
Window Manager Reference
Carbon > User Experience

2007-10-31

Apple Inc.
© 1995, 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, eMac,
Logic, Mac, Mac OS, Macintosh, Quartz, and
QuickDraw are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Window Manager Reference 13

Overview 13
Functions by Task 14

Accessing Information About a Window 14
Activating Window Path Pop-Up Menus 15
Associating Data With Windows 15
Collapsing Windows 15
Creating, Storing, and Closing Windows 15
Displaying Floating Windows and Window Animations 16
Displaying Windows 16
Dragging Proxy Icons 17
Establishing Proxy Icons 17
Getting and Setting Window Structure Fields 17
Handling Mouse Events in Windows 18
Locating Windows 19
Maintaining the Update Region 19
Managing Activation Scope 20
Managing Dock Tiles 20
Managing Modality 20
Managing Themes 20
Managing Toolbars 21
Managing Transitions 21
Managing Transparency 21
Managing UPPs 21
Managing Window Attributes 22
Managing Window Availability 22
Managing Window Classes 22
Managing Window Features 23
Managing Window Focus 23
Managing Window Groups 23
Managing Window Titles 24
Manipulating Drawers 25
Manipulating Sheets 25
Manipulating Window Color Information 26
Referencing Windows 26
Scrolling 26
Sizing and Positioning Windows 27
Updating the Screen 27
Using Default and Cancel Buttons 28
Zooming Windows 28
Miscellaneous 28

3
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Legacy Functions 29
Functions 30

ActivateWindow 30
ActiveNonFloatingWindow 31
AreFloatingWindowsVisible 31
BeginUpdate 31
BeginWindowProxyDrag 32
BringToFront 33
ChangeWindowAttributes 34
ChangeWindowGroupAttributes 35
ChangeWindowPropertyAttributes 35
CloseDrawer 36
CollapseAllWindows 37
CollapseWindow 37
ConstrainWindowToScreen 38
CopyWindowAlternateTitle 38
CopyWindowGroupName 39
CopyWindowTitleAsCFString 39
CountWindowGroupContents 40
CreateCustomWindow 40
CreateNewWindow 41
CreateStandardWindowMenu 42
CreateWindowGroup 43
DebugPrintAllWindowGroups 43
DebugPrintWindowGroup 44
DetachSheetWindow 44
DisableScreenUpdates 45
DisposeWindow 45
DragWindow 46
EnableScreenUpdates 46
EndUpdate 47
EndWindowProxyDrag 47
FindWindow 48
FindWindowOfClass 49
FrontNonFloatingWindow 50
GetAvailableWindowAttributes 51
GetAvailableWindowPositioningBounds 51
GetAvailableWindowPositioningRegion 52
GetDrawerCurrentEdge 53
GetDrawerOffsets 53
GetDrawerParent 54
GetDrawerPreferredEdge 54
GetDrawerState 55
GetFrontWindowOfClass 55
GetIndexedWindow 56
GetNextWindow 56

4
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

GetNextWindowOfClass 57
GetPreviousWindow 57
GetSheetWindowParent 58
GetUserFocusWindow 58
GetWindowActivationScope 59
GetWindowAlpha 59
GetWindowAttributes 59
GetWindowBounds 60
GetWindowCancelButton 61
GetWindowClass 61
GetWindowContentColor 62
GetWindowContentPattern 63
GetWindowDefaultButton 63
GetWindowDockTileMenu 64
GetWindowFeatures 64
GetWindowFromPort 65
GetWindowGreatestAreaDevice 65
GetWindowGroup 66
GetWindowGroupAttributes 66
GetWindowGroupContents 67
GetWindowGroupLevel 68
GetWindowGroupLevelOfType 68
GetWindowGroupOfClass 69
GetWindowGroupOwner 70
GetWindowGroupParent 70
GetWindowGroupRetainCount 70
GetWindowGroupSibling 71
GetWindowIdealUserState 71
GetWindowIndex 72
GetWindowKind 73
GetWindowList 73
GetWindowModality 74
GetWindowPort 74
GetWindowPortBounds 75
GetWindowProperty 75
GetWindowPropertyAttributes 76
GetWindowPropertySize 77
GetWindowProxyAlias 78
GetWindowProxyIcon 78
GetWindowResizeLimits 79
GetWindowStandardState 79
GetWindowStructurePort 80
GetWindowStructureWidths 80
GetWindowToolbar 81
GetWindowUserState 81
GetWindowWidgetHilite 82

5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

GetWRefCon 82
HideFloatingWindows 83
HideSheetWindow 84
HideWindow 84
HiliteWindow 84
HiliteWindowFrameForDrag 85
HIWindowChangeAttributes 86
HIWindowChangeAvailability 87
HIWindowChangeClass 87
HIWindowChangeFeatures 88
HIWindowConstrain 89
HIWindowCopyAvailablePositioningShape 90
HIWindowCopyDrawers 91
HIWindowCopyShape 91
HIWindowCreate 92
HIWindowCreateCollapsedDockTileContext 93
HIWindowFindAtLocation 94
HIWindowFlush 95
HIWindowFromCGWindowID 95
HIWindowGetAvailability 96
HIWindowGetAvailablePositioningBounds 96
HIWindowGetBounds 97
HIWindowGetCGWindowID 98
HIWindowGetGreatestAreaDisplay 98
HIWindowGetIdealUserState 99
HIWindowGetProxyFSRef 100
HIWindowGetScaleMode 100
HIWindowGetThemeBackground 101
HIWindowInvalidateShadow 102
HIWindowIsAttributeAvailable 102
HIWindowIsDocumentModalTarget 103
HIWindowIsInStandardState 103
HIWindowReleaseCollapsedDockTileContext 104
HIWindowSetBounds 105
HIWindowSetIdealUserState 105
HIWindowSetProxyFSRef 106
HIWindowSetToolbarView 107
HIWindowShowsFocus 107
HIWindowTestAttribute 108
HIWindowTrackProxyDrag 108
InvalWindowRect 109
InvalWindowRgn 110
IsValidWindowClass 111
IsValidWindowPtr 111
IsWindowActive 112
IsWindowCollapsable 112

6
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

IsWindowCollapsed 113
IsWindowContainedInGroup 114
IsWindowHilited 114
IsWindowInStandardState 115
IsWindowLatentVisible 115
IsWindowModified 116
IsWindowPathSelectEvent 117
IsWindowToolbarVisible 117
IsWindowUpdatePending 118
IsWindowVisible 118
MoveWindow 119
MoveWindowStructure 119
OpenDrawer 120
PinRect 121
RegisterWindowDefinition 122
ReleaseWindowGroup 122
RemoveWindowProperty 123
RemoveWindowProxy 123
RepositionWindow 124
ReshapeCustomWindow 125
ResizeWindow 125
RetainWindowGroup 127
ScrollWindowRect 127
ScrollWindowRegion 128
SelectWindow 129
SendBehind 129
SendWindowGroupBehind 130
SetDrawerOffsets 131
SetDrawerParent 131
SetDrawerPreferredEdge 132
SetPortWindowPort 132
SetThemeTextColorForWindow 133
SetThemeWindowBackground 133
SetUserFocusWindow 134
SetWindowActivationScope 135
SetWindowAlpha 135
SetWindowAlternateTitle 136
SetWindowBounds 136
SetWindowCancelButton 137
SetWindowContentColor 138
SetWindowContentPattern 138
SetWindowDefaultButton 139
SetWindowDockTileMenu 140
SetWindowGroup 140
SetWindowGroupLevel 141
SetWindowGroupLevelOfType 142

7
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

SetWindowGroupName 143
SetWindowGroupOwner 143
SetWindowGroupParent 144
SetWindowIdealUserState 144
SetWindowKind 145
SetWindowModality 145
SetWindowModified 146
SetWindowProperty 147
SetWindowProxyAlias 148
SetWindowProxyCreatorAndType 148
SetWindowProxyIcon 149
SetWindowResizeLimits 150
SetWindowStandardState 151
SetWindowTitleWithCFString 151
SetWindowToolbar 152
SetWindowUserState 152
SetWRefCon 153
ShowFloatingWindows 153
ShowHide 154
ShowHideWindowToolbar 154
ShowSheetWindow 155
ShowWindow 156
SizeWindow 156
ToggleDrawer 157
TrackBox 158
TrackGoAway 159
TrackWindowProxyDrag 159
TrackWindowProxyFromExistingDrag 160
TransitionWindow 162
TransitionWindowAndParent 163
TransitionWindowWithOptions 163
UpdateCollapsedWindowDockTile 164
ValidWindowRect 165
ValidWindowRgn 166
WindowPathSelect 166
ZoomWindow 167
ZoomWindowIdeal 168

Callbacks 169
WindowDefProcPtr 169
WindowPaintProcPtr 174

Data Types 175
BasicWindowDescription 175
GetGrowImageRegionRec 177
GetWindowRegionRec 177
HIWindowRef 178
MeasureWindowTitleRec 178

8
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

PropertyCreator 179
PropertyTag 179
PicHandle 179
PixPatHandle 179
RGBColor 180
RgnHandle 180
SetupWindowProxyDragImageRec 180
TransitionWindowOptions 181
WindowDefSpec 182
WindowDefUPP 182
WindowGroupRef 182
WindowPaintUPP 183
WindowRef 183
WStateData 183

Constants 184
Window Class Constants 184
Window Attribute Identifiers 188
Window Attributes 194
User Focus Auto-Select Constant 198
Appearance-Compliant Window Resource IDs 199
Appearance-Compliant Window Definition ID Constants 200
Basic Window Description State Constant 206
Window Frame View Part Codes 206
Window Feature Bits 207
Window Part Code Constants 209
Window Modality Options 212
Window Position Constants 213
System 7 Window Positioning Constants 215
Window Region Constants 217
Window Latent Visibility Constants 219
Basic Window Description Version Constants 219
Window Property Persistent Constant 220
Window Variant Constants 220
Window Transition Action Constants 222
Window Transition Effect Constants 223
Window Activation Scope Constants 223
Window Constrain Options 224
Window Kinds 225
Window Group Selection Constants 226
Window Group Attributes 227
Obsolete Window Group Attributes 228
Window Group Content Options 228
Window Class Position Constants 229
Window Definition Type Constants 229
Window Definition Procedure Constant 230
Window Definition Hit Test Result Code Constants 230

9
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Window Definition Message Constants 232
Window Definition State-Changed Constant 235
Drawer State Constants 236
Window Edge Constants 237
Rotating Window Menu Item Constant 237
Window Menu Item Property Constants 238
Toolbar View Background Tag 238
Window Paint Callback Options 239
Part Identifier Constants 239
Desk Pattern Resource ID 240
Window Scrolling Options 240
'wind' Resource Default Collection Item Constants 241
Window Resource IDs 241
Window Availability Constants 242
Window Scale Mode Constants 243
Window Group Level Constants 244
Pre-Appearance Window Definition IDs 244

Result Codes 247

Appendix A Deprecated Window Manager Functions 251

Deprecated in Mac OS X v10.5 251
CalcVis 251
CalcVisBehind 251
CheckUpdate 252
ClipAbove 253
CloneWindow 253
CreateQDContextForCollapsedWindowDockTile 254
CreateWindowFromCollection 255
CreateWindowFromResource 255
DisposeWindowDefUPP 256
DisposeWindowPaintUPP 257
DragGrayRgn 257
DragTheRgn 259
DrawGrowIcon 259
FrontWindow 260
GetGrayRgn 260
GetNewCWindow 261
GetNewWindow 262
GetWindowOwnerCount 263
GetWindowPic 264
GetWindowProxyFSSpec 265
GetWindowRegion 265
GetWindowRetainCount 266
GetWTitle 267
GetWVariant 267

10
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

GrowWindow 268
InstallWindowContentPaintProc 269
InvokeWindowDefUPP 270
InvokeWindowPaintUPP 270
IsWindowPathSelectClick 271
NewCWindow 272
NewWindow 274
NewWindowDefUPP 277
NewWindowPaintUPP 277
PaintBehind 277
PaintOne 278
ReleaseQDContextForCollapsedWindowDockTile 279
ReleaseWindow 279
RetainWindow 280
SetWindowClass 281
SetWindowPic 281
SetWindowProxyFSSpec 282
SetWTitle 283
StoreWindowIntoCollection 283

Document Revision History 285

Index 287

11
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

12
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in HIToolboxDebugging.h
HIWindowViews.h
IOMacOSTypes.h
MacWindows.h
QuickdrawTypes.h

Overview

Your application uses the Window Manager to create and manage windows. For example, your application
uses the Window Manager to create and display a new window when the user creates a new document or
opens an existing document. When the user clicks or holds down the mouse button while the cursor is in a
window created by your application, you use the Window Manager to determine the location of the mouse
action and to alter the window display as appropriate. When the user closes a window, you use the Window
Manager to remove the window from the screen.

A Macintosh application uses windows for most communication with the user, from discrete interactions
such as presenting and acknowledging alert boxes to open-ended interactions such as creating and editing
documents. Users generally type words and formulas, draw pictures, or otherwise enter data in a window
on the screen. Your application typically lets the user save this data in a file, open saved files, and view the
saved data in a window.

A window can be any size or shape, and the user can display any number of windows, within the limits of
available memory, on the screen at once.

The Window Manager defines a set of standard windows and provides a set of routines for managing them.
The Window Manager helps your application display windows that are consistent with the Macintosh user
interface.

Note: Historically, the Window Manager has offered different successive methods for creating and
manipulating windows. Many of the older functions have been deprecated and, in most cases, this reference
provides a recommended replacement. For the most up-to-date information about creating windows, see
the document Handling Carbon Windows and Controls.

Carbon supports the Window Manager. Be aware, however, that if you use custom window definition
procedures (also known as WDEFs), you must move them out of resources and compile them into your
application. In addition:

Overview 13
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

 ■ Your application must use the functions defined by the Window Manager whenever it creates and
disposes of Window Manager data structures. For example, instead of directly creating and disposing
of window records, applications must call Window Manager functions such as CreateNewWindow and
DisposeWindow.

 ■ You must revise your application so that it accesses Window Manager data structures only through
accessor functions.

 ■ You are encouraged to adopt the standard Mac OS window definition procedures in your application.
Applications that use the standard Mac OS window definition procedures inherit the Mac OS human
interface appearance on Mac OS 9 and Mac OS X. Applications that use custom window definition
procedures work correctly, but because custom definition procedures invoke their own drawing routines,
the Mac OS can’t draw these applications with the current appearance (unless you specifically use
Appearance Manager drawing primitives).

Functions by Task

Accessing Information About a Window

IsValidWindowPtr (page 111)
Reports whether a pointer is a valid window pointer.

GetWindowGreatestAreaDevice (page 65)
Returns the graphics device with the greatest area of intersection with a specified window region.

HIWindowGetGreatestAreaDisplay (page 98)
Finds the display with the greatest area of intersection with a window region.

HIWindowCopyShape (page 91)
Retrieves a shape that describes a region of a window.

HIWindowGetScaleMode (page 100)
Obtains the window’s scale mode and the application’s display scale factor.

GetWindowList (page 73)
Obtains the first window in a window list.

GetWindowWidgetHilite (page 82)
Obtains the window part code of the window widget that is currently highlighted.

IsWindowModified (page 116)
Obtains the modification state of the specified window.

SetWindowModified (page 146)
Sets the modification state of the specified window.

HIWindowGetCGWindowID (page 98)
Returns the Quartz window ID assigned to a window.

HIWindowFromCGWindowID (page 95)
Returns the window in the current process with a specified Quartz window ID.

GetWindowRegion (page 265) Deprecated in Mac OS X v10.5
Obtains a handle to a specific window region.

14 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Activating Window Path Pop-Up Menus

IsWindowPathSelectEvent (page 117)
Determines whether a Carbon event describing a click on a window’s title should cause a path selection
menu to be displayed.

WindowPathSelect (page 166)
Displays a window path pop-up menu.

IsWindowPathSelectClick (page 271) Deprecated in Mac OS X v10.5
Reports whether a mouse click should activate the window path pop-up menu. (Deprecated. Use
IsWindowPathSelectEvent (page 117) instead.)

Associating Data With Windows

GetWindowProperty (page 75)
Obtains a piece of data that is associated with a window.

SetWindowProperty (page 147)
Associates an arbitrary piece of data with a window.

GetWindowPropertySize (page 77)
Obtains the size of a piece of data that is associated with a window.

RemoveWindowProperty (page 123)
Removes a piece of data that is associated with a window.

ChangeWindowPropertyAttributes (page 35)
Changes attributes associated with a window property.

GetWindowPropertyAttributes (page 76)
Obtains the attributes of a window property.

Collapsing Windows

CollapseWindow (page 37)
Collapses or expands a window to the dock.

CollapseAllWindows (page 37)
Collapses or expands all collapsable windows in an application.

IsWindowCollapsed (page 113)
Determines whether a window is currently collapsed.

IsWindowCollapsable (page 112)
Determines whether a window can be collapsed.

Creating, Storing, and Closing Windows

CreateNewWindow (page 41)
Creates a window from parameter data.

CreateCustomWindow (page 40)
Creates a custom window based on a registered toolbox object class or a custom window root view.

Functions by Task 15
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowCreate (page 92)
Creates a standard or custom window.

DisposeWindow (page 45)
Removes a window.

CreateWindowFromCollection (page 255) Deprecated in Mac OS X v10.5
Creates a window from collection data. (Deprecated. Use HIArchiveCopyDecodedCFType to decode
a window from an archive instead.)

CreateWindowFromResource (page 255) Deprecated in Mac OS X v10.5
Creates a window from 'wind' resource data. (Deprecated. Use nib files and CreateWindowFromNib
instead.)

StoreWindowIntoCollection (page 283) Deprecated in Mac OS X v10.5
Stores data describing a window into a collection. (Deprecated. Use HIArchiveEncodeCFType to
encode a window to an archive instead.)

Displaying Floating Windows and Window Animations

AreFloatingWindowsVisible (page 31)
Indicates whether an application’s floating windows are currently visible.

HideFloatingWindows (page 83)
Hides an application’s floating windows.

ShowFloatingWindows (page 153)
Shows an application’s floating windows.

Displaying Windows

ActivateWindow (page 30)
Activates or deactivates a window.

IsWindowActive (page 112)
Indicates whether the specified window is active.

HiliteWindow (page 84)
Sets a window’s highlighting status.

SelectWindow (page 129)
Makes a window active.

ShowWindow (page 156)
Makes an invisible window visible.

HideWindow (page 84)
Makes a window invisible.

ShowHide (page 154)
Sets a window’s visibility.

BringToFront (page 33)
Brings a window to the front.

SendBehind (page 129)
Moves one window behind another.

16 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowInvalidateShadow (page 102)
Recalculates a window’s shadow.

Dragging Proxy Icons

BeginWindowProxyDrag (page 32)
Creates the drag reference and the drag image when the user drags a proxy icon.

EndWindowProxyDrag (page 47)
Disposes of the drag reference when the user completes the drag of a proxy icon.

HiliteWindowFrameForDrag (page 85)
Sets the highlight state of the window’s structure region to reflect the window’s validity as a
drag-and-drop destination.

TrackWindowProxyDrag (page 159)
Handles all aspects of the drag process when the user drags a proxy icon.

TrackWindowProxyFromExistingDrag (page 160)
Allows custom handling of the drag process when the user drags a proxy icon.

HIWindowTrackProxyDrag (page 108)
Tracks the drag of a window proxy icon.

Establishing Proxy Icons

GetWindowProxyAlias (page 78)
Obtains an alias for the file that is associated with a window.

SetWindowProxyAlias (page 148)
Associates a file with a window.

GetWindowProxyIcon (page 78)
Obtains a window’s proxy icon.

SetWindowProxyIcon (page 149)
Overrides the default proxy icon for a window.

RemoveWindowProxy (page 123)
Dissociates a file from a window.

SetWindowProxyCreatorAndType (page 148)
Sets the proxy icon for a window that lacks an associated file.

HIWindowGetProxyFSRef (page 100)
Obtains the FSRef used to determine the proxy icon for a window.

HIWindowSetProxyFSRef (page 106)
Sets the proxy icon for a window using an FSRef to a file system object.

Getting and Setting Window Structure Fields

GetNextWindow (page 56)
Returns the next window in a window list.

Functions by Task 17
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetWindowKind (page 73)
Returns a window’s window kind.

SetWindowKind (page 145)
Sets a window’s window kind.

GetWindowPort (page 74)
Gets the window’s color graphics port.

SetPortWindowPort (page 132)
Sets the current graphics port to the window’s port.

GetWindowPortBounds (page 75)
Obtains the bounds of the window port.

GetWindowStandardState (page 79)
Obtains a window’s standard zoom rectangle.

SetWindowStandardState (page 151)
Sets a window’s standard zoom rectangle.

GetWindowUserState (page 81)
Returns a window’s user zoom rectangle.

SetWindowUserState (page 152)
Sets a window’s user zoom rectangle.

IsWindowHilited (page 114)
Indicates whether the window frame is currently highlighted.

IsWindowLatentVisible (page 115)
Indicates whether a window is visible onscreen or is latently visible but not currently onscreen.

IsWindowVisible (page 118)
Indicates whether the window frame is currently visible.

GetWindowStructurePort (page 80)
Obtains a graphics port that is used when drawing a window’s structure.

GetWindowStructureWidths (page 80)
Obtains the width of the structure region on each edge of a window.

Handling Mouse Events in Windows

DragWindow (page 46)
Moves a window on the screen when the user drags it by its drag region.

MoveWindow (page 119)
Moves a window on the desktop.

PinRect (page 121)
Returns the point within the specified rectangle that is closest to the specified point.

SizeWindow (page 156)
Sets the size of a window.

TrackBox (page 158)
Tracks clicks in the collapse, close, size, and zoom boxes, and clicks of the toolbar button.

TrackGoAway (page 159)
Tracks the cursor when the user presses the mouse button while the cursor is in the close box.

18 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ZoomWindow (page 167)
Zooms the window when the user has pressed and released the mouse button with the cursor in the
zoom box.

Locating Windows

ActiveNonFloatingWindow (page 31)
Returns the currently active nonfloating window.

FrontNonFloatingWindow (page 50)
Returns to the application the frontmost visible window that is not a floating window.

FindWindow (page 48)
Maps the location of the cursor to a part of the screen or a region of a window when your application
receives a mouse-down event.

FindWindowOfClass (page 49)
Finds a window of a specific class at the specified point onscreen.

HIWindowFindAtLocation (page 94)
Finds a window in the current process at a specified location.

GetFrontWindowOfClass (page 55)
Obtains the frontmost window of a given class.

GetNextWindowOfClass (page 57)
Obtains the next window in a given window group.

GetPreviousWindow (page 57)
Returns the window above the specified window in the window list.

FrontWindow (page 260) Deprecated in Mac OS X v10.5
Identifies the frontmost visible window. (Deprecated. Use ActiveNonFloatingWindow (page 31),
FrontNonFloatingWindow (page 50), or GetFrontWindowOfClass (page 55) instead.)

Maintaining the Update Region

BeginUpdate (page 31)
Starts updating a window when you receive an update event for that window.

EndUpdate (page 47)
Finishes updating a window.

InvalWindowRect (page 109)
Adds a rectangle to a window’s update region.

InvalWindowRgn (page 110)
Adds a region to a window’s update region.

IsWindowUpdatePending (page 118)
Determines whether a window update is pending.

ValidWindowRect (page 165)
Removes a rectangle from a window’s update region.

ValidWindowRgn (page 166)
Removes a region from a window’s update region.

Functions by Task 19
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Managing Activation Scope

GetWindowActivationScope (page 59)
Obtains a window’s activation scope.

SetWindowActivationScope (page 135)
Sets a window’s activation scope.

Managing Dock Tiles

HIWindowCreateCollapsedDockTileContext (page 93)
Creates a Quartz graphics context for drawing a collapsed window’s Dock tile.

HIWindowReleaseCollapsedDockTileContext (page 104)
Releases a Quartz graphics context for drawing a collapsed window’s Dock tile.

GetWindowDockTileMenu (page 64)
Returns the menu to be displayed by a window’s dock tile.

SetWindowDockTileMenu (page 140)
Associates a pop-up menu with a window.

UpdateCollapsedWindowDockTile (page 164)
Updates the image of a window in the dock to the current contents of the window.

CreateQDContextForCollapsedWindowDockTile (page 254) Deprecated in Mac OS X v10.5
Obtains a CGrafPtr for a collapsed window’s tile in the dock. (Deprecated. Use
HIWindowCreateCollapsedDockTileContext (page 93) instead.)

ReleaseQDContextForCollapsedWindowDockTile (page 279) Deprecated in Mac OS X v10.5
Releases a port and other state created by CreateQDContextForCollapsedWindowDockTile.
(Deprecated. Use HIWindowReleaseCollapsedDockTileContext (page 104) instead.)

Managing Modality

GetWindowModality (page 74)
Obtains the modality of a window.

SetWindowModality (page 145)
Sets the modality of a window.

HIWindowIsDocumentModalTarget (page 103)
Determines if a window is currently the target window of another document modal window, such as
a sheet.

Managing Themes

SetThemeWindowBackground (page 133)
Sets a window’s background theme.

HIWindowGetThemeBackground (page 101)
Gets the theme background brush for a window.

20 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SetThemeTextColorForWindow (page 133)
Sets a text color that contrasts with a theme brush.

Managing Toolbars

GetWindowToolbar (page 81)
Obtains the toolbar associated with a window.

SetWindowToolbar (page 152)
Associates a toolbar with a window.

ShowHideWindowToolbar (page 154)
Shows or hides the toolbar.

IsWindowToolbarVisible (page 117)
Determines whether a window’s toolbar is visible.

HIWindowSetToolbarView (page 107)
Sets a custom toolbar view for a window.

Managing Transitions

TransitionWindow (page 162)
Shows, hides, moves, or resizes a window with appropriate animation and sound.

TransitionWindowAndParent (page 163)
Shows or hides a window, potentially also moving a second window, with animation and sound.

TransitionWindowWithOptions (page 163)
Transitions a window from one state to another with appropriate animation and sound.

Managing Transparency

GetWindowAlpha (page 59)
Returns the current alpha channel value for the window.

SetWindowAlpha (page 135)
Sets the window’s alpha channel value.

Managing UPPs

DisposeWindowDefUPP (page 256) Deprecated in Mac OS X v10.5
Disposes of the UPP for your window definition. (Deprecated. The WDEF interface is deprecated; use
a custom HIView to draw your custom window frame instead.)

DisposeWindowPaintUPP (page 257) Deprecated in Mac OS X v10.5
Disposes of the UPP to your region painting callback function. (Deprecated. The window content
painting interface is deprecated; use a kEventControlDraw Carbon event handler on a compositing
window’s content view instead.)

Functions by Task 21
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

InvokeWindowDefUPP (page 270) Deprecated in Mac OS X v10.5
Invokes the UPP for a window definition. (Deprecated. The WDEF interface is deprecated; use a custom
HIView to draw your custom window frame instead.)

InvokeWindowPaintUPP (page 270) Deprecated in Mac OS X v10.5
Invokes the UPP for the specified painting region. (Deprecated. The window content painting interface
is deprecated; use a kEventControlDraw Carbon event handler on a compositing window’s content
view instead.)

NewWindowDefUPP (page 277) Deprecated in Mac OS X v10.5
Creates a new UPP for a window definition. (Deprecated. The WDEF interface is deprecated; use a
custom HIView to draw your custom window frame instead.)

NewWindowPaintUPP (page 277) Deprecated in Mac OS X v10.5
Creates a new UPP for a painting region. (Deprecated. The window content painting interface is
deprecated; use a kEventControlDraw Carbon event handler on a compositing window’s content
view instead.)

Managing Window Attributes

GetWindowAttributes (page 59)
Obtains the attributes of a window.

GetAvailableWindowAttributes (page 51)
Returns the window attributes that are valid for a window class

ChangeWindowAttributes (page 34)
Changes a window’s attributes.

HIWindowTestAttribute (page 108)
Returns a Boolean value indicating whether a window has a specified attribute.

HIWindowChangeAttributes (page 86)
Changes the attributes of a window.

HIWindowIsAttributeAvailable (page 102)
Returns a Boolean value indicating whether a window attribute is valid for a specified window class.

Managing Window Availability

HIWindowChangeAvailability (page 87)
Changes the availability of a window during Exposé or in Spaces.

HIWindowGetAvailability (page 96)
Obtains the availability of a window during Exposé or in Spaces.

Managing Window Classes

GetWindowClass (page 61)
Obtains the class of a window.

HIWindowChangeClass (page 87)
Changes the appearance and behavior of a window.

22 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

IsValidWindowClass (page 111)
Determines whether a given window class is valid.

SetWindowClass (page 281) Deprecated in Mac OS X v10.5
Sets the class of a window. (Deprecated. Use HIWindowChangeClass (page 87),
SetWindowGroup (page 140), or HIWindowChangeAttributes (page 86) instead.)

Managing Window Features

GetWindowFeatures (page 64)
Obtains the features that a window supports.

HIWindowChangeFeatures (page 88)
Changes a window’s features.

Managing Window Focus

SetUserFocusWindow (page 134)
Designates a window to receive user focus.

GetUserFocusWindow (page 58)
Returns the current user focus window.

HIWindowShowsFocus (page 107)
Returns a Boolean value indicating whether a window's content should show focus indicators such
as focus rings.

Managing Window Groups

ChangeWindowGroupAttributes (page 35)
Changes the attributes of a window group.

CopyWindowGroupName (page 39)
Obtains a copy of the window group name.

CountWindowGroupContents (page 40)
Counts the number of members of a window group.

CreateWindowGroup (page 43)
Creates a window group.

DebugPrintAllWindowGroups (page 43)
Debugging utility function listing all window groups.

DebugPrintWindowGroup (page 44)
Debugging utility functions for use with window groups.

GetIndexedWindow (page 56)
Obtains the window at the given index in the window group.

GetWindowGroup (page 66)
Obtains the window group associated with a window.

GetWindowGroupAttributes (page 66)
Obtains the attributes of a window group.

Functions by Task 23
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetWindowGroupContents (page 67)
Obtains the contents of a window group.

GetWindowGroupLevel (page 68)
Obtains the level of the group in the window class hierarchy.

GetWindowGroupLevelOfType (page 68)
Obtains the Core Graphics window level of a window group.

GetWindowGroupOfClass (page 69)
Obtains the window group corresponding to a given window class.

GetWindowGroupOwner (page 70)
Obtains the window that owns a window group. (if any)

GetWindowGroupParent (page 70)
Obtains the parent group of a window group.

GetWindowGroupRetainCount (page 70)
Determines the current reference count for a window group.

GetWindowGroupSibling (page 71)
Obtains the next or previous group of a window group.

GetWindowIndex (page 72)
Obtains the index number of a specified window in a group.

IsWindowContainedInGroup (page 114)
Determines if a window is a member of a window group or any of its subgroups.

ReleaseWindowGroup (page 122)
Decrements the reference count for a window group.

RetainWindowGroup (page 127)
Increments the reference count for a window group.

SendWindowGroupBehind (page 130)
Orders one window group behind another.

SetWindowGroup (page 140)
Assigns a window to a window group.

SetWindowGroupLevel (page 141)
Sets the level of group in the window class hierarchy.

SetWindowGroupLevelOfType (page 142)
Sets the window level of a window group.

SetWindowGroupName (page 143)
Assigns a name to a window group.

SetWindowGroupOwner (page 143)
Sets a window as the owner of a window group.

SetWindowGroupParent (page 144)
Sets a window group to be the parent of another window group.

Managing Window Titles

CopyWindowAlternateTitle (page 38)
Obtains a copy of the alternate window title.

24 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SetWindowAlternateTitle (page 136)
Sets an alternate window title.

CopyWindowTitleAsCFString (page 39)
Copies the window title into a Core Foundation string.

SetWindowTitleWithCFString (page 151)
Sets the window title to the contents of a Core Foundation string.

Manipulating Drawers

HIWindowCopyDrawers (page 91)
Obtains an array of the drawers that are attached to a window.

OpenDrawer (page 120)
Opens a drawer.

CloseDrawer (page 36)
Closes a drawer.

GetDrawerCurrentEdge (page 53)
Obtains the current window edge from which the drawer appears.

GetDrawerPreferredEdge (page 54)
Obtains the preferred opening edge for a drawer.

SetDrawerPreferredEdge (page 132)
Set the preferred window edge from which the drawer should appear.

GetDrawerOffsets (page 53)
Obtains the positioning offsets of a drawer.

SetDrawerOffsets (page 131)
Sets the positioning offsets for the drawer with respect to its parent window.

GetDrawerParent (page 54)
Obtains the parent window of a drawer.

SetDrawerParent (page 131)
Sets the parent window for a drawer.

GetDrawerState (page 55)
Determines the current state of the drawer.

ToggleDrawer (page 157)
Toggles the drawer state.

Manipulating Sheets

GetSheetWindowParent (page 58)
Obtains the parent window of a sheet.

ShowSheetWindow (page 155)
Shows a sheet window using appropriate visual effects.

HideSheetWindow (page 84)
Hides a sheet window using appropriate visual effects.

Functions by Task 25
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

DetachSheetWindow (page 44)
Detaches a sheet window from its parent window.

Manipulating Window Color Information

GetWindowContentColor (page 62)
Obtains the color to which a window’s content region is redrawn.

GetWindowContentPattern (page 63)
Obtains the pattern to which a window’s content region is redrawn.

SetWindowContentColor (page 138)
Sets the color to which a window’s content region is redrawn.

GetWRefCon (page 82)
Returns the reference constant from a window.

SetWindowContentPattern (page 138)
Sets the pattern to which a window’s content region is redrawn.

SetWRefCon (page 153)
Sets the refCon field of a window.

GetWindowPic (page 264) Deprecated in Mac OS X v10.5
Returns a handle to a window’s picture. (Deprecated. Use an HIImageView object to draw a window's
content and ask the view for its image instead.)

SetWindowPic (page 281) Deprecated in Mac OS X v10.5
Sets a picture for the Window Manager to draw in a window’s content region. (Deprecated. Use an
HIImageView object to draw a window's content instead.)

Referencing Windows

CloneWindow (page 253) Deprecated in Mac OS X v10.5
Increments the number of references to a window. (Deprecated. Use CFRetain instead.)

GetWindowOwnerCount (page 263) Deprecated in Mac OS X v10.5
Obtains the number of existing references to a window. (Deprecated. Use CFGetRetainCount
instead.)

GetWindowRetainCount (page 266) Deprecated in Mac OS X v10.5
Returns the retain count of a window. (Deprecated. Use CFGetRetainCount instead.)

ReleaseWindow (page 279) Deprecated in Mac OS X v10.5
Decrements the retain count of a window, and destroys the window if the retain count falls to zero.
(Deprecated. Use CFRelease instead.)

RetainWindow (page 280) Deprecated in Mac OS X v10.5
Increments the retain count of a window. (Deprecated. Use CFRetain instead.)

Scrolling

ScrollWindowRect (page 127)
Scroll any area of a window.

26 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ScrollWindowRegion (page 128)
Scrolls a window’s region.

Sizing and Positioning Windows

GetWindowBounds (page 60)
Obtains the size and position of the bounding rectangle of the specified window region.

HIWindowGetBounds (page 97)
Gets the bounds of a specified region of a window.

SetWindowBounds (page 136)
Sets a window’s size and position from the bounding rectangle of the specified window region.

HIWindowSetBounds (page 105)
Sets the bounds of a window based on either the structure or content region.

MoveWindowStructure (page 119)
Positions a window relative to its structure region.

RepositionWindow (page 124)
Positions a window relative to another window or a display screen.

ResizeWindow (page 125)
Handles all user interaction while a window is being resized.

GetAvailableWindowPositioningBounds (page 51)
Obtains the available window positioning bounds.

HIWindowGetAvailablePositioningBounds (page 96)
Gets the available window positioning bounds on a display.

GetAvailableWindowPositioningRegion (page 52)
Obtains the available window positioning region.

HIWindowCopyAvailablePositioningShape (page 90)
Copies the available window positioning shape on a display.

ConstrainWindowToScreen (page 38)
Moves and resizes a window so that it’s contained entirely on a single screen.

HIWindowConstrain (page 89)
Moves and resizes a window to be within a specified bounding rectangle.

GetWindowResizeLimits (page 79)
Returns the minimum and maximum content sizes for a window.

SetWindowResizeLimits (page 150)
Sets the maximum and minimum resize limits for windows.

Updating the Screen

EnableScreenUpdates (page 46)
Enables screen updates for changes to the current application’s windows.

DisableScreenUpdates (page 45)
Disables updates for changes to the current application’s windows.

Functions by Task 27
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Using Default and Cancel Buttons
You can use these functions to add dialog-like button controls to normal windows.

SetWindowDefaultButton (page 139)
Specifies a default button for a window.

GetWindowDefaultButton (page 63)
Returns the current default button for a window.

SetWindowCancelButton (page 137)
Specifies a Cancel button for a window.

GetWindowCancelButton (page 61)
Returns the current Cancel button for a window.

Zooming Windows

GetWindowIdealUserState (page 71)
Obtains the size and position of a window in its user state.

HIWindowGetIdealUserState (page 99)
Gets the bounds of a window’s content region in its user state.

IsWindowInStandardState (page 115)
Determines whether a window is currently zoomed in to the user state or zoomed out to the standard
state.

HIWindowIsInStandardState (page 103)
Returns a Boolean value indicating whether a window is zoomed out to its standard state.

SetWindowIdealUserState (page 144)
Sets the size and position of a window in its user state.

HIWindowSetIdealUserState (page 105)
Sets the bounds of a window’s content region in its user state.

ZoomWindowIdeal (page 168)
Zooms a window in accordance with human interface guidelines.

Miscellaneous

CreateStandardWindowMenu (page 42)
Creates a standard window menu for your application.

GetWindowFromPort (page 65)
Gets a window reference from a CGrafPtr data type.

HIWindowFlush (page 95)
Flushes any dirty areas a window might have.

RegisterWindowDefinition (page 122)
Registers a binding between a resource ID and a window definition function.

ReshapeCustomWindow (page 125)
Notifies the Window Manager that a custom window’s shape has changed.

28 Functions by Task
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

InstallWindowContentPaintProc (page 269) Deprecated in Mac OS X v10.5
Installs a window content painting callback. (Deprecated. Use a kEventControlDraw Carbon event
handler on a window's content view instead.)

Legacy Functions

CalcVis (page 251) Deprecated in Mac OS X v10.5
Calculates the visible region of a window. (Deprecated. There is no replacement function.)

