (
    void * threadParam
);

Parameters
threadParam

A pointer to a void data structure passed to this function by the NewThread function.

Return Value
Discussion
When you create or allocate a new thread with the NewThread function, you pass the name of this entry
function. You also pass a parameter that the Thread Manager passes on to the MyThreadEntryCallback
function. You can use this parameter to pass thread-specific information to the newly created or allocated
thread. For example, you could pass something like A5 information or the address of a window to update.
Or you could use this parameter to specify local storage for a thread that other threads could access.

When the code in a thread finishes executing, the Thread Manager automatically calls the
DisposeThread (page 13) function to dispose of the thread. The MyThreadEntryCallback function passes
its function result to DisposeThread. The DisposeThread function passes this result back to the NewThread
function that called MyThreadEntryCallback to begin with.

This mechanism allows you to spawn a thread that does some work and then continue with your original
thread. When the spawned thread is finished doing its work—for example a calculation—it returns the result
to the original thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSchedulerProcPtr
Defines a pointer to a thread scheduler callback function. Your thread scheduler callback function supplements
the Thread Manager default scheduling mechanism.

typedef ThreadID (*ThreadSchedulerProcPtr)
(
    SchedulerInfoRecPtr schedulerInfo
);

If you name your function MyThreadSchedulerProc, you would declare it like this:

ThreadID MyThreadSchedulerProcPtr (
    SchedulerInfoRecPtr schedulerInfo
);

Callbacks 43
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Parameters
schedulerInfo

A pointer to the scheduler information structure that the Thread Manager uses to pass information
to MyThreadSchedulerCallback.

Return Value
See the description of the ThreadID data type.

Discussion
The MyThreadSchedulerCallback function does not supplant the Thread Manager scheduling mechanism
but rather works in conjunction with it.

Whenever scheduling occurs, the Thread Manager passes a scheduler information structure to
MyThreadSchedulerCallback. Among other information, the scheduler information structure contains
the thread ID of the current thread and the thread ID of the thread that the application has scheduled to run
next.

The MyThreadSchedulerCallback function returns to the Thread Manager the thread ID of the thread
that it has chosen to schedule and the Thread Manager does the actual scheduling. If
MyThreadSchedulerCallback decides not to schedule a thread, it returns the constant kNoThreadID
and the Thread Manager default scheduling mechanism schedules the next thread.

When the SetThreadScheduler function installs the custom scheduler, it automatically disables scheduling
to avoid any reentrancy problems. Therefore, in the custom scheduler, you should make no yield calls or
other calls that would cause scheduling to occur.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSwitchProcPtr
Defines a pointer to a thread switch callback function. Your thread switch callback function adds to the thread
context information that the Thread Manager saves and restores.

typedef void (*ThreadSwitchProcPtr) (
    ThreadID threadBeingSwitched,
    void * switchProcParam
);

If you name your function MyThreadSwitchProc, you would declare it like this:

void MyThreadSwitchProcPtr (
    ThreadID threadBeingSwitched,
    void * switchProcParam
);

Parameters
threadBeingSwitched

The thread ID of the thread whose context is being switched.

44 Callbacks
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



switchProcParam
A pointer to a parameter that the SetThreadSwitcher function passes to
MyThreadSwitchCallback.

Return Value
Discussion
The custom switching function allows you to save and restore context information in addition to the default
context information that the Thread Manager automatically saves and restores when it switches contexts.
You must actually define two context-switching functions, one for leaving a thread and another for entering
a thread. When leaving a thread, you call the outer context-switching function to save additional context
information. When reentering a thread, you call the inner context-switching function to restore the extra
information that was saved on exit.

The default context information consists of the CPU registers, the FPU registers (if any), and the location of
the thread’s context.

When the SetThreadSwitcher function installs the custom switching function, it automatically disables
scheduling to avoid any reentrancy problems. Therefore, in the custom switching function, you should make
no yield calls or other calls that would cause scheduling to occur.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadTerminationProcPtr
Defines a pointer to a thread termination callback function. Your thread termination callback function does
additional cleanup when the code in a thread finishes executing.

typedef void (*ThreadTerminationProcPtr)
(
    ThreadID threadTerminated,
    void * terminationProcParam
);

If you name your function MyThreadTerminationProc, you would declare it like this:

void MyThreadTerminationProcPtr (
    ThreadID threadTerminated,
    void * terminationProcParam
);

Parameters
threadTerminated

The thread ID of the thread being disposed of.

terminationProcParam
A pointer to a void data structure that the SetThreadTerminator function passes to
MyThreadTerminationCallback.

