
Unicode Utilities Reference
Carbon > Text & Fonts

2006-01-10

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Unicode Utilities Reference 7

Overview 7
Functions by Task 7

Inputting Unicode Text 7
Comparing Unicode Strings 7
Identifying Unicode Text Boundaries 8

Functions 8
UCCompareCollationKeys 8
UCCompareText 9
UCCompareTextDefault 11
UCCompareTextNoLocale 12
UCCreateCollator 13
UCCreateTextBreakLocator 14
UCDisposeCollator 16
UCDisposeTextBreakLocator 16
UCFindTextBreak 17
UCGetCollationKey 18
UCKeyTranslate 20

Data Types 22
CollatorRef 22
TextBreakLocatorRef 22
UCCollationValue 23
UCKeyboardLayout 23
UCKeyboardTypeHeader 24
UCKeyCharSeq 25
UCKeyLayoutFeatureInfo 26
UCKeyModifiersToTableNum 27
UCKeyOutput 27
UCKeySequenceDataIndex 28
UCKeyStateEntryRange 29
UCKeyStateEntryTerminal 30
UCKeyStateRecord 31
UCKeyStateRecordsIndex 32
UCKeyStateTerminators 33
UCKeyToCharTableIndex 34

Constants 35
Fixed Ordering Scheme 35
Fixed Ordering Masks 1 35
Fixed Ordering Masks 2 36
Key Actions 36
Key Format Codes 37

3
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Key Output Index Masks 38
Key State Entry Formats 39
Key Translation Options Flag 39
Key Translation Options Mask 40
Operation Class 40
Standard Options Mask 41
String Comparison Options 41
Text Break Options 42
Text Break Types 43
Text Boundary Operation Class 44

Appendix A Specification for 'uchr' 45

Unicode Keyboard-Layout Resource Format 45

Document Revision History 51

Index 53

4
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures

Appendix A Specification for 'uchr' 45

Figure A-1 Overview of a 'uchr' resource 45
Figure A-2 'uchr' resource header 46
Figure A-3 'uchr' modifier combination to key-code-to-character table number map 47
Figure A-4 'uchr' key-code-to-character tables 47
Figure A-5 'uchr' dead-key state records 48
Figure A-6 'uchr' default dead-key state terminators 49
Figure A-7 'uchr' character key sequences 49

5
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES

Framework: CoreServices/CoreServices.h

Declared in UnicodeUtilities.h

Overview

Unicode Utilities allow applications and text service components (such as input methods) to perform various
operations on Unicode text; for example, Unicode key translation. Resources defined for use with Unicode
Utilities permit control of Unicode-related text behavior, such as the specification of Unicode keyboard
layouts.

Carbon fully supports the Unicode Utilities.

Functions by Task

Inputting Unicode Text

UCKeyTranslate (page 20)
Converts a combination of a virtual key code, a modifier key state, and a dead-key state into a string
of one or more Unicode characters.

Comparing Unicode Strings

UCCreateCollator (page 13)
Creates an object encapsulating locale and collation information, for the purpose of performing
Unicode string comparison.

UCCompareText (page 9)
Uses locale-specific collation information to compare Unicode strings.

UCGetCollationKey (page 18)
Uses locale-specific collation information to generate a collation key for a Unicode string.

UCCompareCollationKeys (page 8)
Uses collation keys to compare Unicode strings.

UCDisposeCollator (page 16)
Disposes a collator object.

UCCompareTextDefault (page 11)
Uses the default system locale to compare Unicode strings.

Overview 7
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

UCCompareTextNoLocale (page 12)
Uses a fixed, locale-insensitive order to compare Unicode strings.

Identifying Unicode Text Boundaries

UCCreateTextBreakLocator (page 14)
Creates an object encapsulating locale and text-break information, for the purpose of finding
boundaries in Unicode text.

UCFindTextBreak (page 17)
Uses locale-specific text-break information to find boundaries in Unicode text.

UCDisposeTextBreakLocator (page 16)
Disposes a text-break locator object.

Functions

UCCompareCollationKeys
Uses collation keys to compare Unicode strings.

OSStatus UCCompareCollationKeys (
 const UCCollationValue *key1Ptr,
 ItemCount key1Length,
 const UCCollationValue *key2Ptr,
 ItemCount key2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
key1Ptr

A pointer to the collation key (a UCCollationValue array) for the first string to compare. You can
obtain a collation key with the function UCGetCollationKey (page 18). The collation key supplied
in key1Ptr for the first string must be generated with the same collator object as that used to generate
the collation key supplied in key2Ptr for the second string.

key1Length
An ItemCount value specifying the actual length of the collation key supplied in the key1Ptr
parameter. You can obtain this value from the function UCGetCollationKey (page 18) when you
obtain the new collation key.

key2Ptr
A pointer to the collation key (a UCCollationValue array) for the second string to compare. You
can obtain a collation key with the function UCGetCollationKey (page 18). The collation key
supplied in key2Ptr for the second string must be generated with the same collator object as that
used to generate the collation key supplied in key1Ptr for the first string.

key2Length
An ItemCount value specifying the actual length of the collation key supplied in the key2Ptr
parameter. You can obtain this value from the function UCGetCollationKey (page 18) when you
obtain the new collation key.

8 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

equivalent
A pointer to a Boolean value or pass NULL. On return, UCCompareCollationKeys produces a value
of true if the strings represented by the collation keys are equivalent for the options you have
specified in the collator object. If you wish simply to sort a list of strings in order, using your specified
options, you can pass NULL for the equivalent parameter and only use the order parameter’s
result. In this case, all available comparison criteria are used to put the strings in a deterministic order,
even if they are considered “equivalent” for the options you have specified. Note that you can set
either the equivalent or the order parameters to NULL, but not both.

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test the strings
represented by the collation keys for equivalence, using your specified options (which can be much
faster than determining ordering), you can pass NULL for the order parameter and only use the
equivalent parameter’s result. (Note that either the equivalent or the order parameters may be
NULL, but not both.

Return Value
A result code. This function can return paramErr, for example, if key1Ptr or key2Ptr are NULL.

Discussion
If you wish to compare the same strings several times, as when sorting a list of strings, it may be most efficient
for you to derive a collation key for each string and then compare the collation keys. A collation key is a
transformation of the string that depends on the collator object (that is, it depends on the locale, the collation
variant if any, and the collation options).

Collation keys that are generated using the same collator object—but for different strings—can quickly be
compared with each other, without further reference to the collator object or collation tables. The disadvantage
is that the collation keys may be rather large. After you use the function UCGetCollationKey (page 18) to
create a collation key from a given string and collator object, you can call the UCCompareCollationKeys
function to compare two collation keys that were generated with the same collator object.

If you are comparing different strings, it may be more efficient for you to call the function
UCCompareText (page 9) multiple times using the same collator object.

Note that collation keys should be used only in a runtime context. They should not be stored in a persistent
state (such as to disk) because the format of a collation key could change in the future.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCompareText
Uses locale-specific collation information to compare Unicode strings.

Functions 9
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

OSStatus UCCompareText (
 CollatorRef collatorRef,
 const UniChar *text1Ptr,
 UniCharCount text1Length,
 const UniChar *text2Ptr,
 UniCharCount text2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
collatorRef

A valid reference to a collator object; NULL is not allowed. You can use the function
UCCreateCollator (page 13) to obtain a collator reference.

text1Ptr
A pointer to the first Unicode string (a UniChar array) to compare.

text1Length
The total count of Unicode characters in the first string being compared.

text2Ptr
A pointer to the second Unicode string to compare.

text2Length
The total count of Unicode characters in the second string being compared.

equivalent
A pointer to a Boolean value or NULL. On return, UCCompareText produces a value of true if the
strings are equivalent for the options you have specified in the collator object. If you wish simply to
sort a list of strings in order, using your specified options, you can pass NULL for the equivalent
parameter and only use the order parameter’s result. In this case, all available comparison criteria
are used to put the strings in a deterministic order, even if they are considered “equivalent” for the
options you have specified. Note that you can set either the equivalent or the order parameters
to NULL, but not both.

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test strings for
equivalence, using your specified options (which can be much faster than determining ordering), you
can pass NULL for the order parameter and only use the equivalent parameter’s result. (Note that
either the equivalent or the order parameters may be NULL, but not both.

Return Value
A result code. The function can return paramErr (for example, if collatorRef, text1Ptr, or text2Ptr
are NULL.

Discussion
You can use the UCCompareText function to perform various types of string comparison for a given set of
locale and collation specifications. You can

 ■ simply test whether two strings are equivalent

 ■ determine the relative ordering of two strings

 ■ check whether a given string is equivalent to any string in an ordered list

10 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

You can also call the UCCompareText function multiple times to compare different strings using the same
collator object. If you wish to compare the same strings several times, as when sorting a list of strings, it may
be more efficient for you to derive a collation key for each string and then compare the collation keys. For
more on comparison using collation keys, see the functions UCGetCollationKey (page 18) and
UCCompareCollationKeys (page 8).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCompareTextDefault
Uses the default system locale to compare Unicode strings.

OSStatus UCCompareTextDefault (
 UCCollateOptions options,
 const UniChar *text1Ptr,
 UniCharCount text1Length,
 const UniChar *text2Ptr,
 UniCharCount text2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
options

A UCCollateOptions value specifying any collation options for the string comparison.

text1Ptr
A pointer to the first Unicode string (a UniChar array) to compare.

text1Length
The total count of Unicode characters in the first string being compared.

text2Ptr
A pointer to the second Unicode string to compare.

text2Length
The total count of Unicode characters in the second string being compared.

equivalent
A pointer to a Boolean value or pass NULL. On return, UCCompareTextDefault produces a value
of true if the strings are equivalent for the options you have specified. If you wish simply to sort a
list of strings in order, using your specified options, you can pass NULL for the equivalent parameter
and only use the order parameter’s result. In this case, all available comparison criteria are used to
put the strings in a deterministic order, even if they are considered “equivalent” for the options you
have specified. Note that you can set either the equivalent or the order parameters to NULL, but
not both.

Functions 11
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test the strings for
equivalence, using your specified options (which can be much faster than determining ordering), you
can pass NULL for the order parameter and only use the equivalent parameter’s result. (Note that
either the equivalent or the order parameters may be NULL, but not both.

Return Value
A result code.