CalcVisBehind (page 251) Deprecated in Mac OS X v10.5
Calculates the visible regions of a series of windows. (Deprecated. There is no replacement function.)

CheckUpdate (page 252) Deprecated in Mac OS X v10.5
Scans the window list for windows that need updating. (Deprecated. Use
FindSpecificEventInQueue or AcquireFirstMatchingEventInQueue instead.)

ClipAbove (page 253) Deprecated in Mac OS X v10.5
Determines the clip region of the Window Manager port. (Deprecated. There is no replacement
function.)

DragGrayRgn (page 257) Deprecated in Mac OS X v10.5
Moves a gray outline of a region on the screen, following the movements of the cursor, until the
mouse button is released. (Deprecated. Use an overlay window or other custom drawing instead.)

DragTheRgn (page 259) Deprecated in Mac OS X v10.5
Tracks the mouse as the user drags the outline of a region. (Deprecated. Use an overlay window or
other custom drawing instead.)

DrawGrowIcon (page 259) Deprecated in Mac OS X v10.5
Draws a grow icon in the window frame. (Deprecated. There is no replacement function.)

GetGrayRgn (page 260) Deprecated in Mac OS X v10.5
Returns a region that covers the desktop area of all active displays. (Deprecated. To determine the
area in which a window may be positioned, use HIWindowGetAvailablePositioningBounds (page
96) or HIWindowCopyAvailablePositioningShape (page 90).)

GetNewCWindow (page 261) Deprecated in Mac OS X v10.5
Creates a color window from a window resource. (Deprecated. Use nib files and
CreateWindowFromNib instead.)

GetNewWindow (page 262) Deprecated in Mac OS X v10.5
Creates a window from a window resource. (Deprecated. Use nib files and CreateWindowFromNib
instead.)

GetWindowProxyFSSpec (page 265) Deprecated in Mac OS X v10.5
Obtains a file system specification structure for the file that is associated with a window. (Deprecated.
Use HIWindowGetProxyFSRef (page 100) instead.)

GetWTitle (page 267) Deprecated in Mac OS X v10.5
Retrieves the title of a window as a Pascal string. (Deprecated. Use
CopyWindowTitleAsCFString (page 39) instead.)

GetWVariant (page 267) Deprecated in Mac OS X v10.5
Returns a window’s variation code. (Deprecated. Use GetWindowAttributes (page 59) to determine
aspects of a window's appearance or behavior.)

GrowWindow (page 268) Deprecated in Mac OS X v10.5
Allows the user to change the size of a window. (Deprecated. Use ResizeWindow (page 125) instead.)

Functions by Task 29
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

NewCWindow (page 272) Deprecated in Mac OS X v10.5
Creates a window with a specified list of characteristics. (Deprecated. Use CreateNewWindow (page
41) instead.)

NewWindow (page 274) Deprecated in Mac OS X v10.5
Creates a window from a parameter list. (Deprecated. Use CreateNewWindow (page 41) instead.)

PaintBehind (page 277) Deprecated in Mac OS X v10.5
Redraws a series of windows in the window list. (Deprecated. Use InvalWindowRect (page 109),
InvalWindowRgn (page 110), or HIViewSetNeedsDisplay to invalidate a portion of a window.)

PaintOne (page 278) Deprecated in Mac OS X v10.5
Redraws the invalid, exposed portions of one window on the desktop. (Deprecated. Use
InvalWindowRect (page 109), InvalWindowRgn (page 110), or HIViewSetNeedsDisplay to
invalidate a portion of a window.)

SetWindowProxyFSSpec (page 282) Deprecated in Mac OS X v10.5
Associates a file with a window. (Deprecated. Use HIWindowSetProxyFSRef (page 106) instead.)

SetWTitle (page 283) Deprecated in Mac OS X v10.5
Specifies a window’s title. (Deprecated. Use SetWindowTitleWithCFString (page 151) instead.)

Functions

ActivateWindow
Activates or deactivates a window.

OSStatus ActivateWindow (
 WindowRef inWindow,
 Boolean inActivate
);

Parameters
inWindow

The window to activate or deactivate.

inActivate
Pass true to activate the window, false otherwise.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
MacWindows.h

30 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ActiveNonFloatingWindow
Returns the currently active nonfloating window.

WindowRef ActiveNonFloatingWindow (
 void
);

Return Value
A reference to the active window.

Discussion
Note that the active window is not necessarily the frontmost window, and it is not necessarily the window
with user focus. Call GetUserFocusWindow (page 58) to get the window that has user focus.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

AreFloatingWindowsVisible
Indicates whether an application’s floating windows are currently visible.

Boolean AreFloatingWindowsVisible (
 void
);

Return Value
A Boolean whose value is true if the application’s floating windows are currently shown or false if the
application’s floating windows are currently hidden.

Discussion
This function checks the visibility state of an application’s floating windows, which are hidden automatically
when the application receives a suspend event and are made visible automatically when the application
receives a resume event.

Special Considerations

The AreFloatingWindowsVisible function operates only upon windows created with the
kFloatingWindowClass constant; see “Window Class Constants” (page 184) for more details on this constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

BeginUpdate
Starts updating a window when you receive an update event for that window.

Functions 31
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

void BeginUpdate (
 WindowRef window
);

Parameters
window

The window that is to be updated when an update event is received. Your application gets this
information from the message field in the update event structure.

Discussion
The BeginUpdate function limits the visible region of the window’s graphics port to the intersection of the
visible region and the update region it then sets the window’s update region to an empty region. After calling
BeginUpdate, your application redraws either the entire content region or only the visible region. In either
case, only the parts of the window that require updating are actually redrawn on the screen.

Every call to BeginUpdate must be matched with a subsequent call to EndUpdate (page 47) after your
application redraws the content region. BeginUpdate and EndUpdate can’t be nested. That is, you must
call EndUpdate before the next call to BeginUpdate.

In Mac OS X, you only receive one update event. If you don’t call BeginUpdate, you won’t receive any further
update events until the window is invalidated again.

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
MacWindows.h

BeginWindowProxyDrag
Creates the drag reference and the drag image when the user drags a proxy icon.

OSStatus BeginWindowProxyDrag (
 WindowRef window,
 DragRef *outNewDrag,
 RgnHandle outDragOutlineRgn
);

Parameters
window

The window whose proxy icon is being dragged.

32 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

outNewDrag
On input, a pointer to a value of type DragRef. On return, the value refers to the current drag process.

outDragOutlineRgn
On input, a value of type RgnHandle. Your application can create this handle with a call to the
QuickDraw function NewRgn. On return, this region is set to the outline of the icon being dragged.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Typically, if the proxy icon represents a type of object (currently, file system entities such as files, folders, and
volumes) supported by the Window Manager, the Window Manager can handle all aspects of the drag process
itself, and your application should call the function TrackWindowProxyDrag (page 159). However, if the
proxy icon represents a type of data that the Window Manager does not support, or if you want to implement
custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 160).

The TrackWindowProxyFromExistingDrag (page 160) function accepts an existing drag reference and
adds file data if the window contains a file proxy. If your application uses
TrackWindowProxyFromExistingDrag, you then have the choice of using this function in conjunction
with the functions BeginWindowProxyDrag and EndWindowProxyDrag (page 47) or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and disposing of the drag
yourself.

Specifically, your application can call BeginWindowProxyDrag to set up the drag image and drag reference.
Your application must then track the drag, using TrackWindowProxyFromExistingDrag, and do any
required moving of data and, finally, call EndWindowProxyDrag (page 47) to dispose of the drag reference.
BeginWindowProxyDrag should not be used for types handled by the Window Manager unless the application
wants to implement custom dragging behavior for those types.

Your application detects a drag when the function FindWindow (page 48) returns the inProxyIcon result
code.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

BringToFront
Brings a window to the front.

void BringToFront (
 WindowRef window
);

Parameters
window

The window that is to be brought to the front.

Functions 33
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
The BringToFront function puts the specified window at the beginning of the window list and redraws
the window in front of all others on the screen. It does not change the window’s highlighting or make it
active.

Your application does not ordinarily call BringToFront. The user interface guidelines specify that the
frontmost window should be the active window. To bring a window to the front and make it active, call the
function SelectWindow (page 129).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
MacWindows.h

ChangeWindowAttributes
Changes a window’s attributes.

OSStatus ChangeWindowAttributes (
 WindowRef window,
 WindowAttributes setTheseAttributes,
 WindowAttributes clearTheseAttributes
);

Parameters
window

The window whose attributes you want to change.

setTheseAttributes
The attributes you want to set. Pass kWindowNoAttributes if you do not want to set any attributes.
See “Window Attributes” (page 194) for a list of window attributes.

clearTheseAttributes
The attributes you want to clear (if any). Pass kWindowNoAttributes if you do not want to clear
any attributes. See “Window Attributes” (page 194) for a list of window attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If the changed attributes affect the visible window’s frame, the window regions are recalculated and the
window is redrawn.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

34 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

ChangeWindowGroupAttributes
Changes the attributes of a window group.

OSStatus ChangeWindowGroupAttributes (
 WindowGroupRef inGroup,
 WindowGroupAttributes setTheseAttributes,
 WindowGroupAttributes clearTheseAttributes
);

Parameters
inGroup

The window group whose attributes you want to set.

setTheseAttributes
The attributes you want to set. See “Window Group Attributes” (page 227) for a list of possible attributes.

clearTheseAttributes
The attributes you want to clear (if any). See “Window Group Attributes” (page 227) for a list of possible
attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ChangeWindowPropertyAttributes
Changes attributes associated with a window property.

OSStatus ChangeWindowPropertyAttributes (
 WindowRef window,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits attributesToSet,
 OptionBits attributesToClear
);

Parameters
window

The window whose property attributes are to be changed.

propertyCreator
The property creator.

propertyTag
The property tag.

Functions 35
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

attributesToSet
The attributes to set. For a possible value, see “Window Property Persistent Constant” (page 220).

attributesToClear
The attributes to clear. For a possible value, see “Window Property Persistent Constant” (page 220).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CloseDrawer
Closes a drawer.

OSStatus CloseDrawer (
 WindowRef inDrawerWindow,
 Boolean inAsync
);

Parameters
inDrawerWindow

The drawer window that is to be closed.

inAsync
Pass true for asynchronous closing; otherwise, pass false.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
CloseDrawer may close the drawer either synchronously or asynchronously, depending on the value of the
inAsync parameter. If inAsync is true, CloseDrawer installs an event loop timer that closes the drawer
after CloseDrawer returns to the caller; therefore, the caller must be running its event loop for the drawer
to close. If inAsync is false, CloseDrawer closes the drawer completely before returning to the caller.
CloseDrawer retains the drawer window while the drawer is closing, and releases it when the drawer is
fully closed. CloseDrawer sends the kEventWindowDrawerClosing event to the drawer, the drawer’s
parent, and the application before closing the drawer. If an event handler for this event returns
userCanceledErr, CloseDrawerwill return immediately without closing the drawer. CloseDrawer sends
the kEventWindowDrawerClosed event to the drawer, the drawer’s parent, and the application after the
drawer has finished closing.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

36 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

CollapseAllWindows
Collapses or expands all collapsable windows in an application.

OSStatus CollapseAllWindows (
 Boolean collapse
);

Parameters
collapse

Set to true to collapse all windows in the application. Set to false to expand all windows in the
application.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
In Mac OS X, this function works with any window that has the kWindowCollapseBoxAttribute. If that
attribute is not present, the Window Manager checks for the kWindowCanCollapse feature bit.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CollapseWindow
Collapses or expands a window to the dock.

OSStatus CollapseWindow (
 WindowRef window,
 Boolean collapse
);

Parameters
window

The window that is to be collapsed or expanded.

collapse
Indicates whether the window should be collapsed or expanded.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The CollapseWindow function tells the Window Manager to collapse or expand a window depending upon
the value passed in the collapse parameter. In Mac OS X, any window that has the
kWindowCollapseBoxAttribute can be collapsed. If that attribute is not present, the Window Manager
checks for the kWindowCanCollapse feature bit.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 37
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

ConstrainWindowToScreen
Moves and resizes a window so that it’s contained entirely on a single screen.

OSStatus ConstrainWindowToScreen (
 WindowRef inWindowRef,
 WindowRegionCode inRegionCode,
 WindowConstrainOptions inOptions,
 const Rect *inScreenRect,
 Rect *outStructure
);

Parameters
inWindowRef

The window to constrain.

inRegionCode
The window region to constrain. See “Window Region Constants” (page 217) for a list of possible
constants to pass.

inOptions
Flags controlling how the window is constrained.

inScreenRect
A rectangle, in global coordinates, in which to constrain the window. May be NULL. If NULL, the
window is constrained to the screen with the greatest intersection with the specified window region.

outStructure
On exit, contains the new structure bounds of the window, in global coordinates. May be NULL.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowConstrain (page 89)

Declared In
MacWindows.h

CopyWindowAlternateTitle
Obtains a copy of the alternate window title.

38 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus CopyWindowAlternateTitle (
 WindowRef inWindow,
 CFStringRef *outTitle
);

Parameters
inWindow

The window to get the alternate title from.

outTitle
Receives the alternate title for the window. If the window does not have an alternate title, NULL will
be returned in outTitle.

Return Value
A result code. See “Window Manager Result Codes” (page 247). An operating system status code.

Discussion
See the discussion of SetWindowAlternateTitle (page 136) for more information about alternate window
titles.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CopyWindowGroupName
Obtains a copy of the window group name.

OSStatus CopyWindowGroupName (
 WindowGroupRef inGroup,
 CFStringRef *outName
);

Parameters
inGroup

The window group to query. For information on this data type,

outName

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CopyWindowTitleAsCFString
Copies the window title into a Core Foundation string.

Functions 39
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus CopyWindowTitleAsCFString (
 WindowRef inWindow,
 CFStringRef *outString
);

Parameters
inWindow

The window whose title is to be copied.

outString
On output, the window’s title.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

CountWindowGroupContents
Counts the number of members of a window group.

ItemCount CountWindowGroupContents (
 WindowGroupRef inGroup,
 WindowGroupContentOptions inOptions
);

Parameters
inGroup

The window group whose members are to be counted.

inOptions
Counting options. See “Window Group Content Options” (page 228) for possible constants to pass.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateCustomWindow
Creates a custom window based on a registered toolbox object class or a custom window root view.

40 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus CreateCustomWindow (
 const WindowDefSpec *def,
 WindowClass windowClass,
 WindowAttributes attributes,
 const Rect *contentBounds,
 WindowRef *outWindow
);

Parameters
def

For information on this data type, see WindowDefSpec (page 182).

windowClass
The class the custom window should belong to. This value determines the layer ordering of the custom
window.

attributes
Attributes for the window. See “Window Attributes” (page 194) for a list of possible attributes.

contentBounds
Pointer to a Rect structure in global coordinates indicating the dimensions of the window’s content
region.

outWindow
On return, the newly-created window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowCreate (page 92)

Declared In
MacWindows.h

CreateNewWindow
Creates a window from parameter data.

OSStatus CreateNewWindow (
 WindowClass windowClass,
 WindowAttributes attributes,
 const Rect *contentBounds,
 WindowRef *outWindow
);

Parameters
windowClass

A constant that categorizes the class of window to be created. For certain classes, the window class
can be altered after the window is created by calling HIWindowChangeClass (page 87). See “Window
Class Constants” (page 184) for a description of possible values for this parameter.

Functions 41
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

attributes
Attributes for the window. See “Window Attributes” (page 194) for a list of possible attributes.

contentBounds
Pointer to a Rect structure in global coordinates indicating the dimensions of the window’s content
region.

outWindow
On input, a pointer to a value of type WindowRef. On return, the window pointer points to the newly
created window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The CreateNewWindow function creates a window based on the attributes and class you specify in the
attributes and windowClass parameters. CreateNewWindow sets the new window’s content region to
the size and location specified by the rectangle passed in the bounds parameter, which in turn determines
the dimensions of the entire window. The Window Manager creates the window invisibly and places it at
the front of the window’s window group. After calling CreateNewWindow, you should set any desired
associated data—using Window Manager or Control Manager accessor functions—then call the function
TransitionWindow (page 162) or ShowWindow (page 156) to display the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowCreate (page 92)

Related Sample Code
CarbonSketch

Declared In
MacWindows.h

CreateStandardWindowMenu
Creates a standard window menu for your application.

OSStatus CreateStandardWindowMenu (
 OptionBits inOptions,
 MenuRef *outMenu
);

Parameters
inOptions

Option bits. Pass 0 or kWindowMenuIncludeRotate. For information on the
kWindowMenuIncludeRotate constant, see “Window Menu Item Property Constants” (page 238).

outMenu
On output, a new menu reference that contains the standard window menu items and commands.

Return Value
A result code. See “Window Manager Result Codes” (page 247). An operating system status code.

42 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
You can call this function to create a window menu for your application. To register a window to be tracked
by this menu, you either create your window with CreateNewWindow (page 41), passing the
kWindowInWindowMenuAttribute, or you can use ChangeWindowAttributes (page 34) after the window
is created. The Toolbox takes care of acting on the standard items such as zoom and minimize, as well as
bringing selected windows to the front. All you need to do is insert the menu in your menu bar (typically at
the end of your menu list) and register your windows, and the Toolbox does the rest.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateWindowGroup
Creates a window group.

OSStatus CreateWindowGroup (
 WindowGroupAttributes inAttributes,
 WindowGroupRef *outGroup
);

Parameters
inAttributes

Attributes for the new window group. See “Window Group Attributes” (page 227) for a listing of
possible attributes.

outGroup
For information on this data type, see WindowGroupRef (page 182).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

DebugPrintAllWindowGroups
Debugging utility function listing all window groups.

void DebugPrintAllWindowGroups (
 void
);

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Functions 43
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

DebugPrintWindowGroup
Debugging utility functions for use with window groups.

void DebugPrintWindowGroup (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group. For information on this data type,

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

DetachSheetWindow
Detaches a sheet window from its parent window.

OSStatus DetachSheetWindow (
 WindowRef inSheet
);

Parameters
inSheet

The window sheet that is to be detached from its parent window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function detaches a sheet window from its parent window without affecting the visibility or position of
the sheet or its parent. This function is useful for hiding a sheet window without an animation effect. To do
so, call DetachSheetWindow to detach the sheet from the parent, and then call HideWindow (page 84) to
hide the sheet. Call DisposeWindow (page 45) to destroy the sheet.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

44 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

DisableScreenUpdates
Disables updates for changes to the current application’s windows.

OSStatus DisableScreenUpdates (
 void
);

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

DisposeWindow
Removes a window.

void DisposeWindow (
 WindowRef window
);

Parameters
window

On input, the window to be closed.

Discussion
The DisposeWindow function reduces a window’s reference count by one. If the resulting reference count
is zero, then DisposeWindow removes the window from the screen and deletes it from the window list, then
releases the memory occupied by all structures associated with the window, including the window structure.

Note that DisposeWindow assumes that any picture pointed to by the window structure field windowPic
is data, not a resource, and it calls the QuickDraw function KillPicture to delete it. If your application uses
a picture stored as a resource, you must release the resource or release the memory it occupies with the
ReleaseResource function and set the windowPic field to NULL before closing the window.

Any pending update events for the window are discarded. If the window being removed is the frontmost
window, the window behind it, if any, becomes the active window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer
QTCarbonShell
QTMetaData

Functions 45
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

DragWindow
Moves a window on the screen when the user drags it by its drag region.

void DragWindow (
 WindowRef window,
 Point startPt,
 const Rect *boundsRect
);

Parameters
window

The window that is to be dragged.

startPt
On input, the location, in global coordinates, of the cursor at the time the user pressed the mouse
button. Your application retrieves this point from the where field of the event structure.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that limits the region to which a window
can be dragged. If the mouse button is released when the cursor is outside the limits of boundsRect,
DragWindow returns without moving the window (or, if it was inactive, without making it the active
window).

In CarbonLib and Mac OS X, this parameter can be NULL to indicate that there are no restrictions on
window movement. This parameter is ignored by CarbonLib and Mac OS X v10.0 through v10.2; it is
obeyed in Mac OX v10.3 and later.

Discussion
The DragWindow function moves the window around the screen, following the movement of the cursor until
the user releases the mouse button. If the Command key was not pressed when the mouse button was
pressed, DragWindow calls SelectWindow to make the window active before it drags the window. If the
Command key was pressed when the mouse button was pressed, DragWindow moves the window without
making it active.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

EnableScreenUpdates
Enables screen updates for changes to the current application’s windows.

46 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus EnableScreenUpdates (
 void
);

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

EndUpdate
Finishes updating a window.

void EndUpdate (
 WindowRef window
);

Parameters
window

The window for which updating is to be finished.

Discussion
The EndUpdate function restores the normal visible region of a window’s graphics port. When you receive
an update event for a window, you call BeginUpdate (page 31), redraw the update region, and then call
EndUpdate. Each call to BeginUpdate must be balanced by a subsequent call to EndUpdate.

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
MacWindows.h

EndWindowProxyDrag
Disposes of the drag reference when the user completes the drag of a proxy icon.

Functions 47
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus EndWindowProxyDrag (
 WindowRef window,
 DragRef theDrag
);

Parameters
window

The window whose proxy icon is being dragged.

theDrag
A value that refers to the current drag process. Pass in the value produced in the outNewDrag
parameter of BeginWindowProxyDrag.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Typically, if the proxy icon represents a type of object (currently, file system entities such as files, folders, and
volumes) supported by the Window Manager, the Window Manager can handle all aspects of the drag process
itself, and your application should call the function TrackWindowProxyDrag (page 159). However, if the
proxy icon represents a type of data that the Window Manager does not support, or if you want to implement
custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 160).

The TrackWindowProxyFromExistingDrag (page 160) function accepts an existing drag reference and
adds file data if the window contains a file proxy. If your application uses
TrackWindowProxyFromExistingDrag, you then have the choice of using this function in conjunction
with the functions BeginWindowProxyDrag (page 32) and EndWindowProxyDrag or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and disposing of the drag
yourself.

Specifically, your application can call BeginWindowProxyDrag to set up the drag image and drag reference.
Your application must then track the drag, using TrackWindowProxyFromExistingDrag, and do any
required moving of data and, finally, call EndWindowProxyDrag to dispose of the drag reference and its
associated image data. The EndWindowProxyDrag function does not dispose of the region created for use
by BeginWindowProxyDrag, however, so this remains the application’s responsibility to dispose. The
EndWindowProxyDrag function should not be used for types handled by the Window Manager unless you
want to implement custom dragging behavior for those types.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

FindWindow
Maps the location of the cursor to a part of the screen or a region of a window when your application receives
a mouse-down event.

48 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

WindowPartCode FindWindow (
 Point thePoint,
 WindowRef *window
);

Parameters
thePoint

The point, in global coordinates, where the mouse-down event occurred. Your application retrieves
this information from the where field of the event structure.

window
A pointer to the window in which the mouse-down event occurred. FindWindow produces NULL if
the mouse-down event occurred outside a window.

Return Value
The location of the cursor when the user pressed the mouse button; see “Window Part Code Constants” (page
209).

Discussion
You typically call the function FindWindow whenever you receive a mouse-down event. The FindWindow
function helps you dispatch the event by reporting whether the cursor was in the menu bar or in a window
when the mouse button was pressed. If the cursor was in a window, the function will produce both a pointer
to the window and a constant that identifies the region of the window in which the event occurred.

If you are using the Carbon event handlers to handle events, a faster way of getting the window and part
that received a mouse-down event is to get thekEventParamWindowRef andkEventParamWindowPartCode
parameters from the event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowFindAtLocation (page 94)

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
MacWindows.h

FindWindowOfClass
Finds a window of a specific class at the specified point onscreen.

Functions 49
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus FindWindowOfClass (
 const Point *where,
 WindowClass inWindowClass,
 WindowRef *outWindow,
 WindowPartCode *outWindowPart
);

Parameters
where

The point, in global coordinates, at which to search for a window.

inWindowClass
The class of window for which to search. Passing kAllWindowClasses returns any window found
at where.

outWindow
On return, a pointer to the window, if it is of the specified class. If no window was found, this value
is NULL. Note that you can pass NULL for this parameter.

outWindowPart
On return, the part code of the window part under the mouse. If no window was found, this value is
inDesk. Note that you can pass NULL for this parameter.

Return Value
A result code. If no window of the specified class is found at the specified point, this function returns
errWindowNotFound. For other possible return values, see “Window Manager Result Codes” (page 247).

Discussion
This function is similar to FindWindow (page 48), but lets you restrict the search to windows of a particular
class.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowFindAtLocation (page 94)

Declared In
MacWindows.h

FrontNonFloatingWindow
Returns to the application the frontmost visible window that is not a floating window.

WindowRef FrontNonFloatingWindow (
 void
);

Return Value
The first visible window in the window list that is of a nonfloating class. See “Window Class Constants” (page
184) for a description of window classes.

50 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
Your application should call the FrontNonFloatingWindow function when you want to identify the frontmost
visible window that is not a floating window. If you want to identify the frontmost visible window, whether
floating or not, your application should call the function FrontWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

GetAvailableWindowAttributes
Returns the window attributes that are valid for a window class

WindowAttributes GetAvailableWindowAttributes (
 WindowClass inClass
);

Parameters
inClass

The window class to query.

Return Value
The window attributes that are valid for the window class specified by inClass. See “Window Attributes” (page
194) for a list of possible attributes.

Discussion
Some window classes support different attributes on different platforms. For example, floating windows can
have collapse boxes in Mac OS 9, but not in Mac OS X. The Window Manager returns an error if you attempt
to create a window with attributes that aren’t supported for the requested window class.

You can use this API to determine those attributes that are supported by the current platform and remove
those attributes that are not supported by the current platform before calling CreateNewWindow (page 41).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetAvailableWindowPositioningBounds
Obtains the available window positioning bounds.

Functions 51
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus GetAvailableWindowPositioningBounds (
 GDHandle inDevice,
 Rect *outAvailableRect
);

Parameters
inDevice

The screen for which the available window positioning bounds are to be obtained.

outAvailableRect
On return, a pointer to the available bounds for the device specified by inDevice.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The available window positioning bounds is that area on the screen inside which a window may be positioned
without intersecting or overlapping the menu bar, Dock, or other UI provided by the operating system.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetAvailableWindowPositioningRegion
Obtains the available window positioning region.

OSStatus GetAvailableWindowPositioningRegion (
 GDHandle inDevice,
 RgnHandle ioRgn
);

Parameters
inDevice

The screen for which the available window positioning region is to be obtained.

ioRgn
On input, contains a preallocated RgnHandle. On return, the RgnHandle has been modified to contain
the available region for the given screen.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The available window positioning region is that area on the screen inside which a window may be positioned
without intersecting or overlapping the menu bar, Dock, or other UI provided by the operating system. This
function differs from GetAvailableWindowPositioningBounds (page 51) in that the bounds version
removes the entire area that may theoretically be covered by the Dock, even if the Dock does not currently
reach from edge to edge of the device on which it is positioned. The region version includes the area at the
sides of the Dock that is not covered by the Dock in the available region.

Availability
Available in Mac OS X v10.2 and later.

52 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerCurrentEdge
Obtains the current window edge from which the drawer appears.

OptionBits GetDrawerCurrentEdge (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose window edge is to be obtained.

Return Value
The current window edge. See “Window Edge Constants” (page 237) for a list of possible return values.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerOffsets
Obtains the positioning offsets of a drawer.

OSStatus GetDrawerOffsets (
 WindowRef inDrawerWindow,
 CGFloat *outLeadingOffset,
 CGFloat *outTrailingOffset
);

Parameters
inDrawerWindow

The drawer window whose positioning offsets are to be obtained.

outLeadingOffset
On exit, a pointer to the drawer’s leading offset. Pass NULL if you don’t need this information.

outTrailingOffset
On exit, a pointer to the drawer’s trailing offset. Pass NULL if you don’t need this information.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Functions 53
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

GetDrawerParent
Obtains the parent window of a drawer.

WindowRef GetDrawerParent (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose parent window is to be obtained.

Return Value
The window that is the parent of the drawer specified by inDrawerWindow.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerPreferredEdge
Obtains the preferred opening edge for a drawer.

OptionBits GetDrawerPreferredEdge (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose preferred opening edge is to be obtained.

Return Value
See “Window Edge Constants” (page 237) for a list of possible values.

Discussion
Note that the preferred edge may not be the same as the current edge, due to window positioning. For
example, the right edge may be the preferred edge, but if the window is placed such that the right edge is
offscreen, the drawer will appear on the left edge instead.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

54 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetDrawerState
Determines the current state of the drawer.

WindowDrawerState GetDrawerState (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose state is to be determined.

Return Value
See “Drawer State Constants” (page 236) for a list of possible values.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetFrontWindowOfClass
Obtains the frontmost window of a given class.

WindowRef GetFrontWindowOfClass (
 WindowClass inWindowClass,
 Boolean mustBeVisible
);

Parameters
inWindowClass

The class of the window you want to obtain. If you pass kAllWindowClasses, the function returns
the frontmost window in the window list.

mustBeVisible
If set to true, the function returns the frontmost visible window. If set to false, the function returns
the frontmost window of the specified class, regardless of whether the window is visible.

Return Value
A reference to the frontmost window of the class specified by inWindowClass.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Config Save
QTCarbonShell
QTMetaData

Declared In
MacWindows.h

Functions 55
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetIndexedWindow
Obtains the window at the given index in the window group.

OSStatus GetIndexedWindow (
 WindowGroupRef inGroup,
 ItemCount inIndex,
 WindowGroupContentOptions inOptions,
 WindowRef *outWindow
);

Parameters
inGroup

The window group. For information on this data type,

inIndex
The index of the window. This parameter may range from 1 to the value returned by
CountWindowGroupContents.

inOptions
Options for determining the number of windows. See “Window Group Content Options” (page 228)
for possible values.

outWindow
The window at the index specified by inIndex in the group specified by inGroup.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetNextWindow
Returns the next window in a window list.

WindowRef GetNextWindow (
 WindowRef window
);

Parameters
window

The window to start from.

Return Value
The next window in a window list.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

56 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetNextWindowOfClass
Obtains the next window in a given window group.

WindowRef GetNextWindowOfClass (
 WindowRef inWindow,
 WindowClass inWindowClass,
 Boolean mustBeVisible
);

Parameters
inWindow

The window at which to start.

inWindowClass
The class of window to obtain. If you pass kAllWindowClasses, the function returns the window
directly behind the input window. If no windows exist behind the front window, the function returns
NULL.

mustBeVisible
If set to true, this function returns the next visible window of the specified window class. If set to
false, this function returns the next window of the specified window class, regardless of whether it
is visible.

Return Value
A reference for the next window of the specified class after the window specified by inWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

GetPreviousWindow
Returns the window above the specified window in the window list.

WindowRef GetPreviousWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window at which to start.

Return Value
A reference for the previous window of the specified class.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Functions 57
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

GetSheetWindowParent
Obtains the parent window of a sheet.

OSStatus GetSheetWindowParent (
 WindowRef inSheet,
 WindowRef *outParentWindow
);

Parameters
inSheet

The window sheet whose parent is to be obtained.

outParentWindow
A pointer to the reference for the parent of the window sheet specified by inSheet.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetUserFocusWindow
Returns the current user focus window.

WindowRef GetUserFocusWindow (
 void
);

Return Value
The window receiving user focus.

Discussion
This function returns the window that receives menu commands and keyboard input as part of the standard
event dispatching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

58 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetWindowActivationScope
Obtains a window’s activation scope.

OSStatus GetWindowActivationScope (
 WindowRef inWindow,
 WindowActivationScope *outScope
);

Parameters
inWindow

The window whose activation scope is to be obtained.

outScope
On return, a pointer to the window’s activation scope.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowAlpha
Returns the current alpha channel value for the window.

OSStatus GetWindowAlpha (
 WindowRef inWindow,
 CGFloat *outAlpha
);

Parameters
inWindow

The window for which the value of the alpha channel is to be obtained.

outAlpha
The current alpha value. This value can range from 0.0 (completely transparent) to 1.0 (opaque).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowAttributes
Obtains the attributes of a window.

Functions 59
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus GetWindowAttributes (
 WindowRef window,
 WindowAttributes *outAttributes
);

Parameters
window

The window whose attributes you want to obtain.

outAttributes
On input, a pointer to an unsigned 32-bit value of type WindowAttributes. On return, the bits are
set to the attributes of the specified window. See “Window Attributes” (page 194) for a description of
possible attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Window attributes specify a window’s features (such as whether the window has a close box) and logical
attributes (such as whether the window receives update and activate events).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowBounds
Obtains the size and position of the bounding rectangle of the specified window region.

OSStatus GetWindowBounds (
 WindowRef window,
 WindowRegionCode regionCode,
 Rect *globalBounds
);

Parameters
window

The window whose bounds you want to obtain.

regionCode
A constant identifying the window region whose bounds you want to obtain. See “Window Region
Constants” (page 217) for a list of possible values.

globalBounds
A pointer to a structure of type Rect. On return, the rectangle contains the dimensions and position,
in global coordinates, of the window region specified in the regionCode parameter.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Use the GetWindowBounds function to obtain the bounding rectangle for the specified window region for
the specified window.

60 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowGetBounds (page 97)

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

GetWindowCancelButton
Returns the current Cancel button for a window.

OSStatus GetWindowCancelButton (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

The window whose Cancel button you want to obtain.

outControl
A pointer to a control. On output, the control is the Cancel button.

Return Value
A result code.

Discussion
You can use this function to determine which button or control is the specified Cancel button for a given
window. This button would be considered to have been clicked if the user instead presses Command-period
or the Escape key.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowClass
Obtains the class of a window.

Functions 61
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus GetWindowClass (
 WindowRef window,
 WindowClass *outClass
);

Parameters
window

The window whose class you want to obtain.

outClass
On input, a pointer to a value of type WindowClass. On return, this value identifies the class of the
specified window. See “Window Class Constants” (page 184) for a list of possible window classes. In
Mac OS 8 and Mac OS 9, for windows not originally created by CreateNewWindow (page 41), the
class pointed to by the outClass parameter is always identified by the constant
kDocumentWindowClass.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowContentColor
Obtains the color to which a window’s content region is redrawn.

OSStatus GetWindowContentColor (
 WindowRef window,
 RGBColor *color
);

Parameters
window

The window whose content color is being retrieved.

color
On input, a pointer to an RGBColor structure. On return, the structure contains the content color for
the specified window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The GetWindowContentColor function obtains the color to which the window’s content region is redrawn.

See also the function SetWindowContentColor (page 138).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

62 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

GetWindowContentPattern
Obtains the pattern to which a window’s content region is redrawn.

OSStatus GetWindowContentPattern (
 WindowRef window,
 PixPatHandle outPixPat
);

Parameters
window

The window whose content pattern is being retrieved.

outPixPat
On input, a handle to a structure of type PixPat. On return, the structure contains a copy of the
content pattern data for the specified window, which your application is responsible for disposing.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The GetWindowContentPattern function obtains the pattern to which the window’s content region is
redrawn.

See also the function SetWindowContentPattern (page 138).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowDefaultButton
Returns the current default button for a window.

OSStatus GetWindowDefaultButton (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

The window whose default button you want to obtain.

outControl
A pointer to a control. On output, the control is the default button.

Return Value
A result code.

Functions 63
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
You can use this function to determine which button or control is the default for a given window. This button
would be considered to have been clicked if the user instead presses the Return or Enter keys on the keyboard.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowDockTileMenu
Returns the menu to be displayed by a window’s dock tile.

MenuRef GetWindowDockTileMenu (
 WindowRef inWindow
);

Parameters
inWindow

The window whose menu is to be obtained.

Return Value
The menu reference for the window specified by inWindow. See the Menu Manager documentation for a
description of the MenuRef data type.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowFeatures
Obtains the features that a window supports.

OSStatus GetWindowFeatures (
 WindowRef window,
 UInt32 *outFeatures
);

Parameters
window

A pointer to the window to be examined.

outFeatures
On input, a pointer to an unsigned 32-bit value. On return, the bits of the value specify the features
the window supports; see “Window Feature Bits” (page 207).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

64 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
The GetWindowFeatures function produces a window definition function’s features in response to a
kWindowMsgGetFeatures message.

Instead of calling this function, most applications should call GetWindowAttributes (page 59) to check
for specific attributes, such as kWindowCollapseBoxAttribute and kWindowResizableAttribute.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowFromPort
Gets a window reference from a CGrafPtr data type.

WindowRef GetWindowFromPort (
 CGrafPtr port
);

Parameters
port

The port to query.

Return Value
The window reference obtained from the port specified by port, or NULL if the port parameter is not actually
attached to a window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGreatestAreaDevice
Returns the graphics device with the greatest area of intersection with a specified window region.

OSStatus GetWindowGreatestAreaDevice (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 GDHandle *outGreatestDevice,
 Rect *outGreatestDeviceRect
);

Parameters
inWindow

The window to compare against.

Functions 65
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inRegion
The window region to compare against. See “Window Region Constants” (page 217) for a list of possible
values.

outGreatestDevice
On return, the graphics device with the greatest intersection. May be NULL.

outGreatestDeviceRect
On return, the bounds of the graphics device with the greatest intersection. May be NULL. If the device
with the greatest intersection also contains the menu bar, the device rect will exclude the menu bar
area.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroup
Obtains the window group associated with a window.

WindowGroupRef GetWindowGroup (
 WindowRef inWindow
);

Parameters
inWindow

The window whose window group is to be obtained.

Return Value
The window group reference for the window specified by inWindow. For information on this data type, see
WindowGroupRef (page 182).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupAttributes
Obtains the attributes of a window group.

66 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus GetWindowGroupAttributes (
 WindowGroupRef inGroup,
 WindowGroupAttributes *outAttributes
);

Parameters
inGroup

The window group whose attributes are to be changed. For information on this data type,

outAttributes
On return, the attributes of the group. See “Window Group Attributes” (page 227) for a list of possible
values.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupContents
Obtains the contents of a window group.

OSStatus GetWindowGroupContents (
 WindowGroupRef inGroup,
 WindowGroupContentOptions inOptions,
 ItemCount inAllowedItems,
 ItemCount *outNumItems,
 void **outItems
);

Parameters
inGroup

The window group whose contents you want to obtain. For information on this data type, see
WindowGroupRef (page 182).

inOptions
Options for determining how to count the group members. See “Window Group Content
Options” (page 228) for a list of possible values.

inAllowedItems
The number of items that will fit in outItems.

outNumItems
On return, the number of items in the group.

outItems
On entry, this parameter must be a pointer to a pre-allocated buffer in which the window group
contents (either window references or window group references) are to be placed. On return, the
buffer pointed to by this parameter contains the requested window references or window group
references.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Functions 67
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupLevel
Obtains the level of the group in the window class hierarchy.