Callbacks 45
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Return Value
Discussion
You use the SetThreadTerminator function to install the MyThreadTerminationCallback custom
termination function. The custom termination function allows you to do additional cleanup when the code
in a thread finishes executing or when you call the DisposeThread (page 13) function to manually dispose
of a thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Data Types

DebuggerDisposeThreadUPP

typedef DebuggerDisposeThreadProcPtr DebuggerDisposeThreadUPP;

Discussion
For more information, see the description of the DebuggerDisposeThreadUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerDisposeThreadTPP

typedef DebuggerDisposeThreadUPP DebuggerDisposeThreadTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerNewThreadTPP

typedef DebuggerNewThreadUPP DebuggerNewThreadTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

46 Data Types
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Declared In
Threads.h

DebuggerNewThreadUPP

typedef DebuggerNewThreadProcPtr DebuggerNewThreadUPP;

Discussion
For more information, see the description of the DebuggerNewThreadUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerThreadSchedulerUPP

typedef DebuggerThreadSchedulerProcPtr DebuggerThreadSchedulerUPP;

Discussion
For more information, see the description of the DebuggerThreadSchedulerUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerThreadSchedulerTPP

typedef DebuggerThreadSchedulerUPP DebuggerThreadSchedulerTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Data Types 47
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



SchedulerInfoRec

struct SchedulerInfoRec {
    UInt32 InfoRecSize;
    ThreadID CurrentThreadID;
    ThreadID SuggestedThreadID;
    ThreadID InterruptedCoopThreadID;
};
typedef struct SchedulerInfoRec SchedulerInfoRec;
typedef SchedulerInfoRec * SchedulerInfoRecPtr;

Fields
InfoRecSize

The size of the structure.

CurrentThreadID
The thread ID of the current thread.

SuggestedThreadID
The thread ID of the thread that the application has suggested to run.

InterruptedCoopThreadID
Historically, the thread ID of a preempted cooperative thread if a cooperative thread has been
interrupted and has not yet resumed execution. Because it no longer supports preemptive threads,
the Thread Manager always passes the constant kNoThreadID to indicate that there is no thread
that has been interrupted.

Discussion
You can, if you wish, use the SetThreadScheduler (page 30) function to install a custom scheduling
function to work in conjunction with the default Thread Manager scheduling mechanism. The Thread Manager
uses the scheduler information structure to pass information to the custom scheduling function that allows
it to decide which thread, if any, to schedule next.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadEntryTPP

typedef ThreadEntryUPP ThreadEntryTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

48 Data Types
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



ThreadEntryUPP

typedef ThreadEntryProcPtr ThreadEntryUPP;

Discussion
For more information, see the description of the ThreadEntryUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSchedulerTPP

typedef ThreadSchedulerUPP ThreadSchedulerTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSchedulerUPP

typedef ThreadSchedulerProcPtr ThreadSchedulerUPP;

Discussion
For more information, see the description of the ThreadSchedulerUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSwitchTPP

typedef ThreadSwitchUPP ThreadSwitchTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Data Types 49
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



ThreadSwitchUPP

typedef ThreadSwitchProcPtr ThreadSwitchUPP;

Discussion
For more information, see the description of the ThreadSwitchUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadTaskRef
Represents a thread task reference.

typedef void* ThreadTaskRef;

Discussion
In certain cases, such as during execution of an interrupt function, your application is not guaranteed to be
the current process. Since threads are defined within an application context, it follows that in cases such as
these, you cannot get or set information about any particular threads in your application unless you have a
way of identifying the application context. The thread task reference gives you a way of doing this.

You can obtain the thread task reference by calling GetThreadCurrentTaskRef (page 17) at a time when
you know your application is the current context. Later, during execution of an interrupt function, you can
use the thread task reference to identify your application. For example, you can pass the thread task reference
to functions such as GetThreadStateGivenTaskRef (page 19) and SetThreadReadyGivenTaskRef (page
30) in an interrupt function to get and set information about the state of particular threads in your application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadTerminationTPP

typedef ThreadTerminationUPP ThreadTerminationTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

50 Data Types
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



ThreadTerminationUPP

typedef ThreadTerminationProcPtr ThreadTerminationUPP;

Discussion
For more information, see the description of the ThreadTerminationUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Constants

Thread ID Constants
The ThreadID data type defines the thread ID.

typedef UInt32 ThreadID;
enum {
    kNoThreadID = 0,
    kCurrentThreadID = 1,
    kApplicationThreadID = 2
};