Discussion
You can call the UCCompareTextDefault function when you want to use a simple collation function that
requires minimum setup. This function uses the system default collation order (that is, the collation order
for a LocaleRef of NULL and a variant of 0), and it does not require a collator object or collation keys.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCompareTextNoLocale
Uses a fixed, locale-insensitive order to compare Unicode strings.

OSStatus UCCompareTextNoLocale (
 UCCollateOptions options,
 const UniChar *text1Ptr,
 UniCharCount text1Length,
 const UniChar *text2Ptr,
 UniCharCount text2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
options

A UCCollateOptions value specifying the fixed ordering scheme to use for the string comparison.
This value must be nonzero. Bits 24-31 of UCCollateOptionsValue specify which fixed ordering
scheme to use. Currently there is only scheme—kUCCollateTypeHFSExtended. See “Fixed Ordering
Scheme” (page 35) for additional details.

text1Ptr
A pointer to the first Unicode string (a UniChar array) to compare.

text1Length
The total count of Unicode characters in the first string being compared.

text2Ptr
A pointer to the second Unicode string to compare.

text2Length
The total count of Unicode characters in the second string being compared.

12 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

equivalent
A pointer to a Boolean value or pass NULL. On return, UCCompareTextNoLocale produces a value
of true if the strings are equivalent for the ordering scheme you have specified. If you wish simply
to sort a list of strings in order, using the specified ordering scheme, you can pass NULL for the
equivalentparameter and only use the orderparameter’s result. In this case, all available comparison
criteria are used to put the strings in a deterministic order, even if they are considered “equivalent”
for the specified ordering scheme. Note that you can set either the equivalent or the order
parameters to NULL, but not both.

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test the strings for
equivalence, using the specified ordering scheme (which can be much faster than determining
ordering), you can pass NULL for the order parameter and only use the equivalent parameter’s
result. (Note that either the equivalent or the order parameters may be NULL, but not both.

Return Value
A result code. This function can return paramErr if you pass an invalid value for one of the parameters. For
example, if you pass 0 for the options paramter, the function returns paramErr.

Discussion
You can call the UCCompareTextNoLocale function when you want to perform a fixed, locale-insensitive
comparison that is guaranteed not to change from one system release to the next. This type of comparison
could be used for sorting a Unicode key string in a database, for example. The UCCompareTextNoLocale
function can provide comparison according to various fixed ordering schemes (only one is supported for
Mac OS 8.6 and 9.0). This type of comparison is not usually used for a user-visible ordering, so the ordering
schemes need not match any user’s expectation of a sensible collation order.

TheUCCompareTextNoLocale function does not require a collator object or collation keys. Another advantage
of UCCompareTextNoLocale on Mac OS 9 is that it is exported from the UnicodeUtilitiesCoreLib
library, which does not depend on other libraries (the other comparison functions exported from
UnicodeUtilitiesLib, which depends on LocalesLib and TextCommon).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCreateCollator
Creates an object encapsulating locale and collation information, for the purpose of performing Unicode
string comparison.

Functions 13
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

OSStatus UCCreateCollator (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 UCCollateOptions options,
 CollatorRef *collatorRef
);

Parameters
locale

A valid LocaleRef representing a specific locale, or pass NULL to request the default system locale.
You can supply the value kUnicodeCollationClass in the opClass parameter of the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales to obtain
the locales available for collation on the current system.

opVariant
A LocaleOperationVariant value identifying a collation variant within the locale specified in the
locale parameter. You can also pass 0 to request the default collation variant for any locale. To
obtain the varieties of locale-specific collation that are currently available, you can supply the value
kUnicodeCollationClass in the opClass parameter of the Locales Utilities functions
LocaleOperationCountLocales and LocaleOperationGetLocales.

options
A UCCollateOptions value specifying any collation options that you want to use for the string
comparison.

collatorRef
A pointer to a value of type CollatorRef. On return, the CollatorRef value contains a valid
reference to a new collator object.

Return Value
A result code. The function can return memory errors and paramErr, for example, if the collatorRef
parameter is NULL. It can also return resource errors in Mac OS 9 and CarbonLib.

Discussion
To perform Unicode string comparison, you must supply locale and collation specifications to a collation
function such as UCCompareText (page 9). You provide this information by means of a collator object,
created via the UCCreateCollator function. When finished with the collator object, you dispose of it using
the function UCDisposeCollator (page 16).

Special Considerations

The collator object is allocated in the current heap. This function can move memory.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCreateTextBreakLocator
Creates an object encapsulating locale and text-break information, for the purpose of finding boundaries in
Unicode text.

14 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

OSStatus UCCreateTextBreakLocator (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 UCTextBreakType breakTypes,
 TextBreakLocatorRef *breakRef
);

Parameters
locale

A valid LocaleRef representing a specific locale, or pass NULL to request the default system locale.
You can supply the value kUnicodeTextBreakClass in the opClass parameter of the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales to obtain
the locales available for finding text boundaries on the current system.

opVariant
A LocaleOperationVariant value identifying a text-break operation variant within the locale
specified in the locale parameter. You can also pass 0 to request the default text-break variant for
any locale. To obtain the varieties of locale-specific text-break variants that are currently available,
you can supply the value kUnicodeTextBreakClass in the opClass parameter of the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales.

breakTypes
A UCTextBreakType value specifying each type of text boundary that the text-break locator should
support. You do not need to create a text-break locator solely for the BreakChar type; it is
locale-independent and automatically supported by the function UCFindTextBreak (page 17). If
BreakChar is the only type for which you call the UCCreateTextBreakLocator function, on return
the breakRef parameter returns a NULL value (with no error).

breakRef
A pointer to a value of type TextBreakLocatorRef. On return, the TextBreakLocatorRef value
contains a valid reference to a new text-break locator object.

Return Value
A result code. The function can return memory errors and paramErr (for example, if the breakRef parameter
is NULL or if invalid bits are set in the breakTypes parameter). It can also return resource errors in Mac OS
9 and CarbonLib.

Discussion
To find boundaries in Unicode text, you must supply locale and text-break specifications to the function
UCFindTextBreak (page 17). You provide this information by means of a text-break locator object, created
via the UCCreateTextBreakLocator function. When finished with the text-break locator object, you should
dispose of it using the function UCDisposeTextBreakLocator (page 16).

The UCCreateTextBreakLocator function creates a text-break locator object for a specified locale, a
specified text-break variant within that locale, and a specified set of break types. The different types of breaks
or boundaries in a line of Unicode text can include

 ■ Boundaries of characters (treating surrogate pairs as a single character).

 ■ Boundaries of character clusters. A cluster is a group of characters that should be treated as single text
element for editing operations such as cursor movement. Typically this includes groups such as a base
character followed by a sequence of combining characters, for example, a Hangul syllable represented
as a sequence of conjoining jamo characters or an Indic consonant cluster.

 ■ Boundaries of words. This can be used to determine what to highlight as the result of a double-click.

 ■ Potential line break locations.

Functions 15
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Special Considerations

This function can move memory.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCDisposeCollator
Disposes a collator object.

OSStatus UCDisposeCollator (
 CollatorRef *collatorRef
);

Parameters
collatorRef

A reference to a valid collator object. The UCDisposeCollator function sets *collatorRef to
NULL.

Return Value
A result code.

Discussion
To perform Unicode string comparison, you must supply locale and collation specifications to a collation
function such as UCCompareText (page 9). You provide this information by means of a collator object,
created via the function UCCreateCollator (page 13). When finished with the collator object, you should
dispose of it using the function UCDisposeCollator.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCDisposeTextBreakLocator
Disposes a text-break locator object.

OSStatus UCDisposeTextBreakLocator (
 TextBreakLocatorRef *breakRef
);

Parameters
breakRef

A reference to a valid text-break locator object. The UCDisposeTextBreakLocator function sets
*breakRef to NULL.

Return Value
A result code. This function can return paramErr, for example, if the breakRef parameter is NULL.

16 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Discussion
To find boundaries in Unicode text, you must supply locale and text-break specifications to the function
UCFindTextBreak (page 17). You provide this information by means of a text-break locator object, created
via the function UCCreateTextBreakLocator (page 14). When finished with the text-break locator object,
you should dispose of it using the function UCDisposeTextBreakLocator.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCFindTextBreak
Uses locale-specific text-break information to find boundaries in Unicode text.

OSStatus UCFindTextBreak (
 TextBreakLocatorRef breakRef,
 UCTextBreakType breakType,
 UCTextBreakOptions options,
 const UniChar *textPtr,
 UniCharCount textLength,
 UniCharArrayOffset startOffset,
 UniCharArrayOffset *breakOffset
);

Parameters
breakRef

A valid reference to a text-break locator object. If the type of boundary specified by the breakType
parameter is BreakChar, you can pass NULL. You use the function
UCCreateTextBreakLocator (page 14) to obtain a text-break locator object reference. If non-NULL,
the text-break locator object must support the type of boundary specified in the breakTypeparameter.

breakType
A value of type UCTextBreakType, with exactly one bit set to specify a single type of boundary to
be located. Since support for finding character boundaries is locale-independent and built into the
UCFindTextBreak function, if you specify BreakChar as the type of boundary, then the breakRef
parameter is ignored and may be NULL.

options
A UCTextBreakOptions value to specify the operation of the UCFindTextBreak function. You can
use text-break locator options to control some location-independent aspects of a text-boundary
search. Note that if you do not specify any UCTextBreakOptions values, UCFindTextBreak searches
forward, but assumes that the startOffset value refers to the character preceding the offset rather
than the one at the offset. This can result in UCFindTextBreak returning an offset that is equal to
the start offset.

textPtr
A pointer to the initial character of the Unicode string to search.

textLength
The total count of Unicode characters in the string to search.

Functions 17
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

startOffset
A UniCharArrayOffset value specifying the offset from which UCFindTextBreak is to begin
searching for the next text boundary of the type specified in the breakType parameter. If
startOffset == 0 then kUCTextBreakLeadingEdgeMask must be set in the options parameter;
if startOffset == textLength then kUCTextBreakLeadingEdgeMask must not be set.

breakOffset
A pointer to a UniCharArrayOffset value. On return, the value pointed to by the breakOffset
parameter is set to the offset of the text boundary located by UCFindTextBreak. In normal usage
(when exactly one ofkUCTextBreakLeadingEdgeMask andkUCTextBreakGoBackwardsMask are
set), the result returned in breakOffset is not equal to that supplied in the startOffset parameter
unless an error occurs (and the function result is other than noErr). However, when
kUCTextBreakLeadingEdgeMask and kUCTextBreakGoBackwardsMask are both set or both
clear, the result produced in breakOffset can be equal to the value of startOffset.