OSStatus GetWindowGroupLevel (
 WindowGroupRef inGroup,
 SInt32 *outLevel
);

Parameters
inGroup

The window group. For information on this data type,

outLevel
On exit, the window level of the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The window group’s level is only used to set the level of its windows if the window group is a child of the
root group. If there is another group in the group hierarchy between this group and the root group, this
group’s level is ignored.

See the Core Graphics frameworks header CGWindowLevel.h for a listing of window levels.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupLevelOfType
Obtains the Core Graphics window level of a window group.

OSStatus GetWindowGroupLevelOfType (
 WindowGroupRef inGroup,
 UInt32 inLevelType,
 CGWindowLevel *outLevel
);

Parameters
inGroup

The window group whose Core Graphics window level is to be obtained.

68 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inLevelType
The level type to obtain. Specify kWindowGroupLevelActive, kWindowGroupLevelInactive, or
kWindowGroupLevelPromoted. For details, see “Window Group Level Constants” (page 244).

outLevel
On output, the Core Graphics window level for the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
In Mac OS X v10.4 and later, multiple Core Graphics window levels may be associated with a window group:
one level for when the application is active and another for when the application is inactive. The Window
Manager automatically switches each group’s Core Graphics window level as the application becomes active
or inactive. Use GetWindowGroupLevelOfType to get each Core Graphics window level associated with a
window group, including the promoted window level that is actually in use for windows in the group when
the application is active.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupOfClass
Obtains the window group corresponding to a given window class.

WindowGroupRef GetWindowGroupOfClass (
 WindowClass windowClass
);

Parameters
windowClass

The window class to query.

Return Value
For information on this data type, see WindowGroupRef (page 182).

Discussion
Each window class has an associated pre-defined window group. This function returns the window group
reference for the window group that is associated with windowClass. Note that all windows in a group do
not have to be of the same window class.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 69
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetWindowGroupOwner
Obtains the window that owns a window group. (if any)

WindowRef GetWindowGroupOwner (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group to query. For information on this data type,

Return Value
The window reference for the window that owns the group specified by inGroup.

Discussion
You call SetWindowGroupOwner (page 143) to associate a window group with a particular window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupParent
Obtains the parent group of a window group.

WindowGroupRef GetWindowGroupParent (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group whose parent is to be obtained.

Return Value
The parent of the window group specified by inGroup.

Discussion
You can nest window groups within each other.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupRetainCount
Determines the current reference count for a window group.

70 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ItemCount GetWindowGroupRetainCount (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group for which the current reference count is to be obtained. For information on this
data type, see WindowGroupRef (page 182).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupSibling
Obtains the next or previous group of a window group.

WindowGroupRef GetWindowGroupSibling (
 WindowGroupRef inGroup,
 Boolean inNextGroup
);

Parameters
inGroup

The window group for which the next or previous group is to be obtained. For information on this
data type, see WindowGroupRef (page 182).

inNextGroup
Pass true to obtain the next sibling; false to obtain the previous sibling.

Return Value
The next or previous group. For information on this data type, see WindowGroupRef (page 182).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowIdealUserState
Obtains the size and position of a window in its user state.

Functions 71
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus GetWindowIdealUserState (
 WindowRef inWindow,
 Rect *outUserState
);

Parameters
inWindow

The window for which you want to obtain the user state.

outUserState
On input, a pointer to a structure of type Rect. On return, this rectangle specifies the current size and
position of the window’s user state, in global coordinates.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Because the window definition function relies upon the WStateData structure, it is unaware of the ideal
standard state, and this causes the user state data that it stores in the WStateData structure to be unreliable.
While the Window Manager is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can overwrite that data. Therefore,
the function ZoomWindowIdeal (page 168) maintains the window’s user state independently of the
WStateData structure. The GetWindowIdealUserState function gives your application access to the user
state data maintained by ZoomWindowIdeal. However, your application should not typically need to use
this function; it is supplied for completeness.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowGetIdealUserState (page 99)

Declared In
MacWindows.h

GetWindowIndex
Obtains the index number of a specified window in a group.

OSStatus GetWindowIndex (
 WindowRef inWindow,
 WindowGroupRef inStartGroup,
 WindowGroupContentOptions inOptions,
 ItemCount *outIndex
);

Parameters
inWindow

The window whose window group index number is to be obtained.

inStartGroup
The window group to query.

72 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inOptions
Specifies how to enumerate the specified window; kWindowGroupContentsReturnWindows is
implied and does not need to be specified explicitly.

outIndex
A pointer to a variable that, on return, contains the window’s z-order index. The frontmost window
in a window group has an index of 1. Window indexes increase as the window gets lower in z-order
(that is, visually further from the top of the window list and closer to the desktop.)

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowKind
Returns a window’s window kind.

short GetWindowKind (
 WindowRef window
);

Parameters
window

The window whose window kind is to be returned.

Return Value
An integer representing the window kind; see “Window Kinds” (page 225).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowList
Obtains the first window in a window list.

WindowRef GetWindowList (
 void
);

Return Value
A window reference for the first window in the list.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 73
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

GetWindowModality
Obtains the modality of a window.

OSStatus GetWindowModality (
 WindowRef inWindow,
 WindowModality *outModalKind,
 WindowRef *outUnavailableWindow
);

Parameters
inWindow

The window whose modality is to be obtained.

outModalKind
On return, contains the modality of the window.

outUnavailableWindow
On return, if the window is window-modal, contains the target window of the specified window’s
modality.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowPort
Gets the window’s color graphics port.

CGrafPtr GetWindowPort (
 WindowRef window
);

Parameters
window

The window whose color graphics port is to be obtained.

Return Value
A pointer to the window’s color graphics port. See the QuickDraw Manager documentation for a description
of the CGrafPtr data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

74 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

GetWindowPortBounds
Obtains the bounds of the window port.

Rect * GetWindowPortBounds (
 WindowRef window,
 Rect *bounds
);

Parameters
window

The window whose port bounds you want.

bounds
A pointer to a Rect structure. On return, the Rect structure contains the bounds of the window port.

Return Value
The same value (pointer to a Rect structure) that was passed to GetWindowPortBounds in the bounds
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Explorer

Declared In
MacWindows.h

GetWindowProperty
Obtains a piece of data that is associated with a window.

OSStatus GetWindowProperty (
 WindowRef window,
 PropertyCreator propertyCreator,
 PropertyTag propertyTag,
 ByteCount bufferSize,
 ByteCount *actualSize,
 void *propertyBuffer
);

Parameters
window

The window to be examined for associated data.

Functions 75
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

propertyCreator
The creator code (typically, the application’s signature) of the associated data to be obtained.

propertyTag
The application-defined code identifying the associated data to be obtained.

bufferSize
The size of the associated data to be obtained. If the size of the data is unknown, use the function
GetWindowPropertySize (page 77) to get the data’s size. If the size specified does not match the
actual size of the property, GetWindowProperty only retrieves data up to the size specified or up
to the actual size of the property, whichever is smaller, and an error is returned.

actualSize
On input, a pointer to a value. On return, the value specifies the actual size of the obtained data. You
may pass NULL for the actualSize parameter if you are not interested in this information.

propertyBuffer
On input, a pointer to a buffer. On return, this buffer contains a copy of the data that is associated
with the specified window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The data retrieved by the GetWindowProperty function must have been previously associated with the
window with the function SetWindowProperty (page 147).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
MacWindows.h

GetWindowPropertyAttributes
Obtains the attributes of a window property.

OSStatus GetWindowPropertyAttributes (
 WindowRef window,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits *attributes
);

Parameters
window

The window having a property whose attributes are to be obtained.

propertyCreator
The property creator.

propertyTag
The property tag.

76 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

attributes
On return, the property’s attributes. Currently, the only valid property is
kWindowPropertyPersistent. For a description of this property, see “Window Property Persistent
Constant” (page 220).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowPropertySize
Obtains the size of a piece of data that is associated with a window.

OSStatus GetWindowPropertySize (
 WindowRef window,
 PropertyCreator creator,
 PropertyTag tag,
 ByteCount *size
);

Parameters
window

The window to be examined for associated data.

creator
The creator code (typically, the application’s signature) of the associated data whose size is to be
obtained.

tag
The application-defined code identifying the associated data whose size is to be obtained.

size
A pointer to a value that, on return, specifies the size of the associated data.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If you want to retrieve a piece of associated data with the GetWindowProperty (page 75) function, you
typically need to use the GetWindowPropertySize function to determine the size of the data beforehand.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 77
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

GetWindowProxyAlias
Obtains an alias for the file that is associated with a window.

OSStatus GetWindowProxyAlias (
 WindowRef window,
 AliasHandle *alias
);

Parameters
window

The window for which you want to determine the associated file.

alias
On input, a pointer to a value of type AliasHandle. On return, the AliasRecord structure referenced
by the alias handle contains a copy of the alias data for the file associated with the specified window.
Your application must dispose of this handle.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Your application can call the GetWindowProxyAlias function to retrieve alias data for the file associated
with a window.

See also the function SetWindowProxyAlias (page 148).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowProxyIcon
Obtains a window’s proxy icon.

OSStatus GetWindowProxyIcon (
 WindowRef window,
 IconRef *outIcon
);

Parameters
window

The window for which you want to obtain the proxy icon.

outIcon
A pointer to a variable of type IconRef that, on return, identifies the window’s proxy icon. Your
application must not dispose of this icon.

Return Value
A result code. If no proxy icon is found, this function returns errWindowDoesNotHaveProxy. For other
possible return values, see “Window Manager Result Codes” (page 247).

Discussion
There are several different ways to associate a proxy icon with a window:

78 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

 ■ If you use the function SetWindowProxyIcon (page 149), GetWindowProxyIcon returns the proxy
icon you set.

 ■ If you use the function SetWindowProxyCreatorAndType (page 148), that function uses Icon Services
to find and set the proxy icon corresponding to the creator and type. GetWindowProxyIcon returns
that icon.

 ■ If you use SetWindowProxyAlias (page 148), SetWindowProxyFSSpec (page 282), or
HIWindowSetProxyFSRef (page 106), then GetWindowProxyIcon attempts to resolve the alias (if
available) and returns the icon associated with the specified file.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowResizeLimits
Returns the minimum and maximum content sizes for a window.

OSStatus GetWindowResizeLimits (
 WindowRef inWindow,
 HISize *outMinLimits,
 HISize *outMaxLimits
);

Parameters
inWindow

The window whose minimum and maximum content sizes are to be obtained.

outMinLimits
On return, the window’s minimum content size. Pass NULL if you don’t want this information. For
information on the HISize data type, see HIGeometry.h.

outMaxLimits
On return, the window’s maximum content size. Pass NULL if you don’t want this information. For
information on the HISize data type, see HIGeometry.h.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowStandardState
Obtains a window’s standard zoom rectangle.

Functions 79
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Rect * GetWindowStandardState (
 WindowRef window,
 Rect *rect
);

Parameters
window

The window whose standard zoom rectangle is to be obtained.

rect
On input, a pointer to a Rect structure. On return, the Rect structure contains the window’s standard
zoom rectangle, in global coordinates. A window’s standard zoom rectangle is the window content
bounds when the window is zoomed out to its greatest extent.

Return Value
The same value (pointer to a Rect structure) that was passed to GetWindowStandardState in the rect
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowStructurePort
Obtains a graphics port that is used when drawing a window’s structure.

CGrafPtr GetWindowStructurePort (
 WindowRef inWindow
);

Parameters
inWindow

The window to query.

Return Value
The CGrafPtr that is used when drawing the window’s structure (window frame).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowStructureWidths
Obtains the width of the structure region on each edge of a window.

80 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus GetWindowStructureWidths (
 WindowRef inWindow,
 Rect *outRect
);

Parameters
inWindow

The window to query.

outRect
On return, the Rect structure is filled in with the widths of the structure.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowToolbar
Obtains the toolbar associated with a window.

OSStatus GetWindowToolbar (
 WindowRef inWindow,
 HIToolbarRef *outToolbar
);

Parameters
inWindow

The window whose toolbar is to be obtained.

outToolbar
On return, the toolbar that is attached to the window, or NULL if the window has no toolbar.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowUserState
Returns a window’s user zoom rectangle.

Functions 81
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Rect * GetWindowUserState (
 WindowRef window,
 Rect *rect
);

Parameters
window

The window whose user zoom rectangle is to be returned.

rect
On input, a pointer to a Rect structure. On return, the Rect structure contains the window’s user
zoom rectangle, in global coordinates. A window’s user zoom rectangle is the window content bounds
when the window is zoomed back in.

Return Value
The same value (pointer to a Rect structure) that was passed to GetWindowUserState in the rectparameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowWidgetHilite
Obtains the window part code of the window widget that is currently highlighted.

OSStatus GetWindowWidgetHilite (
 WindowRef inWindow,
 WindowDefPartCode *outHilite
);

Parameters
inWindow

The window to query.

outHilite
The highlight.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWRefCon
Returns the reference constant from a window.

82 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SRefCon GetWRefCon (
 WindowRef window
);

Parameters
window

The window whose reference constant is to be returned.

Return Value
The long integer data stored in the refCon field of the window structure specified in the window parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

HideFloatingWindows
Hides an application’s floating windows.

OSStatus HideFloatingWindows (
 void
);

Return Value
A result code. For details, see “Window Manager Result Codes” (page 247).

Discussion
When an application receives a suspend event, its floating windows are hidden automatically. When the
application receives a resume event, the floating windows are made visible automatically. Call this function
if you want to hide your floating windows manually.

See also the function ShowFloatingWindows (page 153).

Special Considerations

TheHideFloatingWindows function operates only upon windows created with thekFloatingWindowClass
constant; see “Window Class Constants” (page 184) for more details on this constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 83
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HideSheetWindow
Hides a sheet window using appropriate visual effects.

OSStatus HideSheetWindow (
 WindowRef inSheet
);

Parameters
inSheet

The window sheet that is to be hidden.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HideWindow
Makes a window invisible.

void HideWindow (
 WindowRef window
);

Parameters
window

The window that is to be made invisible.

Discussion
The HideWindow function make a visible window invisible. If you hide the frontmost window, HideWindow
removes the highlighting, brings the window behind it to the front, highlights the new frontmost window,
and generates the appropriate activate events.

To reverse the actions of HideWindow, you must call both ShowWindow (page 156), to make the window
visible, and SelectWindow (page 129), to select it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HiliteWindow
Sets a window’s highlighting status.

84 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

void HiliteWindow (
 WindowRef window,
 Boolean fHilite
);

Parameters
window

On input, a pointer to the window structure.

fHilite
On input, a Boolean value that specifies the highlighting status: true highlights a window; false
removes highlighting.

Discussion
The HiliteWindow function sets a window’s highlighting status to the specified state. If the value of the
fHilite parameter is true, HiliteWindow highlights the specified window; if the specified window is
already highlighted, the function has no effect. If the value of fHilite is false, HiliteWindow removes
highlighting from the specified window; if the window is not already highlighted, the function has no effect.

Your application doesn’t normally need to call HiliteWindow. To make a window active, you can call
SelectWindow or ActivateWindow, which handle highlighting for you.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HiliteWindowFrameForDrag
Sets the highlight state of the window’s structure region to reflect the window’s validity as a drag-and-drop
destination.

OSStatus HiliteWindowFrameForDrag (
 WindowRef window,
 Boolean hilited
);

Parameters
window

The window for which you want to set the highlight state.

hilited
Pass true if the window’s frame should be highlighted otherwise, pass false.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Applications typically call the Drag Manager functions ShowDragHilite and HideDragHilite to indicate
that a window is a valid drag-and-drop destination. If your application does not do this—that is, if your
application implements any type of custom drag highlighting, such as highlighting more than one area of
a window at a time—it must call the HiliteWindowFrameForDrag function.

Functions 85
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

The HiliteWindowFrameForDrag function highlights a window’s proxy icon when the user drags content
inside the window that is a valid content type for that destination. The default behavior of system-defined
windows is to highlight the proxy icon along with the window’s content area when the window is a valid
drag-and-drop destination. If you call the Drag Manager functions ShowDragHilite and HideDragHilite,
you don’t need to use HiliteWindowFrameForDrag.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeAttributes
Changes the attributes of a window.

OSStatus HIWindowChangeAttributes (
 WindowRef inWindow,
 const int *inAttrToSet,
 const int *inAttrToClear
);

Parameters
inWindow

The window to change.

inAttrToSet
A zero-terminated array of window attribute constants. Possible values are described in “Window
Attribute Identifiers” (page 188). Each array entry specifies an attribute of the window to set.
You may pass NULL if you do not wish to set any attributes.

inAttrToClear
A zero-terminated array of window attribute constants. Possible values are described in “Window
Attribute Identifiers” (page 188). Each array entry specifies an attribute of the window to clear.
You may pass NULL if you do not wish to clear any attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function takes two arrays of window attribute constants, as described in “Window Attribute
Identifiers” (page 188). The first array specifies the attributes to set, and the second specifies the attributes
to clear. For example, you might call this function as follows:

int setAttr[] = { kHIWindowBitCloseBox, kHIWindowBitZoomBox, 0 };
int clearAttr[] = { kHIWindowBitNoTitleBar, 0 };
HIWindowChangeAttributes (window, setAttr, clearAttr);

Special Considerations

In Mac OS X v10.4 or earlier, you can use the function ChangeWindowAttributes (page 34) to achieve
similar results.

Availability
Available in Mac OS X v10.5 and later.

86 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeAvailability
Changes the availability of a window during Exposé or in Spaces.

OSStatus HIWindowChangeAvailability (
 WindowRef inWindow,
 HIWindowAvailability inSetAvailability,
 HIWindowAvailability inClearAvailability
);

Parameters
inWindow

The window whose availability is to be changed.

inSetAvailability
The availability bits to set. For details, see “Window Availability Constants” (page 242).

inClearAvailability
The availability bits to clear. For details, see “Window Availability Constants” (page 242).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function overrides the default behavior of the Window Manager in determining whether a window is
visible during Exposé or in all Spaces workspaces. Most applications should not override the default behavior;
these options should only be used in special cases. For example, accessibility assistance applications may
need to create windows that are visible in all workspaces.

By default, newly created windows of class kDocumentWindowClass are given an availability of 0 (meaning
that they are available during Exposé), and windows from all other window classes are given an availability
of kHIWindowExposeHidden.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeClass
Changes the appearance and behavior of a window.

Functions 87
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus HIWindowChangeClass (
 WindowRef inWindow,
 WindowClass inWindowClass
);

Parameters
window

The window whose class you want to change.

inClass
The new class that is to be applied to the window. See “Window Class Constants” (page 184) for a list
of possible window classes.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function changes the class of a window. Unlike SetWindowClass (page 281), HIWindowChangeClass
effectively changes both the appearance and behavior of the window.

This function can convert a window between kDocumentWindowClass, kFloatingWindowClass,
kUtilityWindowClass, andkMovableModalWindowClassonly. It cannot, for example, change a document
window into a plain window.

The attributes of the window are adjusted to contain only those that are allowed for the new class. It is the
caller’s responsibility to adjust them further, as necessary, after HIWindowChangeClass returns.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeFeatures
Changes a window’s features.

OSStatus HIWindowChangeFeatures (
 WindowRef inWindow,
 UInt64 inSetThese,
 UInt64 inClearThese
);

Parameters
inWindow

The window whose features are to be changed.

inSetThese
The feature bits to set. For details, see “Window Feature Bits” (page 207).

inClearThese
The feature bits to clear. For details, see “Window Feature Bits” (page 207).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

88 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
HIWindowChangeFeatures changes the features of a window on the fly. This function should only be used
by custom window definitions or window frame views.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowConstrain
Moves and resizes a window to be within a specified bounding rectangle.

OSStatus HIWindowConstrain (
 WindowRef inWindowRef,
 WindowRegionCode inRegionCode,
 WindowConstrainOptions inOptions,
 HICoordinateSpace inSpace,
 const HIRect *inScreenBounds,
 const HISize *inMinimumSize,
 HIRect *ioBounds
);

Parameters
inWindowRef

The window to constrain.

inRegionCode
The window region to constrain. For a list of possible values, see “Window Region Constants” (page
217).

inOptions
Flags controlling how the window is constrained. For a list of possible options, see “Window
Constrain Options” (page 224).

inSpace
The coordinate space in which the inScreenBounds, inMinimumSize, and ioBounds parameters
are expressed. This parameter must be either kHICoordSpaceScreenPixels or
kHICoordSpace72DPIGlobal.

inScreenBounds
A rectangle within which to constrain the window. You may pass NULL if you don't need to specify
a screen bounds. If NULL, the window is constrained to the screen that has the greatest intersection
with the specified window region.

inMinimumSize
A minimum size that should be kept within the specified screen bounds. This parameter is ignored
if the kWindowConstrainMoveMinimum option is not set. Even if that option is set, you may still
pass NULL if you don't need to customize the minimum dimensions.

Functions 89
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ioBounds
If theinOptionsparameter containskWindowConstrainUseSpecifiedBounds, then this parameter
should be a bounding rectangle of the specified window region. The bounding rectangle does not
have to match the actual current bounds of the specified region; it may be a hypothetical bounds
that you would like to constrain without actually moving the window to that location. On output,
contains the new structure bounds of the window. You may pass NULL if you don't need the window
bounds returned.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCopyAvailablePositioningShape
Copies the available window positioning shape on a display.

OSStatus HIWindowCopyAvailablePositioningShape (
 CGDirectDisplayID inDisplay,
 HICoordinateSpace inSpace,
 HIShapeRef *outShape
);

Parameters
inDisplay

The display for which to find the available shape. May be kCGNullDirectDisplay to request the
shape of the main display.

inSpace
The coordinate space in which the positioning shape should be returned. This parameter must be
either kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outShape
A pointer to a shape (an HIShape object). On output, the shape describes the available bounds for
the specified display. This shape is returned in the specified coordinate space. You should release the
shape when you no longer need it.

Discussion
This function finds the area on the display in which a window may be positioned without intersecting or
overlapping the menu bar, Dock, or other UI provided by the operating system. This function differs from
HIWindowGetAvailablePositioningBounds (page 96) in that the bounds version removes the entire
area that may theoretically be covered by the Dock, even if the Dock does not currently reach from edge to
edge of the display on which it is positioned. The shape version includes the area at the sides of the Dock
that is not covered by the Dock.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

90 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowCopyDrawers
Obtains an array of the drawers that are attached to a window.

OSStatus HIWindowCopyDrawers (
 WindowRef inWindow,
 CFArrayRef *outDrawers
);

Parameters
inWindow

The parent window to access.

outDrawers
A pointer to a Core Foundation array. On output, each array entry is a drawer window attached to
the parent window specified in the inWindow parameter. The array will be valid, but empty, if the
parent window has no drawers. You should release the array when you no longer need it.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCopyShape
Retrieves a shape that describes a region of a window.

OSStatus HIWindowCopyShape (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 HIShapeRef *outShape
);

Parameters
inWindow

The window to access.

inRegion
The window region whose shape you want to obtain. For a list of possible values, see “Window Region
Constants” (page 217).

inSpace
The coordinate space in which the shape should be returned. This parameter must be
kHICoordSpaceWindow, kHICoordSpaceScreenPixel, or kHICoordSpace72DPIGlobal.

outShape
A pointer to a shape (an HIShape object). On output, the shape describes the specified window region.
The shape is returned in the specified coordinate space. You should release the shape when you no
longer need it. If the window does not support the specified window region, no shape is returned.

Functions 91
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Return Value
A result code. If the window does not support the specified window region, the result returned is
errWindowRegionCodeInvalid. For other possible values, see “Window Manager Result Codes” (page
247).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCreate
Creates a standard or custom window.

OSStatus HIWindowCreate (
 WindowClass inClass,
 const int *inAttributes,
 const WindowDefSpec *inDefSpec,
 HICoordinateSpace inSpace,
 const HIRect *inBounds,
 WindowRef *outWindow
);

Parameters
inClass

The class of window to be created. For a list of possible classes, see “Window Class
Constants” (page 184).

inAttributes
A zero-terminated array of window attribute constants. Each array entry specifies an attribute of the
window to set. You may pass NULL if you don't need to set any attributes. For a list of possible
attributes, see “Window Attribute Identifiers” (page 188).

inDefSpec
A pointer to a custom window proc ID or root view for the window. You may pass NULL if you don't
need to customize the window.

inSpace
The coordinate space in which the content bounds is expressed. This parameter must be either
kHICoordSpaceScreenPixels or kHICoordSpace72DPIGlobal.

inBounds
A pointer to the bounds of the content area of the window in the coordinate space specified by the
inSpace parameter. If you specify non-integral coordinates, they will be rounded to the nearest
integral value in screen pixel space when the window is actually positioned or sized.

outWindow
A pointer to a window variable. On output, the variable contains the new window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

92 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
This function makes it possible to create windows with content bounds expressed in different coordinate
spaces. In Mac OS X v10.5 and later, you can use this function in place of CreateNewWindow (page 41) or
CreateCustomWindow (page 40) to create a window from a set of parameters.

Most developers will want to work primarily in the 72 DPI coordinate space. Doing so makes your code
independent of the current user interface scale factor, and eases source compatibility with earlier versions
of Mac OS X that do not support resolution independence. However, there are also certain cases where your
application must express your window's bounds in pixel coordinates; primarily when you need to position
your windows so they exactly align with each other or with some other fixed location, such as the edge of
the display. For these cases, you should use the screen pixel coordinate space.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCreateCollapsedDockTileContext
Creates a Quartz graphics context for drawing a collapsed window’s Dock tile.

OSStatus HIWindowCreateCollapsedDockTileContext (
 WindowRef inWindow,
 CGContextRef *outContext,
 HISize *outContextSize
);

Parameters
inWindow

The collapsed window.

outContext
A pointer to a CGContextRef variable. On output, the variable contains the graphics context for
drawing the window’s Dock tile.

outContextSize
A pointer to a HISize structure. On output, the structure contains the width and height of the area
in which to draw.

Return Value
A result code. If the window is not collapsed, the result code is windowWrongStateErr. For other possible
values, see “Window Manager Result Codes” (page 247).

Discussion
When you are finished drawing in the graphics context, you should:

1. Call CGContextFlush to ensure that your drawing appears onscreen.

2. Call HIWindowReleaseCollapsedDockTileContext (page 104) to release the context. Do not call
CFRelease or CGContextRelease to release the context, or you may leak system resources.

Availability
Available in Mac OS X v10.5 and later.

Functions 93
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowFindAtLocation
Finds a window in the current process at a specified location.

OSStatus HIWindowFindAtLocation (
 const HIPoint *inLocation,
 HICoordinateSpace inSpace,
 WindowRef inStartWindow,
 OptionBits inOptions,
 WindowRef *outWindow,
 WindowPartCode *outWindowPart,
 HIPoint *outWindowLocation
);

Parameters
inLocation

The location, in global coordinates, at which to search for a window.

inSpace
The coordinate space in which the location is expressed. This parameter must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

inStartWindow
The window at which to start the search, inclusive. Pass kFirstWindowOfClass to start the search
at the beginning of the window list. Passing NULL will cause the search to start at the end of the
window list, and therefore no window will be found.

inOptions
Reserved. Pass zero.

outWindow
A pointer to a window variable. On output, the variable contains the window in the current process
at the specified location, if any, or NULL if no window is found.

outWindowPart
A pointer to a window part code variable. On output, the variable contains the window part that was
hit. You may pass NULL if you don't need this information.

outWindowLocation
A pointer to a point variable. On output, the variable contains the specified location transformed into
window-relative coordinates, taking into account any window transform or magnification. You may
pass NULL if you don't need this information.

Return Value
A result code. If no window is found that satisfies the search criteria, this function returns errWindowNotFound.
For other possible return values, see “Window Manager Result Codes” (page 247).

Discussion
This function searches the window list of the current process for a window that contains the specified location.
If you need to determine whether the window is of a particular class, you can use the function
GetWindowClass (page 61) and compare the result to the desired class.

94 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowFlush
Flushes any dirty areas a window might have.

OSStatus HIWindowFlush (
 WindowRef inWindow
);

Parameters
window

The window to flush.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function allows you to manually flush dirty areas of a window to the screen. This is the preferred way to
flush window buffers in Mac OS X v10.3 and later. If called for a composited window, this function also renders
any views in the window that are invalid.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowFromCGWindowID
Returns the window in the current process with a specified Quartz window ID.

WindowRef HIWindowFromCGWindowID (
 CGWindowID inWindowID
);

Parameters
inWindowID

The window ID, as returned by HIWindowGetCGWindowID (page 98) or
CGWindowListCopyWindowInfo.

Return Value
The window to which the window ID is assigned. This function returns NULL if the window ID is invalid or if
it refers to a window in another process.

Discussion
This function returns the window in the current process to which the specified window ID is assigned by the
window server when the window is created.

Functions 95
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

See Also
HIWindowGetCGWindowID (page 98)

Declared In
MacWindows.h

HIWindowGetAvailability
Obtains the availability of a window during Exposé or in Spaces.

OSStatus HIWindowGetAvailability (
 WindowRef inWindow,
 HIWindowAvailability *outAvailability
);

Parameters
inWindow

The window whose availability is to be obtained.

outAvailability
On exit, the current setting of the window’s availability bits. For details, see “Window Availability
Constants” (page 242).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetAvailablePositioningBounds
Gets the available window positioning bounds on a display.

OSStatus HIWindowGetAvailablePositioningBounds (
 CGDirectDisplayID inDisplay,
 HICoordinateSpace inSpace,
 HIRect *outAvailableRect
);

Parameters
inDisplay

The display for which to find the available bounds. May be kCGNullDirectDisplay to request the
bounds of the main display.

96 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inSpace
The coordinate space in which the positioning bounds should be returned. This must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outAvailableRect
A pointer to a rectangle provided by the caller. On output, the rectangle contains the available bounds
for the specified display. This rectangle is returned in the specified coordinate space.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function gets the bounds of the display not including the menu bar and Dock, if located on that display.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetBounds
Gets the bounds of a specified region of a window.

OSStatus HIWindowGetBounds (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 HIRect *outBounds
);

Parameters
inWindow

The window to access.

inRegion
The window region. For a list of possible values, see “Window Region Constants” (page 217).

inSpace
The coordinate space in which the bounds should be returned. This parameter must be
kHICoordSpaceWindow, kHICoordSpaceScreenPixel, or kHICoordSpace72DPIGlobal.

outBounds
A pointer to an HIRect structure. On output, the structure contains the origin and size of the bounding
rectangle of the specified window region. If the window does not support the region, the structure
is not modified.

Return Value
A result code. If the window does not support the specified window region, the result returned is
errWindowRegionCodeInvalid.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Functions 97
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

See Also
HIWindowSetBounds (page 105)

Declared In
MacWindows.h

HIWindowGetCGWindowID
Returns the Quartz window ID assigned to a window.

CGWindowID HIWindowGetCGWindowID (
 WindowRef inWindow
);

Parameters
inWindow

The window to access.

Return Value
The window ID of the specified window, or zero if the window is invalid.

Discussion
This function returns the window ID assigned by the window server when a window is created. The window
ID is not generally useful with any other Carbon function, but may be used with other Mac OS X functions
that require a window ID, such as functions in OpenGL.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

See Also
HIWindowFromCGWindowID (page 95)

Declared In
MacWindows.h

HIWindowGetGreatestAreaDisplay
Finds the display with the greatest area of intersection with a window region.

OSStatus HIWindowGetGreatestAreaDisplay (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 CGDirectDisplayID *outGreatestDisplay,
 HIRect *outGreatestDisplayRect
);

Parameters
inWindow

The window to compare against.

98 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inRegion
The window region to compare against. See “Window Region Constants” (page 217) for a list of possible
values.

inSpace
The coordinate space in which the display bounds should be returned. This must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outGreatestDisplay
A pointer to a display ID provided by the caller, or NULL if you don't need this information. On output,
the display ID contains the display with the greatest intersection.

outGreatestDisplayRect
A pointer to a rectangle provided by the caller, or NULL if you don't need this information. On output,
the rectangle contains the bounds of the display with the greatest intersection. If the display with
the greatest intersection also contains the menu bar, the rectangle excludes the menu bar area. This
rectangle is returned in the specified coordinate space.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetIdealUserState
Gets the bounds of a window’s content region in its user state.

OSStatus HIWindowGetIdealUserState (
 WindowRef inWindow,
 HICoordinateSpace inSpace,
 HIRect *outUserState
);

Parameters
inWindow

The window to access.

inSpace
The coordinate space in which the user state bounds should be returned. This parameter must be
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outUserState
A pointer to a structure of type HIRect. On return, this rectangle contains the global coordinates of
the window’s content region when zoomed in. If the window has not yet been zoomed, this rectangle
contains the window’s current content bounds.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function returns information about the window’s user state most recently recorded by the function
ZoomWindowIdeal (page 168).

Functions 99
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetProxyFSRef
Obtains the FSRef used to determine the proxy icon for a window.

OSStatus HIWindowGetProxyFSRef (
 WindowRef window,
 FSRef *outRef
);

Parameters
inWindow

The window whose proxy FSRef is to be obtained.

outRef
On exit, the FSRef for the window’s proxy icon.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If the specified window’s proxy icon has been specified using HIWindowSetProxyFSRef (page 106) or
SetWindowProxyAlias (page 148), HIWindowGetProxyFSRef returns noErr and a valid FSRef for the
window’s proxy icon. If the window has no proxy icon, or if the icon was specified by calling
SetWindowProxyCreatorAndType or SetWindowProxyIcon, this function returns an error.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetScaleMode
Obtains the window’s scale mode and the application’s display scale factor.

OSStatus HIWindowGetScaleMode (
 WindowRef inWindow,
 HIWindowScaleMode *outMode,
 CGFloat *outScaleFactor
);

Parameters
inWindow

The window whose scale mode is to be obtained.

100 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

outMode
On exit, an HIWindowScaleMode indicating the window’s scale mode. For details, see “Window Scale
Mode Constants” (page 243).

outScaleFactor
On exit, a float indicating the display scale factor for the application. Pass NULL if you are not interested
in acquiring the scale factor.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The window’s scale mode is based on the application’s display scale factor and any resolution-independent
attributes specified at window creation time. Applications and the views within the window can use the scale
mode and display scale factor to draw properly the content of a window for a particular scale mode.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetThemeBackground
Gets the theme background brush for a window.

OSStatus HIWindowGetThemeBackground (
 WindowRef inWindow,
 ThemeBrush *outThemeBrush
);

Parameters
inWindow

The window from which to get the brush.

outThemeBrush
A pointer to a theme brush. On output, the brush is the window’s theme background brush.

Return Value
A result code. If no brush is found, themeNoAppropriateBrushErr is returned.

Discussion
This function gets the theme background brush previously set by calling the function
SetThemeWindowBackground (page 133).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 101
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowInvalidateShadow
Recalculates a window’s shadow.

OSStatus HIWindowInvalidateShadow (
 WindowRef inWindow
);

Parameters
inWindow

The window whose shadow is to be recalculated.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
HIWindowInvalidateShadow is not typically used by applications. It is useful if your application has
customized window frames that change shape dynamically. After you have drawn the new window shape,
you should call HIWindowInvalidateShadow to recalculate the shadow so that it follows the new window
shape.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowIsAttributeAvailable
Returns a Boolean value indicating whether a window attribute is valid for a specified window class.

Boolean HIWindowIsAttributeAvailable (
 WindowClass inClass,
 int inAttr
);

Parameters
inClass

The window class to test.

inAttr
The window attribute to test. You must specify one of the window attributes described in “Window
Attribute Identifiers” (page 188).

Return Value
If true, the window class supports the specified attribute. Otherwise, false.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

102 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowIsDocumentModalTarget
Determines if a window is currently the target window of another document modal window, such as a sheet.

Boolean HIWindowIsDocumentModalTarget (
 WindowRef inWindow,
 WindowRef *outOwner
);

Parameters
inWindow

The window to query.

outOwner
If this function returns true, inWindow is the target of a document modal window and outOwner
is set to the document modal window. If this function does not return true, outOwner is undefined.
Pass NULL if you don’t want the owner’s window reference.

Return Value
A Boolean whose value is true if the window specified by inWindow is currently the target of a document
modal window; otherwise, false.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowIsInStandardState
Returns a Boolean value indicating whether a window is zoomed out to its standard state.

Boolean HIWindowIsInStandardState (
 WindowRef inWindow,
 const HISize *inIdealSize,
 HICoordinateSpace inSpace,
 HIRect *outIdealStandardState
);

Parameters
inWindow

The window whose zoom state is to be determined.

inIdealSize
The ideal width and height of the window’s content region, regardless of the actual screen device
dimensions. If you set inIdealSize to NULL, this function examines the dimensions stored in the
stdState field of the WStateData structure.

inSpace
The coordinate space in which the ideal size is expressed and in which the standard state bounds
should be returned. This parameter must be either kHICoordSpaceScreenPixel or
kHICoordSpace72DPIGlobal.

Functions 103
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

outIdealStandardState
A pointer to an HIRect variable. On return, the variable contains the bounds of the content region
of the window in its standard state, based on the data supplied in the inIdealSize parameter. You
may pass NULL if you do not need this information.

Return Value
If true, the window is currently in its standard state. If false, the window is currently in its user state.

Discussion
This function compares the window’s current dimensions to those in theinIdealSizeparameter to determine
if the window is currently in its standard state. You can use this function to decide whether a user’s click in
the zoom box is a request to zoom to the user state or the standard state, as described in the function
ZoomWindowIdeal (page 168). You can also use this function to determine the size and position of the
standard state that the Window Manager would calculate for a window, given a specified ideal size; this value
is returned in the outIdealStandardState parameter.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowReleaseCollapsedDockTileContext
Releases a Quartz graphics context for drawing a collapsed window’s Dock tile.

OSStatus HIWindowReleaseCollapsedDockTileContext (
 WindowRef inWindow,
 CGContextRef inContext
);

Parameters
inWindow

The collapsed window.

inContext
The graphics context to release. On return, the context is invalid and should no longer be used.

Return Value
A result code. If the window is not collapsed, the result code is windowWrongStateErr. For other possible
values, see “Window Manager Result Codes” (page 247).

Discussion
To ensure that your drawing appears onscreen, you should call CGContextFlush before calling this function
to release the context. Do not call CFRelease or CGContextRelease to release the context, or you may
leak system resources.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

104 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowSetBounds
Sets the bounds of a window based on either the structure or content region.