Constants
kNoThreadID

Indicates no thread; for example, you can use a function such as SetThreadState (page 32) to put
the current thread in the stopped state and pass kNoThreadID to indicate that you don’t care which
thread runs next.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kCurrentThreadID
Identifies the currently executing thread.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kApplicationThreadID
Identifies the main application thread this is the cooperative thread that the Thread Manager creates
at launch time. You cannot dispose of this thread. All applications—even those that are not aware of
the Thread Manager—have one main application thread. The Thread Manager assumes that the main
application thread is responsible for event gathering when an operating-system event occurs, the
Thread Manager schedules the main application thread as the next thread to execute.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

Constants 51
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Discussion
The Thread Manager assigns a thread ID to each thread that you create or allocate with the NewThread (page
24) function. The thread ID uniquely identifies a thread within an application context. You can use the thread
ID in functions that schedule execution of a particular thread, dispose of a thread, and get and set information
about a thread; for example, you pass the thread ID to functions such as YieldToThread (page 39) ,
DisposeThread (page 13) , and GetThreadState (page 18) .

In addition to the specific thread IDs that the NewThread function returns, you can use the three Thread
Manager constants described here.

Thread Option Constants

typedef UInt32 ThreadOptions;
enum {
    kNewSuspend = (1 << 0),
    kUsePremadeThread = (1 << 1),
    kCreateIfNeeded = (1 << 2),
    kFPUNotNeeded = (1 << 3),
    kExactMatchThread = (1 << 4)
};

Constants
kNewSuspend

Begin a new thread in the stopped state.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kUsePremadeThread
Use a thread from the existing supply.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kCreateIfNeeded
Create a new thread if one with the proper style and stack size requirements does not exist.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kFPUNotNeeded
Do not save the FPU context. This saves time when switching contexts. Note, however, that for PowerPC
threads, the Thread Manager always saves the FPU registers regardless of how you set this option.
Because the PowerPC microprocessor uses the FPU registers for optimizations, they could contain
necessary information.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kExactMatchThread
Allocate a thread from the pool only if it exactly matches the stack-size request. Without this option,
a thread is allocated that best fits the request—that is, a thread whose stack is greater than or equal
to the requested size.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

52 Constants
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Discussion
When you create or allocate a new thread with the NewThread (page 24) function, you can specify thread
options that define certain characteristics of the thread, using the values described here. To specify more
than one option, you sum them together and pass them as a single parameter to the NewThread function.

The ThreadOptions data type defines the thread options.

Thread State Constants

typedef UInt16 ThreadState;
enum {
    kReadyThreadState = 0,
    kStoppedThreadState = 1,
    kRunningThreadState = 2
};

Constants
kReadyThreadState

The thread is ready to run.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kStoppedThreadState
The thread is stopped and not ready to run.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kRunningThreadState
The thread is running.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

Discussion
The Thread Manager functions which get and set information about the state of a thread, such as
GetThreadState (page 18) and SetThreadState (page 32) , use these values.

Thread Style Constants

typedef UInt32 ThreadStyle;
enum {
    kCooperativeThread = 1L << 0,
    kPreemptiveThread = 1L << 1
};

Constants
kCooperativeThread

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kPreemptiveThread
Available in Mac OS X v10.0 and later.

Declared in Threads.h.

Constants 53
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



Discussion
Historically, the Thread Manager defined two types of threads to run in an application context: cooperative
and preemptive, but now it supports only cooperative threads.

Although the Thread Manager only supports a single type of thread, many Thread Manager functions (for
historical reasons) require you to use the thread type to specify the type of the thread.

The ThreadStyle data type specifies the type of a thread.

Because there is only one type of thread (cooperative) the thread type accepts a single value,
kCooperativeThread.

Result Codes

The most common result codes returned by Thread Manager are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-617threadTooManyReqsErr

Available in Mac OS X v10.0 and later.-618threadNotFoundErr

Available in Mac OS X v10.0 and later.-619threadProtocolErr

Gestalt Constants

You can check for version and feature availability information by using the Thread Manager selectors defined
in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

54 Result Codes
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Thread Manager Reference



A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.3

GetFreeThreadCount
Determines how many threads are available to be allocated in a thread pool. (Deprecated in Mac OS X v10.3.
There is no replacement.)

OSErr GetFreeThreadCount (
   ThreadStyle threadStyle,
   SInt16 *freeCount
);

Parameters
threadStyle

The type of thread to get information about. Cooperative is the only type that you can specify.
Historically, the Thread Manger supported two types of threads, preemptive and cooperative, but the
Thread Manager no longer supports preemptive threads.

freeCount
On return, a pointer to the number of threads available to be allocated.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The number of threads in the pool varies throughout execution of your application. Calls to
CreateThreadPool add threads to the pool and calls to the function NewThread (page 24) , when an
existing thread is allocated, reduce the number of threads. You also add threads to the pool when you dispose
of a thread with the DisposeThread (page 13) function and specify that the thread be recycled.