Return Value
A result code. The text-break locator referenced by the breakRef parameter must support the type of
boundary specified in the breakType parameter; otherwise, the function returns
kUCTextBreakLocatorMissingType.

Discussion
The UCFindTextBreak function starts from a specified offset in a text buffer, and then proceeds forward
or backward (as requested) until it finds the next text boundary of a particular locale-specific type, using a
given set of options. The different types of breaks or boundaries in a line of Unicode text can include

 ■ Boundaries of characters (treating surrogate pairs as a single character).

 ■ Boundaries of character clusters. A cluster is a group of characters that should be treated as single text
element for editing operations such as cursor movement. Typically this includes groups such as a base
character followed by a sequence of combining characters, for example, a Hangul syllable represented
as a sequence of conjoining jamo characters or an Indic consonant cluster.

 ■ Boundaries of words. This can be used to determine what to highlight as the result of a double-click.

 ■ Potential line break locations.

Finding boundaries of characters is a locale-independent operation, and support for it is built directly into
the UCFindTextBreak function. If that is the only type of text boundary that you wish to locate, it is not
necessary to call UCCreateTextBreakLocator and create a text-break locator object.

When finished with the text-break locator object, dispose it using the function
UCDisposeTextBreakLocator (page 16).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCGetCollationKey
Uses locale-specific collation information to generate a collation key for a Unicode string.

18 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

OSStatus UCGetCollationKey (
 CollatorRef collatorRef,
 const UniChar *textPtr,
 UniCharCount textLength,
 ItemCount maxKeySize,
 ItemCount *actualKeySize,
 UCCollationValue collationKey[]
);

Parameters
collatorRef

A valid reference to a collator object; NULL is not allowed. You can use the function
UCCreateCollator (page 13) to obtain a collator reference.

textPtr
A pointer to the Unicode string (a UniChar array) for which to generate a collation key.

textLength
The total count of Unicode characters in the string referenced by the textPtr parameter.

maxKeySize
An ItemCount value specifying the length of the UCCollationValue array passed in the
collationKey parameter. This dimension should typically be at least 5*textLength, as the byte
length of a collation key is typically more than 16 times the number of Unicode characters in the
string.

actualKeySize
On return, the actual length of the UCCollationValue array returned in the collationKey
parameter.

collationKey
An array of UCCollationValue values. On return, the array contains the new collation key. The
collation key consists of a sequence of primary weights for all of the collation text elements in the
string, followed by a separator and a sequence of secondary weights for all of the text elements in
the string, and so on for several levels of significance. The separator is usually 0; however, 1 is used
as the separator at the boundary between levels that are significant and levels that are insignificant
for the options you supply in the collator object.

Return Value
A result code. The function can return paramErr, for example, if the parameters collatorRef, textPtr,
actualKeySize, or collationKey are NULL. It can also return memory errors. If maxKeySize is too small
for the collation key, the function returns kUCOutputBufferTooSmall.

Discussion
If you want to compare the same strings several times, as when sorting a list of strings, it may be most efficient
for you to derive a collation key for each string and then compare the collation keys. A collation key is a
transformation of the string that depends on the collator object (that is, it depends on the locale, the collation
variant if any, and the collation options).

Collation keys that are generated using the same collator object—but for different strings—can quickly be
compared with each other, without further reference to the collator object or collation tables. The disadvantage
is that the collation keys may be rather large. After you use the UCGetCollationKey function to create a
collation key from a given string and collator object, you can call the function
UCCompareCollationKeys (page 8) to compare two collation keys that were generated with the same
collator object.

If you are comparing different strings, it may be more efficient for you to call the function
UCCompareText (page 9) multiple times using the same collator object.

Functions 19
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Note that collation keys should be used only in a runtime context. They should not be stored in a persistent
state (such as to disk) because the format of a collation key could change in the future.

Special Considerations

This function can move memory.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyTranslate
Converts a combination of a virtual key code, a modifier key state, and a dead-key state into a string of one
or more Unicode characters.

OSStatus UCKeyTranslate (
 const UCKeyboardLayout *keyLayoutPtr,
 UInt16 virtualKeyCode,
 UInt16 keyAction,
 UInt32 modifierKeyState,
 UInt32 keyboardType,
 OptionBits keyTranslateOptions,
 UInt32 *deadKeyState,
 UniCharCount maxStringLength,
 UniCharCount *actualStringLength,
 UniChar unicodeString[]
);

Parameters
keyLayoutPtr

A pointer to the first element in a resource of type 'uchr'. Pass a pointer to the 'uchr' resource
that you wish the UCKeyTranslate function to use when converting the virtual key code to a Unicode
character. The resource handle associated with this pointer need not be locked, since the
UCKeyTranslate function does not move memory.

virtualKeyCode
An unsigned 16-bit integer. Pass a value specifying the virtual key code that is to be translated. For
ADB keyboards, virtual key codes are in the range from 0 to 127.

keyAction
An unsigned 16-bit integer. Pass a value specifying the current key action. See “Key Actions” (page
36) for descriptions of possible values.

modifierKeyState
An unsigned 32-bit integer. Pass a bit mask indicating the current state of various modifier keys. You
can obtain this value from the modifiers field of the event record as follows:

modifierKeyState = ((EventRecord.modifiers) >> 8) & 0xFF;

keyboardType
An unsigned 32-bit integer. Pass a value specifying the physical keyboard type (that is, the keyboard
shape shown by Key Caps). You can call the function LMGetKbdType for this value.

20 Functions
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

keyTranslateOptions
A bit mask of options for controlling the UCKeyTranslate function. See “Key Translation Options
Flag” (page 39) and “Key Translation Options Mask” (page 40) for descriptions of possible values.

deadKeyState
A pointer to an unsigned 32-bit value, initialized to zero. The UCKeyTranslate function uses this
value to store private information about the current dead key state.

maxStringLength
A value of type UniCharCount. Pass the number of 16-bit Unicode characters that are contained in
the buffer passed in the unicodeString parameter. This may be a value of up to 255, although it
would be rare to get more than 4 characters.

actualStringLength
A pointer to a value of type UniCharCount. On return this value contains the actual number of
Unicode characters placed into the buffer passed in the unicodeString parameter.

unicodeString
An array of values of type UniChar. Pass a pointer to the buffer whose sized is specified in the
maxStringLength parameter. On return, the buffer contains a string of Unicode characters resulting
from the virtual key code being handled. The number of characters in this string is less than or equal
to the value specified in the maxStringLength parameter.

Return Value
A result code. If you pass NULL in the keyLayoutPtr parameter, UCKeyTranslate returns paramErr. The
UCKeyTranslate function also returns paramErr for an invalid 'uchr' resource format or for invalid
virtualKeyCode or keyAction values, as well as for NULL pointers to output values.The result
kUCOutputBufferTooSmall (-25340) is returned for an output string length greater thanmaxStringLength.

Discussion
The UCKeyTranslate function uses the data in a Unicode keyboard-layout ('uchr') resource to map a
combination of virtual key code and modifier key state to a sequence of up to 255 Unicode characters. This
mapping process depends on, and may update, a dead key state; the UCKeyTranslate function and the
'uchr' resource support multiple dead keys. The mapping may also depend on the specific type of key
action and the type of physical keyboard being used. The UCKeyTranslate function supports non-ADB
keyboards, an extensible set of modifier keys, and other possible extensions.

In most cases, your application does not need to call the UCKeyTranslate function, since the Text Services
Manager automatically calls it on your behalf to handle input from a Unicode keyboard layout. However,
there may be some circumstances in which your application should call UCKeyTranslate. For example,
your application may need to determine what character(s) would have been generated for the virtual key
code in the current key-down event if a different modifier-and-key combination had been used.

The basic process by which UCKeyTranslate uses the 'uchr' resource to translate virtual key codes into
Unicode characters is detailed in the following steps:

1. The bit pattern specifying the modifier key state is mapped by the UCKeyModifiersToTableNum
structure to a table number.

2. The table number maps to an offset within a UCKeyToCharTableIndex structure that refers to the
actual key-code-to-character tables.

3. The key-code-to-character tables map the virtual key code to UCKeyOutput values, for which there are
two possibilities:

Functions 21
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

 ■ If bits 15 and 14 of the UCKeyOutput value are 01, the UCKeyOutput value is an index into the
offsets contained in a UCKeyStateRecordsIndex structure. If this occurs, the mapping process
for the virtual key code continues on to the next step

 ■ Otherwise, the UCKeyOutput value produces one or more Unicode characters, either directly or via
reference to a UCKeySequenceDataIndex structure. This ends the mapping process for a given
virtual key code.

4. The offsets in a UCKeyStateRecordsIndex structure refer to UCKeyStateRecord dead-key state
records.

5. The dead-key state records map from the current dead-key state to one or more Unicode characters to
be output or the following dead-key state (if any). The mapping process for a given virtual key code may
end with the dead-key state record or, if there is no dead-key state record entry for the key code, with
a default state terminator, as specified in the resource’s UCKeyStateTerminators table.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.5 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

Data Types

CollatorRef
Refers to an opaque object that encapsulates locale and collation information for the purpose of performing
Unicode string comparison.

typedef struct OpaqueCollatorRef * CollatorRef;

Discussion
You can obtain a CollatorRef value from the function UCCreateCollator (page 13).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

TextBreakLocatorRef
Refers to an opaque object that encapsulates locale and text-break information for the purpose of finding
boundaries in Unicode text.

22 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

typedef struct OpaqueTextBreakLocatorRef * TextBreakLocatorRef;

Discussion
You can obtain a TextBreakLocatorRef value from the function UCCreateTextBreakLocator (page
14).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCCollationValue
Specifies a Unicode collation key.

typedef UInt32 UCCollationValue;

Discussion
Collation keys consist of an array of UCCollationValue values. The collation key consists of a sequence of
primary weights for all of the collation text elements in the string, followed by a separator and a sequence
of secondary weights for all of the text elements in the string, and so on for several levels of significance. The
separator is usually 0; however, 1 is used as the separator at the boundary between levels that are significant
and levels that are insignificant for the options you supply in the collator object. You can obtain a collation
key with the function UCGetCollationKey (page 18).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyboardLayout
Provides header data for a 'uchr' resource.

struct UCKeyboardLayout {
 UInt16 keyLayoutHeaderFormat;
 UInt16 keyLayoutDataVersion;
 ByteOffset keyLayoutFeatureInfoOffset;
 ItemCount keyboardTypeCount;
 UCKeyboardTypeHeader keyboardTypeList[1];
};
typedef struct UCKeyboardLayout UCKeyboardLayout;

Fields
keyLayoutHeaderFormat

An unsigned 16-bit integer identifying the format of the structure. Set to kUCLayoutHeaderFormat.

keyLayoutDataVersion
An unsigned 16-bit integer identifying the version of the data in the resource, in binary code decimal
format. For example, 0x0100 would equal version 1.0.