OSStatus HIWindowSetBounds (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 HIRect *inBounds
);

Parameters
inWindow

The window to access.

inRegion
The window region on which to base the window's new bounds. This parameter must be either
kWindowStructureRgn or kWindowContentRgn.

inSpace
The coordinate space in which the bounds are expressed. This parameter must be
kHICoordSpaceWindow, kHICoordSpaceScreenPixel, or kHICoordSpace72DPIGlobal.

inBounds
A pointer to an HIRect structure that specifies the origin and size of the bounding rectangle of the
specified window region. If the coordinate space is kHICoordSpaceWindow, then the origin of the
bounds is a window-relative value. Therefore, you can use this coordinate space to resize a window
without first getting its current bounds by setting the origin to (0,0), or you can offset a window from
its current position by setting the origin to the offset amount and the size to the window's current
size.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

See Also
HIWindowGetBounds (page 97)

Declared In
MacWindows.h

HIWindowSetIdealUserState
Sets the bounds of a window’s content region in its user state.

Functions 105
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus HIWindowSetIdealUserState (
 WindowRef inWindow,
 HICoordinateSpace inSpace,
 const HIRect *inUserState
);

Parameters
inWindow

The window to access.

inSpace
The coordinate space in which the user state bounds are expressed. This parameter must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

inUserState
The new bounds (position and size) of the window’s content region in its user state.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
A window’s ideal user state is used by the function ZoomWindowIdeal (page 168) when zooming in.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowSetProxyFSRef
Sets the proxy icon for a window using an FSRef to a file system object.

OSStatus HIWindowSetProxyFSRef (
 WindowRef window,
 const FSRef *inRef
);

Parameters
inWindow

The window whose proxy icon is to be set.

inRef
The file system object the window represents.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function determines the window’s proxy icon by asking Icon Services for the icon for the object specified
by inRef.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

106 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

HIWindowSetToolbarView
Sets a custom toolbar view for a window.

OSStatus HIWindowSetToolbarView (
 WindowRef inWindow,
 HIViewRef inView
);

Parameters
inWindow

The window whose toolbar view to set.

inView
The custom toolbar view for the window. You may pass NULL to remove the custom view from the
window. Setting a custom view will also remove any HIToolbar that is associated with the window.

After a custom toolbar view has been set, the window owns the view and will release it automatically
when the window is destroyed, or when a different custom view or standard HIToolbar is set for the
window.

Return Value
A result code.

Discussion
This function is provided for use by applications that cannot use the HIToolbar API. For best compatibility
with future versions of Mac OS X, you should use HIToolbar if possible. However, if HIToolbar is not sufficient
for your needs, you can use this function to provide a custom toolbar view that will be placed at the standard
location inside the window frame.

You are responsible for defining the appearance and behavior of the view. You cannot use this function to
customize the view that is associated with an HIToolbar; a window with an HIToolbar uses a standard view
that cannot be customized. When using a custom toolbar view, no function that takes an HIToolbar will work
with that window. For more information about custom toolbar views, see MacWindows.h.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowShowsFocus
Returns a Boolean value indicating whether a window's content should show focus indicators such as focus
rings.

Functions 107
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Boolean HIWindowShowsFocus (
 WindowRef inWindow
);

Parameters
inWindow

The window to access.

Return Value
If true, a window's content should show focus indicators; otherwise false.

Discussion
This function returns true if the window is either the modeless focus or the effective focus.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowTestAttribute
Returns a Boolean value indicating whether a window has a specified attribute.

Boolean HIWindowTestAttribute (
 WindowRef inWindow,
 int inAttr
);

Parameters
inWindow

The window to test.

inAttr
The window attribute to test. You must specify one of the window attributes described in “Window
Attribute Identifiers” (page 188).

Return Value
If true, the window has the specified attribute. Otherwise, false.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowTrackProxyDrag
Tracks the drag of a window proxy icon.

108 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus HIWindowTrackProxyDrag (
 WindowRef inWindow,
 EventRef inEvent,
 DragRef inDrag
);

Parameters
inWindow

The window whose proxy icon to drag.

inEvent
The event that resulted in starting a drag. This will most commonly be kEventControlTrack, but
any event with kEventParamMouseLocation and kEventParamKeyModifiers parameters is all
that is required.

inDrag
The proxy icon drag reference. You may pass NULL if you want the Window Manager to create and
populate the drag reference. The Window Manager will add its own drag flavors to the drag even if
you pass a pre-created drag reference.

Discussion
You can use this function to manage the dragging of the proxy icon in your application's windows. If you
use the standard window event handler and you do not need to customize the proxy icon drag process, you
may rely on the standard handler to call this function.

If you want to allow the Window Manager to create the drag reference and populate it with drag flavors, you
should pass NULL in the inDrag parameter. If you want to create the drag reference yourself and add your
own drag flavors, you should call BeginWindowProxyDrag (page 32) to create the drag reference, add your
own flavors, call HIWindowTrackProxyDrag to track the proxy icon drag, and then call
EndWindowProxyDrag (page 47) to release the drag reference.

A proxy icon may only be dragged if the window represented by the proxy icon is not modified, as indicated
by the IsWindowModified (page 116) function. This restriction exists because a proxy icon is a representation
of a physical file system object, and dragging the proxy icon may result in the Finder making a copy of the
file system object. If the window is modified, then it contains user data that has not yet been saved to disk;
making a copy of the file system object would result in a stale copy that did not contain the user’s current
data.

By default, all newly created windows are considered to be dirty. The application must pass false to
SetWindowModified (page 146) before the proxy icon will be draggable. In Mac OS X v10.3 and later, the
proxy icon is also draggable in dirty windows if the proxy icon was provided using the
SetWindowProxyIcon (page 149) or SetWindowProxyCreatorAndType (page 148) functions. Dragging is
allowed in this case because the window does not represent an actual file system object, and therefore there
is no risk of user data loss.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

InvalWindowRect
Adds a rectangle to a window’s update region.

Functions 109
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus InvalWindowRect (
 WindowRef window,
 const Rect *bounds
);

Parameters
window

The window containing the rectangle you want to be updated.

bounds
Set this structure to specify, in local coordinates, a rectangle to be added to the window’s update
region.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The InvalWindowRect function informs the Window Manager that an area of a window should be redrawn.

See also the functions ValidWindowRect (page 165) and InvalWindowRgn (page 110).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Explorer

Declared In
MacWindows.h

InvalWindowRgn
Adds a region to a window’s update region.

OSStatus InvalWindowRgn (
 WindowRef window,
 RgnHandle region
);

Parameters
window

The window containing the region that you want to update.

region
Set this region to specify, in local coordinates, the area to be added to the window’s update region.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

110 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
The InvalWindowRgn function informs the Window Manager that an area of a window should be redrawn.

See also the functions InvalWindowRect (page 109) and ValidWindowRgn (page 166).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsValidWindowClass
Determines whether a given window class is valid.

Boolean IsValidWindowClass (
 WindowClass inClass
);

Parameters
inClass

The window class to query.

Return Value
A Boolean whose value is true if the window class is valid; otherwise, false.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsValidWindowPtr
Reports whether a pointer is a valid window pointer.

Boolean IsValidWindowPtr (
 WindowRef possibleWindow
);

Parameters
possibleWindow

The window to query.

Return Value
A Boolean whose value is true if the specified pointer is a valid window pointer; otherwise, false.

Functions 111
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
This function is primarily intended for use with debugging your application.

Special Considerations

The IsValidWindowPtr function is a processor-intensive call.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowActive
Indicates whether the specified window is active.

Boolean IsWindowActive (
 WindowRef inWindow
);

Parameters
inWindow

The window to query.

Return Value
Returns true if the window is active, false otherwise.

Discussion
Whether a window is considered active is determined by its activation scope, highlighting, and z-order. For
windows that have an activation scope of kWindowActivationScopeAll, a window is active if it is the
window returned by the ActiveNonFloatingWindow (page 31) function or if it is in the same window
group as the window returned by ActiveNonFloatingWindow and the window group has the
kWindowGroupAttrSharedActivation attribute. For windows that have some other activation scope, the
window is active if its window frame is highlighted and the window is the frontmost window in its window
group.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowCollapsable
Determines whether a window can be collapsed.

112 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Boolean IsWindowCollapsable (
 WindowRef window
);

Parameters
window

The window to be examined.

Return Value
If true, the window can be collapsed; otherwise, false.

Discussion
You can call the IsWindowCollapsable function to determine if a given window can be collapsed by the
CollapseWindow (page 37) function. In Mac OS X, the presence or absence of the
kWindowCollapseBoxAttribute is the primary way of determining whether a window can be collapsed.
If that attribute is not present, the Window Manager checks for the kWindowCanCollapse feature bit.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowCollapsed
Determines whether a window is currently collapsed.

Boolean IsWindowCollapsed (
 WindowRef window
);

Parameters
window

The window to be examined.

Return Value
If true, the window is collapsed. If false, the window is expanded.

Discussion
On Mac OS 9, only window definition functions that return the feature bit kWindowCanCollapse in response
to a kWindowGetFeatures message support this function; for more information, see
GetWindowFeatures (page 64). Typically, a window’s content region is empty in a collapsed state. In Mac
OS X, the presence or absence of the kWindowCollapseBoxAttribute attribute determines whether a
window can be collapsed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 113
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

IsWindowContainedInGroup
Determines if a window is a member of a window group or any of its subgroups.

Boolean IsWindowContainedInGroup (
 WindowRef inWindow,
 WindowGroupRef inGroup
);

Parameters
inWindow

The window to query.

inGroup
The window group to query.

Return Value
A Boolean whose value is true if inWindow is a member of the window group specified by inGroup, or if
inWindow is a member of a window group that is a member of the window group specified by inGroup.
Otherwise, this function returns false.

Discussion
This function returns true if group A contains window A. It also returns true if group A contains group B
and group B contains window A.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowHilited
Indicates whether the window frame is currently highlighted.

Boolean IsWindowHilited (
 WindowRef window
);

Parameters
window

The window to query.

Return Value
A Boolean value indicating whether or not the window frame is highlighted. If true, the window is visible.
If false, the window frame is not highlighted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

114 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

IsWindowInStandardState
Determines whether a window is currently zoomed in to the user state or zoomed out to the standard state.

Boolean IsWindowInStandardState (
 WindowRef inWindow,
 const Point *inIdealSize,
 Rect *outIdealStandardState
);

Parameters
inWindow

The window whose zoom state is to be determined.

inIdealSize
Set the Point structure to contain the ideal width and height of the window’s content region,
regardless of the actual screen device dimensions. If you set inIdealSize to NULL,
IsWindowInStandardState examines the dimensions stored in the stdState field of the
WStateData structure.

outIdealStandardState
On input, a pointer to a structure of type Rect. On return, the rectangle contains the global coordinates
for the content region of the window in its standard state, based on the data supplied in the
inIdealSize parameter. You may pass NULL if you do not want to receive this data.

Return Value
A Boolean whose value is true if the window is currently in its standard state; false if the window is currently
in the user state.

Discussion
The IsWindowInStandardState function compares the window’s current dimensions to those referred to
by the inIdealSize parameter to determine if the window is currently in the standard state. Your application
may use IsWindowInStandardState to decide whether a user’s click of the zoom box is a request to zoom
to the user state or the standard state, as described in the function ZoomWindowIdeal (page 168). Your
application may also use IsWindowInStandardState to determine the size and position of the standard
state that the Window Manager would calculate for a window, given a specified ideal size; this value is
produced in the outIdealStandardState parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowIsInStandardState (page 103)

Declared In
MacWindows.h

IsWindowLatentVisible
Indicates whether a window is visible onscreen or is latently visible but not currently onscreen.

Functions 115
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Boolean IsWindowLatentVisible (
 WindowRef inWindow,
 WindowLatentVisibility *outLatentVisible
);

Parameters
inWindow

The window to query.

outLatentVisible
If the window is onscreen, the latent visibility is zero. If the window is offscreen, this parameter returns
the latent visibility flags of the window. If any of the flags are set, the window is latently visible.

Return Value
A Boolean whose value is true if the window is currently onscreen; otherwise, false.

Discussion
All windows are either onscreen or offscreen. A window that is offscreen may still be latently visible. This
occurs, for example, when a floating window is hidden as an application is suspended. The floating window
is not visible onscreen, but it is latently visible and is only hidden due to the suspended state of the application.
When the application becomes active again, the floating window will be placed back onscreen.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowModified
Obtains the modification state of the specified window.

Boolean IsWindowModified (
 WindowRef window
);

Parameters
window

The window whose modification state is to be obtained.

Return Value
true if the content of the window has been modified; otherwise, false. Newly created windows start out
with their modification state automatically set to true.

Discussion
Your application can use the functions IsWindowModified and SetWindowModified (page 146) instead
of maintaining its own separate record of the modification state of the content of a window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

116 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

IsWindowPathSelectEvent
Determines whether a Carbon event describing a click on a window’s title should cause a path selection
menu to be displayed.

Boolean IsWindowPathSelectEvent (
 WindowRef window,
 EventRef inEvent
);

Parameters
window

The window to query.

inEvent
The event. In CarbonLib and in Mac OS X v10.2 and earlier, the function only returns true for
kEventClassMouse/kEventMouseDown events. In Mac OS X v10.3 and later, this function returns
true for any event that has suitable kEventParamMouseLocation and kEventParamModifiers
parameters.

Return Value
A Boolean whose value is true if the click should cause a path selection menu to be displayed; otherwise,
false. If this function returns true, the application should call WindowPathSelect (page 166).

Discussion
Windows that have a proxy icon provided using an FSRef or alias can support a path selection menu, which
displays the file system path to the object, one menu item per directory. Making a selection from this item
automatically opens the corresponding object in the Finder.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowToolbarVisible
Determines whether a window’s toolbar is visible.

Boolean IsWindowToolbarVisible (
 WindowRef inWindow
);

Parameters
inWindow

The window to query.

Return Value
A Boolean whose value is true if the window’s toolbar is visible; otherwise, false.

Functions 117
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowUpdatePending
Determines whether a window update is pending.

Boolean IsWindowUpdatePending (
 WindowRef window
);

Parameters
window

The non-composited window to query.

Return Value
A Boolean whose value is true if an update is pending; otherwise, false.

Special Considerations

Modifying a composited window's update region does not affect the area of the window to be drawn. A
composited window does not use its window update region to control drawing. Instead, a composited
window determines what to draw by looking at the invalid regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowVisible
Indicates whether the window frame is currently visible.

Boolean IsWindowVisible (
 WindowRef window
);

Parameters
window

The window to query.

Return Value
A Boolean value indicating whether or not the window is visible. If true, the window is visible. If false, the
window is invisible.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

118 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

MoveWindow
Moves a window on the desktop.

void MoveWindow (
 WindowRef window,
 short hGlobal,
 short vGlobal,
 Boolean front
);

Parameters
window

The window that is to be moved on the desktop.

hGlobal
On input, the new location, in global coordinates, of the left edge of the window’s port rectangle.

vGlobal
On input, the new location, in global coordinates, of the top edge of the window’s port rectangle.

front
On input, a Boolean value specifying whether the window is to become the frontmost, active window.
If the value of the front parameter is false, MoveWindow does not change its plane or status. If the
value of the front parameter is true and the window isn’t active, MoveWindow makes it active by
calling the SelectWindow (page 129) function.

Discussion
The MoveWindow function moves the specified window to the location specified by the hGlobal and vGlobal
parameters, without changing the window’s size. The upper-left corner of the window’s port rectangle is
placed at the point (vGlobal, hGlobal). The local coordinates of the upper-left corner are unaffected.

Your application doesn’t normally call MoveWindow. When the user drags a window by dragging its title bar,
you can call DragWindow (page 46) which in turn calls MoveWindow when the user releases the mouse
button.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
MacWindows.h

MoveWindowStructure
Positions a window relative to its structure region.

Functions 119
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus MoveWindowStructure (
 WindowRef window,
 short hGlobal,
 short vGlobal
);

Parameters
window

The window that is to be moved.

hGlobal
A value specifying the horizontal position, in global coordinates, to which the left edge of the window’s
structure region is to be moved.

vGlobal
A value specifying the vertical position, in global coordinates, to which the top edge of the window’s
structure region is to be moved.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The MoveWindowStructure function moves the specified window, but does not change the window’s size.
When your application calls MoveWindowStructure, the positioning of the specified window is determined
by the positioning of its structure region. This is in contrast to the MoveWindow function, where the positioning
of the window’s content region determines the positioning of the window. After moving the window,
MoveWindowStructure displays the window in its new position.

Note that your application should not call the MoveWindowStructure function to position a window when
the user drags the window by its drag region. When the user drags the window, your application should call
the pre–Mac OS 8.5 Window Manager function DragWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

OpenDrawer
Opens a drawer.

OSStatus OpenDrawer (
 WindowRef inDrawerWindow,
 OptionBits inEdge,
 Boolean inAsync
);

Parameters
inDrawerWindow

The drawer window to open.

120 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inEdge
The parent window edge on which to open the drawer. Pass kWindowEdgeDefault to use the
drawer’s preferred edge. If there is not enough room on the preferred edge, OpenDrawer tries the
opposite edge. If there is insufficient room on both edges, the drawer will open on the preferred edge
but may extend offscreen, under the Dock, or under the menu bar.

inAsync
Indicates whether to open the drawer synchronously (the drawer is entirely opened before the function
call returns) or asynchronously (the drawer opens using an event loop timer after the function call
returns). Specify true for asynchronous and false for synchronous.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

PinRect
Returns the point within the specified rectangle that is closest to the specified point.

long PinRect (
 const Rect *theRect,
 Point thePt
);

Parameters
theRect

On input, a pointer to a rectangle in which the point is to be contained.

thePt
On input, a pointer to the point to be contained.

Return Value
A long integer that specifies a point within the specified rectangle that is as close as possible to the specified
point. (The high-order word of the returned long integer is the vertical coordinate; the low-order word is the
horizontal coordinate.

Discussion
DragGrayRgn uses the PinRect function to contain a point within a specified rectangle. If the specified
point is within the rectangle, PinRect returns the point itself. If not, then

 ■ if the horizontal position is to the left of the rectangle, PinRect returns the left edge as the horizontal
coordinate

 ■ if the horizontal position is to the right of the rectangle, PinRect returns the right edge minus 1 as the
horizontal coordinate

 ■ if the vertical position is above the rectangle, PinRect returns the top edge as the vertical coordinate

 ■ if the vertical position is below the rectangle, PinRect returns the bottom edge minus 1 as the vertical
coordinate

Functions 121
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

The 1 is subtracted when the point is below or to the right of the rectangle so that a pixel drawn at that point
lies within the rectangle.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

RegisterWindowDefinition
Registers a binding between a resource ID and a window definition function.

OSStatus RegisterWindowDefinition (
 SInt16 inResID,
 const WindowDefSpec *inDefSpec
);

Parameters
inResID

A WDEF proc ID, as used in a 'WIND' resource.

inDefSpec
Specifies the WindowDefUPP that should be used for windows with the given WDEF proc ID. Pass
NULL to unregister a given WDEF proc ID.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
In the Mac OS 8.x Window Manager, a 'WIND' resource can contain an embedded WDEF procID that is used
by the Window Manager as the resource ID of a 'WDEF' resource to lay out and draw the window. The
'WDEF' resource is loaded by the Window Manager when you load the window with GetNewWindow. Since
WDEFs can no longer be packaged as code resources on Carbon, the procID can no longer refer directly to
a WDEF resource. However, using RegisterWindowDefinition you can instead specify a UniversalProcPtr
pointing to code in your application code fragment.

To unregister a window definition, pass NULL in the inDefSpec parameter for a given WDEF proc ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ReleaseWindowGroup
Decrements the reference count for a window group.

122 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus ReleaseWindowGroup (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group whose reference count is to be queried.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

RemoveWindowProperty
Removes a piece of data that is associated with a window.

OSStatus RemoveWindowProperty (
 WindowRef window,
 PropertyCreator propertyCreator,
 PropertyTag propertyTag
);

Parameters
window

The window whose data is to be removed.

propertyCreator
The creator code (typically, the application’s signature) of the associated data to be removed.

propertyTag
The application-defined code identifying the associated data to be removed.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The data removed by the RemoveWindowProperty function must have been previously associated with the
window with the function SetWindowProperty (page 147).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

RemoveWindowProxy
Dissociates a file from a window.

Functions 123
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus RemoveWindowProxy (
 WindowRef window
);

Parameters
window

The window for which you want to remove the associated file.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The RemoveWindowProxy function redraws the window title bar after removing all data associated with a
given file, including the proxy icon, path menu, and file data.

Special Considerations

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the RemoveWindowProxy function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

RepositionWindow
Positions a window relative to another window or a display screen.

OSStatus RepositionWindow (
 WindowRef window,
 WindowRef parentWindow,
 WindowPositionMethod method
);

Parameters
window

The window whose position you want to set.

parentWindow
A pointer to the “parent” window, as defined by your application. In cases where the window
positioning method does not require a parent window, you should set the parentWindow parameter
to NULL.

method
A constant specifying the window positioning method to be used; see “Window Position
Constants” (page 213) for descriptions of possible values.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

124 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
Your application may call the RepositionWindow function to position any window, relative to another
window or to a display screen. After positioning the window, RepositionWindow displays the window in
its new position.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
MacWindows.h

ReshapeCustomWindow
Notifies the Window Manager that a custom window’s shape has changed.

OSStatus ReshapeCustomWindow (
 WindowRef window
);

Parameters
window

The window whose shape has changed.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If the shape of a custom window needs to change dynamically, outside of the context of normal Window
Manager operations, you must use ReshapeCustomWindow to notify the Window Manager so that it can
recalculate the window regions and update the screen. The Window Manager queries your custom window
definition for the new structure and content regions and updates the screen with the new window shape.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ResizeWindow
Handles all user interaction while a window is being resized.

Functions 125
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Boolean ResizeWindow (
 WindowRef inWindow,
 Point inStartPoint,
 const Rect *inSizeConstraints,
 Rect *outNewContentRect
);

Parameters
window

The window that is to be resized.

inStartPoint
Set the Point structure to contain the location, specified in global coordinates, where the mouse-down
event occurred. Your application may retrieve this value from the where field of the EventRecord
structure.

inSizeConstraints
Set the rectangle to specify the limits on the vertical and horizontal measurements of the content
rectangle, in pixels. Although this parameter gives the address of a structure that is in the form of the
Rect data type, the four numbers in the structure represent limits, not screen coordinates. The top,
left, bottom, and right fields of the structure specify the minimum vertical measurement (top),
the minimum horizontal measurement (left), the maximum vertical measurement (bottom), and
the maximum horizontal measurement (right). The minimum dimensions should be large enough
to allow a manageable rectangle; 64 pixels on a side is typical. The maximum dimensions can be no
greater than 32,767. You can pass NULL to allow the user to resize the window to any size that is
contained onscreen.

outNewContentRect
On input, a pointer to a structure of type Rect. On return, the structure contains the new dimensions
of the window’s content region, in global coordinates.

Return Value
true if the window was successfully resized; otherwise, false.

Discussion
The ResizeWindow function moves either an outline of the window’s edges (Mac OS 9.x and earlier) or the
actual window (Mac OS X) around the screen, following the user’s cursor movements, and handles all user
interaction until the mouse button is released. Unlike with the function GrowWindow, there is no need to
follow this call with a call to the function SizeWindow, because once the mouse button is released,
ResizeWindow resizes the window if the user has changed the window size. Once the resizing is complete,
ResizeWindow draws the window in the new size.

Your application should call ResizeWindow instead of the earlier Window Manager functions SizeWindow
and GrowWindow. The ResizeWindow function informs your application of the new window bounds, so that
your application can respond to any changes in the window’s position.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

126 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

RetainWindowGroup
Increments the reference count for a window group.

OSStatus RetainWindowGroup (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group whose reference count is to be incremented. For information on this data type,
see WindowGroupRef (page 182).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ScrollWindowRect
Scroll any area of a window.

OSStatus ScrollWindowRect (
 WindowRef inWindow,
 const Rect *inScrollRect,
 SInt16 inHPixels,
 SInt16 inVPixels,
 ScrollWindowOptions inOptions,
 RgnHandle outExposedRgn
);

Parameters
inWindow

The window to scroll in.

inScrollRect
The rectangle to scroll, in local coordinates.

inHPixels
The number of pixels to scroll horizontally.

inVPixels
The number of pixels to scroll vertically.

inOptions
Options for the scroll. See “Window Scrolling Options” (page 240) for a list of possible options.

outExposedRgn
A valid region handle for the area newly revealed by the scroll (can be NULL). If NULL, the exposed
region is added to the window’s update region, regardless of the state of the
kScrollWindowInvalidate option. This prevents updates from being lost in multiple monitor
situations where the Window Manager can’t copy the entire region due to differing color tables.

Functions 127
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Scrolls pixels that are inside the specified region of the input window. No other pixels or the bits they represent
are affected. The pixels are shifted a distance of inHPixels horizontally and inVPixels vertically. The
positive directions are to the right and down. The pixels that are shifted out of the specified window are not
displayed, and the bits they represent are not saved. The exposed empty area created by the scrolling is
returned in the update region parameter and optionally added to the window’s update region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ScrollWindowRegion
Scrolls a window’s region.

OSStatus ScrollWindowRegion (
 WindowRef inWindow,
 RgnHandle inScrollRgn,
 SInt16 inHPixels,
 SInt16 inVPixels,
 ScrollWindowOptions inOptions,
 RgnHandle outExposedRgn
);

Parameters
inWindow

The window to scroll in.

inScrollRgn
The region to scroll, in local coordinates.

inHPixels
The number of pixels to scroll horizontally.

inVPixels
The number of pixels to scroll vertically.

inOptions
Options for the scroll. See “Window Scrolling Options” (page 240) for a list of possible options.

outExposedRgn
A valid region handle for the area newly revealed by the scroll (can be NULL). If NULL, the exposed
region is added to the window’s update region, regardless of the state of the
kScrollWindowInvalidate option. This prevents updates from being lost in multiple monitor
situations where the Window Manager can’t copy the entire region due to differing color tables.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

128 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
Scrolls pixels that are inside the specified region of the input window. No other pixels or the bits they represent
are affected. The pixels are shifted a distance of inHPixels horizontally and inVPixels vertically. The
positive directions are to the right and down. The pixels that are shifted out of the specified window are not
displayed, and the bits they represent are not saved. The exposed empty area created by the scrolling is
returned in the update region parameter and optionally added to the window’s update region

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SelectWindow
Makes a window active.

void SelectWindow (
 WindowRef window
);

Parameters
window

The window that is to be made active.

Discussion
The SelectWindow function removes highlighting from the previously active window, brings the specified
window to the front, highlights it, and generates the activate events to deactivate the previously active
window and activate the specified window. If the specified window is already active, SelectWindow has no
effect. Call SelectWindow when the user presses the mouse button while the cursor is in the content region
of an inactive window.

Even if the specified window is invisible, SelectWindow brings the window to the front, activates the window,
and deactivates the previously active window. Note that in this case, no active window is visible on the screen.
If you do select an invisible window, be sure to call ShowWindow (page 156) immediately to make the window
visible (and accessible to the user).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
QTCarbonShell

Declared In
MacWindows.h

SendBehind
Moves one window behind another.

Functions 129
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

void SendBehind (
 WindowRef window,
 WindowRef behindWindow
);

Parameters
window

The window to be moved.

behindWindow
On input, a pointer to the window that is to be in front of the moved window.

Discussion
The SendBehind function moves the window pointed to by the parameter window behind the window
pointed to by the parameter behindWindow. If the move exposes previously obscured windows or parts of
windows, SendBehind redraws the frames as necessary and generates the appropriate update events to
have any newly exposed content areas redrawn.

If the value of behindWindow is NULL, SendBehind sends the window to be moved behind all other windows
on the desktop. If the window to be moved is the active window, SendBehind removes its highlighting,
highlights the newly exposed frontmost window, and generates the appropriate activate events.

Do not use SendBehind to deactivate a window after you’ve made a new window active with the function
SelectWindow (page 129). The SelectWindow function automatically deactivates the previously active
window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SendWindowGroupBehind
Orders one window group behind another.

OSStatus SendWindowGroupBehind (
 WindowGroupRef inGroup,
 WindowGroupRef behindGroup
);

Parameters
inGroup

The window group.

behindGroup
The “behind” window group.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
A window group can contain multiple window groups. You can use this function to order nested groups.

130 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetDrawerOffsets
Sets the positioning offsets for the drawer with respect to its parent window.

OSStatus SetDrawerOffsets (
 WindowRef inDrawerWindow,
 CGFloat inLeadingOffset,
 CGFloat inTrailingOffset
);

Parameters
inDrawerWindow

The drawer window whose positioning offsets are to be set.

inLeadingOffset
The new leading offset, in pixels. Pass kWindowOffsetUnchanged if you don’t want to change the
leading offset.

inTrailingOffset
The new trailing offset, in pixels. Pass kWindowOffsetUnchanged if you don’t want to change the
trailing offset.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetDrawerParent
Sets the parent window for a drawer.

OSStatus SetDrawerParent (
 WindowRef inDrawerWindow,
 WindowRef inParent
);

Parameters
inDrawerWindow

The drawer window whose parent window is to be set.

inParent
The window that is to be set as the parent of the window specified by inDrawerWindow.

Functions 131
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetDrawerPreferredEdge
Set the preferred window edge from which the drawer should appear.

OSStatus SetDrawerPreferredEdge (
 WindowRef inDrawerWindow,
 OptionBits inEdge
);

Parameters
inDrawerWindow

The drawer window whose preferred window edge is to be set.

inEdge
The preferred edge. See “Window Edge Constants” (page 237) for a list of possible values.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetPortWindowPort
Sets the current graphics port to the window’s port.

void SetPortWindowPort (
 WindowRef window
);

Parameters
window

The window whose graphics port is to be set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

132 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

QTCarbonShell

Declared In
MacWindows.h

SetThemeTextColorForWindow
Sets a text color that contrasts with a theme brush.

OSStatus SetThemeTextColorForWindow (
 WindowRef inWindow,
 Boolean inActive,
 SInt16 inDepth,
 Boolean inColorDev
);

Parameters
inWindow

The window whose text color is to be set.

inActive
A Boolean whose value is true to indicate an active state or false to indicate an inactive state.

inDepth
The bit depth of the window’s port. In Mac OS X, this parameter is ignored and should always be set
to 32.

inColorDev
A Boolean whose value is true to indicate that the window’s port is color or false to indicate that
the port is black and white. In Mac OS X, this parameter is ignored and should always be set to true.

Return Value
A result code. See “Window Manager Result Codes” (page 247) for a list of possible values.

Discussion
SetThemeTextColorForWindow sets a text color in the specified window’s port that contrasts with the
brush specified by SetThemeWindowBackground (page 133) and also matches the inActive parameter.

Only a subset of the theme brushes have theme text colors. As of Mac OS 9 and Mac OS X v10.4 and later,
the Alert, Dialog, Modeless Dialog, and Notification brushes have corresponding text colors. For any other
brush, SetThemeTextColorForWindow returns themeNoAppropriateBrushErr and does not modify
the text color.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetThemeWindowBackground
Sets a window’s background theme.

Functions 133
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus SetThemeWindowBackground (
 WindowRef inWindow,
 ThemeBrush inBrush,
 Boolean inUpdate
);

Parameters
inWindow

The window whose background theme is to be set.

inBrush
The theme brush that determines how the window background is painted. For information on theme
brushes, see the Appearance Manager documentation.

inUpdate
A Boolean whose value is true if you want the window to be redrawn immediately using the new
background brush; otherwise, false.

Return Value
A result code. See “Window Manager Result Codes” (page 247) for a list of possible values.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetUserFocusWindow
Designates a window to receive user focus.

OSStatus SetUserFocusWindow (
 WindowRef inWindow
);

Return Value
A result code.

Discussion
You can use this function to assign user focus to a specified window. This tells the Carbon Event Manager to
route events that should go to the user focus (for example, commands and keyboard events) to the specified
window. This can be used, for example, to route keyboard events to a floating palette, since floating palettes
do not normally receive user focus.

Setting focus automatically defocuses whatever element formerly had user focus. If the focus changes to a
new window, the kEventWindowFocusAcquired Carbon event will be sent to the newly focused window,
and the kEventWindowFocusRelinquish Carbon event will be sent to the previously focused window.

If you pass kUserFocusAuto in the inWindow parameter, the system picks the best candidate for user focus
(typically, this will be the active window). If you temporarily change the focus to a special window, you should
use this option to restore the focus rather than setting the focus to an explicit window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

134 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

SetWindowActivationScope
Sets a window’s activation scope.

OSStatus SetWindowActivationScope (
 WindowRef inWindow,
 WindowActivationScope inScope
);

Parameters
inWindow

The window whose activation scope is to be set.

inScope
The new activation scope.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowAlpha
Sets the window’s alpha channel value.

OSStatus SetWindowAlpha (
 WindowRef inWindow,
 CGFloat inAlpha
);

Parameters
inWindow

The window whose alpha channel value is to be set.

inAlpha
The alpha value to set. This value can range from 0.0 (completely transparent) to 1.0 (opaque).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 135
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SetWindowAlternateTitle
Sets an alternate window title.

OSStatus SetWindowAlternateTitle (
 WindowRef inWindow,
 CFStringRef inTitle
);

Parameters
inWindow

The window for which to set the alternate title.

inTitle
The alternate title for the window. Passing NULL for this parameter will remove any alternate title
that might be present.

Return Value
A result code. See “Window Manager Result Codes” (page 247). An operating system status code.

Discussion
This API sets an alternate title for a window. The alternate title overrides what is displayed in the Window
menu. If you do not set an alternate title, the normal window title is used. You would normally use this if the
window title was not expressive enough to be used in the Window menu (or similar text-only situation).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowBounds
Sets a window’s size and position from the bounding rectangle of the specified window region.

OSStatus SetWindowBounds (
 WindowRef window,
 WindowRegionCode regionCode,
 const Rect *globalBounds
);

Parameters
window

The window whose bounds are to be set.

regionCode
A constant specifying the region to be used in determining the window’s size and position. The only
region codes allowed for this parameter are kWindowStructureRgn and kWindowContentRgn.

globalBounds
Set the rectangle to specify the dimensions and position, in global coordinates, of the window region
specified in the regionCode parameter.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

136 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
The SetWindowBounds function sets a window’s size and position to that specified by the rectangle that
your application passes in the globalBounds parameter. After doing so, SetWindowBounds redraws the
window, if the window is visible.

When you call the SetWindowBounds function, your application specifies whether the window’s content
region or its structure region is more important in determining the window’s ultimate size and position. This
distinction can be important with versions of the Mac OS running the Appearance Manager, since the total
dimensions of a window—and, therefore, its spatial relationship to the rest of the screen—may vary from
appearance to appearance. In general, you should specify kWindowStructureRgn for the regionCode
parameter if how the window as a whole relates to a given monitor is more important than the exact
positioning of its content on the screen. On the other hand, if you specify kWindowContentRgn for the
regionCode parameter because the positioning of your application’s content is of greatest concern, then
it is important to note that with some appearances some part of the window’s structure region or “frame”
may extend past the edge of a monitor and not be displayed.

See also the function GetWindowBounds (page 60).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowSetBounds (page 105)

Declared In
MacWindows.h

SetWindowCancelButton
Specifies a Cancel button for a window.

OSStatus SetWindowCancelButton (
 WindowRef inWindow,
 ControlRef inControl
);

Parameters
inWindow

The window whose Cancel button you want to set.

inControl
The control to designate as the Cancel button.

Return Value
A result code.

Discussion
You can use this function to specify a control (normally a button) to be the Cancel button for a given window.
This button would be considered to have been clicked if the user instead presses Command-period or the
Escape key.

Functions 137
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

The standard window event handler looks for keystrokes that correspond to the cancel button and generates
events of type kEventControlHit when it detects the correct key being pressed. This is similar to the way
the Dialog Manager responds to cancel buttons, except that instead of returning an item index for which
button is pressed, the Carbon Event Manager generates a control hit event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowContentColor
Sets the color to which a window’s content region is redrawn.

OSStatus SetWindowContentColor (
 WindowRef window,
 const RGBColor *color
);

Parameters
window

The window whose content color is to be set.

color
Set this structure to specify the content color to be used.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If your application uses the SetWindowContentColor function, the window’s content region is redrawn to
the color you specify, without affecting the value specified in the window’s CGrafPort structure for the
current background color.

See also the function GetWindowContentColor (page 62).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowContentPattern
Sets the pattern to which a window’s content region is redrawn.

138 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus SetWindowContentPattern (
 WindowRef window,
 PixPatHandle pixPat
);

Parameters
window

A pointer to the window whose content pattern is being set.

pixPat
Set this structure to specify the content pattern to be used. This handle is copied by the Window
Manager, and your application continues to own the original. Therefore there may be higher RAM
requirements for applications with numerous identically patterned windows.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If your application uses the SetWindowContentPattern function, the window’s content region is redrawn
to the pattern you specify, without affecting the value specified in the window’s CGrafPort structure for
the current background pattern.

See also the function GetWindowContentPattern (page 63).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowDefaultButton
Specifies a default button for a window.

OSStatus SetWindowDefaultButton (
 WindowRef inWindow,
 ControlRef inControl
);

Parameters
inWindow

The window whose default button you want to set.

inControl
The control to designate as the default.

Return Value
A result code.

Discussion
You can use this function to specify a control (normally a button) to be the default for a given window. This
button would be considered to have been clicked if the user instead presses the Return or Enter keys on the
keyboard.

Functions 139
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

The standard window event handler looks for keystrokes that correspond to the default button and generates
events of type kEventControlHit when it detects the correct key being pressed. This is similar to the way
the Dialog Manager responds to default buttons, except that instead of returning an item index for which
button is pressed, the Carbon Event Manager generates a control hit event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonCocoa_PictureCursor

Declared In
MacWindows.h

SetWindowDockTileMenu
Associates a pop-up menu with a window.

OSStatus SetWindowDockTileMenu (
 WindowRef inWindow,
 MenuRef inMenu
);

Parameters
inWindow

The window with which a pop-up menu is to be associated.

inMenu
The pop-up menu that is to be associated with the window specified by inWindow

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
You specify a dock tile menu if you want to be able to present special selections when the user activates the
pop-up menu associated with the window’s minimized dock tile.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

SetWindowGroup
Assigns a window to a window group.