Use the GetSpecificFreeThreadCount (page 56) function to determine how many threads of a particular
stack size are available.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.3 55
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Thread Manager Functions



Declared In
Threads.h

GetSpecificFreeThreadCount
Determines how many threads with a stack size equal to or greater than the specified size are available to
be allocated in a thread pool. (Deprecated in Mac OS X v10.3. There is no replacement.)

OSErr GetSpecificFreeThreadCount (
   ThreadStyle threadStyle,
   Size stackSize,
   SInt16 *freeCount
);

Parameters
threadStyle

The type of thread to get information about. Cooperative is the only type that you can specify.
Historically, the Thread Manger supported two types of threads, preemptive and cooperative, but the
Thread Manager no longer supports preemptive threads.

stackSize
The stack size of the threads to get information about.

freeCount
On return, a pointer to the number of threads of the specified stack size available to be allocated.

Return Value
A result code. See “Thread Manager Result Codes” (page 54).

Discussion
The GetSpecificFreeThreadCount function determines how many threads with a stack size equal to or
greater than the specified size are available to be allocated. Use this function instead of
GetFreeThreadCount (page 55) when you are interested not simply in the total number of available threads
but when you want to know the number of available threads of a specified stack size as well.

The number of threads in the pool varies throughout execution of your application. Calls to the function
CreateThreadPool (page 10) add threads to the pool and calls to the function NewThread (page 24) ,
when an existing thread is allocated, reduce the number of threads. You also add threads to the pool when
you dispose of a thread with the DisposeThread (page 13) function and specify that the thread be recycled.

To determine how many threads of any stack size are available, use the GetFreeThreadCount function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Threads.h

56 Deprecated in Mac OS X v10.3
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Thread Manager Functions



This table describes the changes to Thread Manager Reference.

NotesDate

Updated for Mac OS X v10.5.2007-04-04

Deprecated GetFreeThreadCount and GetSpecificFreeThreadCount. Added notes
recommending against the use of the Thread Manager in new application
development.

2006-07-24

Updated formatting and linking.2003-01-01

57
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



58
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



C

CreateThreadPool function 10

D

DebuggerDisposeThreadProcPtr callback 40
DebuggerDisposeThreadTPP data type 46
DebuggerDisposeThreadUPP data type 46
DebuggerNewThreadProcPtr callback 41
DebuggerNewThreadTPP data type 46
DebuggerNewThreadUPP data type 47
DebuggerThreadSchedulerProcPtr callback 42
DebuggerThreadSchedulerTPP data type 47
DebuggerThreadSchedulerUPP data type 47
DisposeDebuggerDisposeThreadUPP function 12
DisposeDebuggerNewThreadUPP function 12
DisposeDebuggerThreadSchedulerUPP function 13
DisposeThread function 13
DisposeThreadEntryUPP function 14
DisposeThreadSchedulerUPP function 15
DisposeThreadSwitchUPP function 15
DisposeThreadTerminationUPP function 16

G

GetCurrentThread function 16
GetDefaultThreadStackSize function 17
GetFreeThreadCount function (Deprecated in Mac OS

X v10.3) 55
GetSpecificFreeThreadCount function (Deprecated

in Mac OS X v10.3) 56
GetThreadCurrentTaskRef function 17
GetThreadState function 18
GetThreadStateGivenTaskRef function 19

I

InvokeDebuggerDisposeThreadUPP function 20
InvokeDebuggerNewThreadUPP function 20
InvokeDebuggerThreadSchedulerUPP function 21
InvokeThreadEntryUPP function 21
InvokeThreadSchedulerUPP function 22
InvokeThreadSwitchUPP function 22
InvokeThreadTerminationUPP function 23

K

kApplicationThreadID constant 51
kCooperativeThread constant 53
kCreateIfNeeded constant 52
kCurrentThreadID constant 51
kExactMatchThread constant 52
kFPUNotNeeded constant 52
kNewSuspend constant 52
kNoThreadID constant 51
kPreemptiveThread constant 53
kReadyThreadState constant 53
kRunningThreadState constant 53
kStoppedThreadState constant 53
kUsePremadeThread constant 52

N

NewDebuggerDisposeThreadUPP function 23
NewDebuggerNewThreadUPP function 24
NewDebuggerThreadSchedulerUPP function 24
NewThread function 24
NewThreadEntryUPP function 26
NewThreadSchedulerUPP function 27
NewThreadSwitchUPP function 27
NewThreadTerminationUPP function 28