Data Types 23
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

keyLayoutFeatureInfoOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyLayoutFeatureInfo (page
26), if such is used in the resource. May be 0 if no UCKeyLayoutFeatureInfo table is included in
the resource.

keyboardTypeCount
An unsigned 32-bit integer specifying the number of UCKeyboardTypeHeader structures in the
keyboardTypeList[] field’s array.

keyboardTypeList
A variable-length array containing structures of type UCKeyboardTypeHeader. Each
UCKeyboardTypeHeader entry specifies a range of physical keyboard types and contains offsets to
each of the key mapping sections to be used for that range of keyboard types.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyboardLayout type is used in the 'uchr' resource
header. It specifies version and format information, offsets to the various subtables, and an array of
UCKeyboardTypeHeader entries.

You should use low-ASCII (0 - 0x7F) only for the KCHR/uchr resource names and you should use Unicode in
the Info.plist file when you specify strings for the user-interface (UI).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyboardTypeHeader
Specifies a range of physical keyboard types in a 'uchr' resource.

struct UCKeyboardTypeHeader {
 UInt32 keyboardTypeFirst;
 UInt32 keyboardTypeLast;
 ByteOffset keyModifiersToTableNumOffset;
 ByteOffset keyToCharTableIndexOffset;
 ByteOffset keyStateRecordsIndexOffset;
 ByteOffset keyStateTerminatorsOffset;
 ByteOffset keySequenceDataIndexOffset;
};
typedef struct UCKeyboardTypeHeader UCKeyboardTypeHeader;

Fields
keyboardTypeFirst

An unsigned 32-bit integer specifying the first keyboard type in this entry. For the initial entry (that
is, the default entry) in an array of UCKeyboardTypeHeader structures, you should set this value to
0. The initial UCKeyboardTypeHeader entry is used if the keyboard type passed to the function
UCKeyTranslate (page 20) does not match any other entry, that is, if it is not within the range of
values specified by keyboardTypeFirst and keyboardTypeLast for any entry.

24 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

keyboardTypeLast
An unsigned 32-bit integer specifying the last keyboard type in this entry. For the initial entry (that
is, the default entry) in an array of UCKeyboardTypeHeader structures, you should set this value to
0.

keyModifiersToTableNumOffset
An unsigned 32-bit integer providing an offset to a structure of type
UCKeyModifiersToTableNum (page 27). The 'uchr' resource requires a
UCKeyModifiersToTableNum structure, therefore this field must contain a non-zero value.

keyToCharTableIndexOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyToCharTableIndex (page
34). The 'uchr' resource requires a UCKeyToCharTableIndex structure, therefore this field must
contain a non-zero value.

keyStateRecordsIndexOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyStateRecordsIndex (page
32), if such is used in the resource. This value may be 0 if no dead-key state records are included in
the resource.

keyStateTerminatorsOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyStateTerminators (page
33), if such is used in the resource. This value may be 0 if no dead-key state terminators are included
in the resource.

keySequenceDataIndexOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeySequenceDataIndex (page
28), if such is used in the resource. This value may be 0 if no character key sequences are included in
the resource.

Discussion
The UCKeyboardTypeHeader type is used in a structure of type UCKeyboardLayout (page 23) to specify
a range of physical keyboard types and contains offsets to each of the key mapping sections to be used for
that range of keyboard types. Typically, you use an array of UCKeyboardTypeHeader structures, of which
the first entry in the array is the default and will be used if the keyboard type does not fall within the range
for any other entry. See UCKeyboardLayout (page 23) for a further discussion of the context for use of the
UCKeyboardTypeHeader type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyCharSeq
Specifies the output of a dead-key state in a 'uchr' resource.

typedef UInt16 UCKeyCharSeq;

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyCharSeq type is a 16-bit value used in the third key
mapping section of the 'uchr' resource to specify the output of a dead-key state.

Data Types 25
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Specifically, the dead-key state record—a structure of type UCKeyStateRecord (page 31) —uses a
UCKeyCharSeq value to contain the character output that results from the resolution of a given dead-key
state. You can use a UCKeyCharSeq value in a dead-key state record to represent either an index to a Unicode
character sequence or a single Unicode character. The UCKeyCharSeq type is similar to the type
UCKeyOutput (page 27) , but does not itself support indices into dead-key state records.

The interpretation of UCKeyCharSeq depends on bits 15 and 14.

If they are 10 (that is, for values in the range of 0x8000–0xBFFF), then bits 0–13 are an index into the
charSequenceOffsets[field of a structure of type UCKeySequenceDataIndex (page 28) , which contains
offsets to a separate resource-wide list of Unicode character sequences. If a UCKeySequenceDataIndex
structure is not present in the resource or the index is beyond the end of the list, then the entire value (that
is, bits 0–15) is a single Unicode character to emit. Otherwise (for values in the range of 0x0000–0x7FFF and
0xC000–0xFFFD), bits 0–15 are a single Unicode character, with the exception that a value of 0xFFFE–0xFFFF
means no character output (these are invalid Unicode codes).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyLayoutFeatureInfo
Specifies the longest possible output string to be produced by the current 'uchr' resource.

struct UCKeyLayoutFeatureInfo {
 UInt16 keyLayoutFeatureInfoFormat;
 UInt16 reserved;
 UniCharCount maxOutputStringLength;
};
typedef struct UCKeyLayoutFeatureInfo UCKeyLayoutFeatureInfo;

Fields
keyLayoutFeatureInfoFormat

An unsigned 16-bit integer identifying the format of the UCKeyLayoutFeatureInfo structure. Set
to kUCKeyLayoutFeatureInfoFormat.

reserved
Reserved. Set to 0.

maxOutputStringLength
An unsigned 32-bit integer specifying the longest possible output string of Unicode characters to be
produced by this 'uchr' resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyLayoutFeatureInfo type is used in the header
section of the 'uchr' resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

26 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

UCKeyModifiersToTableNum
Maps a modifier key combination to a particular key-code-to-character table number in a 'uchr' resource.

struct UCKeyModifiersToTableNum {
 UInt16 keyModifiersToTableNumFormat;
 UInt16 defaultTableNum;
 ItemCount modifiersCount;
 UInt8 tableNum[1];
};
typedef struct UCKeyModifiersToTableNum UCKeyModifiersToTableNum;

Fields
keyModifiersToTableNumFormat

An unsigned 16-bit integer identifying the format of the UCKeyModifiersToTableNum structure.
Set to kUCKeyModifiersToTableNumFormat.

defaultTableNum
An unsigned 16-bit integer identifying the table number to use for modifier combinations that are
outside of the range included in the tableNum field.

modifiersCount
An unsigned 32-bit integer specifying the range of modifier bit combinations for which there are
entries in the tableNum[] field.

tableNum
An array of unsigned 8-bit integers that map modifier bit combinations to table numbers. These values
are indexes into the keyToCharTableOffsets array in a UCKeyToCharTableIndex (page
34)structure; these, in turn, are offsets to the actual key-code-to character tables, which follow the
UCKeyToCharTableIndex structure in the 'uchr' resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyModifiersToTableNum type is used in the first key
mapping section of the 'uchr' resource. It maps a modifier key combination to a particular
key-code-to-character table number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyOutput
Specifies values in key-code-to-character tables in a 'uchr' resource.

typedef UInt16 UCKeyOutput;

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyOutput type is a 16-bit value used in the second key
mapping section of a 'uchr' resource to specify values in key-code-to-character tables.

Data Types 27
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

You use a UCKeyOutput value in a key-code-to-character table to represent one of the following: an index
to a dead-key state record, an index to a Unicode character sequence, or a single Unicode character.

The interpretation of a UCKeyOutput value depends on bits 15 and 14.

If they are 01 (that is, for values in the range of 0x4000-0x7FFF), then bits 0-13 are an index into the
keyStateRecordOffsets field of a structure of type UCKeyStateRecordsIndex (page 32) , which contains
offsets to a separate resource-wide list of dead-key state records.

If they are 10 (that is, for values in the range of 0x8000-0xBFFF), then bits 0-13 are an index into the
charSequenceOffsets field of a structure of type UCKeySequenceDataIndex (page 28) , which contains
offsets to a separate resource-wide list of Unicode character sequences. If a UCKeySequenceDataIndex
structure is not present in the resource or the index is beyond the end of the list, then the entire value (that
is, bits 0-15) is a single Unicode character to emit.

Otherwise (for values in the range of 0x0000-0x3FFF and 0xC000-0xFFFD), bits 0-15 are a single Unicode
character, with the exception that a value of 0xFFFE-0xFFFF means no character output (these are invalid
Unicode codes).

Most single Unicode characters that are likely to be generated by direct keyboard input are in the range
0x0000-0x33FF or 0xE000-0xFFFD, and so are covered by the single-character cases above. Characters outside
this range can still be generated by direct keyboard input, in which case they must be represented as
1-character sequences. The fifth key mapping section of the 'uchr' resource, introduced by the
UCKeySequenceDataIndex type, provides for this option.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeySequenceDataIndex
Contains offsets to a list of character sequences for a 'uchr' resource.

struct UCKeySequenceDataIndex {
 UInt16 keySequenceDataIndexFormat;
 UInt16 charSequenceCount;
 UInt16 charSequenceOffsets[1];
};
typedef struct UCKeySequenceDataIndex UCKeySequenceDataIndex;

Fields
keySequenceDataIndexFormat

An unsigned 16-bit integer identifying the format of the UCKeySequenceDataIndex structure. Set
to kUCKeySequenceDataIndexFormat.

charSequenceCount
An unsigned 16-bit integer specifying the number of Unicode character sequences that follow the
end of the UCKeySequenceDataIndex structure.