140 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus SetWindowGroup (
 WindowRef inWindow,
 WindowGroupRef inNewGroup
);

Parameters
inWindow

The window that is to be assigned to a window group.

inNewGroup
The window group. For information on this data type, see WindowGroupRef (page 182).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowGroupLevel
Sets the level of group in the window class hierarchy.

OSStatus SetWindowGroupLevel (
 WindowGroupRef inGroup,
 SInt32 inLevel
);

Parameters
inGroup

The window group.

inLevel
The new level for the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The window group’s level is only used to set the level of its windows if the window group is a child of the
root group. If there is another group in the group hierarchy between this group and the root group, this
group’s level is ignored.

In Mac OS X v10.4 and later, SetWindowGroupLevel sets all three window levels associated with a window
group: active, inactive, and promoted. It then immediately determines if the active level needs to be promoted
to a larger value, and if so, sets the promoted level to that value.

See the Core Graphics frameworks header CGWindowLevel.h for a listing of window levels.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 141
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

SetWindowGroupLevelOfType
Sets the window level of a window group.

OSStatus SetWindowGroupLevelOfType (
 WindowGroupRef inGroup,
 UInt32 inLevelType,
 CGWindowLevel inLevel
);

Parameters
inGroup

The window group whose Core Graphics window level is to be set.

inLevelType
The level type to set. Specify kWindowGroupLevelActive or kWindowGroupLevelInactive. For
details, see “Window Group Level Constants” (page 244).

inLevel
The new level that is to be set for the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
In Mac OS X v10.4 and later, multiple window levels may be associated with a window group: one level for
when the application is active and another for when the application is inactive. The Window Manager
automatically switches each group’s level as the application becomes active or inactive. Call
SetWindowGroupLevelOfType to set the active and inactive window level for a window group. The window
group’s level is only used to set the level of its windows if the window group is a child of the root group. If
there is another group in the group hierarchy between this group and the root group, this group’s level is
ignored.

You can also use SetWindowGroupLevelOfType to set the promoted window level that is actually used
for windows in the group. Doing so is not recommended, however, because the promoted window level is
reset by the Window Manager whenever the window group hierarchy structure changes. Any changes that
you make to the promoted level may, therefore, be overwritten. In general, you should only use
SetWindowGroupLevelOfType to set the active and inactive window levels. When setting the active level
of a group with the fixed-level window group attribute, this function also automatically sets the promoted
level to the same value and updates the promoted level of any non-fixed-level groups above the group being
modified.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

142 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SetWindowGroupName
Assigns a name to a window group.

OSStatus SetWindowGroupName (
 WindowGroupRef inGroup,
 CFStringRef inName
);

Parameters
inGroup

The window group. For information on this data type, see WindowGroupRef (page 182).

inName

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowGroupOwner
Sets a window as the owner of a window group.

OSStatus SetWindowGroupOwner (
 WindowGroupRef inGroup,
 WindowRef inWindow
);

Parameters
inGroup

The window group that is to be set as the owner of the window group specified by inWindow.

inWindow
The window group whose owner is to be set.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function is rarely needed and is known to be problematic, so calling this function is not recommended.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 143
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SetWindowGroupParent
Sets a window group to be the parent of another window group.

OSStatus SetWindowGroupParent (
 WindowGroupRef inGroup,
 WindowGroupRef inNewGroup
);

Parameters
inGroup

The window group whose parent window group is to be set. The specified window group cannot
contain any windows at the time of this call.

inNewGroup
The window group that is to be the parent of inGroup. For information on this data type, see
WindowGroupRef (page 182).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
You can nest groups within each other using this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowIdealUserState
Sets the size and position of a window in its user state.

OSStatus SetWindowIdealUserState (
 WindowRef inWindow,
 const Rect *inUserState
);

Parameters
inWindow

The window whose size and position in its user state is to be set.

inUserState
Set this rectangle to specify the new size and position of the window’s user state, in global coordinates.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Because the window definition function relies upon the WStateData structure, it is unaware of the ideal
standard state, and this causes the user state data that it stores in the WStateData structure to be unreliable.
While the Window Manager is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can overwrite that data. Therefore,
the function SetWindowIdealUserState maintains the window’s user state independently of the

144 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

WStateData structure. The SetWindowIdealUserState function gives your application access to the user
state data maintained by ZoomWindowIdeal (page 168). However, your application does not typically need
to use this function; it is supplied for completeness.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowSetIdealUserState (page 105)

Declared In
MacWindows.h

SetWindowKind
Sets a window’s window kind.

void SetWindowKind (
 WindowRef window,
 short kind
);

Parameters
window

The window whose window kind is to be set.

kind
An integer representing the window kind.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowModality
Sets the modality of a window.

OSStatus SetWindowModality (
 WindowRef inWindow,
 WindowModality inModalKind,
 WindowRef inUnavailableWindow
);

Parameters
inWindow

The window whose modality to set.

inModalKind
The new modality for the window. See “Window Modality Options” (page 212) for a list of possible
options.

Functions 145
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inUnavailableWindow
If the window is becoming document-modal, this parameter specifies the window to which the
inWindow parameter is modal. The window specified by this parameter will not be available while
inWindow is in window-modal state.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The modality of a window is used by the Carbon event manager to automatically determine appropriate
event handling.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowModified
Sets the modification state of the specified window.

OSStatus SetWindowModified (
 WindowRef window,
 Boolean modified
);

Parameters
window

The window whose modification state is to be set.

modified
Pass true if the content of the window has been modified; otherwise, pass false.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Your application can use the functions SetWindowModified and IsWindowModified (page 116) instead
of maintaining its own separate record of the modification state of the content of a window. The modification
state of a window is visually represented by a dot in the window’s close box. If the dot is present, the window
is modified; if the dot is absent, the window is not modified.

Your application should distinguish between the modification state of the window and the modification
state of the window’s contents, typically a document. The modification state of the window contents are
what should affect SetWindowModified. For example, in the case of a word processing document, you call
SetWindowModified (passing true in the modified parameter) whenever the user types new characters
into the document. However, you do not call SetWindowModified when the user moves the window,
because that change does not affect the document contents. If you need to track whether the window
position has changed, you need to do this with your own flag.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

146 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

SetWindowProperty
Associates an arbitrary piece of data with a window.

OSStatus SetWindowProperty (
 WindowRef window,
 PropertyCreator propertyCreator,
 PropertyTag propertyTag,
 ByteCount propertySize,
 const void *propertyBuffer
);

Parameters
window

The window with which data is to be associated.

propertyCreator
The creator code (typically, the application’s signature) of the data to be associated.

propertyTag
A value identifying the data to be associated. You define the tag your application uses to identify the
data; this code is not to be confused with the file type for the data.

propertySize
The size of the data to be associated.

propertyBuffer
A pointer to the data to be associated.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Data set with the SetWindowProperty function may be obtained with the function
GetWindowProperty (page 75) and removed with the function RemoveWindowProperty (page 123).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
QTMetaData

Declared In
MacWindows.h

Functions 147
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

SetWindowProxyAlias
Associates a file with a window.

OSStatus SetWindowProxyAlias (
 WindowRef inWindow,
 AliasHandle inAlias
);

Parameters
inWindow

The window with which the specified file is to be associated.

inAlias
A handle to a structure of type AliasRecord for the file to associate with the specified window. You
can obtain an alias handle by calling the function GetWindowProxyAlias (page 78). The Window
Manager copies the alias data, so you can dispose of the alias after SetWindowProxyAlias returns.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Your application should call the SetWindowProxyAlias function to establish a proxy icon for a given
window. The creator code and file type of the file associated with a window determine the proxy icon that
is displayed for the window.

Because the SetWindowProxyAlias function won’t work without a saved file, you must establish the initial
proxy icon for a new, untitled window with the function SetWindowProxyCreatorAndType (page 148),
which requires that you know the file type and creator code for the file, but does not require that the file
have been saved.

Special Considerations

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the SetWindowProxyAlias function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowProxyCreatorAndType
Sets the proxy icon for a window that lacks an associated file.

148 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus SetWindowProxyCreatorAndType (
 WindowRef window,
 OSType fileCreator,
 OSType fileType,
 SInt16 vRefNum
);

Parameters
window

The window for which you want to set the proxy icon.

fileCreator
A code that is to be used, together with the fileType parameter, to determine the proxy icon. This
typically is the creator code of the file that would be created, were the user to save the contents of
the window.

fileType
A code that is to be used, together with the fileCreator parameter, to determine the proxy icon.
This typically is the file type of the file that would be created, were the user to save the contents of
the window.

vRefNum
A value identifying the volume containing the default desktop database to search for the icon
associated with the file type and creator code specified in the fileCreator and fileTypeparameters.
Pass kOnSystemDisk if the volume is unknown.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Special Considerations

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the SetWindowProxyCreatorAndType function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowProxyIcon
Overrides the default proxy icon for a window.

OSStatus SetWindowProxyIcon (
 WindowRef window,
 IconRef icon
);

Parameters
window

The window for which you want to set the proxy icon.

Functions 149
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

icon
An icon reference identifying the icon to be used for the window’s proxy icon. If there is already a
proxy icon in use of the type desired, an IconRef value may be obtained for that icon by calling the
function GetWindowProxyIcon (page 78). Otherwise, your application must call the Icon Services
function GetIconRefFromFile to get a value of type IconRef. The Window Manager retains the
IconRef, so you can release icon after SetWindowProxyIcon returns. See the Icon Services and
Utilities documentation for a description of the IconRef data type.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
If you want to override the proxy icon that the Window Manager displays by default for a given file, your
application should call the SetWindowProxyIcon function.

More typically, when you do not want to override a window’s default proxy icon, your application would call
one of the following functions: HIWindowSetProxyFSRef (page 106), SetWindowProxyAlias (page 148),
or SetWindowProxyCreatorAndType (page 148).

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the SetWindowProxyIcon function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowResizeLimits
Sets the maximum and minimum resize limits for windows.

OSStatus SetWindowResizeLimits (
 WindowRef inWindow,
 const HISize *inMinLimits,
 const HISize *inMaxLimits
);

Parameters
inWindow

The window whose maximum and minimum resize limits are to be set.

inMinLimits
The minimum limits. Pass NULL if you don’t want to set this limit. For information on the HISize data
type, see HIGeometry.h.

inMaxLimits
The maximum limits. Pass NULL if you don’t want to set this limit. For information on the HISize
data type, see HIGeometry.h.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.

150 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
MacWindows.h

SetWindowStandardState
Sets a window’s standard zoom rectangle.

void SetWindowStandardState (
 WindowRef window,
 const Rect *rect
);

Parameters
window

The window whose standard zoom rectangle is to be set.

rect
On input, a rectangle (in global coordinates) representing the window’s standard zoom rectangle. A
window’s standard zoom rectangle is the window content bounds when the window is zoomed out
to its largest extent.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowTitleWithCFString
Sets the window title to the contents of a Core Foundation string.

OSStatus SetWindowTitleWithCFString (
 WindowRef inWindow,
 CFStringRef inString
);

Parameters
inWindow

The window whose title is to be set.

inString
The title to set.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 151
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Related Sample Code
HID Calibrator
QTCarbonShell
QTMetaData

Declared In
MacWindows.h

SetWindowToolbar
Associates a toolbar with a window.

OSStatus SetWindowToolbar (
 WindowRef inWindow,
 HIToolbarRef inToolbar
);

Parameters
inWindow

The window with which the toolbar specified by inToolbar is to be associated.

inToolbar
The toolbar that is to be associated with the window specified by inWindow.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowUserState
Sets a window’s user zoom rectangle.

void SetWindowUserState (
 WindowRef window,
 const Rect *rect
);

Parameters
window

The window whose user zoom rectangle is to be set.

rect
On input, a pointer to a rectangle (in global coordinates) representing the user zoom rectangle that
is to be set. The window’s user zoom rectangle is the window content bounds when the window is
zoomed back in.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

152 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

SetWRefCon
Sets the refCon field of a window.

void SetWRefCon (
 WindowRef window,
 SRefCon data
);

Parameters
window

The window whose refCon field is to be set.

data
On input, the data to be placed in the refCon field.

Discussion
The SetWRefCon function places the specified data in the refCon field of the specified window structure.
The refCon field is available to your application for any window-related data it needs to store.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

ShowFloatingWindows
Shows an application’s floating windows.

OSStatus ShowFloatingWindows (
 void
);

Return Value
A result code. For details, see “Window Manager Result Codes” (page 247).

Discussion
When an application receives a suspend event, its floating windows are hidden automatically. When the
application receives a resume event, the floating windows are made visible automatically. Call this function
if you want to make your floating windows visible manually.

See also the function HideFloatingWindows (page 83).

Functions 153
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Special Considerations

TheShowFloatingWindows function operates only upon windows created with thekFloatingWindowClass
constant; see “Window Class Constants” (page 184) for more details on this constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowHide
Sets a window’s visibility.

void ShowHide (
 WindowRef window,
 Boolean showFlag
);

Parameters
window

On input, a pointer to the window structure.

showFlag
On input, a Boolean value that specifies its visibility: true makes a window visible; false makes it
invisible.

Discussion
The ShowHide function sets a window’s visibility to the status specified by the showFlag parameter. If the
value of showFlag is true, ShowHide makes the window visible if it’s not already visible and has no effect
if it’s already visible. If the value of showFlag is false, ShowHide makes the window invisible if it’s not
already invisible and has no effect if it’s already invisible.

The ShowHide function never changes the highlighting or front-to-back ordering of windows and generates
no activate events.

Use ShowHide only where you need to manually control window activation. Otherwise, use ShowWindow or
HideWindow instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowHideWindowToolbar
Shows or hides the toolbar.

154 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus ShowHideWindowToolbar (
 WindowRef inWindow,
 Boolean inShow,
 Boolean inAnimate
);

Parameters
inWindow

The window whose toolbar is to be shown or hidden.

inShow
Pass true to show the toolbar, false otherwise.

inAnimate
Pass true to animate the transition, pass false for no animation.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowSheetWindow
Shows a sheet window using appropriate visual effects.

OSStatus ShowSheetWindow (
 WindowRef inSheet,
 WindowRef inParentWindow
);

Parameters
inSheet

The window sheet that is to be shown.

inParentWindow
The parent of the window specified by inSheet.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

Functions 155
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ShowWindow
Makes an invisible window visible.

void ShowWindow (
 WindowRef window
);

Parameters
window

The window that is to be made visible.

Discussion
The ShowWindow function makes an invisible window visible. If the specified window is already visible,
ShowWindow has no effect. Your application typically creates a new window in an invisible state, performs
any necessary setup of the content region, and then calls ShowWindow to make the window visible.

When you call ShowWindow to display a window that is invisible, the Window Manager draws the window
frame and sends an event to request the application to draw the content region before the window becomes
visible. For compositing windows, the Window Manager sends a kEventControlDraw event to each HIView
in the window. For non-compositing windows, the Window Manager sends a kEventWindowDrawContent
event. If a non-compositing window does not handle the kEventWindowDrawContent, the Window Manager
shows the window and generates an update event to request your application to draw the content region.

If the newly visible window is the frontmost window, ShowWindow highlights it if it’s not already highlighted
and generates an activate event to make it active. The ShowWindow function does not activate a window
that is not frontmost on the desktop.

Because ShowWindow does not change the front-to-back ordering of windows, it is not the inverse of
HideWindow (page 84). If you make the frontmost window invisible with HideWindow, andHideWindow
has activated another window, you must call both ShowWindow and SelectWindow (page 129) to bring the
original window back to the front.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
MacWindows.h

SizeWindow
Sets the size of a window.

156 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

void SizeWindow (
 WindowRef window,
 short w,
 short h,
 Boolean fUpdate
);

Parameters
window

The window whose size is to be set.

w
On input, the new window width, in pixels.

h
On input, the new window height, in pixels.

fUpdate
On input, a Boolean value that specifies whether any newly created area of the content region is to
be accumulated into the update region (true) or not (false). You ordinarily pass a value of true to
ensure that the area is updated. If you pass false, you’re responsible for maintaining the update
region yourself. For a composited window, this parameter is ignored, and any views that intersect
the newly exposed area of the window are automatically invalidated. For more information on adding
rectangles to and removing rectangles from the update region, see InvalWindowRect (page 109)
and ValidWindowRect (page 165).

Discussion
The SizeWindow function changes the size of the window’s graphics port rectangle to the dimensions
specified by the w and h parameters, or does nothing if the values of w and h are both 0. The Window Manager
redraws the window in the new size, recentering the title and truncating it if necessary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

ToggleDrawer
Toggles the drawer state.

OSStatus ToggleDrawer (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose drawer state is to be toggled.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Functions 157
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
If the drawer is currently open or opening, this function closes the drawer. If the drawer is currently closed
or closing, this function opens the drawer.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

TrackBox
Tracks clicks in the collapse, close, size, and zoom boxes, and clicks of the toolbar button.

Boolean TrackBox (
 WindowRef window,
 Point thePt,
 WindowPartCode partCode
);

Parameters
window

The window in which the mouse button was pressed.

thePt
On input, the location of the cursor when the mouse button was pressed. Your application receives
this point from the where field in the event structure.

partCode
On input, the part code (inZoomIn, inZoomOut, inGoAway, inGrow, inCollapseBox, or
inToolbarButton) returned by FindWindow (page 48); see “Part Identifier Constants” (page 239).

Return Value
A Boolean whose value is true if the specified part was clicked; otherwise, false. If TrackBox returns true,
it also removes highlighting from the specified part.

Discussion
The TrackBox function tracks the cursor when the user presses the mouse button while the cursor is in the
specified part, retaining control until the mouse button is released. While the button is down, TrackBox
highlights the part while the cursor is in the part’s region.

When the mouse button is released, TrackBox removes the highlighting from the part and returns true if
the cursor is within the part’s region and false if it is not.

If TrackBox returns true after tracking the close box, your application should close the window. If TrackBox
returns true after tracking the grow box, your application should call ResizeWindow (page 125). If TrackBox
returns true after tracking the collapse box, your application should call CollapseWindow (page 37). When
tracking the toolbar button, your application should call ShowHideWindowToolbar (page 154).

Your application calls the TrackBox function when it receives a result code of inZoomIn or inZoomOut
from the function FindWindow (page 48). If TrackBox returns true, your application calculates the standard
state, if necessary, and calls the function ZoomWindow (page 167) to zoom the window. If TrackBox returns
false, your application does nothing.

158 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

TrackGoAway
Tracks the cursor when the user presses the mouse button while the cursor is in the close box.

Boolean TrackGoAway (
 WindowRef window,
 Point thePt
);

Parameters
window

On input, the window in which the mouse-down event occurred.

thePt
On input, the location of the cursor at the time the mouse button was pressed. Your application
receives this point from the where field of the event structure.

Return Value
When the mouse button is released, TrackGoAway removes the highlighting from the close box and returns
true if the cursor is within the close region and false if it is not.

Discussion
The TrackGoAway function tracks cursor activity when the user presses the mouse button while the cursor
is in the close box, retaining control until the user releases the mouse button. While the button is down,
TrackGoAway highlights the close box as long as the cursor is in the close region.

Your application calls the TrackGoAway function when it receives a result code of inGoAway from
FindWindow (page 48). If TrackGoAway returns true, your application calls its own function for closing a
window, which can call DisposeWindow (page 45) to remove the window from the screen. If TrackGoAway
returns false, your application does nothing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

TrackWindowProxyDrag
Handles all aspects of the drag process when the user drags a proxy icon.

Functions 159
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus TrackWindowProxyDrag (
 WindowRef window,
 Point startPt
);

Parameters
window

The window whose proxy icon is being dragged.

startPt
Set the Point structure to contain the point, specified in global coordinates, where the mouse-down
event that began the drag occurred. Your application may retrieve this value from the where field of
the event structure.

Return Value
A result code. See “Window Manager Result Codes” (page 247). If you receive the error
errUserWantsToDragWindow (–5607), your application should respond by calling the Window Manager
function DragWindow. Errors are also returned from the Drag Manager, including userCanceledErr (–128).

Discussion
If your application uses proxy icons to represent a type of object (currently, file system entities such as files,
folders, and volumes) supported by the Window Manager, your application should call the
TrackWindowProxyDrag function, and the Window Manager can handle all aspects of the drag process for
you. If your application calls the TrackWindowProxyDrag function, it does not have to call the Drag Manager
function WaitMouseMoved before starting to track the drag, as the Window Manager handles this
automatically. However, if a proxy icon represents a type of data that the Window Manager does not support,
or if you want to implement custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 160).

Your application detects that a user is dragging one of its proxy icons when the function FindWindow (page
48) returns the inProxyIcon result code; see “Window Part Code Constants” (page 209) for more details.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowTrackProxyDrag (page 108)

Declared In
MacWindows.h

TrackWindowProxyFromExistingDrag
Allows custom handling of the drag process when the user drags a proxy icon.

160 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus TrackWindowProxyFromExistingDrag (
 WindowRef window,
 Point startPt,
 DragRef drag,
 RgnHandle inDragOutlineRgn
);

Parameters
window

The window whose proxy icon is being dragged.

startPt
Set the Point structure to contain the point, specified in global coordinates, where the mouse-down
event that began the drag occurred. Your application may retrieve this value from the where field of
the event structure.

drag
A value that refers to the current drag process. Pass in the value produced in the outNewDrag
parameter of the function BeginWindowProxyDrag (page 32). If you are not using
BeginWindowProxyDrag in conjunction with TrackWindowProxyFromExistingDrag, you must
create the drag reference yourself with the Drag Manager function NewDrag.

inDragOutlineRgn
A region handle representing an outline of the icon being dragged. You may obtain a handle to this
region from the outDragOutlineRgn parameter of BeginWindowProxyDrag. If you are not using
BeginWindowProxyDrag in conjunction with TrackWindowProxyFromExistingDrag, you must
create the region yourself.

Return Value
A result code. See “Window Manager Result Codes” (page 247). Errors are also returned from the Drag Manager,
including userCanceledErr (-128).

Discussion
Typically, if the proxy icon represents a type of object (currently, file system entities such as files, folders, and
volumes) supported by the Window Manager, the Window Manager can handle all aspects of the drag process
itself, and your application should call the function TrackWindowProxyDrag (page 159). However, if the
proxy icon represents a type of data that the Window Manager does not support, or if you want to implement
custom dragging behavior, your application should call theTrackWindowProxyFromExistingDrag function.

The TrackWindowProxyFromExistingDrag function accepts an existing drag reference and adds file data
if the window contains a file proxy. If your application uses TrackWindowProxyFromExistingDrag, you
then have the choice of using this function in conjunction with the functions BeginWindowProxyDrag (page
32) and EndWindowProxyDrag (page 47) or simply calling TrackWindowProxyFromExistingDrag and
handling all aspects of creating and disposing of the drag yourself.

Your application detects a drag when the function FindWindow (page 48) returns the inProxyIcon result
code; see “Window Part Code Constants” (page 209) for more details.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowTrackProxyDrag (page 108)

Declared In
MacWindows.h

Functions 161
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

TransitionWindow
Shows, hides, moves, or resizes a window with appropriate animation and sound.

OSStatus TransitionWindow (
 WindowRef inWindow,
 WindowTransitionEffect inEffect,
 WindowTransitionAction inAction,
 const Rect *inRect
);

Parameters
inWindow

The window on which to act.

inEffect
The type of visual effect to use. TransitionWindow supports the Zoom, Slide, Fade, and Genie
transition effects. The Slide effect is supported in Mac OS X and in CarbonLib 1.5 and later. The Fade
and Genie effects are supported in Mac OS X v10.3 and later. See “Window Transition Effect
Constants” (page 223) for constants and descriptions of these effects.

inAction
The action to take. TransitionWindow supports the Show, Hide, Move, and Resize actions. The Move
and Resize actions are supported in Mac OS X and in CarbonLib 1.5 and later. See “Window Transition
Action Constants” (page 222) for possible values.

inRect
A screen rect in global coordinates, or NULL for some transition actions. The interpretation of the rect
is dependent on the transition action. For details, see the documentation for each action.

If you pass kWindowShowTransitionAction in the action parameter then, before calling
TransitionWindow, set the rectangle to specify the dimensions and position, in global coordinates,
of the area from which the zoom is to start. If you pass NULL, TransitionWindow uses the center of
the display screen as the source rectangle.

If you pass kWindowHideTransitionAction in the action parameter then, before calling
TransitionWindow, set the rectangle to specify the dimensions and position, in global coordinates,
of the area at which the zoom is to end.

If you pass NULL, TransitionWindow uses the center of the display screen as the destination rectangle.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The TransitionWindow function displays an animation of a window’s transition between the open and
closed states, such as that displayed by the Finder. TransitionWindow uses the rectangle specified in the
rect parameter for one end of the animation (the source or the destination of the zoom, depending upon
whether the window is being shown or hidden, respectively) and the window’s current size and position for
the other end of the animation. TransitionWindow also plays sounds appropriate to the current theme for
the opening and closing actions.

Your application may use TransitionWindow instead of the functions ShowWindow and HideWindow. Like
these pre–Mac OS 8.5 Window Manager functions, TransitionWindow generates the appropriate update
and active events when it shows and hides windows.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

162 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

TransitionWindowAndParent
Shows or hides a window, potentially also moving a second window, with animation and sound.

OSStatus TransitionWindowAndParent (
 WindowRef inWindow,
 WindowRef inParentWindow,
 WindowTransitionEffect inEffect,
 WindowTransitionAction inAction,
 const Rect *inRect
);

Parameters
inWindow

The window that is to be shown or hidden.

inParentWindow
The window to which inWindow is related. For the Sheet effect, this parameter must be a valid window
reference; for other effects, this parameter should be NULL.

inEffect
The type of visual effect to use. This function is most commonly used to perform the Sheet transition
effect, but it also supports the Zoom, Slide, Fade, and Genie effects. See “Window Transition Effect
Constants” (page 223) for constants and descriptions of these effects.

inAction
The action to take on the window. The Show, Hide, Move, and Resize actions are supported. See
“Window Transition Action Constants” (page 222) for the appropriate constants.

inRect
A screen rect in global coordinates. The interpretation of the rect is dependent on the transition
action; see the documentation for each action for details. May be NULL for some transition actions.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

TransitionWindowWithOptions
Transitions a window from one state to another with appropriate animation and sound.

Functions 163
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus TransitionWindowWithOptions (
 WindowRef inWindow,
 WindowTransitionEffect inEffect,
 WindowTransitionAction inAction,
 const HIRect *inBounds,
 Boolean inAsync,
 TransitionWindowOptions *inOptions
);

Parameters
inWindow

The window to transition.

inEffect
The type of visual effect to use. For possible values, see “Window Transition Effect Constants” (page
223) for a description of this value.

inAction
The action to take. For possible values, see “Window Transition Action Constants” (page 222).

inBounds
A screen rect in global coordinates. The interpretation of the rect is dependent on the transition
action; see “Window Transition Action Constants” (page 222) for the details of each action. This
parameter may be NULL for the Show and Hide actions for the Zoom and Sheet effects. This parameter
is ignored and must be NULL for the Show and Hide actions for the Fade effect.

inAsync
A Boolean whose value indicates whether the transition should run synchronously or asynchronously.
If inAsync is true, this function returns immediately, and the transition runs using an event loop
timer. You must run your event loop for the transition to occur. If inAsync is false, this function
blocks until the transition completes. In either case, the kEventWindowTransitionStarted and
kEventWindowTransitionCompleted Carbon events are sent to the transitioning window at the
start and end of the transition.

inOptions
Extra information that are required for some transitions. This parameter may be NULL if the specified
transition effect does not require extra information.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

UpdateCollapsedWindowDockTile
Updates the image of a window in the dock to the current contents of the window.

164 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus UpdateCollapsedWindowDockTile (
 WindowRef inWindow
);

Parameters
inWindow

The window whose image is to be updated.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Use this function for periodic updates, not for animation purposes. If you want animation, use
CreateQDContextForCollapsedWindowDockTile (page 254).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ValidWindowRect
Removes a rectangle from a window’s update region.

OSStatus ValidWindowRect (
 WindowRef window,
 const Rect *bounds
);

Parameters
window

The window containing the rectangle you want to remove from the update region.

bounds
Set this structure to specify, in local coordinates, a rectangle to be removed from the window’s update
region.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The ValidWindowRect function informs the Window Manager that an area of a window no longer needs
to be redrawn. The ValidWindowRect function is similar to the ValidRect function, but ValidWindowRect
allows the window that it operates upon to be explicitly specified, instead of operating on the current graphics
port, so ValidWindowRect does not require the graphics port to be set before its use.

See also the functions InvalWindowRect (page 109) and ValidWindowRgn (page 166).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Functions 165
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ValidWindowRgn
Removes a region from a window’s update region.

OSStatus ValidWindowRgn (
 WindowRef window,
 RgnHandle region
);

Parameters
window

The window containing the region you want to remove from the update region.

region
Set this region to specify, in local coordinates, the area to be removed from the window’s update
region.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The ValidWindowRgn function informs the Window Manager that an area of a window no longer needs to
be redrawn. The ValidWindowRgn function is similar to the ValidRgn function, but ValidWindowRgn
allows the window that it operates upon to be explicitly specified, instead of operating on the current graphics
port, so ValidWindowRgn does not require the graphics port to be set before its use.

See also the functions InvalWindowRgn (page 110) and ValidWindowRect (page 165).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

WindowPathSelect
Displays a window path pop-up menu.

166 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

OSStatus WindowPathSelect (
 WindowRef window,
 MenuRef menu,
 SInt32 *outMenuResult
);

Parameters
window

The window for which a window path pop-up menu is to be displayed.

menu
The menu to be displayed for the specified window or NULL. If you pass NULL in this parameter, the
Window Manager provides a default menu and sends a Reveal Object Apple event to the Finder if a
menu item is selected. Note that in order to pass NULL, a file must currently be associated with the
window [call HIWindowSetProxyFSRef (page 106) to associate a file with the window]. If you pass
a menu, this menu supersedes the default window path pop-up menu. There does not have to be a
file currently associated with the window if you pass in your own menu.

outMenuResult
A pointer to a value that, on return, contains the menu and menu item the user chose. The high-order
word of the value produced contains the menu ID, and the low-order word contains the item number
of the menu item. If the user does not select a menu item, 0 is produced in the high-order word, and
the low-order word is undefined. For file menus that have not been overridden, 0 is always produced
in this parameter. Pass NULL in this parameter if you do not want this information.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Your application should call the WindowPathSelect function when it detects a Command-click in the title
of a window, that is, when theIsWindowPathSelectClick (page 271) orIsWindowPathSelectEvent (page
117) function returns a value of true. Calling WindowPathSelect causes the Window Manager to display a
window path pop-up menu for your window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ZoomWindow
Zooms the window when the user has pressed and released the mouse button with the cursor in the zoom
box.

void ZoomWindow (
 WindowRef window,
 WindowPartCode partCode,
 Boolean front
);

Parameters
window

The window that is to be zoomed.

Functions 167
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

partCode
On input, the part code (either inZoomIn or inZoomOut) returned by the FindWindow function; see
“Part Identifier Constants” (page 239).

front
On return, a Boolean value that determines whether the window is to be brought to the front. If the
value of front is true, the window necessarily becomes the frontmost, active window. If the value
of front is false, the window’s position in the window list does not change. Note that if a window
was active before it was zoomed, it remains active even if the value of front is false.

Discussion
The ZoomWindow function zooms a window in or out, depending on the value of the partCode parameter.
Your application calls ZoomWindow, passing it the part code returned by FindWindow (page 48), when it
receives a result of true from TrackBox. The ZoomWindow function then changes the window’s port rectangle
to either the user state (if the part code is inZoomIn) or the standard state (if the part code is inZoomOut),
as stored in the window state structure, described in the section WStateData (page 183).

If the part code is inZoomOut, your application ordinarily calculates and sets the standard state before calling
ZoomWindow.

For best results, call the QuickDraw function EraseRect, passing the window’s graphics port as the port
rectangle, before calling ZoomWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ZoomWindowIdeal
Zooms a window in accordance with human interface guidelines.

OSStatus ZoomWindowIdeal (
 WindowRef inWindow,
 WindowPartCode inPartCode,
 Point *ioIdealSize
);

Parameters
inWindow

The window that is to be zoomed.

inPartCode
A value specifying the direction of the zoom being requested. Your application passes in the relevant
value (either the inZoomIn or the inZoomOut constant).

168 Functions
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

ioIdealSize
When you specify inZoomIn in the partCode parameter, you pass a pointer to the Point structure,
but do not fill the structure with data. On return, the Point structure contains the new height and
width of the window’s content region, and ZoomWindowIdeal restores the previous user state.

When you specify inZoomOut in the partCode parameter, you pass the ideal height and width of
the window’s content region in the Point structure. On return, the Point structure contains the new
height and width of the window’s content region. ZoomWindowIdeal saves the user state of the
window and zooms the window to its ideal size for the standard state.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Applications should use the ZoomWindowIdeal function instead of the older function ZoomWindow. When
your application calls ZoomWindowIdeal, it automatically conforms to the human interface guidelines for
determining a window’s standard state.

The ZoomWindowIdeal function calculates a window’s ideal standard state and updates a window’s ideal
user state independently of the WStateData structure. Previously, the window definition function was
responsible for updating the user state, but because it relies upon the WStateData structure, the window
definition function is unaware of the ideal standard state and can no longer track the window’s zoom state
reliably.

While the Window Manager is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can overwrite that data. Therefore,
if your application uses ZoomWindowIdeal, the WStateData structure is superseded, and the result of the
FindWindow (page 48) function should be ignored when determining whether a particular user click of the
zoom box is a request to zoom in or out. When you adopt ZoomWindowIdeal and your application receives
a result of either inZoomIn or inZoomOut from FindWindow, your application must use the function
IsWindowInStandardState (page 115) to determine the appropriate part code to pass in the partCode
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
MacWindows.h

Callbacks

WindowDefProcPtr
Defines a pointer to a window definition callback function. Your window definition callback function determines
how a window looks and behaves.

Callbacks 169
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef long (*WindowDefProcPtr) (
 short varCode,
 WindowRef window,
 short message,
 long param
);

If you name your function MyWindowDefProc, you would declare it like this:

long MyWindowDefProc (
 short varCode,
 WindowRef window,
 short message,
 long param
);

Parameters
varCode

The window’s variation code.

window
A pointer to the window’s window structure.

message
A value indicating the task to be performed. The message parameter contains one of the values
defined in “Window Definition Message Constants” (page 232). Other messages are reserved for internal
use by the system. The list in the discussion section that follows explains each of these tasks in detail.

param
Data associated with the task specified by the message parameter. If the task requires no data, this
parameter is ignored.

Return Value
Your window definition function should perform whatever task is specified by the message parameter and
return a function result, if appropriate. If the task performed requires no result code, return 0.

Discussion
Various Window Manager functions call a window definition function whenever they need to perform a
window-dependent action, such as drawing the window on the screen. If you want to define new, nonstandard
windows for your application, you must write a window definition function, compile it in your application,
and either use RegisterWindowDefinition (page 122) to register it with the system or call
CreateCustomWindow (page 40) to create the custom window directly.

Note that Carbon does not allow you to store custom window definitions in a 'WDEF' resource file as you
could in pre-Carbon systems.

If you use RegisterWindowDefinition (page 122), the Window Manager calls the Resource Manager to
access your window definition function with the given resource ID; see “Pre-Appearance Window Definition
IDs” inWindow Manager Legacy Reference for a description of how window definition IDs are derived from
resource IDs and variation codes.

The Resource Manager reads your window definition function into memory and returns a handle to it. The
Window Manager stores this handle in the windowDefProc field of the window structure. Later, when it
needs to perform an action on the window, the Window Manager calls the window definition function and
passes it the variation code as a parameter.

Your window definition function is responsible for

170 Callbacks
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

 ■ drawing the window frame

 ■ reporting the region where mouse-down events occur

 ■ calculating the window’s structure region and content region

 ■ drawing the size box

 ■ resizing the window frame when the user drags the size box

 ■ reporting the window’s features or the location of a specific window region

 ■ performing any customized initialization or disposal tasks

The Window Manager defines the data type WindowDefUPP to identify the universal procedure pointer for
this application-defined function:

typedef UniversalProcPtr WindowDefUPP;

You typically use the NewWindowDefProc macro like this:

WindowDefUPP myWindowDefUPP;
myWindowDefUPP = NewWindowDefProc(MyWindow);

You typically use the CallWindowDefProc macro like this:

CallWindowDefProc (myWindowDefUPP, varCode, theWindow, message, param);

The message parameter contains a value specifying the task to be performed by your window definition
function. These tasks are:

 ■ Drawing the Window Frame

When the Window Manager passes wDraw in the message parameter, your window definition function
should respond by drawing the window frame in the current graphics port (which is the Window Manager
port). The window part code to be drawn will be passed in the param parameter of your window definition
function. Your window definition function should perform the following steps:

 ❏ Change the current port from the WMgrPort to the WMgrCPort to allow the system to draw in the
full range of RGB colors.

 ❏ Update the pen attributes, text attributes, and bkPat fields in the WMgrCPort to the values of the
corresponding fields in the WMgrPort. The Window Manager automatically transfers the vis and
clip regions.

The parallelism of the WMgrPort and the WMgrCPort is maintained only by the window definition
functions. All window definition functions that draw in the WMgrPort should follow the steps listed
above even if the changed fields do not affect their operation.

You must make certain checks to determine exactly how to draw the frame. If the value of the visible
field in the window structure is false, you should do nothing; otherwise, you should examine the param
parameter and the status flags in the window structure:

 ❏ If the value of param is 0, draw the entire window frame (including the size box, if your window
definition function incorporates the size box into the frame).

 ❏ If the value of param is 0 and the hilited field in the window structure is true, highlight the frame
to show that the window is active. If the value of the goAwayFlag field in the window structure is
also true, draw a close box in the window frame. If the value of the spareFlag field in the window
structure is also true, draw a zoom box in the window frame.

Callbacks 171
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

 ❏ If the value of the param parameter is wInGoAway, redraw the window’s close box, with or without
highlighting as appropriate.

 ❏ If the value of the param parameter is wInZoom, redraw the window’s zoom box, with or without
highlighting as appropriate.

 ❏ If the value of the param parameter is wInCollapseBox, redraw the window’s collapse box, with
or without highlighting as appropriate.

You can call GetWindowWidgetHilite (page 82) to determine whether the close, zoom, or collapse
box is currently highlighted. This function returns the part code of the currently highlighted part, or zero
if no part is highlighted. You should draw the indicated part with highlighting, and draw other parts
with no highlighting.