59
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

Index



S

SchedulerInfoRec structure 48
SetDebuggerNotificationProcs function 28
SetThreadReadyGivenTaskRef function 30
SetThreadScheduler function 30
SetThreadState function 32
SetThreadStateEndCritical function 33
SetThreadSwitcher function 34
SetThreadTerminator function 35

T

Thread ID Constants 51
Thread Option Constants 52
Thread State Constants 53
Thread Style Constants 53
ThreadBeginCritical function 36
ThreadCurrentStackSpace function 37
ThreadEndCritical function 38
ThreadEntryProcPtr callback 42
ThreadEntryTPP data type 48
ThreadEntryUPP data type 49
threadNotFoundErr constant 54
threadProtocolErr constant 54
ThreadSchedulerProcPtr callback 43
ThreadSchedulerTPP data type 49
ThreadSchedulerUPP data type 49
ThreadSwitchProcPtr callback 44
ThreadSwitchTPP data type 49
ThreadSwitchUPP data type 50
ThreadTaskRef data type 50
ThreadTerminationProcPtr callback 45
ThreadTerminationTPP data type 50
ThreadTerminationUPP data type 51
threadTooManyReqsErr constant 54

Y

YieldToAnyThread function 38
YieldToThread function 39

60
2007-04-04   |   © 2007 Apple Inc. All Rights Reserved.

INDEX


	Thread Manager Reference
	Contents
	Thread Manager Reference
	Overview
	Functions by Task
	Creating and Disposing of Threads
	Creating and Getting Information About Thread Pools
	Getting Information About Specific Threads
	Getting Information and Scheduling Threads During Interrupts
	Installing Custom Scheduling, Switching, Terminating, and Debugging Functions
	Preventing Scheduling
	Scheduling Threads
	Miscellaneous

	Functions
	CreateThreadPool
	DisposeDebuggerDisposeThreadUPP
	DisposeDebuggerNewThreadUPP
	DisposeDebuggerThreadSchedulerUPP
	DisposeThread
	DisposeThreadEntryUPP
	DisposeThreadSchedulerUPP
	DisposeThreadSwitchUPP
	DisposeThreadTerminationUPP
	GetCurrentThread
	GetDefaultThreadStackSize
	GetThreadCurrentTaskRef
	GetThreadState
	GetThreadStateGivenTaskRef
	InvokeDebuggerDisposeThreadUPP
	InvokeDebuggerNewThreadUPP
	InvokeDebuggerThreadSchedulerUPP
	InvokeThreadEntryUPP
	InvokeThreadSchedulerUPP
	InvokeThreadSwitchUPP
	InvokeThreadTerminationUPP
	NewDebuggerDisposeThreadUPP
	NewDebuggerNewThreadUPP
	NewDebuggerThreadSchedulerUPP
	NewThread
	NewThreadEntryUPP
	NewThreadSchedulerUPP
	NewThreadSwitchUPP
	NewThreadTerminationUPP
	SetDebuggerNotificationProcs
	SetThreadReadyGivenTaskRef
	SetThreadScheduler
	SetThreadState
	SetThreadStateEndCritical
	SetThreadSwitcher
	SetThreadTerminator
	ThreadBeginCritical
	ThreadCurrentStackSpace
	ThreadEndCritical
	YieldToAnyThread
	YieldToThread

	Callbacks
	DebuggerDisposeThreadProcPtr
	DebuggerNewThreadProcPtr
	DebuggerThreadSchedulerProcPtr
	ThreadEntryProcPtr
	ThreadSchedulerProcPtr
	ThreadSwitchProcPtr
	ThreadTerminationProcPtr

	Data Types
	DebuggerDisposeThreadUPP
	DebuggerDisposeThreadTPP
	DebuggerNewThreadTPP
	DebuggerNewThreadUPP
	DebuggerThreadSchedulerUPP
	DebuggerThreadSchedulerTPP
	SchedulerInfoRec
	ThreadEntryTPP
	ThreadEntryUPP
	ThreadSchedulerTPP
	ThreadSchedulerUPP
	ThreadSwitchTPP
	ThreadSwitchUPP
	ThreadTaskRef
	ThreadTerminationTPP
	ThreadTerminationUPP

	Constants
	Thread ID Constants
	Thread Option Constants
	Thread State Constants
	Thread Style Constants

	Result Codes
	Gestalt Constants

	Appendix A: Deprecated Thread Manager Functions
	Deprecated in Mac OS X v10.3
	GetFreeThreadCount
	GetSpecificFreeThreadCount


	Revision History
	Index
	C
	D
	G
	I
	K
	N
	S
	T
	Y