28 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

charSequenceOffsets
An array of offsets from the beginning of the UCKeySequenceDataIndex structure to the Unicode
character sequences that follow it. Because a given offset indicates both the beginning of a new
character sequence and the end of the sequence that precedes it, the length of each sequence is
determined by the difference between the offset to that sequence and the value of the next offset
in the array. The array contains one more entry than the number of character sequences; the final
entry is the offset to the end of the final character sequence.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeySequenceDataIndex type is used in the fifth key
mapping section of the 'uchr' resource.

The UCKeySequenceDataIndex structure contains offsets to a list of character sequences for the 'uchr'
resource. This permits a single keypress to generate a sequence of characters, or to generate a single character
outside the range that can be represented directly by values of type UCKeyOutput (page 27) or
UCKeyCharSeq (page 25).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateEntryRange
Maps from a dead-key state to either the resultant Unicode character(s) or the new dead key state produced
when the current state is terminated by a given character key for a 'uchr' resource.

struct UCKeyStateEntryRange {
 UInt16 curStateStart;
 UInt8 curStateRange;
 UInt8 deltaMultiplier;
 UCKeyCharSeq charData;
 UInt16 nextState;
};
typedef struct UCKeyStateEntryRange UCKeyStateEntryRange;

Fields
curStateStart

An unsigned 16-bit integer specifying the beginning of a given dead-key state range.

curStateRange
An unsigned 8-bit integer specifying the number of entries in a given dead-key state range.

deltaMultiplier
An unsigned 8-bit integer.

charData
A value of type UCKeyCharSeq. This base character value is used to determine the actual Unicode
character(s) produced when a given dead-key state terminates.

nextState
An unsigned 16-bit integer. This base dead-key state value is used to determine the following dead-key
state, if any.

Data Types 29
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Discussion
The UCKeyStateEntryRange type is used in the stateEntryData[] field of a structure of type
UCKeyStateRecord (page 31). You should use the UCKeyStateEntryRange format for complex (multiple)
dead-key states.

For each virtual key code, an entry in its dead-key state record maps from the current dead-key state to the
Unicode character(s) produced or to the next dead-key state, as follows.

If the current dead-key state is within a valid dead-key state range for the given input character—that is, if
its value is greater than or equal to curStateStart and less than or equal to curStateStart +
curStateRange—then

 ■ If the base charData value for the given dead-key state range is in the range of valid Unicode characters,
a character is produced and the dead-key state may be terminated.

and/or

 ■ If the base nextState value is not 0, a new dead-key state is produced.

In the first case, the output character is determined as follows: The base charData value is incremented by
the resulting product of (the difference between the current state and the start of that state’s range) and (a
multiplier). That is:

charData += (curState - curStateStart) * deltaMultiplier

Similarly, in the second case, the resulting dead-key state, which is the new curState value, is determined
as follows: The base nextState value is incremented by the resulting product of (the difference between
the current state and the start of that state’s range) and (a multiplier). That is:

nextState += (curState - curStateStart) * deltaMultiplier

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateEntryTerminal
Maps from a dead-key state to the Unicode character(s) produced when that state is terminated by a given
character key for a 'uchr' resource.

struct UCKeyStateEntryTerminal {
 UInt16 curState;
 UCKeyCharSeq charData;
};
typedef struct UCKeyStateEntryTerminal UCKeyStateEntryTerminal;

Fields
curState

An unsigned 16-bit integer specifying the current dead-key state.

30 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

charData
A value of type UCKeyCharSeq specifying the Unicode character(s) produced when a given character
key is pressed.

Discussion
The UCKeyStateEntryTerminal type is used in the stateEntryData[] field of a structure of type
UCKeyStateRecord (page 31). You should use the UCKeyStateEntryTerminal format for simple dead-key
states that are terminated by a single keystroke, as in the U.S. keyboard layout. Each entry maps from the
current dead-key state to the Unicode character(s) produced when a given character key is pressed that
terminates the dead-key state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateRecord
Determines dead-key state transitions in a 'uchr' resource.

struct UCKeyStateRecord {
 UCKeyCharSeq stateZeroCharData;
 UInt16 stateZeroNextState;
 UInt16 stateEntryCount;
 UInt16 stateEntryFormat;
 UInt32 stateEntryData[1];
};
typedef struct UCKeyStateRecord UCKeyStateRecord;

Fields
stateZeroCharData

A value of type UCKeyCharSeq specifying the Unicode character(s) produced from a given key code
while no dead-key state is in effect.

stateZeroNextState
An unsigned 16-bit integer specifying the dead-key state produced from a given key code when no
previous dead-key state is in effect. If the UCKeyStateRecord structure does not initiate a dead-key
state (but only provides terminators for other dead-key states), this will be 0. A non-zero value specifies
the resulting new dead-key state and refers to the current state entry within the stateEntryData[]
field for the following dead-key state record that is applied.

stateEntryCount
An unsigned 16-bit integer specifying the number of elements in the stateEntryData field’s array
for a given dead-key state record.

stateEntryFormat
An unsigned 16-bit integer specifying the format of the data in the stateEntryData field’s array.
This should be 0 if the stateEntryCount field is set to 0. Currently available values are
kUCKeyStateEntryTerminalFormat and kUCKeyStateEntryRangeFormat; see “Key State Entry
Formats” (page 39) for descriptions of these values.

Data Types 31
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

stateEntryData
An array of dead-key state entries, whose size depends on their format, but which will always be a
multiple of 4 bytes. Each entry maps from the current dead-key state to the Unicode character(s) that
result when a given character key is pressed or to the next dead-key state, if any. The format of the
entry is specified by the stateEntryFormat field to be either that of type
UCKeyStateEntryTerminal (page 30) or UCKeyStateEntryRange (page 29).

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyStateRecord type is used in the third key mapping
section of the 'uchr' resource to determine dead-key state transitions. The UCKeyStateRecord structure
permits complex dead-key state processing, such as a series of transitions from one dead-key state directly
into another, in which each transition can emit a sequence of one or more Unicode characters.

Any modifier key combination which initiates a dead-key state or which is a valid terminator of a dead-key
state refers to one of these records via the UCKeyOutput (page 27) values in key-code-to-character tables.
A UCKeyOutput value may index the offsets contained in a UCKeyStateRecordsIndex (page 32) structure,
which in turn refers to the actual dead-key state records.

Each UCKeyStateRecord structure maps from the current dead-key state to the character data to be output
or the following dead-key state (if any), as follows:

 ■ If the current dead-key state is zero (that is, there are no dead keys in effect) the value in
stateZeroCharData is output and the state is set to the value in stateZeroNextState (this can
be used to initiate a dead-key state).

 ■ If the current dead-key state is non-zero and there is an entry for the state in stateEntryData, then
the corresponding value in stateEntryData.charData is output. The next state is then set to either
a kUCKeyStateEntryTerminalFormat or a kUCKeyStateEntryRangeFormat value; in either case,
if the next dead-key state is 0, this implements a valid dead-key state terminator.

 ■ If the current dead-key state is non-zero, and there is no entry for the state in stateEntryData, the
default state terminator is output from the 'uchr' resource’s UCKeyStateTerminators (page 33)
table for the current state (or nothing may be output, if there is no UCKeyStateTerminators table or
it has no entry for the current state). Then the value in stateZeroCharData is output, and the state is
set to the value in stateZeroNextState.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateRecordsIndex
Provides a count of, and offsets to, dead-key state records in a 'uchr' resource.

32 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

struct UCKeyStateRecordsIndex {
 UInt16 keyStateRecordsIndexFormat;
 UInt16 keyStateRecordCount;
 ByteOffset keyStateRecordOffsets[1];
};
typedef struct UCKeyStateRecordsIndex UCKeyStateRecordsIndex;

Fields
keyStateRecordsIndexFormat

An unsigned 16-bit integer identifying the format of the UCKeyStateRecordsIndex structure. Set
to kUCKeyStateRecordsIndexFormat.

keyStateRecordCount
An unsigned 16-bit integer specifying the number of dead-key state records that are included in the
resource.

keyStateRecordOffsets
An array of offsets from the beginning of the resource to each of the UCKeyStateRecord values that
follow this structure in the 'uchr' resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyStateRecordsIndex type is used in the third key
mapping section of the 'uchr' resource.

The UCKeyStateRecordsIndex structure is an index to dead-key state records of type
UCKeyStateRecord (page 31). Any keycode-modifier combination which initiates a dead-key state or which
is a valid terminator of a dead-key state refers to one of these records, via the UCKeyStateRecordsIndex
structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateTerminators
Lists the default terminators for each dead-key state handled by a 'uchr' resource.

struct UCKeyStateTerminators {
 UInt16 keyStateTerminatorsFormat;
 UInt16 keyStateTerminatorCount;
 UCKeyCharSeq keyStateTerminators[1];
};
typedef struct UCKeyStateTerminators UCKeyStateTerminators;

Fields
keyStateTerminatorsFormat

An unsigned 16-bit integer identifying the format of the UCKeyStateTerminators structure. Set to
kUCKeyStateTerminatorsFormat.

keyStateTerminatorCount
An unsigned 16-bit integer specifying the number of default dead-key state terminators contained
in the keyStateTerminators[] array.

Data Types 33
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

keyStateTerminators
An array of default dead-key state terminators, described as values of type UCKeyCharSeq (page 25);
the value keyStateTerminators[0] is the terminator for state 1, and so on.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyStateTerminators type is used in the fourth key
mapping section of the 'uchr ' resource.

The UCKeyStateTerminators structure contains the list of default terminators (characters or sequences)
for each dead-key state that is handled by a 'uchr' resource. When a dead-key state is in effect but a
modifier-and-key combination is typed which has no special handling for that state, the default terminator
for the state is output before the modifier-and-key combination is processed. If this table is not present or
does not extend far enough to have a terminator for the state, nothing is output when the state terminates.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyToCharTableIndex
Provides a count of, and offsets to, key-code-to-character tables in a 'uchr' resource.

struct UCKeyToCharTableIndex {
 UInt16 keyToCharTableIndexFormat;
 UInt16 keyToCharTableSize;
 ItemCount keyToCharTableCount;
 ByteOffset keyToCharTableOffsets[1];
};
typedef struct UCKeyToCharTableIndex UCKeyToCharTableIndex;

Fields
keyToCharTableIndexFormat

An unsigned 16-bit integer identifying the format of the UCKeyToCharTableIndex structure. Set to
kUCKeyToCharTableIndexFormat.

keyToCharTableSize
An unsigned 16-bit integer specifying the number of virtual key codes supported by this resource;
for ADB keyboards this is 128 (with virtual key codes ranging from 0 to 127).

keyToCharTableCount
An unsigned 32-bit integer specifying the number of key-code-to-character tables, typically 6 to 12.

keyToCharTableOffsets
An array of offsets from the beginning of the 'uchr' resource to each of the UCKeyOutput
key-code-to-character tables in the keyToCharData[] array that follows this structure in the resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyToCharTableIndex type is used in the second key
mapping section of the 'uchr' resource. The UCKeyToCharTableIndex structure precedes the list of
key-code-to-character tables, each of which maps a key code to a 16-bit value of type UCKeyOutput (page
27).