The window frame typically, but not necessarily, includes the window’s title, which should be displayed
in the system font and system font size. The Window Manager port is already set to use the system font
and system font size.

Nothing drawn outside the window’s structure region will be visible.

Your window definition function should return 0 as the function result for this message.

 ■ Reporting the Region of a Mouse-Down Event

When the Window Manager passes wHit in the message parameter, your window definition function
should respond by reporting the region of the specified mouse-down event. The mouse location (in
global coordinates) of the window frame will be passed into the param parameter of your window
definition function. The vertical coordinate is in the high-order word of the parameter, and the horizontal
coordinate is in the low-order word.

In response to the wHit message, your window definition function should return one of the constants
defined in “Window Definition Hit Test Result Code Constants” (page 230).

In Mac OS 9, return the constantswInGrow,wInGoAway,wInZoomIn,wInZoomOut, andwInCollapseBox
only if the window is active—by convention, the size box, close box, zoom box, and collapse box aren’t
drawn if the window is inactive. In an inactive document window, for example, a mouse-down event in
the part of the title bar that would contain the close box if the window were active is reported as wInDrag.
In Mac OS X, your WDEF can return these part codes for inactive windows because these boxes are drawn
even if the window is inactive.

 ■ Calculating Regions

When the Window Manager passes wCalcRgns in the message parameter, your window definition
function should respond by calculating the window’s structure and content regions based on the current
graphics port’s port rectangle. These regions, whose handles are in the strucRgn and contRgn fields
of the window structure, are in global coordinates. The Window Manager requests this operation only
if the window is visible. The mouse location (in global coordinates) of the window frame will be passed
into the param parameter of your window definition function.

Your window definition function should call IsWindowCollapsed (page 113) to determine its collapse
state. Then your window definition function can modify its structure and content regions as appropriate.
Typically, a window’s content region is empty in a collapsed state.

When you calculate regions for your own type of window, do not alter the clip region or the visible
region of the Window Manager port. The Window Manager and QuickDraw take care of this for you.
Altering the Window Manager port’s clip region or visible region may damage other windows.

Your window definition function should return 0 as the function result for this message.

 ■ Performing Additional Window Initialization

172 Callbacks
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

When the Window Manager passes wNew in the message parameter, your window definition function
should respond by performing any initialization that it may require. If the content region has an unusual
shape, for example, you might allocate memory for the region and store the region handle in the
dataHandle field of the window structure. The initialization function for a standard document window
creates the wStateData structure for storing zooming data.

Your window definition function should ignore the param parameter and return 0 as the function result
for this message.

 ■ Performing Additional Window Disposal Actions

When the Window Manager passes wDispose in the message parameter, your window definition
function should respond by performing any additional tasks necessary for disposing of a window. You
might, for example, release memory that was allocated by the initialization function. The dispose function
for a standard document window disposes of the wStateData structure.

Your window definition function should ignore the param parameter and return 0 as the function result
for this message.

 ■ Drawing the Window’s Grow Image

When the Window Manager passes wGrow in the message parameter, your window definition function
should respond to being resized by drawing a dotted outline of the window in the current graphics port
in the pen pattern and mode. (The pen pattern and mode are set up—as gray and notPatXor—to
conform to Appearance-compliant human interface guidelines.)

A rectangle (in global coordinates) whose upper-left corner is aligned with the port rectangle of the
window’s graphics port is passed into the param parameter of your window definition function. Your
grow image should be sized appropriately for the specified rectangle. As the user drags the mouse, the
Window Manager sends repeated wGrow messages, so that you can change your grow image to match
the changing mouse location.

Your window definition function should return 0 as the function result for this message.

 ■ Drawing the Size Box

When the Window Manager passes wDrawGIcon in the message parameter, your window definition
function should respond by drawing the size box in the content region if the window is active. If the
window is inactive, your window definition function should draw whatever is appropriate to show that
the window cannot currently be sized. Your window definition function may also draw scroll bar delimiter
lines. Your window definition function should ignore the param parameter.

If the size box is located in the window frame, draw the size box in response to a wDraw message, not
a wDrawGIcon message.

Your window definition function should return 0 as the function result for this message.

 ■ Reporting Window Features

When the Window Manager passes kWindowMsgGetFeatures in the messageparameter, your window
definition function should respond by setting the param parameter to reflect the features that your
window supports. The value passed back in the param parameter should be comprised of one or more
of the values defined in “Window Feature Bits” (page 207).

Your window definition function should return 1 as the function result for this message.

 ■ Returning the Location of Window Regions

When the Window Manager passes kWindowMsgGetRegion in the message parameter, your window
definition function should respond by returning the location (in global coordinates) of the specified
window region. A pointer to a window region structure will be passed in the param parameter.

Callbacks 173
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

The window region structure is a structure of type GetWindowRegionRec (page 177). Your window
definition function should return an operating system status (OSStatus) message as the function result
for this message. The result code errWindowRegionCodeInvalid indicates that the window region
passed in was not valid.

Application-defined window definition functions are changed with Appearance Manager 1.0 to support
collapse boxes and feature reporting.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

WindowPaintProcPtr
Defines a pointer to a custom content region painting function.

typedef OSStatus (*WindowPaintProcPtr) (
 GDHandle device,
 GrafPtr qdContext,
 WindowRef window,
 RgnHandle inClientPaintRgn,
 RgnHandle outSystemPaintRgn,
 void * refCon
);

If you name your function MyWindowPaintProc, you would declare it like this:

OSStatus MyWindowPaintProc (
 GDHandle device,
 GrafPtr qdContext,
 WindowRef window,
 RgnHandle inClientPaintRgn,
 RgnHandle outSystemPaintRgn,
 void * refCon
);

Parameters
device

The current graphics device (GDevice).

qdContext
The graphics port to draw into. Note that you should draw into this port, not the one associated with
the window; the painting region inClientPaintRgn is defined relative to this port. The port may
be an offscreen graphics world.

window
The window to paint in.

inClientPaintRgn
The region to be painted. Treat as a const. This region is clipped to the intersection of the current
graphics device and the clobberedRgn parameter passed to PaintBehind.

174 Callbacks
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

outSystemPaintRgn
The region for the system to paint. Initially empty. If your paint procedure sets this region before
returning, the Window Manager will erase this region using the system’s window content paint
function.

refCon
Application-defined data that you passed to InstallWindowContentPaintProc (page 269).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Each window in the system contains a reference to a content paint proc. This proc is called to erase the
window’s content region during PaintBehind or PaintOne operations. The client application can override
the system paint proc by calling InstallWindowContentPaintProc (page 269). A window may only have
one paint proc installed at any one time, and the paint proc cannot be retrieved by the client application.

If your content region painting callback returns any value other than noErr, outSystemPaintRgn is ignored
and the entire area of inClientPaintRgn is painted using the system paint proc.

When a previously obscured portion of a window is exposed, the window manager will iterate over active
displays and call the window’s content paint proc once for each device intersecting the region.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

Data Types

BasicWindowDescription
Describes basic window characteristics for use in a collection item.

Data Types 175
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

struct BasicWindowDescription {
 UInt32 descriptionSize
 Rect windowContentRect
 Rect windowZoomRect
 UInt32 windowRefCon
 UInt32 windowStateFlags
 WindowPositionMethod windowPositionMethod
 UInt32 windowDefinitionVersion
 union {
 struct {
 SInt16 windowDefProc;
 Boolean windowHasCloseBox;
 } versionOne;
 struct {
 WindowClass windowClass;
 WindowAttributes windowAttributes;
 } versionTwo;
 } windowDefinition;
};
typedef struct BasicWindowDescription BasicWindowDescription;

Fields
descriptionSize

A value specifying the size of the entire BasicWindowDescription structure.

windowContentRect
A structure of type Rect, specifying the initial size and screen location of the window’s content area.

windowZoomRect
Reserved.

windowRefCon
The window’s reference value field, which is simply storage space available to your application for
any purpose. The value contained in this field persists when the 'WIND' resource is stored, so you
should avoid saving pointers in this field, as they may become stale.

windowStateFlags
A 32-bit value whose bits you set to indicate the status of transient window states. See “Basic Window
Description State Constant” (page 206) for possible values.

windowPositionMethod
The specification last used in the function RepositionWindow (page 124) to position this window,
if any. See “Window Position Constants” (page 213) for a description of possible values for this field.

windowDefinitionVersion
The version of the window definition used for the window. Set this field to a value of 1 if your
application is creating a pre–Mac OS 8.5 window, that is, a window lacking class and attribute
information. Set this field to a value of 2 if your application is creating a window using class and
attribute information. See “Basic Window Description Version Constants” (page 219) for descriptions
of these values.

windowDefinition
A union of the versionOne and versionTwo structures. Your application must either specify the
window’s class and attributes, or it must supply a window definition ID and specify whether or not
the window has a close box. See “Window Class Constants” (page 184) and “Window Attributes” (page
194) for descriptions of class and attribute values.

Discussion
The BasicWindowDescription structure is a default collection item for a resource of type ‘wind’. You
use the BasicWindowDescription structure to describe the statically-sized base characteristics of a window.

176 Data Types
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

GetGrowImageRegionRec
Defines a region to be XOR’d during a window grow or resize operation.

struct GetGrowImageRegionRec {
 Rect growRect;
 RgnHandle growImageRegion;
};
typedef struct GetGrowImageRegionRec GetGrowImageRegionRec;

Fields
growRect

The window’s new bounds in global coordinates.

growImageRegion
The grow image region.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

GetWindowRegionRec
Passed to window definitions in the kWindowMsgGetRegion message.

struct GetWindowRegionRec {
 RgnHandle winRgn;
 WindowRegionCode regionCode;
};
typedef struct GetWindowRegionRec GetWindowRegionRec;
typedef GetWindowRegionRec * GetWindowRegionPtr;

Fields
winRgn

A handle to a window region based on the value specified in the regionCode field. Modify this region.

regionCode
A value representing a given window region; see “Window Region Constants” (page 217).

Special Considerations
Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

Data Types 177
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

HIWindowRef
Represents a window.

typedef WindowRef HIWindowRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
MacWindows.h

MeasureWindowTitleRec
Defines specifications of the window title.

struct MeasureWindowTitleRec {
 SInt16 fullTitleWidth;
 SInt16 titleTextWidth;
 Boolean isUnicodeTitle;
 Boolean unused;
};
typedef struct MeasureWindowTitleRec MeasureWindowTitleRec;
typedef MeasureWindowTitleRec * MeasureWindowTitleRecPtr;

Fields
fullTitleWidth

Your window definition function sets this field to a value specifying the total width in pixels of the
window title text and any proxy icon that may be present, ignoring any compression or truncation
that might be required when the title is actually drawn. That is, the specified width should be the
ideal width that would be used if the window were sufficiently wide to draw the entire title along
with a proxy icon. You should measure the title width using the current system font. If no proxy icon
is present, this field should have the same value as the titleTextWidth field.

titleTextWidth
Your window definition function sets this field to a value specifying the width in pixels of the window
title text, ignoring any compression or truncation that might be required when the title is actually
drawn. That is, the specified width should be the ideal width that would be used if the window were
sufficiently wide to draw the entire title. You should measure the title width using the current system
font.

isUnicodeTitle
Your window definition function may ignore this field; it is reserved for future use.

unused
Your window definition function may ignore this field; it is reserved for future use.

Discussion
If you implement a custom window definition function, when the Window Manager passes the message
kWindowMsgMeasureTitle in your window definition function’s message parameter it also passes a pointer
to a structure of type MeasureWindowTitleRec in the param parameter. Your window definition function
is responsible for setting the contents of the MeasureWindowTitleRec structure to contain data describing
the ideal title width.

See “Window Definition Message Constants” (page 232) and “Window Feature Bits” (page 207) for more details
on the kWindowMsgMeasureTitle message and the corresponding kWindowCanMeasureTitle feature
flag.

178 Data Types
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

PropertyCreator
Defines the creator of a window property.

typedef OSType PropertyCreator;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

PropertyTag
Defines a window property tag.

typedef OSType PropertyTag;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

PicHandle
Defines a picture handle.

typedef PicPtr * PicPatHandle;

PixPatHandle
Pixel pattern handle.

typedef PixPatPtr * PixPatHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 179
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

RGBColor
RGB color.

struct RGBColor {
 unsigned short red;
 unsigned short green;
 unsigned short blue;
};
typedef struct RGBColor;
typedef RGBColor * RGBColorPtr;

Fields
red

An unsigned short integer specifying the red value of the color.

green
An unsigned short integer specifying the green value of the color.

blue
An unsigned short integer specifying the red value of the color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

RgnHandle
Region handle.

typedef struct OpaqueRgnHandle * RgnHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

SetupWindowProxyDragImageRec
Defines a window proxy drag image.

struct SetupWindowProxyDragImageRec {
 GWorldPtr imageGWorld;
 RgnHandle imageRgn;
 RgnHandle outlineRgn;
};
typedef struct SetupWindowProxyDragImageRec SetupWindowProxyDragImageRec;

Fields
imageGWorld

A pointer to the offscreen graphics world containing the drag image. The window definition function
must allocate the offscreen graphics world, since the Window Manager has no way of knowing the
appropriate size for the drag image. The Window Manager disposes of the offscreen graphics world.

180 Data Types
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

imageRgn
A handle to a region containing the drag image. Only this portion of the offscreen graphics world
referred to by the imageGWorld field is actually drawn. The Window Manager allocates and disposes
of this region.

outlineRgn
A handle to a region containing an outline of the drag image, for use on monitors incapable of
displaying the drag image itself. The Window Manager allocates and disposes of this region.

Discussion
If you implement a custom window definition function, when the function TrackWindowProxyDrag (page
159) is called, the Window Manager passes the message kWindowMsgSetupProxyDragImage in your window
definition function’s message parameter and passes a pointer to a structure of type
SetupWindowProxyDragImageRec in the paramparameter. Your window definition function is responsible
for setting the contents of the SetupWindowProxyDragImageRec structure to contain data describing the
proxy icon’s drag image.

See “Window Definition Message Constants” (page 232)and “Window Feature Bits” (page 207) for more details
on the kWindowMsgSetupProxyDragImage message and the corresponding
kWindowCanSetupProxyDragImage feature flag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

TransitionWindowOptions
Defines transition options used when calling TransitionWindowWithOptions.

struct TransitionWindowOptions {
 UInt32 version;
 EventTime duration;
 WindowRef window;
 void * userData;
};
typedef struct TransitionWindowOptions TransitionWindowOptions;

Fields
version

The structure version. You must put 0 in this field.

duration
The duration of the fade, in seconds. For use with the Sheet, Slide, Fade, and Genie transition effects;
ignored for other effects. You may pass 0 to use the default duration. The effect is not guaranteed to
last precisely this long, but should be a close approximation.

window
The parent window of the sheet; for use with kWindowSheetTransitionEffect.

userData
A value that is sent as the kEventParamUserData parameter for the
kEventWindowTransitionStarted and kEventWindowTransitionCompleted events.

Availability
Available in Mac OS X v10.3 and later.

Data Types 181
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Declared In
MacWindows.h

WindowDefSpec
Defines a window definition.

struct WindowDefSpec {
 WindowDefType defType
 union {
 WindowDefUPP defProc;
 void * classRef;
 short procID;
 void * rootView;
 } u;
};
typedef struct WindowDefSpec WindowDefSpec;
typedef WindowDefSpec * WindowDefSpecPtr;

Fields
defType

The window definition type. See “Window Definition Type Constants” (page 229) for a list of possible
values.

u
A pointer to the window definition, depending on the constant passed into the defType field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowDefUPP
Defines a UPP to a specified window definition.

typedef WindowDefProcPtr WindowDefUPP;

Discussion
For more information, see WindowDefProcPtr (page 169).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowGroupRef
Represents a window group.

182 Data Types
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef struct OpaqueWindowGroupRef * WindowGroupRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowPaintUPP
Defines a UPP to the specified region painting callback.

typedef WindowPaintProcPtr WindowPaintUPP;

Discussion
For more information, see WindowPaintProcPtr (page 174).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowRef
An opaque type that represents a window.

typedef WindowPtr WindowRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

WStateData
Stores the user state and the standard state of a window.

Data Types 183
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

struct WStateData {
 Rect userState;
 Rect stdState;
};
typedef struct WStateData WStateData;
typedef WStateData * WStateDataPtr;

Fields
userState

A rectangle that describes the window size and location established by the user.

The Window Manager initializes the user state to the size and location of the window when it is first
displayed, and then updates the userState field whenever the user resizes a window. Although the
user state specifies both the size and location of the window, the Window Manager updates the
window state data structure only when the user resizes a window—not when the user merely moves
a window.

stdState
The rectangle describing the window size and location that your application considers the most
convenient, considering the function and contents of the document, the screen space available, and
the position of the window in its user state. If your application does not define a standard state, the
Window Manager automatically sets the standard state to the entire gray region on the main screen,
minus a three-pixel border on all sides. The user cannot change a window’s standard state.

Discussion
When the Appearance Manager is available, you should not extend the window state data structure. Instead
use the refCon field of the color window structure or extend the window record structure.

The zoom box allows the user to alternate quickly between two window positions and sizes: the user state
and the standard state. The Window Manager stores the user state and your application stores the standard
state in the window state data structure of type WStateData. The handle to this structure appears in the
dataHandle field of the window structure.

The ZoomWindow (page 167) function changes the size of a window according to the values in the window
state data structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

Constants

Window Class Constants
Constants that specify the standard window classes.

184 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef UInt32 WindowClass;
enum {
 kAlertWindowClass = 1,
 kMovableAlertWindowClass = 2,
 kModalWindowClass = 3,
 kMovableModalWindowClass = 4,
 kFloatingWindowClass = 5,
 kDocumentWindowClass = 6,
 kUtilityWindowClass = 8,
 kHelpWindowClass = 10,
 kSheetWindowClass = 11,
 kToolbarWindowClass = 12,
 kPlainWindowClass = 13,
 kOverlayWindowClass = 14,
 kSheetAlertWindowClass = 15,
 kAltPlainWindowClass = 16,
 kDrawerWindowClass = 20,
 kAllWindowClasses = 0xFFFFFFFF
};

Constants
kAlertWindowClass

Identifies an alert box window. An alert window is used when the application needs the user's attention
immediately. On Mac OS 9 and earlier, a visible alert window will prevent the user from switching to
any other application. Use kThemeBrushAlertBackgroundActive to draw the background of alert
windows. Alert windows are initially placed in the modal window group, given a modality of
kWindowModalityAppModal, and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableAlertWindowClass
Identifies a movable alert box window. Generally, you should use this window class rather than
kAlertWindowClass. Use kThemeBrushAlertBackgroundActive to draw the background of
alert windows. Alert windows are initially placed in the modal window group, given a modality of
kWindowModalityAppModal, and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kModalWindowClass
Identifies a modal dialog box window. Use kThemeBrushDialogBackgroundActive to draw the
background of modal dialog windows. Modal dialog windows are initially placed in the modal window
group, given a modality of kWindowModalityAppModal, and given an activation scope of
kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableModalWindowClass
Identifies a movable modal dialog box window. In Mac OS X and CarbonLib 1.3 and later, use
kThemeBrushMovableModalBackground to draw the background of alert windows. Alert windows
are initially placed in the modal window group, given a modality of kWindowModalityAppModal,
and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 185
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kFloatingWindowClass
Identifies a window that floats above all document windows. If your application assigns this constant
to a window, the Window Manager ensures that the window has the proper floating behavior. Use
kThemeBrushUtilityWindowBackgroundActiveorkThemeBrushDocumentWindowBackground
to draw the background of floating windows. Floating windows are initially placed in the floating
window group, given a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeIndependent.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kDocumentWindowClass
Identifies a document window or modeless dialog box window. Use
kThemeBrushDocumentWindowBackground or your own custom drawing to draw the background
of a document window. Document windows are initially placed in the document window group,
given a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeAll.The Window Manager assigns this class to pre–Mac OS 8.5 Window
Manager windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kUtilityWindowClass
Identifies a utility window. A utility window is similar to a floating window, but it floats above the
windows of all applications rather than just above the windows of the application that creates it. Use
kThemeBrushUtilityWindowBackgroundActiveorkThemeBrushDocumentWindowBackground
to draw the background of utility windows. Utility windows are initially placed in the utility window
group, given a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeIndependent.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kHelpWindowClass
Identifies a window used for help tags. It has no window frame. Typically you should use the Help
Manager to display help tags, rather than creating a help tag window yourself. Help windows are
initially placed in the help window group, given a modality of kWindowModalityNone, and given
an activation scope of kWindowActivationScopeNone.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kSheetWindowClass
Identifies a sheet. (Mac OS X only.) Use kThemeBrushSheetBackgroundOpaque to draw an opaque
background for sheet windows, or kThemeBrushSheetBackgroundTransparent to draw a
transparent background. Sheet windows are initially placed in the document window group, given
a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

186 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kToolbarWindowClass
Identifies a toolbar window, which is used to display a palette of controls. A toolbar window is similar
to a floating window, and like a floating window, is layered above all application windows except for
alert and modal windows, but is layered beneath floating windows. Toolbar windows are initially
placed in the toolbar window group, given a modality of kWindowModalityNone, and given an
activation scope of kWindowActivationScopeNone.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kPlainWindowClass
Identifies a plain window, which has a single-pixel window frame. Plain windows are initially placed
in the document window group, given a modality of kWindowModalityNone, and given an activation
scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kOverlayWindowClass
Identifies an overlay window, which is a completely transparent window. Overlay windows are
positioned by default above all other windows, but you can group an overlay window with any other
window, at any z-order. Overlay windows are intended as a replacement for the pre-Carbon practice
of drawing directly into the Window Manager port. By creating a full-screen overlay window and
drawing into it, you can draw over any window in any application without disturbing the contents
of the windows beneath your drawing. Overlay windows have a default handler for
kEventWindowPaint that uses CGContextClearRect to clear the overlay window's alpha channel
to zero. This ensures the initial transparency of the window. You can install your own
kEventWindowPaint handler to do your own drawing; typically, you would call through to the
default handler with CallNextEventHandler first, and then use QDBeginCGContext to create your
own context for drawing. You can use either QuickDraw or Core Graphics to draw into an overlay
window, but you must use Core Graphics to draw if you need any of your drawing to be non-opaque,
since QuickDraw always sets the alpha channel of any pixels that it touches to 1.0. (QuickDraw is also
deprecated in Mac OS X v10.4 and later.) You can also use the standard window event handler together
with regular controls in an overlay window. When using the standard window event handler, you will
probably want your kEventWindowPaint handler to return eventNotHandledErr (after calling
the default handler with CallNextEventHandler first) so that after the Paint handler returns, the
Window Manager will send a kEventWindowDrawContent event which the standard window event
handler can respond to by drawing the controls in the window. Overlay windows are initially placed
in the overlay window group, given a modality of kWindowModalityNone, and given an activation
scope of kWindowActivationScopeNone.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kSheetAlertWindowClass
Identifies an alert sheet. Use kThemeBrushSheetBackgroundOpaque to draw an opaque background
for sheet alert windows, or kThemeBrushSheetBackgroundTransparent to draw a transparent
background. Sheet alert windows are initially placed in the document window group, given a modality
of kWindowModalityNone, and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 187
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kAltPlainWindowClass
Identifies an alternate plain window, which is similar to a plain window but has a solid black shadow
on its right and bottom sides. It is rarely used in modern Mac OS applications. Alternate plain windows
are initially placed in the document window group, given a modality of kWindowModalityNone,
and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kDrawerWindowClass
Identifies a drawer. Use kThemeBrushDrawerBackground or
kThemeBrushDocumentWindowBackground to draw the background of drawer windows. Drawer
windows are initially placed in the document window group, given a modality of
kWindowModalityNone, and given an activation scope of kWindowActivationScopeAll. Drawer
windows should always be created using the compositing window attribute.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kAllWindowClasses
Specifier used to designate all window classes. Used with GetFrontWindowOfClass,
FindWindowOfClass, and GetNextWindowOfClass to indicate that there should be no restriction
on the class of the returned window. Also used with GetWindowGroupOfClass to get the root
window group.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The WindowClass constants categorize windows into groups of like types. The grouping of windows facilitates
the appropriate display (that is, both the look and the front-to-back ordering) and tracking of windows.

You can define a window’s class using the function CreateNewWindow (page 41) and obtain a window’s
class using the function GetWindowClass (page 61). You can change the class of certain windows by calling
HIWindowChangeClass (page 87).

Window Attribute Identifiers
Constants that specify standard window attributes.

188 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kHIWindowBitCloseBox = 1,
 kHIWindowBitZoomBox = 2,
 kHIWindowBitCollapseBox = 4,
 kHIWindowBitResizable = 5,
 kHIWindowBitSideTitlebar = 6,
 kHIWindowBitToolbarButton = 7,
 kHIWindowBitUnifiedTitleAndToolbar = 8,
 kHIWindowBitTextured = 9,
 kHIWindowBitNoTitleBar = 10,
 kHIWindowBitTexturedSquareCorners = 11,
 kHIWindowBitNoTexturedContentSeparator = 12,
 kHIWindowBitDoesNotCycle = 16,
 kHIWindowBitNoUpdates = 17,
 kHIWindowBitNoActivates = 18,
 kHIWindowBitOpaqueForEvents = 19,
 kHIWindowBitCompositing = 20,
 kHIWindowBitFrameworkScaled = 21,
 kHIWindowBitNoShadow = 22,
 kHIWindowBitCanBeVisibleWithoutLogin = 23,
 kHIWindowBitAsyncDrag = 24,
 kHIWindowBitHideOnSuspend = 25,
 kHIWindowBitStandardHandler = 26,
 kHIWindowBitHideOnFullScreen = 27,
 kHIWindowBitInWindowMenu = 28,
 kHIWindowBitLiveResize = 29,
 kHIWindowBitIgnoreClicks = 30,
 kHIWindowBitNoConstrain = 32,
 kHIWindowBitDoesNotHide = 33,
 kHIWindowBitAutoViewDragTracking = 34,
 kHIWindowBitDoesNotShowBadgeInDock = 35
};

Constants
kHIWindowBitCloseBox

The window has a close box. This attribute is available for windows of class
kDocumentWindowClass (page 186), kFloatingWindowClass (page 186), and
kUtilityWindowClass (page 186).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitZoomBox
The window has a zoom box. This attribute is available for windows of class
kDocumentWindowClass (page 186), kFloatingWindowClass (page 186), and
kUtilityWindowClass (page 186). When this attribute is set on a window, both the
kWindowHorizontalZoomAttribute and kWindowVerticalZoomAttribute bits are set
automatically.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Constants 189
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kHIWindowBitCollapseBox
The window has a collapse box. This attribute is available for windows of class
kDocumentWindowClass (page 186), kFloatingWindowClass (page 186), and
kUtilityWindowClass (page 186). For floating and utility window classes, this attribute must be
added to the window after the window is created; it may not be added to the window at creation
time.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitResizable
The window has a resize tab or box and is resizable. This attribute is available for windows of class
kDocumentWindowClass (page 186), kMovableModalWindowClass (page 185),
kFloatingWindowClass (page 186), kUtilityWindowClass (page 186), and
kSheetWindowClass (page 186).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitSideTitlebar
The window has a vertical title bar on the side of the window. This attribute is available for windows
of the kFloatingWindowClass (page 186) and kUtilityWindowClass (page 186) class.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitToolbarButton
The window has a toolbar button. This oblong clear button shows and hides the toolbar. This attribute
is available for windows of class kDocumentWindowClass (page 186).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitUnifiedTitleAndToolbar
The window draws its window title and toolbar using a unified appearance that has no separator
between the two areas. A window may not have both this attribute and the kHIWindowBitTextured
attribute.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitTextured
The window uses the textured or brushed-metal appearance. Drawers can also be textured, but
dynamically adjust their appearance based on their parent window’s appearance; it is not necessary
to specify this attribute for a textured drawer. This attribute is available for windows of class
kDocumentWindowClass (page 186) and kFloatingWindowClass (page 186).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoTitleBar
The window’s title bar can be hidden. This attribute is available for windows of class
kDocumentWindowClass (page 186), kFloatingWindowClass (page 186), and
kUtilityWindowClass (page 186).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

190 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kHIWindowBitTexturedSquareCorners
Indicates that a textured window should have square corners. By default, a textured window has
round corners. When this attribute is set on a window, the window frame view automatically makes
the grow box view opaque, and when this attribute is cleared, the window frame view automatically
makes the grow box view transparent. You can change the grow box view transparency after modifying
this attribute with the functionHIGrowBoxViewSetTransparent. Relevant only for textured windows;
ignored in non-textured windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoTexturedContentSeparator
Indicates that no border is drawn between the toolbar and window content. This attribute is relevant
only in textured windows; it is ignored in non-textured windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitDoesNotCycle
The window does not participate in window cycling invoked by Command-~ or keyboard shortcuts
defined in the Keyboard & Mouse preference pane.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoUpdates
The window does not receive update events. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoActivates
The window does not receive activate events. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitOpaqueForEvents
The window receives mouse events even for areas of the window that are transparent (that is, have
an alpha channel component of zero).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitCompositing
The window uses HIView-based compositing, which means that the entire window is comprised of
HIViews, and can be treated thusly. This attribute must be specified at window creation; you may not
add this attribute after the window has been created.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Constants 191
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kHIWindowBitFrameworkScaled
The window’s content is scaled to match the display scale factor. This attribute can only be used when
kHIWindowBitCompositing is also enabled. When this attribute is enabled, you may not draw with
QuickDraw in the window. If this attribute is enabled and if the scale factor is something other than
1.0, the window’s scale mode is kHIWindowScaleModeFrameworkScaled. If you specify this attribute
and kHIWindowBitApplicationScaled, the kHIWindowBitApplicationScaled attribute is
ignored. You may only specify this attribute at window creation time.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoShadow
The window has no shadow. This attribute is available for all windows, and is given automatically to
windows of class kOverlayWindowClass (page 187).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitCanBeVisibleWithoutLogin
The window can be made visible prior to user login. By default, in Mac OS X 10.5 and later no windows
can be visible before a user logs into the system; this protects the user against certain types of malicious
use of insecure applications. However, some software, such as input methods or other accessibility
software, may need to deliberately make windows available prior to user login. Such software should
add this window attribute to its windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitAsyncDrag
The window server drags the window automatically. Your application should not call
DragWindow (page 46) for this window because this function would fight with the Window Server
for control. This attribute is ignored if the window is grouped with other windows in a window group
that has the kWindowGroupAttrMoveTogether attribute.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitHideOnSuspend
The window is hidden automatically on suspend and shown on resume. This attribute available for
all windows and is given automatically to windows of class kFloatingWindowClass (page 186),
kHelpWindowClass (page 186), and kToolbarWindowClass (page 187).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitStandardHandler
The window supports the standard window event handler. The standard event handler provides
standard actions for common window events. See Carbon Event Manager Programming Guide for
details. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

192 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kHIWindowBitHideOnFullScreen
The window is automatically hidden during full-screen mode (when the menubar is invisible) and
shown afterwards. Available for all windows. This attribute is automatically given to windows of class
kUtilityWindowClass (page 186).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitInWindowMenu
The window title appears in the system-generated Window menu. This attribute is only available for
windows of class kDocumentWindowClass (page 186) and is automatically given to windows of that
class.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitLiveResize
The window supports live resizing. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitIgnoreClicks
The window never receives mouse events, even in areas that are opaque. Instead, clicks on the window
are passed through to windows beneath it.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoConstrain
The window is not repositioned by the default kEventWindowConstrain handler in response to
changes in monitor size, Dock position, and so on.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitDoesNotHide
The window does not hide when the application is hidden.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitAutoViewDragTracking
The window automatically installs Drag Manager callbacks to detect drag actions, and automatically
sends HIView drag Carbon events. Setting this attribute is equivalent to calling the function
SetAutomaticControlDragTrackingEnabledForWindow (and calling that function will set this
attribute).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitDoesNotShowBadgeInDock
Indicates that the Dock should not add a badge to this window's icon when the window is minimized
to the Dock.

Discussion
In Mac OS X version 10.5 and later, you may use these constants to set or test the attributes of a window.
For example, you may use them with the function HIWindowCreate (page 92) to define the attributes of a
new window, the function HIWindowChangeAttributes (page 86) to change a window’s attributes, and
the function HIWindowTestAttribute (page 108) to test whether a window has a specific attribute.

Constants 193
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Attributes
Bit masks that specify standard window attributes. In Mac OS X v10.5 and later, you may use “Window Attribute
Identifiers” (page 188) instead.

typedef UInt32 WindowAttributes;
enum {
 kWindowNoAttributes = 0,
 kWindowCloseBoxAttribute = (1L << 0),
 kWindowHorizontalZoomAttribute = (1L << 1),
 kWindowVerticalZoomAttribute = (1L << 2),
 kWindowFullZoomAttribute = (kWindowVerticalZoomAttribute |
kWindowHorizontalZoomAttribute),
 kWindowCollapseBoxAttribute = (1L << 3),
 kWindowResizableAttribute = (1L << 4),
 kWindowSideTitlebarAttribute = (1L << 5),
 kWindowToolbarButtonAttribute = (1L << 6),
 kWindowUnifiedTitleAndToolbarAttribute = (1L << 7),
 kWindowMetalAttribute = (1L << 8),
 kWindowNoTitleBarAttribute = (1L << 9),
 kWindowTexturedSquareCornersAttribute = (1L << 10),
 kWindowMetalNoContentSeparatorAttribute = (1L << 11),
 kWindowDoesNotCycleAttribute = (1L << 15),
 kWindowNoUpdatesAttribute = (1L << 16),
 kWindowNoActivatesAttribute = (1L << 17),
 kWindowOpaqueForEventsAttribute = (1L << 18),
 kWindowCompositingAttribute = (1L << 19),
 kWindowFrameworkScaledAttribute = (1L << 20),
 kWindowNoShadowAttribute = (1L << 21),
 kWindowCanBeVisibleWithoutLoginAttribute = (1L << 22),
 kWindowAsyncDragAttribute = (1L << 23),
 kWindowHideOnSuspendAttribute = (1L << 24),
 kWindowStandardHandlerAttribute = (1L << 25),
 kWindowHideOnFullScreenAttribute = (1L << 26),
 kWindowInWindowMenuAttribute = (1L << 27),
 kWindowLiveResizeAttribute = (1L << 28),
 kWindowIgnoreClicksAttribute = (1L << 29),
 kWindowNoConstrainAttribute = (1L << 31),
 kWindowStandardDocumentAttributes = (kWindowCloseBoxAttribute |
kWindowFullZoomAttribute | kWindowCollapseBoxAttribute | kWindowResizableAttribute),
 kWindowStandardFloatingAttributes = (kWindowCloseBoxAttribute |
kWindowCollapseBoxAttribute)
};

Constants
kWindowNoAttributes

If no bits are set, the window has none of the standard attributes.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCloseBoxAttribute
If the bit specified by this mask is set, the window has a close box. See kHIWindowBitCloseBox (page
189).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

194 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowHorizontalZoomAttribute
If the bit specified by this mask is set, the window changes width when zooming. See
kHIWindowBitZoomBox (page 189).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowVerticalZoomAttribute
If the bit specified by this mask is set, the window changes height when zooming. See
kHIWindowBitZoomBox (page 189).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFullZoomAttribute
If the bits specified by this mask are set, the window changes both width and height when zooming.
See kHIWindowBitZoomBox (page 189).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCollapseBoxAttribute
If the bit specified by this mask is set, the window has a collapse box. See
kHIWindowBitCollapseBox (page 190).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowResizableAttribute
If the bit specified by this mask is set, the window has a resize tab or box and is resizable. See
kHIWindowBitResizable (page 190).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSideTitlebarAttribute
If the bit specified by this mask is set, the window has a side title bar. See
kHIWindowBitSideTitlebar (page 190).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowToolbarButtonAttribute
If the bit specified by this mask is set, the window has a toolbar button. See
kHIWindowBitToolbarButton (page 190).

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowUnifiedTitleAndToolbarAttribute
If the bit specified by this mask is set, the window draws its window title and toolbar using a unified
appearance that has no separator between the two areas. A window may not have both this attribute
and the kWindowMetalAttribute attribute.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Constants 195
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowMetalAttribute
If the bit specified by this mask is set, the window has a textured or brushed-metal appearance. See
kHIWindowBitTextured (page 190).

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowNoTitleBarAttribute
If the bit specified by this mask is set, the window’s title bar can be hidden. See
kHIWindowBitNoTitleBar (page 190).

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowTexturedSquareCornersAttribute
See kHIWindowBitTexturedSquareCorners (page 191).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowMetalNoContentSeparatorAttribute
If the bit specified by this mask is set, no border is drawn between the toolbar and window content.
See kHIWindowBitNoTexturedContentSeparator (page 191).

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowDoesNotCycleAttribute
If the bit specified by this mask is set, the window does not participate in window cycling. See
kHIWindowBitDoesNotCycle (page 191).

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

kWindowNoUpdatesAttribute
If the bit specified by this mask is set, the window does not receive update events. See
kHIWindowBitNoUpdates (page 191).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowNoActivatesAttribute
If the bit specified by this mask is set, the window does not receive activate events. See
kHIWindowBitNoActivates (page 191).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowOpaqueForEventsAttribute
If the bit specified by this mask is set, the window receives mouse events even for areas of the window
that are transparent. See kHIWindowBitOpaqueForEvents (page 191).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCompositingAttribute
If the bit specified by this mask is set, the window uses HIView-based compositing. See
kHIWindowBitCompositing (page 191).

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

196 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowFrameworkScaledAttribute
If the bit specified by this mask is set, this window’s content is scaled to match the display scale factor.
See kHIWindowBitFrameworkScaled (page 192).

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowNoShadowAttribute
If the bit specified by this mask is set, the window has no shadow. See kHIWindowBitNoShadow (page
192).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanBeVisibleWithoutLoginAttribute
If the bit specified by this mask is set, the window can be made visible prior to user login. See
kHIWindowBitCanBeVisibleWithoutLogin (page 192).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowAsyncDragAttribute
If the bit specified by this mask is set, the window server drags the window automatically. See
kHIWindowBitAsyncDrag (page 192).