34 Data Types
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

Constants

Fixed Ordering Scheme
Specifies to use the fixed ordering scheme.

enum {
 kUCCollateTypeHFSExtended = 1
};

Constants
kUCCollateTypeHFSExtended

ThekUCCollateTypeHFSExtendedordering scheme sorts maximally decomposed Unicode according
to the rules used by the HFS Extended volume format for its catalog. When this order is used, other
collation options are ignored; this order is always case-insensitive (for decomposed characters) and
ignores the Unicode characters 200C-200F, 202A-202E, 206A-206F, FEFF.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
UCCollateOptions is a 32-bit value. Bits 0-23 are described in “String Comparison Options” (page 41). The
field consisting of bits 24-31 is used for values that specify which fixed ordering scheme to use with the
function UCCompareTextNoLocale (page 12). Currently only one such scheme is provided.

Constants are provided for setting and testing the UCCollateOptions field that specifies the ordering
scheme. These values are described in “Fixed Ordering Masks 1” (page 35) and “Fixed Ordering Masks 2” (page
36).

Fixed Ordering Masks 1
Set and test the UCCollateOptions field that specifies a fixed ordering scheme.

enum {
 kUCCollateTypeSourceMask = 0x000000FF,
 kUCCollateTypeShiftBits = 24
};

Constants
kUCCollateTypeSourceMask

You can use this mask, in conjunction with the kUCCollateTypeShiftBits constant, to obtain a
value identifying a fixed ordering scheme.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 35
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

kUCCollateTypeShiftBits
You can use this value, along with one of the constants described in “Fixed Ordering Scheme” (page
35), to specify a fixed ordering scheme. You can also use this value, in conjunction with the
kUCCollateTypeSourceMask constant, to obtain a value identifying a fixed ordering scheme.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
You can use these constants to set or obtain a value that specifies a fixed ordering scheme. For a description
of the available types of fixed ordering schemes, see “Fixed Ordering Scheme” (page 35).

For example, to specify kUCCollateTypeHFSExtended in the options parameter of the function
UCCompareTextNoLocale (page 12) , the kUCCollateTypeHFSExtended value must be shifted by
kUCCollateTypeShiftBits :

options = kUCCollateTypeHFSExtended kUCCollateTypeShiftBits;

You would obtain the ordering scheme value from the options parameter as follows:

fixedOrderType = ((options > > kUCCollateTypeShiftBits) &
kUCCollateTypeSourceMask);

See also “Fixed Ordering Masks 2” (page 36).

Fixed Ordering Masks 2
Test the UCCollateOptions field that specifies a fixed ordering scheme.

enum {
 kUCCollateTypeMask = kUCCollateTypeSourceMask << kUCCollateTypeShiftBits
};

Constants
kUCCollateTypeMask

You can use this mask to directly test bits 24-31 of a UCCollateOptions value.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
See also “Fixed Ordering Scheme” (page 35).

See also “Fixed Ordering Masks 1” (page 35).

Key Actions
Indicate the current key action.

36 Constants
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

enum {
 kUCKeyActionDown = 0,
 kUCKeyActionUp = 1,
 kUCKeyActionAutoKey = 2,
 kUCKeyActionDisplay = 3
};

Constants
kUCKeyActionDown

The user is pressing the key.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyActionUp
The user is releasing the key.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyActionAutoKey
The user has the key in an “auto-key” pressed state that is, the user is holding down the key for an
extended period of time and is thereby generating multiple key strokes from the single key.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyActionDisplay
The user is requesting information for key display, as in the Key Caps application.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
You can supply the following constants for the keyAction parameter of the function UCKeyTranslate (page
20) to indicate the current key action.

Key Format Codes
Indicate a structure format used in a 'uchr' resource.

enum {
 kUCKeyLayoutHeaderFormat = 0x1002,
 kUCKeyLayoutFeatureInfoFormat = 0x2001,
 kUCKeyModifiersToTableNumFormat = 0x3001,
 kUCKeyToCharTableIndexFormat = 0x4001,
 kUCKeyStateRecordsIndexFormat = 0x5001,
 kUCKeyStateTerminatorsFormat = 0x6001,
 kUCKeySequenceDataIndexFormat = 0x7001
};

Constants
kUCKeyLayoutHeaderFormat

The format of a structure of type UCKeyboardLayout (page 23).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 37
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

kUCKeyLayoutFeatureInfoFormat
The format of a structure of type UCKeyLayoutFeatureInfo (page 26).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyModifiersToTableNumFormat
The format of a structure of type UCKeyModifiersToTableNum (page 27).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyToCharTableIndexFormat
The format of a structure of type UCKeyToCharTableIndex (page 34).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyStateRecordsIndexFormat
The format of a structure of type UCKeyStateRecordsIndex (page 32).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyStateTerminatorsFormat
The format of a structure of type UCKeyStateTerminators (page 33).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeySequenceDataIndexFormat
The format of a structure of type UCKeySequenceDataIndex (page 28).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
These constants are those currently defined to be used within the various structures in a 'uchr' resource
to indicate each structure’s format.

Key Output Index Masks
Test the bits in UCKeyOutput values.

enum {
 kUCKeyOutputStateIndexMask = 0x4000,
 kUCKeyOutputSequenceIndexMask = 0x8000,
 kUCKeyOutputTestForIndexMask = 0xC000,
 kUCKeyOutputGetIndexMask = 0x3FFF
};

Constants
kUCKeyOutputStateIndexMask

If the bit specified by this mask is set, the UCKeyStateRecordsIndex (page 32) UCKeyOutput value
contains an index into a structure of type UCKeyStateRecordsIndex (page 32).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

38 Constants
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

kUCKeyOutputSequenceIndexMask
If the bit specified by this mask is set, the UCKeyOutput value contains an index into a structure of
type UCKeySequenceDataIndex (page 28).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyOutputTestForIndexMask
You can use this mask to test the bits (14–15) in the UCKeyOutput value that determine whether the
value contains an index to any other structure. If both bits specified by this mask are clear, the
UCKeyOutput value does not contain an index to any other structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyOutputGetIndexMask
You can use this mask to test the bits (0–13) in a UCKeyOutput value that provide the actual index
to another structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
You can use these masks to test the bits in UCKeyOutput values.

Key State Entry Formats
Indicate the format for dead-key state records.

enum {
 kUCKeyStateEntryTerminalFormat = 0x0001,
 kUCKeyStateEntryRangeFormat = 0x0002
};

Constants
kUCKeyStateEntryTerminalFormat

Specifies that the entry format is that of a structure of type UCKeyStateEntryTerminal (page 30).
Use this format for simple (single) dead-key states, as in the U.S. keyboard layout.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyStateEntryRangeFormat
Specifies that the entry format is that of a structure of type UCKeyStateEntryRange (page 29). Use
this format for complex (multiple) dead-key states, as in the hex input and Hangul input keyboard
layouts.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
These constants are used in UCKeyStateRecord structures to indicate the format for dead-key state records.

Key Translation Options Flag
Indicates the dead-key processing state.

Constants 39
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

enum {
 kUCKeyTranslateNoDeadKeysBit = 0
};

Constants
kUCKeyTranslateNoDeadKeysBit

The bit number of the bit that turns off dead-key processing. This prevents setting any new dead-key
states, but allows completion of any dead-key states currently in effect.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
Theis constant is the currently defined bit assignment for the keyTranslateOptions parameter of the
function UCKeyTranslate (page 20).

Key Translation Options Mask
Specifies the mask for the bit that controls dead-key processing state.

enum {
 kUCKeyTranslateNoDeadKeysMask = 1L << kUCKeyTranslateNoDeadKeysBit
};

Constants
kUCKeyTranslateNoDeadKeysMask

The mask for the bit that turns off dead-key processing. This prevents setting any new dead-key states,
but allows completion of any dead-key states currently in effect.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
This constant is the currently defined mask for the keyTranslateOptions parameter of the function
UCKeyTranslate (page 20).

Operation Class
Identifies collation as a class of Unicode utility operations.

enum {
 kUnicodeCollationClass = 'ucol'
};

Constants
kUnicodeCollationClass

Identifies collation as a class of operations.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
The locales and collation variants available for collation operations can be determined by calling the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocaleswith the opClass
parameter set to the kUnicodeCollationClass constant.

40 Constants
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

Standard Options Mask
Specifies standard options for Unicode string comparison.

enum {
 kUCCollateStandardOptions = kUCCollateComposeInsensitiveMask
| kUCCollateWidthInsensitiveMask
};

Constants
kUCCollateStandardOptions

If the kUCCollateComposeInsensitiveMask and kUCCollateWidthInsensitiveMask bits are
set, then (1) precomposed and decomposed representations of the same text element will be treated
as equivalent, and (2) fullwidth and halfwidth compatibility forms will be treated as equivalent to the
corresponding non-compatibility characters.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
For descriptions of other collation options, see “String Comparison Options” (page 41).