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

kWindowHideOnSuspendAttribute
If the bit specified by this mask is set, the window is hidden automatically on suspend and shown on
resume. See kHIWindowBitHideOnSuspend (page 192).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStandardHandlerAttribute
If the bit specified by this mask is set, the window supports the standard window event handler. See
kHIWindowBitStandardHandler (page 192).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHideOnFullScreenAttribute
If the bit specified by this mask is set, the window is automatically hidden during fullscreen mode
(when the menubar is invisible) and shown afterwards. See kHIWindowBitHideOnFullScreen (page
193).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowInWindowMenuAttribute
If the bit specified by this mask is set, the window title appears in the system-generated Window
menu. See kHIWindowBitInWindowMenu (page 193).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 197
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowLiveResizeAttribute
If the bit specified by this mask is set, the window supports live resizing. See
kHIWindowBitLiveResize (page 193).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowIgnoreClicksAttribute
If the bit specified by this mask is set, the window never receives mouse events, even in areas that
are opaque. See kHIWindowBitIgnoreClicks (page 193).

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowNoConstrainAttribute
If the bit specified by this mask is set, the window is not repositioned by the default
kEventWindowConstrain handler. See kHIWindowBitNoConstrain (page 193).

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowStandardDocumentAttributes
If the bits specified by this mask are set, the window has the attributes of a standard document
window—that is, a close box, full zoom box, collapse box, and size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStandardFloatingAttributes
If the bits specified by this mask are set, the window has the attributes of a standard floating
window—that is, a close box and collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The WindowAttributes enumeration defines masks your application can use to set or test the bits in a
window attributes parameter. You can use these masks with the function CreateNewWindow (page 41) to
define a window’s attributes, and with the function ChangeWindowAttributes (page 34) to change a
window’s attributes. You can also use these masks to test the attributes parameter produced by the function
GetWindowAttributes (page 59), thereby obtaining a window’s attributes.

User Focus Auto-Select Constant
Defines a constant that tells the system to pick the best user focus window.

#define kUserFocusAuto ((WindowRef)(-1))

Constants
kUserFocusAuto

Pass this constant to the function SetUserFocusWindow (page 134) to have the system choose the
most appropriate window for user focus.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

198 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Appearance-Compliant Window Resource IDs
Define window resources for Appearance-compliant applications.

enum {
 kWindowDocumentDefProcResID = 64,
 kWindowDialogDefProcResID = 65,
 kWindowUtilityDefProcResID = 66,
 kWindowUtilitySideTitleDefProcResID = 67,
 kWindowSheetDefProcResID = 68,
 kWindowSimpleDefProcResID = 69,
 kWindowSheetAlertDefProcResID = 70
};

Constants
kWindowDocumentDefProcResID

Defines Appearance-compliant standard document windows with a size box. Standard document
windows created with this resource ID can use variation codes to create windows with vertical and
horizontal zoom boxes.

Available with Appearance 1.0 and later.

Declared in MacWindows.h.

kWindowDialogDefProcResID
Defines Appearance-compliant dialog and alert boxes. Modal and movable modal dialog boxes created
with this resource ID are displayed with no space between their content and structure region. Alert
boxes created with this resource ID are displayed with a red-tinged border.

Declared in MacWindows.h.

Available with Appearance 1.0 and later.

kWindowUtilityDefProcResID
Defines Appearance-compliant utility (floating) windows with a top title bar and a size box.

Available with Appearance 1.0 and later.

Declared in MacWindows.h.

kWindowUtilitySideTitleDefProcResID
Defines Appearance-compliant utility (floating) windows with a side title bar and a size box.

Available with Appearance 1.0 and later.

Declared in MacWindows.h.

kWindowSheetDefProcResID
Defines a window sheet.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSimpleDefProcResID
Defines a simple window with no window frame.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetAlertDefProcResID
Defines a sheet window that is displayed as an alert (rather than a dialog) on Mac OS 9.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 199
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
Window resource IDs are changed with Appearance Manager 1.0. The Window Manager now provides many
new standard, Appearance-compliant window resource IDs for your application.

You can use a window resource ID constant to create a window definition ID; see “Pre-Appearance Window
Definition IDs” inWindow Manager Legacy Reference for more details.

Note that the standard Appearance-compliant resource ID constants kWindowDocumentDefProcResID,
kWindowUtilityDefProcResID, and kWindowUtilitySideTitleDefProcResID specify windows with
collapse boxes.

Resource IDs 0 through 127 are reserved for use by the system.

Appearance-Compliant Window Definition ID Constants
Define different window kinds.

200 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kWindowDocumentProc = 1024,
 kWindowGrowDocumentProc = 1025,
 kWindowVertZoomDocumentProc = 1026,
 kWindowVertZoomGrowDocumentProc = 1027,
 kWindowHorizZoomDocumentProc = 1028,
 kWindowHorizZoomGrowDocumentProc = 1029,
 kWindowFullZoomDocumentProc = 1030,
 kWindowFullZoomGrowDocumentProc = 1031
};
enum {
 kWindowPlainDialogProc = 1040,
 kWindowShadowDialogProc = 1041,
 kWindowModalDialogProc = 1042,
 kWindowMovableModalDialogProc = 1043,
 kWindowAlertProc = 1044,
 kWindowMovableAlertProc = 1045
};
enum {
 kWindowMovableModalGrowProc = 1046
};
enum {
 kWindowFloatProc = 1057,
 kWindowFloatGrowProc = 1059,
 kWindowFloatVertZoomProc = 1061,
 kWindowFloatVertZoomGrowProc = 1063,
 kWindowFloatHorizZoomProc = 1065,
 kWindowFloatHorizZoomGrowProc = 1067,
 kWindowFloatFullZoomProc = 1069,
 kWindowFloatFullZoomGrowProc = 1071
};
enum {
 kWindowFloatSideProc = 1073,
 kWindowFloatSideGrowProc = 1075,
 kWindowFloatSideVertZoomProc = 1077,
 kWindowFloatSideVertZoomGrowProc = 1079,
 kWindowFloatSideHorizZoomProc = 1081,
 kWindowFloatSideHorizZoomGrowProc = 1083,
 kWindowFloatSideFullZoomProc = 1085,
 kWindowFloatSideFullZoomGrowProc = 1087
};
enum {
 kWindowSheetProc = 1088,
 kWindowSheetAlertProc = 1120
};
enum {
 kWindowSimpleProc = 1104,
 kWindowSimpleFrameProc = 1105
};

Constants
kWindowDocumentProc

Appearance-compliant movable window with no size box or zoom box. Available with Appearance
1.0 and later. The corresponding pre-Appearance window definition ID is noGrowDocProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 201
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowGrowDocumentProc
Appearance-compliant standard document window (movable window with size box). Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is documentProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowVertZoomDocumentProc
Appearance-compliant window with vertical zoom box and no size box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowVertZoomGrowDocumentProc
Appearance-compliant window with vertical zoom box and size box. Available with Appearance 1.0
and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHorizZoomDocumentProc
Appearance-compliant window with horizontal zoom box and no size box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHorizZoomGrowDocumentProc
Appearance-compliant window with horizontal zoom box and size box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFullZoomDocumentProc
Appearance-compliant window with full zoom box and no size box. Available with Appearance 1.0
and later. The corresponding pre-Appearance window definition ID is zoomNoGrow.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFullZoomGrowDocumentProc
Appearance-compliant window with full zoom box and size box. Available with Appearance 1.0 and
later. The corresponding pre-Appearance window definition ID is zoomDocProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowPlainDialogProc
Appearance-compliant modeless dialog box. Available with Appearance 1.0 and later. The
corresponding pre-Appearance window definition ID is plainDBox.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

202 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowShadowDialogProc
Appearance-compliant modeless dialog box with shadow. Available with Appearance 1.0 and later.
The corresponding pre-Appearance window definition ID is altDBoxProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowModalDialogProc
Appearance-compliant modal dialog box. Available with Appearance 1.0 and later. The corresponding
pre-Appearance window definition ID is dBoxProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMovableModalDialogProc
Appearance-compliant movable modal dialog box. Available with Appearance 1.0 and later. The
corresponding pre-Appearance window definition ID is movableDBoxProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertProc
Appearance-compliant alert box. Available with Appearance 1.0 and later. There is no corresponding
pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMovableAlertProc
Appearance-compliant movable alert box. Available with Appearance 1.0 and later. There is no
corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMovableModalGrowProc
Appearance-compliant movable modal dialog box with size box. Available with Appearance 1.0.1 and
later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatProc
Appearance-compliant utility (floating) window with no size box or zoom box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is floatProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatGrowProc
Appearance-compliant utility (floating) window with a size box. Available with Appearance 1.0 and
later. The corresponding pre-Appearance window definition ID is floatGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 203
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowFloatVertZoomProc
Appearance-compliant utility (floating) window with a vertical zoom box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatVertZoomGrowProc
Appearance-compliant utility (floating) window with a vertical zoom box and size box. Available with
Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatHorizZoomProc
Appearance-compliant utility (floating) window with a horizontal zoom box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatHorizZoomGrowProc
Appearance-compliant utility (floating) window with a horizontal zoom box and size box. Available
with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatFullZoomProc
Appearance-compliant utility (floating) window with full zoom box. Available with Appearance 1.0
and later. The corresponding pre-Appearance window definition ID is floatZoomProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatFullZoomGrowProc
Appearance-compliant utility (floating) window with full zoom box and size box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatZoomGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideProc
Appearance-compliant utility (floating) window with side title bar. Available with Appearance 1.0 and
later. The corresponding pre-Appearance window definition ID is floatSideProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideGrowProc
Appearance-compliant utility (floating) window with side title bar and size box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatSideGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

204 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowFloatSideVertZoomProc
Appearance-compliant utility (floating) window with side title bar and vertical zoom box. Available
with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideVertZoomGrowProc
Appearance-compliant utility (floating) window with side title bar, vertical zoom box, and size box.
Available with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition
ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideHorizZoomProc
Appearance-compliant utility (floating) window with side title bar and horizontal zoom box. Available
with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideHorizZoomGrowProc
Appearance-compliant utility (floating) window with side title bar, horizontal zoom box, and size box.
Available with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition
ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideFullZoomProc
Appearance-compliant utility (floating) window with side title bar and full zoom box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatSideZoomProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideFullZoomGrowProc
Appearance-compliant utility (floating) window with side title bar, full zoom box, and size box. Available
with Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatSideZoomGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetProc
A standard document sheet.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetAlertProc
An alert sheet.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 205
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowSimpleProc
A window that has no structure region; the content covers the entire window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSimpleFrameProc
A window that has a 1-pixel black frame as its structure.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Basic Window Description State Constant
Define the window description state constant.

enum {
 kWindowIsCollapsedState = (1 << 0L)
};

Constants
kWindowIsCollapsedState

If the bit specified by this mask is set, the window is currently collapsed.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You can use this mask to set a bit in the windowStateFlags field of a structure of type
BasicWindowDescription (page 175), thereby specifying a transient window state.

Window Frame View Part Codes
HIView part codes used by window frame views.

enum {
 kHIWindowTitleBarPart = 2,
 kHIWindowDragPart = 3,
 kHIWindowTitleProxyIconPart = 2
};

Constants
kHIWindowTitleBarPart

Identifies the title bar part of a window frame view. This part code is used by the functions
GetWindowBounds (page 60) and GetWindowRegion (page 265) when called with
kWindowTitleBarRgn.

Available in Mac OS X v10.5 and later.

Declared in HIWindowViews.h.

kHIWindowDragPart
Identifies the draggable part of a window frame view. This part code is used by
GetWindowBounds (page 60) and GetWindowRegion (page 265) when called with kWindowDragRgn.

Available in Mac OS X v10.5 and later.

Declared in HIWindowViews.h.

206 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kHIWindowTitleProxyIconPart
Identifies the proxy icon part of a window frame title view. The title view is a subview of the window
frame view and is identified by an HIViewID of kHIViewWindowTitleID. This part code is not used
by the window frame view itself, but only by the title view. This part code is used by
GetWindowBounds (page 60) and GetWindowRegion (page 265) when called with
kWindowTitleProxyIconRgn.

Available in Mac OS X v10.5 and later.

Declared in HIWindowViews.h.

Discussion
These part codes are used by an HIView that implements the frame of a window. They may be used with the
standard document windows provided by the Window Manager. A custom window frame view may optionally
(but is not required to) implement these part codes in its event handlers for kEventControlGetPartRegion
and kEventControlGetPartBounds.

Window Feature Bits
Specify features available in a window.

enum {
 kWindowCanGrow = (1 << 0),
 kWindowCanZoom = (1 << 1),
 kWindowCanCollapse = (1 << 2),
 kWindowIsModal = (1 << 3),
 kWindowCanGetWindowRegion = (1 << 4),
 kWindowIsAlert = (1 << 5),
 kWindowHasTitleBar = (1 << 6),
 kWindowSupportsDragHilite = (1 << 7),
 kWindowSupportsModifiedBit = (1 << 8),
 kWindowCanDrawInCurrentPort = (1 << 9),
 kWindowCanSetupProxyDragImage = (1 << 10),
 kWindowCanMeasureTitle = (1 << 11),
 kWindowWantsDisposeAtProcessDeath = (1 << 12),
 kWindowSupportsGetGrowImageRegion = (1 << 13),
 kWindowIsOpaque = (1 << 14),
 kWindowDefSupportsColorGrafPort = 0x40000002
};

Constants
kWindowCanGrow

If this bit (bit 0) is set, the window has a grow box (may not be visible).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanZoom
If this bit (bit 1) is set, the window has a zoom box (may not be visible).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanCollapse
If this bit (bit 2) is set, the window has a collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 207
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowIsModal
If this bit (bit 3) is set, the window should behave as modal.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanGetWindowRegion
If this bit (bit 4) is set, the window supports a call to GetWindowRegion (page 265).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowIsAlert
If this bit (bit 5) is set, the window is an alert box (may be movable or not). When this constant is
added to kWindowIsModal, the user should be able to switch out of the application and move the
alert box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHasTitleBar
If this bit (bit 6) is set, the window has a title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSupportsDragHilite
If the bit specified by this mask is set, the window supports the kWindowMsgDragHilite message.
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSupportsModifiedBit
If the bit specified by this mask is set, the window supports the kWindowMsgModified message.
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanDrawInCurrentPort
If the bit specified by this mask is set, the window supports the kWindowMsgDrawInCurrentPort
message. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanSetupProxyDragImage
If the bit specified by this mask is set, the window supports the kWindowMsgSetupProxyDragImage
message. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanMeasureTitle
If the bit specified by this mask is set, the window supports the kWindowMsgMeasureTitlemessage.
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

208 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowWantsDisposeAtProcessDeath
If the bit specified by this mask is set, the window definition function wants to receive a wDispose
message for the window if it still exists when the application quits.

Previously, the Window Manager would send a wDispose message only if the application explicitly
closed the window with calls to the CloseWindow or DisposeWindow functions. The Window Manager
would delete a window that still existed when the application called ExitToShellwithout notifying
the window definition function, as part of the destruction of the process.

Note that if a window has the kWindowWantsDisposeAtProcessDeath feature bit set, the Window
Manager sends your window definition function a wDispose message for the window when the
application exits for any cause, including if your application crashes.

A window might want to set this feature flag if it allocates data when it is initialized that lives outside
of the application heap and that is not automatically disposed when the application quits. The
wDispose message is sent very early in the termination process, so it is still safe for the window
definition function to call the system back (for example, you may want to do this in order to dispose
of any auxiliary data). However, to ensure compatibility and to create the minimum performance
impact, the window definition function should try to do as little as possible after receiving a wDispose
message sent during the termination process. (Mac OS 8.5 and later.)

This feature is only available in Mac OS 8 and 9. It is not supported in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSupportsGetGrowImageRegion
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowIsOpaque
Indicates that the window is entirely opaque. If this feature bit is set, the window will use less memory
because no alpha channel information will be stored for the window's pixels.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowDefSupportsColorGrafPort
Indicates that the window definition does not require that the current port be the classic Window
Manager port. Not supported in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
For descriptions of the messages that correspond to these feature flags, see “Window Definition Message
Constants” (page 232).

Window Part Code Constants
Indicate which part of the window was hit.

Constants 209
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef SInt16 WindowPartCode;
enum {
 inDesk = 0,
 inNoWindow = 0,
 inMenuBar = 1,
 inSysWindow = 2,
 inContent = 3,
 inDrag = 4,
 inGrow = 5,
 inGoAway = 6,
 inZoomIn = 7,
 inZoomOut = 8,
 inCollapseBox = 11,
 inProxyIcon = 12,
 inToolbarButton = 13,
 inStructure = 15
};

Constants
inDesk

The cursor is in the desktop region, not in the menu bar, a driver window, or any window that belongs
to your application. When FindWindow (page 48) returns inDesk, your application doesn’t need to
do anything.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inNoWindow
The cursor is not in a window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inMenuBar
The user has pressed the mouse button while the cursor is in the menu bar. When FindWindow
returns inMenuBar, your application typically adjusts its menus and then calls the Menu Manager
function MenuSelect to let the user choose menu items.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inSysWindow
Not supported by Carbon.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inContent
The user has pressed the mouse button while the cursor is in the content area (excluding the size
box in an active window) of one of your application’s windows. When FindWindow returns inContent,
your application determines how to handle clicks in the content region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

210 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inDrag
The user has pressed the mouse button while the cursor is in the drag region of a window. When
FindWindow returns inDrag, your application typically calls DragWindow to let the user drag the
window to a new location.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inGrow
The user has pressed the mouse button while the cursor is in an active window’s size box. When
FindWindow returns inGrow, your application typically calls ResizeWindow (page 125).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inGoAway
The user has pressed the mouse button while the cursor is in an active window’s close box. When
FindWindow returns inGoAway, your application typically callsTrackGoAway (page 159) to track
mouse activity while the button is down and then calls its own function for closing a window if the
user releases the button while the cursor is in the close box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inZoomIn
The user has pressed the mouse button while the cursor is in the zoom box of an active window that
is currently in the standard state. When FindWindow returns inZoomIn, your application typically
calls TrackBox to track mouse activity while the button is down and then calls its own function for
zooming a window if the user releases the button while the cursor is in the zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inZoomOut
The user has pressed the mouse button while the cursor is in the zoom box of an active window that
is currently in the user state. When FindWindow returns inZoomOut, your application typically calls
the function TrackBox to track mouse activity while the button is down. Your application then calls
its own function for zooming a window if the user releases the button while the cursor is in the zoom
box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inCollapseBox
The user has pressed the mouse button while the cursor is in an active window’s collapse box. When
FindWindow returns inCollapseBox, your application typically does nothing, because the system
will collapse your window for you.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inProxyIcon
The user has pressed the mouse button while the cursor is in the proxy icon of a window. When
FindWindow returns inProxyIcon, your application typically calls the function
TrackWindowProxyDrag (page 159).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 211
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

inToolbarButton
The user has pressed the mouse button while the cursor is in the toolbar button. (Mac OS X only.)

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

inStructure
The user has pressed the mouse button while the cursor is in the window’s structure region.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Discussion
When your application receives a mouse-down event, you typically call FindWindow (page 48), which returns
an integer that specifies the location, in global coordinates, of the cursor at the time the user pressed the
mouse button.

Window Modality Options
Specify the modality of a window.

typedef UInt32 WindowModality;
enum {
 kWindowModalityNone = 0,
 kWindowModalitySystemModal = 1,
 kWindowModalityAppModal = 2,
 kWindowModalityWindowModal = 3
};

Constants
kWindowModalityNone

A window does not prevent interaction with any other window in the system.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowModalitySystemModal
The window is system-modal. In Mac OS 9 and earlier, the user cannot perform any other action until
the window is dismissed. In Mac OS X, this constant produces the same behavior as
kWindowModalityAppModal, so there is no way to prevent the user from interacting with windows
from other applications.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowModalityAppModal
The window is application-modal; that is the user cannot perform any other action within the
application until the window is dismissed. The user can switch to other applications, however.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

212 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowModalityWindowModal
The window is document-modal; the user cannot perform any other action within the current document
window until the modal window associated with it is dismissed. The user can switch to other windows
or applications, however. Sheets are document-modal.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Position Constants
Define where to place a window.

typedef UInt32 WindowPositionMethod;
enum {
 kWindowCenterOnMainScreen = 1,
 kWindowCenterOnParentWindow = 2,
 kWindowCenterOnParentWindowScreen = 3,
 kWindowCascadeOnMainScreen = 4,
 kWindowCascadeOnParentWindow = 5,
 kWindowCascadeOnParentWindowScreen = 6,
 kWindowCascadeStartAtParentWindowScreen = 10,
 kWindowAlertPositionOnMainScreen = 7,
 kWindowAlertPositionOnParentWindow = 8,
 kWindowAlertPositionOnParentWindowScreen = 9
};

Constants
kWindowCenterOnMainScreen

Center the window, both horizontally and vertically, on the screen that contains the menu bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterOnParentWindow
Center the window, both horizontally and vertically, on the parent window. If the window to be
centered is wider than the parent window, its left edge is aligned with the parent window’s left edge.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterOnParentWindowScreen
Center the window, both horizontally and vertically, on the screen containing the parent window. In
Mac OS X v10.3 and later, the parent window may be the same as the positioned window. In CarbonLib
and earlier versions of Mac OS X, the parent window must be different from the positioned window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCascadeOnMainScreen
Place the window just below the menu bar at the left edge of the main screen. Subsequent windows
are placed on the screen relative to the first window, such that the frame of the preceding window
remains visible behind the current window. The exact amount by which windows are offset depends
upon the dimensions of the window frame under a given appearance.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 213
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowCascadeOnParentWindow
Place the window a distance below and to the right of the upper-left corner of the parent window
such that the frame of the parent window remains visible behind the current window. The exact
amount by which windows are offset depends upon the dimensions of the window frame under a
given appearance.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCascadeOnParentWindowScreen
Place the window just below the menu bar at the left edge of the screen containing the parent
window. Subsequent windows are placed on the screen relative to the first window, such that the
frame of the preceding window remains visible behind the current window. The exact amount by
which windows are offset depends upon the dimensions of the window frame under a given
appearance. In Mac OS X v10.3 and later, the parent window may be the same as the positioned
window. In CarbonLib and earlier versions of Mac OS X, the parent window must be different from
the positioned window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCascadeStartAtParentWindowScreen
Cascade the window on the screen containing the largest portion of its parent window, starting below
and to the right of its parent window. The parent window must be different from the positioned
window. (Available in Mac OS X v10.2 and CarbonLib 1.6 and later.)

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowAlertPositionOnMainScreen
Center the window horizontally and position it vertically on the screen that contains the menu bar,
such that about one-fifth of the screen is above it. In Mac OS X v10.3 and later, the parent window
may be the same as the positioned window. In CarbonLib and earlier versions of Mac OS X, the parent
window must be different from the positioned window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionOnParentWindow
Center the window horizontally and position it vertically such that about one-fifth of the parent
window is above it.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionOnParentWindowScreen
Center the window horizontally and position it vertically such that about one-fifth of the screen
containing the parent window is above it.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
To specify the factors that determine how a window should be positioned, you supply one of these
WindowPositionMethod constants to the function RepositionWindow (page 124) or in the
BasicWindowDescription structure of a resource of type ‘wind’. Do not confuse the
WindowPositionMethod constants with the pre–Mac OS 8.5 Window Manager window positioning constants
or use the WindowPositionMethod constants where the older constants are required (such as in the
StandardAlert function or in 'WIND', 'DLOG', or 'ALRT' resources).

214 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

System 7 Window Positioning Constants
Define window positioning constants used in 'WIND', 'DLOG', or 'ALRT' resources, as well as the
StandardAlert function.

enum {
 kWindowNoPosition = 0x0000,
 kWindowDefaultPosition = 0x0000,
 kWindowCenterMainScreen = 0x280A,
 kWindowAlertPositionMainScreen = 0x300A,
 kWindowStaggerMainScreen = 0x380A,
 kWindowCenterParentWindow = 0xA80A,
 kWindowAlertPositionParentWindow = 0xB00A,
 kWindowStaggerParentWindow = 0xB80A,
 kWindowCenterParentWindowScreen = 0x680A,
 kWindowAlertPositionParentWindowScreen = 0x700A,
 kWindowStaggerParentWindowScreen = 0x780A
};

Constants
kWindowNoPosition

No position.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefaultPosition
Use the initial location.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterMainScreen
Center the window on the main screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionMainScreen
Place the window in the alert position on the main screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStaggerMainScreen
Stagger the window on the main screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterParentWindow
Center the window on the parent window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionParentWindow
Place the window in the alert position on the parent window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 215
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowStaggerParentWindow
Stagger the window relative to the parent window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterParentWindowScreen
Center the window on the parent window screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionParentWindowScreen
Place the window in the alert position on the parent window screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStaggerParentWindowScreen
Stagger the window on the parent window screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You can use these constants in the optional positioning specification field of the window resource and in
the dialog resource to override the window position established by the rectangle specified for the window
or dialog. These positioning constants are convenient when the user is creating new documents or when
you are handling your own dialog boxes and alert boxes.

These constants are passed into the StandardAlert function and are used in' WIND', 'DLOG’, and 'ALRT'
templates. StandardAlert uses zero to specify the default position. Other calls use zero to specify “no
position”.

Do not pass these constants to theRepositionWindow function or store these constants in the
BasicWindowDescription structure of a 'WIND' resource.

The meaning of the terms used in the window positioning constant descriptions are as follows:

 ■ center

Centered both horizontally and vertically, relative either to a screen or to another window (if a window
to be centered relative to another window is wider than the window that preceded it, it is pinned to the
left edge; a narrower window is centered)

 ■ stagger

Located 20 pixels to the right and 20 pixels below the upper-left corner of the last window (in the case
of staggering relative to a screen, the first window is placed just below the menu bar at the left edge of
the screen, and subsequent windows are placed on that screen relative to the first window)

 ■ alert position

Centered horizontally and placed in the “alert position” vertically, that is, with about one-fifth of the
window or screen above the new window and the rest below

 ■ parent window

Place in the position of the window in which the user was last working based on the frontmost window
before the new window comes up.

216 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Region Constants
Define various window regions.

typedef UInt16 WindowRegionCode;
enum {
 kWindowTitleBarRgn = 0,
 kWindowTitleTextRgn = 1,
 kWindowCloseBoxRgn = 2,
 kWindowZoomBoxRgn = 3,
 kWindowDragRgn = 5,
 kWindowGrowRgn = 6,
 kWindowCollapseBoxRgn = 7,
 kWindowTitleProxyIconRgn = 8,
 kWindowStructureRgn = 32,
 kWindowContentRgn = 33,
 kWindowUpdateRgn = 34,
 kWindowOpaqueRgn = 35,
 kWindowGlobalPortRgn = 40,
 kWindowToolbarButtonRgn = 41
};

Constants
kWindowTitleBarRgn

The entire area occupied by a window’s title bar, including the title text region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowTitleTextRgn
That portion of a window’s title bar that is occupied by the name of the window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCloseBoxRgn
The area occupied by a window’s close box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowZoomBoxRgn
The area occupied by a window’s zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDragRgn
The draggable area of the window frame; this area includes the title bar and window outline and
excludes the size box, close box, zoom box, and collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGrowRgn
The area occupied by a window’s size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 217
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowCollapseBoxRgn
The area occupied by a window’s collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowTitleProxyIconRgn
Specifies the region in the window’s title area that contains the proxy icon. The proxy icon region is
always located within the window’s title text region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStructureRgn
The entire area occupied by a window, including the frame and content region; the window may be
partially off-screen but its structure region does not change.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowContentRgn
The window’s content region—the part of a window in which your application displays the contents
of the window or dialog, including the size box and any controls.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowUpdateRgn
The window’s update region––the part of the window that needs to be redrawn.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowOpaqueRgn
Area of window considered to be opaque. Only valid for windows with alpha channels. (Mac OS X
only)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGlobalPortRgn
Bounds of the window’s port in global coordinates; not affected by CollapseWindow (page 37).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowToolbarButtonRgn
Bounds of the toolbar button area.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Discussion
You can pass constants of type WindowRegionCode in the inRegionCode parameter of
GetWindowRegion (page 265) to obtain a handle to a specific window region. The WindowRegionCode
constants are available with Appearance Manager 1.0 and later.

Version Notes
With the Window Manager in Mac OS 8.5 and later, you may pass the kWindowTitleProxyIconRgn,
kWindowStructureRgn, and kWindowContentRgn constants to the function GetWindowRegion (page
265).

218 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Latent Visibility Constants
Defines window latent visibility constants.

typedef UInt32 WindowLatentVisibility;
enum {
 kWindowLatentVisibleFloater = 1 << 0,
 kWindowLatentVisibleSuspend = 1 << 1,
 kWindowLatentVisibleFullScreen = 1 << 2,
 kWindowLatentVisibleAppHidden = 1 << 3,
 kWindowLatentVisibleCollapsedOwner = 1 << 4,
 kWindowLatentVisibleCollapsedGroup = 1 << 5
};

Constants
kWindowLatentVisibleFloater

The window is a floating window, and floating windows are hidden.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleSuspend
The window has kWindowHideOnSuspendAttribute set and the application is suspended.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleFullScreen
The window has kWindowHideOnFullScreenAttribute set and the mode is full-screen.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleAppHidden
The window’s process is hidden.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleCollapsedOwner
The window is in an owned group, and the owner was collapsed.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleCollapsedGroup
The window is in a group for which kWindowGroupAttrHideOnCollapse is set, and another window
in the group was collapsed.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Basic Window Description Version Constants
Describe different Mac OS window versions.

Constants 219
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kWindowDefinitionVersionOne = 1,
 kWindowDefinitionVersionTwo = 2
};

Constants
kWindowDefinitionVersionOne

Specifies a pre–Mac OS 8.5 Window Manager window. Windows of this version are created using a
window definition ID and a Boolean value indicating whether or not the window has a close box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefinitionVersionTwo
Specifies a Mac OS 8.5 Window Manager window. Windows of this version are created using class
and attribute information. For details on classes and attributes, see “Window Class Constants” (page
184) and “Window Attributes” (page 194) respectively.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You may supply one of these values in the windowDefinitionVersion field of a structure of type
BasicWindowDescription (page 175) to specify the version of the window definition used for a window.

Window Property Persistent Constant
Define the window property persistent constant.

enum {
 kWindowPropertyPersistent = 0x00000001
};

Constants
kWindowPropertyPersistent

Indicates this property gets saved when the window is archived. Note, however, that window properties
are not archived at all in Mac OS X v10.4.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Variant Constants
Specify window variants.

220 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kDocumentWindowVariantCode = 0,
 kModalDialogVariantCode = 1,
 kPlainDialogVariantCode = 2,
 kShadowDialogVariantCode = 3,
 kMovableModalDialogVariantCode = 5,
 kAlertVariantCode = 7,
 kMovableAlertVariantCode = 9,
 kSideFloaterVariantCode = 8
};

Constants
kDocumentWindowVariantCode

Variation code for a document window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kModalDialogVariantCode
Variation code for modal dialog boxes. The code can be added to 16 x the resource ID constant
kStandardWindowDefinition to create a standard, pre-Appearance modal dialog box window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kPlainDialogVariantCode
Variation code for a plain dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kShadowDialogVariantCode
Variation code for a shadow dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableModalDialogVariantCode
Variation code for movable modal dialog boxes. The code can be added to 16 x the resource ID
constant kStandardWindowDefinition to create a standard, pre-Appearance movable modal
dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kAlertVariantCode
Variation code for a standard alert box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableAlertVariantCode
Variation code for a movable alert box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 221
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kSideFloaterVariantCode
Variation code for utility (floating) windows with a side title bar. The code can be added to 16 x the
resource ID constant kFloatingWindowDefinition to create a standard, pre-Appearance utility
(floating) window with a side title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Transition Action Constants
Specify the type of window action taking place.

typedef UInt32 WindowTransitionAction;
enum {
 kWindowShowTransitionAction = 1,
 kWindowHideTransitionAction = 2,
 kWindowMoveTransitionAction = 3,
 kWindowResizeTransitionAction = 4
};

Constants
kWindowShowTransitionAction

Specifies that the animation display the window opening, that is, transitioning from a closed to an
open state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHideTransitionAction
Specifies that the animation display the window closing, that is, transitioning from an open to a closed
state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMoveTransitionAction
Moves the window. Use with the Slide transition effect. The inRect parameter contains the global
coordinates of the window’s new structure bounds and cannot be NULL. (Available in Mac OS X, and
in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowResizeTransitionAction
Resizes the window. Use with the Slide transition effect. The inRect parameter contains the global
coordinates of the window’s new structure bounds and cannot be NULL. (Available in Mac OS X and
in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You may pass these WindowTransitionAction constants to the function TransitionWindow (page 162)
to specify the direction of the animation effect that is to be performed for a window.

222 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Transition Effect Constants
Designate the type of transition effect to use to show or hide the window.

typedef UInt32 WindowTransitionEffect;
enum {
 kWindowZoomTransitionEffect = 1,
 kWindowSheetTransitionEffect = 2,
 kWindowSlideTransitionEffect = 3,
 kWindowFadeTransitionEffect = 4,
 kWindowGenieTransitionEffect = 5
};

Constants
kWindowZoomTransitionEffect

Specifies an animation that displays the window zooming between the open and closed states. The
direction of the animation, whether from open to closed, or closed to open, depends upon the
WindowTransitionAction constant specified in conjunction with the WindowTransitionEffect
constant; see“Window Transition Action Constants” (page 222) for descriptions of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetTransitionEffect
Zoom in or out from the parent window. Use with TransitionWindowAndParent (page 163) and
Show or Hide transition actions. (Available in Mac OS X, and in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSlideTransitionEffect
Slide the window into its new position. Use with TransitionWindow (page 162) and Move or Resize
transition actions. (Available in Mac OS X and in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFadeTransitionEffect
Fade the window into or out of visibility. Use with the Show or Hide transition action. (Available in
Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

kWindowGenieTransitionEffect
Use the Genie effect that the Dock uses to minimize or maximize a window to show or hide the
window. Use with the Show or Hide transition action. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

Discussion
You may pass this WindowTransitionEffect constant to the function TransitionWindow (page 162) to
specify the type of animation effect that is to be performed for a window.

Window Activation Scope Constants
Defines window activation scope constants.

Constants 223
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef UInt32 WindowActivationScope;
enum {
 kWindowActivationScopeNone = 0,
 kWindowActivationScopeIndependent = 1,
 kWindowActivationScopeAll = 2
};

Constants
kWindowActivationScopeNone

Windows with this scope are never activated by the Window Manager. Use
kWindowActivationScopeNonewhen the window’s visual state does not change based on activation
(for example, tooltip windows), or when the client wants to manually control all activation. The window
owner is free to explicitly activate or deactivate a window by calling ActivateWindow (page 30).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowActivationScopeIndependent
Windows with this scope are always active if visible and are unaffected by the activation state of other
windows. This activation scope is automatically used by floating windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowActivationScopeAll
Windows with this scope are activated relative to other windows with the same scope in the current
process. Only one window with this scope can be active in the entire process. This activation scope
is automatically used by document and dialog windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Constrain Options
Constrain options for window resize, growing, and so on.

typedef UInt32 WindowConstrainOptions;
enum {
 kWindowConstrainMayResize = (1L << 0),
 kWindowConstrainMoveRegardlessOfFit = (1L << 1),
 kWindowConstrainAllowPartial = (1L << 2),
 kWindowConstrainCalcOnly = (1L << 3),
 kWindowConstrainUseTransitionWindow = (1L << 4),
 kWindowConstrainMoveMinimum = 1 << 6,
 kWindowConstrainUseSpecifiedBounds = 1 << 8,
 kWindowConstrainStandardOptions = kWindowConstrainMoveRegardlessOfFit
};

Constants
kWindowConstrainMayResize

The window may be resized if necessary to make it fit onscreen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

224 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowConstrainMoveRegardlessOfFit
The window may be moved even if it doesn’t fit entirely onscreen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowConstrainAllowPartial
Allow partial intersection of the specified window region with the screen instead of requiring total
intersection.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowConstrainCalcOnly
Calculate the new window bounds but don’t actually move the window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowConstrainUseTransitionWindow
Use TransitionWindow (page 162) with kWindowSlideTransitionEffect to move windows
onscreen.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowConstrainMoveMinimum
Move the window the minimum amount necessary to be onscreen. This option is only supported by
the function HIWindowConstrain (page 89). This option applies if a partial fit is not allowed
(kWindowConstrainAllowPartial is not specified) or a partial fit is allowed, but the window is
not even partially visible. In either case, the window will be moved just enough to be slightly onscreen.
You may customize the minimum amount that is required to be visible by passing the desired
dimensions in the inMinimumSize parameter to HIWindowConstrain.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowConstrainUseSpecifiedBounds
Use the specified bounds of the window region to be constrained. This option is only supported by
the function HIWindowConstrain (page 89). The bounds are specified using the ioBoundsparameter,
allowing you to constrain a window to a hypothetical location. For example, if you plan to move your
window such that its content region is at a certain location, and you want to know in advance before
moving the window whether the window would be offscreen at that location, you can use this option.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowConstrainStandardOptions
Use the most common options: don’t resize the window, move the window regardless of fit to the
screen, require total intersection of the specified window region with the screen, and move the
window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Kinds
Identify how a window was created.

Constants 225
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 dialogKind = 2,
 userKind = 8,
 kDialogWindowKind = 2,
 kApplicationWindowKind = 8
};

Constants
dialogKind

Obsolete equivalent to kDialogWindowKind.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

userKind
Obsolete equivalent to kApplicationWindowKind.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kDialogWindowKind
Identifies all dialog or alert windows, whether created by system software or, indirectly through the
Dialog Manager, by your application. The Dialog Manager uses this field to track dialog and alert
windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kApplicationWindowKind
Identifies a window created directly by your application.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The Window Manager uses these constants in the windowKind field of a color window structure or window
structure. Your application can use any value greater than 7.