String Comparison Options
Specifies options for Unicode string comparison.

typedef UInt32 UCCollateOptions;
enum {
 kUCCollateComposeInsensitiveMask = 1L << 1,
 kUCCollateWidthInsensitiveMask = 1L << 2,
 kUCCollateCaseInsensitiveMask = 1L << 3,
 kUCCollateDiacritInsensitiveMask = 1L << 4,
 kUCCollatePunctuationSignificantMask = 1L << 15,
 kUCCollateDigitsOverrideMask = 1L << 16,
 kUCCollateDigitsAsNumberMask = 1L << 17
};

Constants
kUCCollateComposeInsensitiveMask

If the corresponding bit is set, then precomposed and decomposed representations of the same text
element are treated as equivalent. This option is among those set by the
kUCCollateStandardOptions constant, as described in “Standard Options Mask” (page 41).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateWidthInsensitiveMask
If the corresponding bit is set, then fullwidth and halfwidth compatibility forms are treated as equivalent
to the corresponding non-compatibility characters. This option is among those set by the
kUCCollateStandardOptions constant, as described in “Standard Options Mask” (page 41).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 41
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

kUCCollateCaseInsensitiveMask
If the corresponding bit is set, then uppercase and titlecase characters are treated as equivalent to
the corresponding lowercase characters.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateDiacritInsensitiveMask
If the corresponding bit is set, then characters with diacritics are treated as equivalent to the
corresponding characters without diacritics.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollatePunctuationSignificantMask
If the corresponding bit is set, then punctuation and symbols are treated as significant instead of
ignorable. This will produce results closer to the behavior of the older non-Unicode Mac OS collation
functions. This option is available with Mac OS 9 and later.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateDigitsOverrideMask
If the corresponding bit is set, then the number-handling behavior is specified by the remaining
number-handling option bits, instead of by the collation information for the locale. If the bit is clear,
the locale controls how numbers are handled and the remaining number-handling option bits are
ignored. This option is available with Mac OS 9 and later.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateDigitsAsNumberMask
If the corresponding bit is set (and if the bit corresponding to kUCCollateDigitsOverrideMask
is also set), then numeric substrings up to six digits long are collated by their numeric value—that is,
they are treated as a single text element whose primary weight depends on the numeric value of the
digit string. This primary weight will be greater than the weight of any valid Unicode character, but
less than the primary weight of any unassigned Unicode character. For example, this will result in
“Chapter 9” sorting before “Chapter 10.” Currently, these digit strings can include digits with numeric
value 0-9 in any script (excluding the ideographic characters for 1-9). If the bit is clear, digits are treated
like other characters for sorting. Numeric substrings longer than 6 digits are always treated as normal
characters. This option is available with Mac OS 9 and later.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
For a description of the UCCollateOptions values, see “Standard Options Mask” (page 41).

Text Break Options
Specifies options for locating boundaries in Unicode text.

42 Constants
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

typedef UInt32 UCTextBreakOptions;
enum {
 kUCTextBreakLeadingEdgeMask = 1L << 0,
 kUCTextBreakGoBackwardsMask = 1L << 1,
 kUCTextBreakIterateMask = 1L << 2
};

Constants
kUCTextBreakLeadingEdgeMask

If the corresponding bit is set, then the starting offset for the UCFindTextBreak function is assumed
to be in the word containing the character following the offset; this is the normal case when searching
forward. If the corresponding bit is clear, then the starting offset for UCFindTextBreak is assumed
to be in the word containing the character preceding the offset; this is the normal case when searching
backward.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakGoBackwardsMask
If the corresponding bit is set, then UCFindTextBreak searches backward from the value provided
in its startOffset parameter to find the next text break. If the corresponding bit is clear, then
UCFindTextBreak searches forward from the startOffset value to find the next text break.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakIterateMask
The corresponding bit may be set to indicate to the UCFindTextBreak function that the specified
starting offset is a known break of the type specified in the breakType parameter. This permits
UCFindTextBreak to optimize its search for the subsequent break of the same type. When iterating
through all the breaks of a particular type in a particular buffer, this bit should be set for all calls except
the first (since the initial startOffset value may not be a known break of the specified type).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Text Break Types
Specifies kinds of text boundaries.

typedef UInt32 UCTextBreakType;
enum {
 kUCTextBreakCharMask = 1L << 0,
 kUCTextBreakClusterMask = 1L << 2,
 kUCTextBreakWordMask = 1L << 4,
 kUCTextBreakLineMask = 1L << 6
};

Constants
kUCTextBreakCharMask

If the bit specified by this mask is set, boundaries of characters may be located (with surrogate pairs
treated as a single character).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 43
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

kUCTextBreakClusterMask
If the bit specified by this mask is set, boundaries of character clusters may be located. A cluster is a
group of characters that should be treated as single text element for editing operations such as cursor
movement. Typically this includes groups such as a base character followed by a sequence of combining
characters, for example, a Hangul syllable represented as a sequence of conjoining jamo characters
or an Indic consonant cluster.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakWordMask
If the bit specified by this mask is set, boundaries of words may be located. This can be used to
determine what to highlight as the result of a double-click.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakLineMask
If the bit specified by this mask is set, potential line breaks may be located.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Text Boundary Operation Class
Identifies the class of Unicode utility operations that find text boundaries.

enum {
 kUnicodeTextBreakClass = 'ubrk'
};

Constants
kUnicodeTextBreakClass

Identifies the class of Unicode utility operations that find text boundaries.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
The locales and text-break variants available for finding boundaries in Unicode text can be determined by
calling the Locales Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales
with the opClass parameter set to the kUnicodeTextBreakClass constant.

44 Constants
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Unicode Utilities Reference

The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. Each installed script system has one or more
keyboard-layout resources, which may be of type 'uchr' or 'KCHR' (an older, non-Unicode keyboard-layout
format). There may be one or more keyboard-layout resources for each language or region, depending upon
the preference of the user.

The 'uchr' resource ID is determined as for the 'KCHR' resource, with one exception. That is, typically the
resource ID for each Unicode keyboard-layout resource is within the range of resource ID numbers for its
script system. The ID number of the default keyboard-layout resource for a script system is specified in the
itlbKeys field of the script’s international bundle ('itlb') resource. The exception to this is that if a given
'uchr' resource specifies any Unicode characters that are not within the range of a single Mac OS encoding
(or are not in any Mac OS encoding), then you must use a negative number for the resource.

For a given resource ID, the system may contain a 'KCHR' resource, a 'uchr' resource, or both. If both a
'KCHR' resource and a 'uchr' resource are present, they must have the same ID, and the 'uchr' resource
should match the behavior of the 'KCHR' resource. The keyboard menu shows each keyboard layout as a
single entry, regardless of whether it is specified by a 'KCHR', a 'uchr', or both.

Note: The 'uchr' resource contains offsets to tables that may be in any order. A 'uchr' resource may be
created in any data-description language that allows the specification of arbitrary binary data.

Unicode Keyboard-Layout Resource Format

The 'uchr' format consists of a header information section and five key mapping data sections, as shown
in Figure A-1.

Figure A-1 Overview of a 'uchr' resource

Overview of a 'uchr' resource

Dead-key state records

Default dead-key state terminators

Character key sequences

Resource header

Modifier-key-to-character table numbers

Key-code-to-character tables

Unicode Keyboard-Layout Resource Format 45
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specification for 'uchr'

The header section of a compiled 'uchr' resource contains a structure of type UCKeyboardLayout and an
optional structure of type UCKeyLayoutFeatureInfo. See for an illustration of this section.

Figure A-2 'uchr' resource header

2

2

UCKeyboardLayout
structure

UCKeyboardLayoutFeatureInfo
structure

Header section of a
'uchr' resource Bytes

Offset to UCKeyLayoutFeatureInfo structure

Count of UCKeyboardTypeHeader structures

Array of UCKeyboardTypeHeader structures

UCKeyLayoutFeatureInfo format

Reserved

Size of longest possible output string for this resource

Resource header format

Resource data version

4

4

Variable

2

2

4

The elements in the header section of a 'uchr' resource are

 ■ the resource header format

 ■ the version of the data in this resource

 ■ an offset to a UCKeyLayoutFeatureInfo structure, if any

 ■ a count of the UCKeyboardTypeHeader structures that follow

 ■ an array of structures of type UCKeyboardTypeHeader; each UCKeyboardTypeHeader entry specifies
a range of physical keyboard types and contains offsets to each of the key mapping sections to be used
for that range of keyboard types

 ❏ first keyboard type in this entry

 ❏ last keyboard type in this entry

 ❏ offset to the UCKeyModifiersToTableNum structure (required)

 ❏ offset to the UCKeyToCharTableIndex structure (required)

 ❏ offset to the UCKeyStateRecordsIndex structure (optional, may be 0 if there is no table)

 ❏ offset to the UCKeyStateTerminators structure (optional, may be 0 if there is no table)

 ❏ offset to the UCKeySequenceDataIndex structure (optional, may be 0 if there is no table)

 ■ the format of the UCKeyLayoutFeatureInfo structure

 ■ a reserved field

 ■ a value of type UniCharCount, specifying the longest possible output string to be produced by this
'uchr' resource

There may be a variable number of each of the following 'uchr' key mapping sections.

46 Unicode Keyboard-Layout Resource Format
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specification for 'uchr'

The first key mapping section contains a structure of type UCKeyModifiersToTableNum, which maps a
modifier key combination to a particular key-code-to-character table number; and alignment bytes. There
may be multiple instances of this entire key mapping section. See Figure A-3 for an illustration of this section.

Figure A-3 'uchr' modifier combination to key-code-to-character table number map

2

2

UCKeyModifiersToTableNum
structure

First key mapping section of a
'uchr' resource Bytes

Range of modifier combinations

Array of table numbers

Alignment bytes

UCKeyModifiersToTableNum format

Default modifier combination table number

4

Variable

0 to 3

The elements in the first key mapping section of a 'uchr' resource are

 ■ the format of the UCKeyModifiersToTableNum structure

 ■ the table number for modifier combinations that are outside of the range of the tableNum field’s array;
that is, the default (fallback) table number

 ■ the range of modifier bit combinations for which there are entries in the tableNum field’s array

 ■ n an array of indexes into the key-code-to-character table offsets contained in the
UCKeyToCharTableIndex structure in the next section

 ■ alignment bytes (to a 4-byte boundary)

The second key mapping section contains a structure of type UCKeyToCharTableIndex; the list of
key-code-to-character tables, each of which maps a virtual key code to a 16-bit UCKeyOutput value; and
alignment bytes. There may be multiple instances of this entire key mapping section. See Figure A-4 for an
illustration of this section.

Figure A-4 'uchr' key-code-to-character tables

2

2

UCKeyToCharTableIndex
structure

Second key mapping section of a
'uchr' resource Bytes

Count of key-code-to-character tables

Offsets to key-code-to-character tables

Array of key-code-to-character tables

Alignment bytes

UCKeyToCharTableIndex format

Number of key codes supported by this resource

4

Variable

Variable

0-3

The elements in the second key mapping section of a 'uchr' resource are

Unicode Keyboard-Layout Resource Format 47
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specification for 'uchr'

 ■ the format of the UCKeyToCharTableIndex structure

 ■ the number of virtual key codes supported by this resource

 ■ a count of the key-code-to-character tables

 ■ an array of offsets from the beginning of the resource to each of the key-code-to-character tables

 ■ an array of key-code-to-character tables containing values of type UCKeyOutput

 ■ alignment bytes (to a 4-byte boundary)

The third key mapping section is a map to dead-key state records. It contains a structure of type
UCKeyStateRecordsIndex, which is an index to UCKeyStateRecord structures; a variable number of
dead-key state records of type UCKeyStateRecord; and alignment bytes. There may be multiple instances
of this entire key mapping section (or 0; this section need not be present if no UCKeyOutput value refers to
a dead-key state record). See Figure A-5 for an illustration of this section.

Figure A-5 'uchr' dead-key state records

2

2

UCKeyStateRecordsIndex
structure

UCKeyStateRecord
structure (variable number)

Third key mapping section of a
'uchr' resource Bytes

Offsets to UCKeyStateRecord structures

Default character output

Next dead-key state

Count of dead-key state entries

Dead-key state entries

Alignment bytes

UCKeyStateRecordsIndex format

Count of UCKeyStateRecord structures

Variable

2

2

2

Format of dead-key state entries 2

Variable

0 to 3

The elements in the third key mapping section of a 'uchr' resource are

 ■ the format of the UCKeyStateRecordsIndex structure

 ■ a count of the dead-key state records to follow

 ■ an array of offsets from the beginning of the resource to each of the UCKeyStateRecord values following

Immediately following the UCKeyStateRecordsIndex structure are a variable number of values of type
UCKeyStateRecord. Any keycode-modifier combination which initiates a dead-key state or which is a valid
terminator of a dead-key state refers to one of these records. However, these records also permit more
complex dead-key state processing, such as a series of transitions from one dead-key state directly into
another in which each transition can emit a sequence of one or more Unicode characters. Each record contains

 ■ a value of type UCKeyCharSeq specifying the character(s) produced by the input keycode when no
dead-key state is currently in effect

 ■ a value specifying the dead-key state produced by the input keycode when no dead-key state is currently
in effect

48 Unicode Keyboard-Layout Resource Format
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specification for 'uchr'

 ■ a count of the elements in the stateEntryData field’s array

 ■ the format of the data in the stateEntryData field’s array

 ■ an array of dead-key state entry data; each entry maps from the current dead-key state to the character(s)
that are produced or to the following dead-key state, if any

 ■ alignment bytes (to a 4-byte boundary)

The fourth key mapping section contains a structure of type UCKeyStateTerminators and alignment bytes.
This is an optional list of default terminators (characters or sequences) for each state; if this table is not present
or does not extend far enough to have a terminator for the state, nothing is output when the state terminates.
There may be multiple (or 0) instances of this entire key mapping section. See Figure A-6 for an illustration
of this section.

Figure A-6 'uchr' default dead-key state terminators

2

2

UCKeyStateTerminators
structure

Fourth key mapping section of a
'uchr' resource Bytes

Array of default dead-key state terminators

Alignment bytes

UCKeyStateTerminators format

Count of default dead-key state terminators

Variable

0 to 3

The elements in the fourth key mapping section of a 'uchr' resource are

 ■ the format of the UCKeyStateTerminators structure

 ■ a count of default dead-key state terminators contained in the keyStateTerminators field’s array

 ■ an array of default dead-key state terminators, described as values of type UCKeyCharSeq

 ■ alignment bytes (to a 4-byte boundary)

The fifth key mapping section of the resource is an optional list of character sequences; it contains a structure
of type UCKeySequenceDataIndex and Unicode character sequences. This permits a single keypress to
generate a sequence of characters, or to generate a single character outside the range that can be represented
directly by a UCKeyOutput or UCKeyCharSeq value. There may be multiple (or 0) instances of this entire
key mapping section. See Figure A-7 for an illustration of this section.

Figure A-7 'uchr' character key sequences

2

2

UCKeySequenceDataIndex
structure

Fifth key mapping section of a
'uchr' resource Bytes

Offsets to character key sequences

Array of character key sequences

Alignment bytes

UCKeySequenceDataIndex format

Count of character key sequences

Variable

Variable

0 to 3

Unicode Keyboard-Layout Resource Format 49
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specification for 'uchr'

The elements in the fifth key mapping section of a 'uchr' resource are

 ■ the format of the UCKeySequenceDataIndex structure

 ■ a count of the Unicode character sequences that follow the UCKeySequenceDataIndex structure

 ■ an array of offsets from the beginning of the UCKeySequenceDataIndex structure to the Unicode
character sequences that follow it

 ■ an array of Unicode character sequences

 ■ alignment bytes (to a 4-byte boundary)

50 Unicode Keyboard-Layout Resource Format
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Specification for 'uchr'

This table describes the changes to Unicode Utilities Reference.

NotesDate

Updated the description of the options parameter for the
UCCompareTextNoLocale function.

2006-01-10

Fixed typographical errors.2005-07-07

Added information about collation keys to the functions
UCGetCollationKey (page 18) and UCCompareCollationKeys (page 8).

2003-05-01

Updated formatting; added additional information to the discussion of the
UCKeyboardLayout data structure and the UCKeyTranslate function.

2003-01-13

Added appendix that describes the 'uchr' resource.

51
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

52
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

C

CollatorRef data type 22

F

Fixed Ordering Masks 1 35
Fixed Ordering Masks 2 36
Fixed Ordering Scheme 35

K

Key Actions 36
Key Format Codes 37
Key Output Index Masks 38
Key State Entry Formats 39
Key Translation Options Flag 39
Key Translation Options Mask 40
kUCCollateCaseInsensitiveMask constant 42
kUCCollateComposeInsensitiveMask constant 41
kUCCollateDiacritInsensitiveMask constant 42
kUCCollateDigitsAsNumberMask constant 42
kUCCollateDigitsOverrideMask constant 42
kUCCollatePunctuationSignificantMask constant

42
kUCCollateStandardOptions constant 41
kUCCollateTypeHFSExtended constant 35
kUCCollateTypeMask constant 36
kUCCollateTypeShiftBits constant 36
kUCCollateTypeSourceMask constant 35
kUCCollateWidthInsensitiveMask constant 41
kUCKeyActionAutoKey constant 37
kUCKeyActionDisplay constant 37
kUCKeyActionDown constant 37
kUCKeyActionUp constant 37
kUCKeyLayoutFeatureInfoFormat constant 38
kUCKeyLayoutHeaderFormat constant 37
kUCKeyModifiersToTableNumFormat constant 38

kUCKeyOutputGetIndexMask constant 39
kUCKeyOutputSequenceIndexMask constant 39
kUCKeyOutputStateIndexMask constant 38
kUCKeyOutputTestForIndexMask constant 39
kUCKeySequenceDataIndexFormat constant 38
kUCKeyStateEntryRangeFormat constant 39
kUCKeyStateEntryTerminalFormat constant 39
kUCKeyStateRecordsIndexFormat constant 38
kUCKeyStateTerminatorsFormat constant 38
kUCKeyToCharTableIndexFormat constant 38
kUCKeyTranslateNoDeadKeysBit constant 40
kUCKeyTranslateNoDeadKeysMask constant 40
kUCTextBreakCharMask constant 43
kUCTextBreakClusterMask constant 44
kUCTextBreakGoBackwardsMask constant 43
kUCTextBreakIterateMask constant 43
kUCTextBreakLeadingEdgeMask constant 43
kUCTextBreakLineMask constant 44
kUCTextBreakWordMask constant 44
kUnicodeCollationClass constant 40
kUnicodeTextBreakClass constant 44

O

Operation Class 40

S

Standard Options Mask 41
String Comparison Options 41

T

Text Boundary Operation Class 44
Text Break Options 42
Text Break Types 43
TextBreakLocatorRef data type 22

53
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

Index

U

UCCollationValue data type 23
UCCompareCollationKeys function 8
UCCompareText function 9
UCCompareTextDefault function 11
UCCompareTextNoLocale function 12
UCCreateCollator function 13
UCCreateTextBreakLocator function 14
UCDisposeCollator function 16
UCDisposeTextBreakLocator function 16
UCFindTextBreak function 17
UCGetCollationKey function 18
UCKeyboardLayout structure 23
UCKeyboardTypeHeader structure 24
UCKeyCharSeq data type 25
UCKeyLayoutFeatureInfo structure 26
UCKeyModifiersToTableNum structure 27
UCKeyOutput data type 27
UCKeySequenceDataIndex structure 28
UCKeyStateEntryRange structure 29
UCKeyStateEntryTerminal structure 30
UCKeyStateRecord structure 31
UCKeyStateRecordsIndex structure 32
UCKeyStateTerminators structure 33
UCKeyToCharTableIndex structure 34
UCKeyTranslate function 20

54
2006-01-10 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	Unicode Utilities Reference
	Contents
	Figures
	Unicode Utilities Reference
	Overview
	Functions by Task
	Inputting Unicode Text
	Comparing Unicode Strings
	Identifying Unicode Text Boundaries

	Functions
	UCCompareCollationKeys
	UCCompareText
	UCCompareTextDefault
	UCCompareTextNoLocale
	UCCreateCollator
	UCCreateTextBreakLocator
	UCDisposeCollator
	UCDisposeTextBreakLocator
	UCFindTextBreak
	UCGetCollationKey
	UCKeyTranslate

	Data Types
	CollatorRef
	TextBreakLocatorRef
	UCCollationValue
	UCKeyboardLayout
	UCKeyboardTypeHeader
	UCKeyCharSeq
	UCKeyLayoutFeatureInfo
	UCKeyModifiersToTableNum
	UCKeyOutput
	UCKeySequenceDataIndex
	UCKeyStateEntryRange
	UCKeyStateEntryTerminal
	UCKeyStateRecord
	UCKeyStateRecordsIndex
	UCKeyStateTerminators
	UCKeyToCharTableIndex

	Constants
	Fixed Ordering Scheme
	Fixed Ordering Masks 1
	Fixed Ordering Masks 2
	Key Actions
	Key Format Codes
	Key Output Index Masks
	Key State Entry Formats
	Key Translation Options Flag
	Key Translation Options Mask
	Operation Class
	Standard Options Mask
	String Comparison Options
	Text Break Options
	Text Break Types
	Text Boundary Operation Class

	Appendix A: Specification for 'uchr'
	Unicode Keyboard-Layout Resource Format

	Revision History
	Index
	C
	F
	K
	O
	S
	T
	U