Window Group Selection Constants
Indicate which window group to select.

enum {
 kNextWindowGroup = true,
 kPreviousWindowGroup = false
};

Constants
kNextWindowGroup

Move to the next window group (in the z-order).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kPreviousWindowGroup
Move to the previous window group (in the z-order).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

226 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Group Attributes
Define attributes for window groups.

typedef UInt32 WindowGroupAttributes;
enum {
 kWindowGroupAttrSelectAsLayer = 1 << 0,
 kWindowGroupAttrMoveTogether = 1 << 1,
 kWindowGroupAttrLayerTogether = 1 << 2,
 kWindowGroupAttrSharedActivation = 1 << 3,
 kWindowGroupAttrHideOnCollapse = 1 << 4,
 kWindowGroupAttrFixedLevel = 1 << 5
};

Constants
kWindowGroupAttrSelectAsLayer

Makes the group behave somewhat as a layer of windows that move together. When any window in
the group is brought to the front of the group, the entire group will also be brought to the front of
the containing group’s child hierarchy. Use of this constant is not recommended; its behavior is rarely
useful.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowGroupAttrMoveTogether
The positions of the contents of this group with respect to each other cannot be changed. When one
item moves, all other items are moved simultaneously. Note that if one window’s position is changed
by calling a Window Manager function in Mac OS X v10.4 and later, the positions of the other windows
in the group are updated asynchronously—that is, their bounds are not necessarily updated during
the function call itself, even though visually the windows move together.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowGroupAttrLayerTogether
The z-order of the contents of this group with respect to each other cannot be changed. When one
item changes z-order, all other items are moved simultaneously. For purposes of z-ordering, the group
and all its subgroups are effectively treated as if they were a single window in the parent group of
this group.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowGroupAttrSharedActivation
The active state of the windows in this group is shared. The windows in the group are activated or
deactivated according to the activation scope of the group, but when any window in the group
changes activation, all other windows change to match.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupAttrHideOnCollapse
When any window in this group is collapsed, all other windows in this group are hidden. All subgroups
of this group are also examined for this attribute, and any the windows of any subgroup with this
attribute are also hidden. All windows will be shown again when the collapsed window is expanded.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 227
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowGroupAttrFixedLevel
If this attribute is specified, this window group’s window level should be left unchanged. If this attribute
is not specified, this window group’s window level will be promoted to a value equal to the level of
the next fixed-level window group beneath it in the window group hierarchy. (Available in Mac OS
X v10.4 and later.)

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Version Notes
In Mac OS X v10.2.4 and later, the HIToolbox framework improved its use of the window group API so that
showing a sheet on a window that was already grouped with another window would not break the existing
grouping. To make this change work properly, applications that create their own window groups using the
kWindowGroupAttrMoveTogether and kWindowGroupAttrLayerTogether attributes should also specify
the kWindowGroupAttrHideOnCollapse and kWindowGroupAttrSharedActivation attributes.

Obsolete Window Group Attributes
Define obsolete window group attribute names.

enum {
 kWindowGroupAttrSelectable = kWindowGroupAttrSelectAsLayer,
 kWindowGroupAttrPositionFixed = kWindowGroupAttrMoveTogether,
 kWindowGroupAttrZOrderFixed = kWindowGroupAttrLayerTogether
};

Constants
kWindowGroupAttrSelectable

Obsolete name for kWindowGroupAttrSelectAsLayer.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupAttrPositionFixed
Obsolete name; use kWindowGroupAttrMoveTogether instead.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupAttrZOrderFixed
Obsolete name; use kWindowGroupAttrLayerTogether instead.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Group Content Options
Window group counting options.

228 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef UInt32 WindowGroupContentOptions;
enum {
 kWindowGroupContentsReturnWindows = 1 << 0,
 kWindowGroupContentsRecurse = 1 << 1,
 kWindowGroupContentsVisible = 1 << 2
};

Constants
kWindowGroupContentsReturnWindows

Count only windows in the window group.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupContentsRecurse
Recursively count windows of any subgroups of windows in the specified window group.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupContentsVisible
Counts only visible windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You use these constants with the CountWindowGroupContents (page 40) function.

Window Class Position Constants
Specify which window in the class to select.

enum {
 kFirstWindowOfClass = -1,
 kLastWindowOfClass = 0
};

Constants
kFirstWindowOfClass

Select the first window in the class.

kLastWindowOfClass
Select the last window in the class.

Discussion
These constants describe special cases for the “behind” parameter in window creation calls.

Window Definition Type Constants
Defines the type of custom window definition.

Constants 229
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef UInt32 WindowDefType;
enum {
 kWindowDefProcPtr = 0,
 kWindowDefObjectClass = 1,
 kWindowDefProcID = 2,
 kWindowDefHIView = 3
};

Constants
kWindowDefProcPtr

The definition is procedure pointer–based.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefObjectClass
The definition is a toolbox object.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefProcID
An ID that identifies a particular ‘WDEF’ and would typically be one of the constants described in
“Appearance-Compliant Window Definition ID Constants” (page 200).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefHIView
The definition is an HIView-based object.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Window Definition Procedure Constant
Define the window definition procedure constant.

enum {
 kWindowDefProcType = 'WDEF'
};

Constants
kWindowDefProcType

Window definition type.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Definition Hit Test Result Code Constants
Defines result constants to be used by window definition hit testing.

230 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef SInt16 WindowDefPartCode;
enum {
 wNoHit = 0,
 wInContent = 1,
 wInDrag = 2,
 wInGrow = 3,
 wInGoAway = 4,
 wInZoomIn = 5,
 wInZoomOut = 6,
 wInCollapseBox = 9,
 wInProxyIcon = 10,
 wInToolbarButton = 11,
 wInStructure = 13
};

Constants
wNoHit

The mouse-down event did not occur in the content region or the drag region of any active or inactive
window or in the close, size, zoom, or collapse box of an active window. The return value wNoHit
might also mean that the point isn’t in the window. The standard window definition functions, for
example, return wNoHit if the point is in the window frame but not in the title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInContent
The mouse-down event occurred in the content region of an active or inactive window (with the
exception of the size box).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInDrag
The mouse-down event occurred in the drag region of an active or inactive window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInGrow
The mouse-down occurred in the size box of an active window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInGoAway
The mouse-down event occurred in the close box of an active window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInZoomIn
The mouse-down event occurred in the zoom box of an active window that is currently in the standard
state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 231
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

wInZoomOut
The mouse-down event occurred in the zoom box of an active window that is currently in the user
state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInCollapseBox
The mouse-down event occurred in the collapse box of an active window.

Available with Appearance Manager 1.0 and later.

Declared in MacWindows.h.

wInProxyIcon
The mouse-down event occurred in the proxy icon of a window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInToolbarButton
The mouse-down event occurred in the toolbar button.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

wInStructure
The mouse-down event occurred in the window’s structure region.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Discussion
In response to the wHit message, your window definition function should return one of these constants.

Return the constants wInGrow, wInGoAway, wInZoomIn, wInZoomOut, and wInCollapseBox only if the
window is active—by convention, the size box, close box, zoom box, and collapse box aren’t drawn if the
window is inactive. In an inactive document window, for example, a mouse-down event in the part of the
title bar that would contain the close box if the window were active is reported as wInDrag.

With the Mac OS 8.5 Window Manager and later, your window definition function may return the
wInProxyIcon constant to report that a mouse-down event occurred in your window’s proxy icon.

Window Definition Message Constants
Defines messages sent to non Carbon Event–based window definitions.

232 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kWindowMsgDraw = 0,
 kWindowMsgHitTest = 1,
 kWindowMsgCalculateShape = 2,
 kWindowMsgInitialize = 3,
 kWindowMsgCleanUp = 4,
 kWindowMsgDrawGrowOutline = 5,
 kWindowMsgDrawGrowBox = 6
};
enum {
 kWindowMsgGetFeatures = 7,
 kWindowMsgGetRegion = 8
};
enum {
 kWindowMsgDragHilite = 9,
 kWindowMsgModified = 10,
 kWindowMsgDrawInCurrentPort = 11,
 kWindowMsgSetupProxyDragImage = 12,
 kWindowMsgStateChanged = 13,
 kWindowMsgMeasureTitle = 14
};
enum {
 kWindowMsgGetGrowImageRegion = 19
};

Constants
kWindowMsgDraw

Draw the window’s frame.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgHitTest
Report the location of a mouse-down event.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgCalculateShape
Calculate the structure region and the content region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgInitialize
Perform additional initialization.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgCleanUp
Perform additional disposal.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgDrawGrowOutline
Draw the dotted outline of the window that you see during a resizing operation.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 233
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowMsgDrawGrowBox
Draw the outlines for the size box and the scroll bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgGetFeatures
Report the window’s features.

Available with Appearance Manager 1.0 and later.

Declared in MacWindows.h.

kWindowMsgGetRegion
Report the location of a specific window region.

Available with Appearance Manager 1.0 and later.

Declared in MacWindows.h.

kWindowMsgDragHilite
Redraw the window’s structure region to reflect the window’s validity as a drag-and-drop destination.
The Window Manager passes an accompanying Boolean value in your window definition function’s
param parameter. If the value passed is true, this indicates that the window’s structure region should
be highlighted. If the value passed is false, the structure region should be unhighlighted. Your
window definition function should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgModified
Track the window’s modification state. The Window Manager sends this message when the function
SetWindowModified (page 146) is called. The Window Manager passes an accompanying Boolean
value in your window definition function’s param parameter. If the value passed is true, the document
contained in the window has been modified. If the value passed is false, the document has been
saved to disk. You should redraw the window’s structure region to reflect the new modification state,
if appropriate. For example, system-defined document windows dim the proxy icon to indicate that
the document has been modified by the user and cannot be moved at that time. Your window
definition function should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgDrawInCurrentPort
Draw the window’s frame in the current graphics port. Other than restricting drawing to the current
port, this message is similar to the pre–Mac OS 8.5 Window Manager window definition message
constant wDraw. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

234 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kWindowMsgSetupProxyDragImage
Create the image of the window’s proxy icon that the Drag Manager uses to represent the icon while
it is being dragged. When your application calls the function TrackWindowProxyDrag (page 159),
the Window Manager passes this message in your window definition function’s message parameter
and an accompanying pointer to a structure of type SetupWindowProxyDragImageRec (page 180)
in the param parameter. Your window definition function is responsible for setting the contents of
the structure to contain the data describing the proxy icon’s drag image. Your window definition
function should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgStateChanged
Be informed that some aspect of the window’s public state has changed. The Window Manager passes
this message in your window definition function’s message parameter and an accompanying flag in
the param parameter that indicates what part of the window’s state has been altered. This message
is simply a notification message—no response by the window definition function is required. Your
window definition function should return 0 as the function result. The kWindowMsgStateChanged
message is sent after the window’s internal data has been updated, but before any redraw occurs
onscreen. A window definition function should not redraw the window frame in response to this
message. If it is necessary to redraw the window frame, the Window Manager notifies the window
definition function with a wDraw message. See “Window Definition State-Changed Constant” (page
235) for descriptions of the values that the Window Manager can pass to specify the state change that
has occurred. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgMeasureTitle
Measure and return the ideal title width. The Window Manager passes this message in the window
definition function’s message parameter and an accompanying pointer to a structure of type
MeasureWindowTitleRec (page 178) in the param parameter. Your window definition function is
responsible for setting the contents of the structure to contain data describing the title width. You
should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgGetGrowImageRegion
Obtain a region to XOR with window during grow or resize. Alter the GetGrowImageRegionRec
structure passed with the message to the region to be XOR’d. (

Available in Carbon only.)

Declared in MacWindows.h.

Discussion
The Window Manager may pass one of these constants in the message parameter of your window definition
function to specify the action that your function must perform. For descriptions of the feature bits that
correspond to these messages, see “Window Feature Bits” (page 207). Other messages are reserved for internal
use by the system.

Window Definition State-Changed Constant
Define the window definition state-changed constant.

Constants 235
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kWindowStateTitleChanged = (1 << 0)
};

Constants
kWindowStateTitleChanged

If the bit specified by this mask is set, the window’s title has changed.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
If you implement a custom window definition function, when the Window Manager passes the
kWindowMsgStateChanged message in your window definition function’s message parameter it may also
pass a value in the param parameter with one or more bits set to indicate what part of the window’s state
has changed. You may use this mask to test this value. For a description of the kWindowMsgStateChanged
message, see “Window Definition Message Constants” (page 232).

Special Considerations

Drawer State Constants
Define constants that indicate the current drawer state.

typedef UInt32 WindowDrawerState;
enum {
 kWindowDrawerOpening = 1,
 kWindowDrawerOpen = 2,
 kWindowDrawerClosing = 3,
 kWindowDrawerClosed = 4
};

Constants
kWindowDrawerOpening

The drawer is opening.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowDrawerOpen
The drawer is open.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowDrawerClosing
The drawer is closing.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowDrawerClosed
The drawer is closed.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Version Notes
Introduced in Mac OS X v10.2.

236 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Edge Constants
Specify the edge from which a drawer should appear.

enum {
 kWindowEdgeDefault = 0,
 kWindowEdgeTop = 1 << 0,
 kWindowEdgeLeft = 1 << 1,
 kWindowEdgeBottom = 1 << 2,
 kWindowEdgeRight = 1 << 3
};

Constants
kWindowEdgeDefault

The drawer should be opened on whatever edge of the parent window has previously been set as
the drawer’s preferred edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeTop
The drawer should slide out from the top edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeLeft
The drawer should slide out from the left edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeBottom
The drawer should slide out from the bottom edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeRight
The drawer should slide out from the right edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Rotating Window Menu Item Constant
Indicates whether to add the rotating window item to the Window menu.

enum {
 kWindowMenuIncludeRotate = 1 << 0
};

Constants
kWindowMenuIncludeRotate

Requests that the standard window menu include a Rotate Windows menu item.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Constants 237
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
This constant is used with the function CreateStandardWindowMenu (page 42).

Window Menu Item Property Constants
Constants used to access property data of items in the standard window menu.

enum {
 kHIWindowMenuCreator = 'wind',
 kHIWindowMenuWindowTag = 'wind'
};

Constants
kHIWindowMenuCreator

The property creator for accessing standard window menu item properties.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowMenuWindowTag
The property tag for accessing standard window menu item properties that hold windows (values of
type WindowRef). Menu items with the kHICommandSelectWindow command ID will have a property
with this tag that contains the window to be activated when that item is selected.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Discussion
These constants are used with the Menu Manager functions GetMenuItemProperty and
SetMenuItemProperty.

Toolbar View Background Tag
A tag used to inform a custom toolbar view whether to draw its background or leave its background
transparent.

enum {
 kHIToolbarViewDrawBackgroundTag = 'back'
};

Constants
kHIToolbarViewDrawBackgroundTag

A SetControlData tag that is used by the standard window frame view to inform the toolbar view
whether the view should draw its background or leave its background transparent. The data for this
tag is a Boolean. If the data value is true, the toolbar view should draw its background as it desires.
If the data value is false, the toolbar view should leave its background transparent so that the window's
root view can show through the toolbar view. Currently, the toolbar view will be asked to leave its
background transparent for windows with the textured or unified appearance.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

238 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Window Paint Callback Options
Define options to use with the window paint callback function.

typedef OptionBits WindowPaintProcOptions;
enum {
 kWindowPaintProcOptionsNone = 0
};

Constants
kWindowPaintProcOptionsNone

No options.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Part Identifier Constants
Used in the value field of the ColorSpec structure, define which part of the window the color affects.

enum {
 wContentColor = 0,
 wFrameColor = 1,
 wTextColor = 2,
 wHiliteColor = 3,
 wTitleBarColor = 4
};

Constants
wContentColor

Produces background color for content region of window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wFrameColor
Produces color of window’s outline.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wTextColor
Produces color of window’s title and button text.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wHiliteColor
Reserved.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wTitleBarColor
Reserved.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 239
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

Discussion
When the Appearance Manager is available and you are using standard windows, all the fields of the window
color table structure are ignored except the part identifier constant wContentColor in the value field of
the ColorSpec structure, which produces the background color for the window’s content region.

If you are creating your own custom windows, the window color table structure and all its part identifier
constants can still be used.

Desk Pattern Resource ID
The resource ID of the desktop pattern.

enum {
 deskPatID = 16
};

Constants
deskPatID

The resource ID of the desktop pattern.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The Window Manager provides the desk pattern resource ID constants, which is the ID of Pattern and
PixPat resources that the operating system uses to draw the desktop. The operating system uses the
deskPatID constant while the desktop is being drawn. It looks for a resource with this ID and uses the
contents of the resource to draw the desktop.

Window Scrolling Options
Options for scrolling windows.

typedef UInt32 ScrollWindowOptions;
enum {
 kScrollWindowNoOptions = 0,
 kScrollWindowInvalidate = (1L << 0),
 kScrollWindowEraseToPortBackground = (1L << 1)
};

Constants
kScrollWindowNoOptions

No options.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kScrollWindowInvalidate
Add the exposed area to the window’s update region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

240 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kScrollWindowEraseToPortBackground
Erase the exposed area using the background color/pattern of the window’s graphics port.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
Use these constants with theScrollWindowRect (page 127) andScrollWindowRegion (page 128) functions.

Availability
Available in Mac OS 8.1 and later.

'wind' Resource Default Collection Item Constants
Specify default collection items in a window ('wind') resource.

enum {
 kStoredWindowSystemTag = 'appl',
 kStoredBasicWindowDescriptionID = 'sbas',
 kStoredWindowPascalTitleID = 's255',
 kStoredWindowTitleCFStringID = 'cfst'
};

Constants
kStoredWindowSystemTag

This item tag specifies a system-defined collection item. Note that the 'appl' collection item tag is
reserved for use by Apple Computer, Inc. Do not define new collection items using this tag.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kStoredBasicWindowDescriptionID
In combination with kStoredWindowSystemTag, this item ID specifies an item of type
BasicWindowDescription. See BasicWindowDescription (page 175) for details on this type.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kStoredWindowPascalTitleID
In combination with kStoredWindowSystemTag, this item ID specifies a Pascal title string.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kStoredWindowTitleCFStringID
This item tag specifies the CFString title string.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
These constants specify the tag and the IDs that identify the default collection items contained in a resource
of type ’wind’.

Window Resource IDs
Define standard resource IDs for windows.

Constants 241
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 kStandardWindowDefinition = 0,
 kRoundWindowDefinition = 1,
 kFloatingWindowDefinition = 124
};

Constants
kStandardWindowDefinition

Defines pre-Appearance standard document windows and dialog boxes. When mapping is enabled,
this resource ID is mapped to kWindowDocumentDefProcResID or kWindowDialogDefProcResID.
When mapped to kWindowDocumentDefProcResID, this produces an Appearance-compliant
standard document window with no size box and no vertical or horizontal zoom box. When mapped
to kWindowDialogDefProcResID, this produces an Appearance-compliant dialog box with no size
box and a 3-pixel space between the dialog box’s content and structure region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kRoundWindowDefinition
Defines pre-Appearance standard desk-accessory style windows. This resource ID is not mapped to
any Appearance-compliant resource ID when mapping is enabled.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kFloatingWindowDefinition
Defines pre-Appearance utility (floating) windows. When mapping is enabled, this resource ID is
mapped to kWindowUtilityDefProcResID or kWindowUtilitySideTitleDefProcResID.
When mapped to kWindowUtilityDefProcResID, this produces an Appearance-compliant utility
window. When mapped to kWindowUtilitySideTitleDefProcResID, it produces an
Appearance-compliant utility window with a side title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
Window resource IDs are changed with Appearance Manager 1.0. The Window Manager now provides many
new standard, Appearance-compliant window resource IDs for your program. For a description of the
Appearance-compliant window resource IDs, see “Appearance-Compliant Window Resource IDs” (page 199).

You can use a window resource ID constant to create a window definition ID; see “Pre-Appearance Window
Definition IDs” in Window Manager Legacy Reference for more details.

Resource IDs 0 through 127 are reserved for use by the system.

Window Availability Constants
Define window availability constants for Exposé and Spaces.

242 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

typedef OptionBits HIWindowAvailability;
enum {
 kHIWindowExposeHidden = 1 << 0,
 kHIWindowVisibleInAllSpaces = 1 << 8
};

Constants
kHIWindowExposeHidden

If this bit is set, the window is hidden during the “All Windows” and “Application windows” modes
of Exposé. If this bit is not set, the window is visible during those modes.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kHIWindowVisibleInAllSpaces
If this bit is set, the window is visible in all Spaces workspaces. If this bit is not set, the window is only
visible in the workspace in which it was created.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Discussion
These mask bits are used with the function HIWindowChangeAvailability (page 87) to override the
default behavior of the Window Manager in determining whether a window is visible during Exposé or in all
Spaces workspaces. By default, newly created windows of class kDocumentWindowClass are given an
availability of 0 (meaning that they are available during Exposé), and windows from all other window classes
are given an availability of kHIWindowExposeHidden.

Window Scale Mode Constants
Define window scale mode constants.

typedef UInt32 HIWindowScaleMode;
enum {
 kHIWindowScaleModeUnscaled = 0,
 kHIWindowScaleModeMagnified = 1,
 kHIWindowScaleModeFrameworkScaled = 2
};

Constants
kHIWindowScaleModeUnscaled

The window is not scaled at all because the display scale factor is 1.0.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kHIWindowScaleModeMagnified
The window‘s backing store is being magnified by the Window Server because the display scale factor
is not equal to 1.0 and because the window was not created with the
kWindowFrameworkScaledAttribute.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Constants 243
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

kHIWindowScaleModeFrameworkScaled
The window‘s contents are scaled to match the display scale factor because the display scale factor
is not equal to 1.0 and because the window was created with kWindowFrameworkScaledAttribute.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Discussion
A window’s scale mode indicates in which resolution-independent scale mode it is operating.

Window Group Level Constants
Define window group level constants.

enum {
kWindowGroupLevelActive = 1,
kWindowGroupLevelInactive = 2,
kWindowGroupLevelPromoted = 3,
};

Constants
kWindowGroupLevelActive

The window level that is nominally used for windows in the group when the application is active.
However, if a group with a higher window level is positioned below this group in the window group
hierarchy, this group’s active level will be promoted to match the level of the group in front of it. Use
kWindowGroupLevelPromoted to determine the actual window level in use for a group.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowGroupLevelInactive
The window level for windows in the group when the application is inactive.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowGroupLevelPromoted
The window level that is actually used for windows in the group when the application is active. This
level is the same as the Active window level or is a larger value to match the level of a group below
this group. Setting the promoted window level explicitly is not recommended because the promoted
level is reset by the Window Manager whenever the window group hierarchy structure changes.
Therefore any changes that you make to the promoted level can be overwritten.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Discussion
These constants are used when calling GetWindowGroupLevelOfType (page 68) and
SetWindowGroupLevelOfType (page 142).

Pre-Appearance Window Definition IDs
Older window definition IDs used before the introduction of the Appearance Manager.

244 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

enum {
 documentProc = 0,
 dBoxProc = 1,
 plainDBox = 2,
 altDBoxProc = 3,
 noGrowDocProc = 4,
 movableDBoxProc = 5,
 zoomDocProc = 8,
 zoomNoGrow = 12,
 rDocProc = 16,
 floatProc = 1985,
 floatGrowProc = 1987,
 floatZoomProc = 1989,
 floatZoomGrowProc = 1991,
 floatSideProc = 1993,
 floatSideGrowProc = 1995,
 floatSideZoomProc = 1997,
 floatSideZoomGrowProc = 1999
};

Constants
documentProc

Pre-Appearance document window (movable window with size box).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

dBoxProc
Pre-Appearance modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

plainDBox
Pre-Appearance modeless dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

altDBoxProc
Pre-Appearance modeless dialog box with shadow.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

noGrowDocProc
Pre-Appearance movable window with no size box or zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

movableDBoxProc
Pre-Appearance movable modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 245
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

zoomDocProc
Pre-Appearance movable window with size box and full zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

zoomNoGrow
Pre-Appearance window with full zoom box and no size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

rDocProc
Pre-Appearance rounded-corner window. You can control the diameter of curvature of a
rounded-corner window (window type rDocProc) by adding one of these integers to the rDocProc
constant:

rDocProc (diameters of curvature: 16, 16)

rDocProc + 2 (diameters of curvature: 4, 4)

rDocProc + 4 (diameters of curvature: 6, 6)

rDocProc + 6 (diameters of curvature: 10, 10)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in MacWindows.h.

floatProc
Pre-Appearance utility (floating) window with no size box or zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatGrowProc
Pre-Appearance utility (floating) window with size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatZoomProc
Pre-Appearance utility (floating) window with zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatZoomGrowProc
Pre-Appearance utility (floating) window with size box and zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatSideProc
Pre-Appearance utility (floating) window with side title bar and no size or zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatSideGrowProc
Pre-Appearance utility (floating) window with side title bar and size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

246 Constants
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

floatSideZoomProc
Pre-Appearance utility (floating) window with side title bar and zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatSideZoomGrowProc
Pre-Appearance utility (floating) window with side title bar, size box, and zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
Note that window definition IDs are changed with Appearance Manager 1.0. The Window Manager now
provides many new, standard, Appearance-compliant window types.

Your application typically supplies a window definition ID to a resource of type ‘WIND’ or to a window-creation
function to specify which window definition function to use in creating the window. A variation code may
also be used to describe variations of the same basic window.

The window definition ID is an integer that contains the resource ID of the window definition function in its
upper 12 bits and a variation code in its lower 4 bits. For a given resource ID and variation code, the window
definition ID is derived as follows: window definition ID = (16 x resource ID) + variation code.

The window definition IDs for dialog boxes and utility (floating) windows pertain to the appearances of these
windows only, not their behaviors. For example, if you want a utility window to have the proper behavior,
that is, float, your application must provide for it.

When mapping is enabled, standard pre-Appearance window definition function IDs will be mapped to their
Appearance-compliant equivalents.

Result Codes

The table below lists result codes defined for the Window Manager.

DescriptionValueResult Code

The window is not valid.-5600errInvalidWindowRef

Available in Mac OS X v10.0 and later.

Attribute bits are inappropriate for the
specified window class.

-5601errUnsupportedWindowAttributesForClass

Available in Mac OS X v10.0 and later.

No proxy attached to window.-5602errWindowDoesNotHaveProxy

Available in Mac OS X v10.0 and later.

'appl' creator code not allowed.-5603errInvalidWindowProperty

Available in Mac OS X v10.0 and later.

Result Codes 247
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

DescriptionValueResult Code

The window property does not exist.-5604errWindowPropertyNotFound

Available in Mac OS X v10.0 and later.

Unknown window class.-5605errUnrecognizedWindowClass

Available in Mac OS X v10.0 and later.

Incorrect size or version supplied in the
BasicWindowDescription structure.

-5606errCorruptWindowDescription

Available in Mac OS X v10.0 and later.

Entire window is being dragged, not proxy
icon.

-5607errUserWantsToDragWindow

Available in Mac OS X v10.0 and later.

Called InitFloatingWindows twice, or
called InitWindows and then
InitFloatingWindows.

-5608errWindowsAlreadyInitialized

Available in Mac OS X v10.0 and later.

Called HideFloatingWindows or
ShowFloatingWindows without calling
InitFloatingWindows.

-5609errFloatingWindowsNotInitialized

Available in Mac OS X v10.0 and later.

No window was found that satisfies the
search criteria.

-5610errWindowNotFound

Available in Mac OS X v10.0 and later.

The window does not fit on a single screen.-5611errWindowDoesNotFitOnscreen

Available in Mac OS X v10.0 and later.

Tried to change a window attribute that can’t
be changed after the window is created.

-5612windowAttributeImmutableErr

Available in Mac OS X v10.0 and later.

Passed two window attributes that are
mutually exclusive.

-5613windowAttributesConflictErr

Available in Mac OS X v10.0 and later.

Internal error in the Window Manager.-5614windowManagerInternalErr

Available in Mac OS X v10.0 and later.

The window state makes the current action
invalid.

-5615windowWrongStateErr

Available in Mac OS X v10.0 and later.

248 Result Codes
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

DescriptionValueResult Code

The window group is not valid.-5616windowGroupInvalidErr

Available in Mac OS X v10.0 and later.

The window is already application modal.-5617windowAppModalStateAlreadyExistsErr

Available in Mac OS X v10.1 and later.

The window is not currently application
modal.

-5618windowNoAppModalStateErr

Available in Mac OS X v10.1 and later.

Not used.-30583errWindowDoesntSupportFocus

Available in Mac OS X v10.0 and later.

The window region code is not valid.-30593errWindowRegionCodeInvalid

Available in Mac OS X v10.0 and later.

Result Codes 249
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

250 Result Codes
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Window Manager Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

CalcVis
Calculates the visible region of a window. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void CalcVis (
 WindowRef window
);

Parameters
window

On input, a pointer to the window’s complete window structure.

Discussion
The Window Manager calls the CalcVis function; your application does not normally need to. CalcVis
calculates the visible region of the specified window by starting with its content region and subtracting the
structure region of each window in front of it.

Special Considerations

In Mac OS X, the visible region of a window is managed by the window server. Applications never need to
call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CalcVisBehind
Calculates the visible regions of a series of windows. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

Deprecated in Mac OS X v10.5 251
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

void CalcVisBehind (
 WindowRef startWindow,
 RgnHandle clobberedRgn
);

Parameters
startWindow

On input, a pointer to a window structure.

clobberedRgn
On input, a handle to the desktop region that has become invalid.

Discussion
The Window Manager calls the CalcVisBehind function; your application does not normally need to.
CalcVisBehind calculates the visible regions of the window specified by the startWindow parameter and
all windows behind startWindow that intersect clobberedRgn. It is called after PaintBehind.

Special Considerations

In Mac OS X, the visible region of a window is managed by the window server. Applications never need to
call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CheckUpdate
Scans the window list for windows that need updating. (Deprecated in Mac OS X v10.5. Use
FindSpecificEventInQueue or AcquireFirstMatchingEventInQueue instead.)

Boolean CheckUpdate (
 EventRecord *theEvent
);

Parameters
theEvent

On input, a pointer to an event structure to be filled in if a window needs updating.

Return Value
A Boolean value. If CheckUpdate finds a window structure whose update region is not empty and whose
window structure does not contain a picture handle, it stores an update event in the event structure referenced
through the parameter theEvent and returns true. If it finds no such window, it returns false.

Discussion
The Event Manager calls theCheckUpdate function; your application does not normally need to.CheckUpdate
scans the window list from front to back, checking for a visible window that needs updating (that is, a visible
window whose update region is not empty). If it finds one whose window structure contains a picture handle,
it redraws the window itself and continues through the list.

252 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Special Considerations

If you are using a compositing window, the Window Manager never generates update events for the window
and you will never find update events in the event queue.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ClipAbove
Determines the clip region of the Window Manager port. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

void ClipAbove (
 WindowRef window
);

Parameters
window

On input, a pointer to the window.

Discussion
The Window Manager calls the ClipAbove function; your application does not normally need to. ClipAbove
sets the clip region of the Window Manager port to be the area of the desktop that intersects the current
clip region, minus the structure regions of all the windows in front of the specified window.

ClipAbove retrieves the desktop region from the global variable GrayRgn.

Special Considerations

Mac OS X applications never need to call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CloneWindow
Increments the number of references to a window. (Deprecated in Mac OS X v10.5. Use CFRetain instead.)

Deprecated in Mac OS X v10.5 253
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

OSStatus CloneWindow (
 WindowRef window
);

Parameters
window

The window whose reference count is to be incremented.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
You should call CloneWindow if you are using a window and want to ensure that it is not disposed while
you are using it. With the Window Manager in Mac OS 8.5 and later, all windows are created with a reference
count (owner count) of one. The function CloneWindow increments the number of references to a window,
and the earlier function DisposeWindow decrements the number of references. When the reference count
reaches zero, DisposeWindow disposes of the window.

In Mac OS X v10.2 and later, you can also call CFRetain to increment the reference count of a window.

Special Considerations

To maintain an accurate reference count, you must follow every call to the CloneWindow function with a
matching call to the DisposeWindow function when your application is ready to release its reference to the
window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateQDContextForCollapsedWindowDockTile
Obtains a CGrafPtr for a collapsed window’s tile in the dock. (Deprecated in Mac OS X v10.5. Use
HIWindowCreateCollapsedDockTileContext (page 93) instead.)

OSStatus CreateQDContextForCollapsedWindowDockTile (
 WindowRef inWindow,
 CGrafPtr *outContext
);

Parameters
inWindow

The window whose CGrafPtr is to be obtained.

outContext
On output, a pointer to the window’s CGrafPtr.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.

254 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

CreateWindowFromCollection
Creates a window from collection data. (Deprecated in Mac OS X v10.5. Use HIArchiveCopyDecodedCFType
to decode a window from an archive instead.)

OSStatus CreateWindowFromCollection (
 Collection collection,
 WindowRef *outWindow
);

Parameters
collection

A reference to the collection to be used in creating the window. You pass a reference to a previously
created collection, such as that returned by the Collection Manager function NewCollection. The
collection used to create the window must contain the required items for a resource of type ‘wind’
or window creation fails.

outWindow
On input, a pointer to a value of type WindowRef. On return, the window pointer points to the newly
created window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function creates a window invisibly and places it at the front of the window’s window group. After calling
CreateWindowFromCollection, you should set any desired associated data—using Window Manager or
Control Manager accessor functions—then call the function TransitionWindow (page 162) or
ShowWindow (page 156) to display the window. The number of references to the collection (that is, its owner
count) is incremented by a minimum of one for the duration of this call.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateWindowFromResource
Creates a window from 'wind' resource data. (Deprecated in Mac OS X v10.5. Use nib files and
CreateWindowFromNib instead.)

Deprecated in Mac OS X v10.5 255
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

OSStatus CreateWindowFromResource (
 SInt16 resID,
 WindowRef *outWindow
);

Parameters
resID

The resource ID of a resource of type ‘wind’. Pass in the ID of the 'wind' resource to be used to
create the window.

outWindow
On input, a pointer to a value of type WindowRef. On return, the window pointer points to the newly
created window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The CreateWindowFromResource function loads a window from a 'wind' resource. The Window Manager
creates the window invisibly and places it at the front of the window’s window group. After calling
CreateWindowFromResource, you should set any desired associated data—using Window Manager or
Control Manager accessor functions—then call the function TransitionWindow (page 162) or
ShowWindow (page 156) to display the window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

DisposeWindowDefUPP
Disposes of the UPP for your window definition. (Deprecated in Mac OS X v10.5. The WDEF interface is
deprecated; use a custom HIView to draw your custom window frame instead.)

void DisposeWindowDefUPP (
 WindowDefUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

256 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

DisposeWindowPaintUPP
Disposes of the UPP to your region painting callback function. (Deprecated in Mac OS X v10.5. The window
content painting interface is deprecated; use a kEventControlDraw Carbon event handler on a compositing
window’s content view instead.)

void DisposeWindowPaintUPP (
 WindowPaintUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
MacWindows.h

DragGrayRgn
Moves a gray outline of a region on the screen, following the movements of the cursor, until the mouse
button is released. (Deprecated in Mac OS X v10.5. Use an overlay window or other custom drawing instead.)

long DragGrayRgn (
 RgnHandle theRgn,
 Point startPt,
 const Rect *limitRect,
 const Rect *slopRect,
 short axis,
 DragGrayRgnUPP actionProc
);

Parameters
theRgn

On input, a handle to the region to be dragged.

startPt
On input, the location, in the local coordinates of the current graphics port, of the cursor when the
mouse button was pressed.

limitRect
On input, a pointer to a rectangle, given in the local coordinates of the current graphics port, that
limits where the region can be dragged. This parameter works with the slopRect parameter.

slopRect
On input, a pointer to a rectangle, given in the local coordinates of the current graphics port, that
gives the user some leeway in moving the mouse without violating the limits of the limitRect
parameter. The slopRect rectangle should be larger than the limitRect rectangle.

Deprecated in Mac OS X v10.5 257
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

axis
On input, a constant that constrains the region’s motion. The axis parameter can have one of three
values: noConstraint (0), hAxisOnly (1), or vAxisOnly (2).

If an axis constraint is in effect, the outline follows the cursor’s movements along only the specified
axis, ignoring motion along the other axis. With or without an axis constraint, the outline appears
only when the mouse is inside the slopRect rectangle.

actionProc
On input, a pointer to a function that defines an action to be performed repeatedly as long as the
user holds down the mouse button. The function can have no parameters. If the value of actionProc
is null, DragGrayRgn simply retains control until the mouse button is released.

Return Value
A long integer that specifies the difference between the point where the mouse button was pressed and the
offset point.

Discussion
The DragGrayRgn function is called by DragWindow to move an outline of a window around the screen as
the user drags a window. It returns the difference between the point where the mouse button was pressed
and the offset point (the point in the region whose horizontal and vertical offsets from the upper-left corner
of the region’s enclosing rectangle are the same as the offsets of the starting point when the user pressed
the mouse button. DragGrayRgn stores the vertical difference between the starting point and the offset
point in the high-order word of the return value and the horizontal difference in the low-order word.

It limits the movement of the region according to constraints set by the limitRect and slopRectparameters:

 ■ As long as the cursor is inside the limitRect rectangle, the region’s outline follows it normally. If the
mouse button is released while the cursor is within this rectangle, the return value reflects the simple
distance that the cursor moved in each dimension.

 ■ When the cursor moves outside the limitRect rectangle, the offset point stops at the edge of the
limitRect rectangle. If the mouse button is released while the cursor is outside the limitRect rectangle
but inside the slopRect rectangle, the return value reflects only the difference between the starting
point and the offset point, regardless of how far outside of the limitRect rectangle the cursor may
have moved. (Note that part of the region can fall outside the limitRect rectangle, but not the offset
point.)

 ■ When the cursor moves outside the slopRect rectangle, the region’s outline disappears from the screen.
The DragGrayRgn function continues to track the cursor, however, and if the cursor moves back into
the slopRect rectangle, the outline reappears. If the mouse button is released while the cursor is outside
the slopRect rectangle, both words of the return value are set to 0x8000. In this case, the Window
Manager does not move the window from its original location.

 ■ To accommodate systems with multiple monitors, QuickDraw recognizes a port rectangle of
screenBits.bounds as a special case and allows drawing on all parts of the desktop.

The region stops moving when the offset point reaches the edge of the limitRect rectangle. The cursor
continues to move, but the region does not.

If the mouse button is released while the cursor is anywhere inside the slopRect rectangle, the Window
Manager redraws the window in its new location, which is calculated from the value returned by DragGrayRgn.

Carbon Porting Notes

Can’t be used for live dragging. If you are implementing your own window dragging, use DragWindow
instead. If you need to override window positioning during a drag, register a Carbon event handler for
kEventWindowBoundsChanging. Okay to use if you’re dragging objects within a window.

258 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

DragTheRgn
Tracks the mouse as the user drags the outline of a region. (Deprecated in Mac OS X v10.5. Use an overlay
window or other custom drawing instead.)

long DragTheRgn (
 RgnHandle theRgn,
 Point startPt,
 const Rect *limitRect,
 const Rect *slopRect,
 short axis,
 DragGrayRgnUPP actionProc
);

Carbon Porting Notes

Can’t be used for live dragging. If you are implementing your own window dragging, use DragWindow
instead. If you need to override window positioning during a drag, register a Carbon event handler for
kEventWindowBoundsChanging. Okay to use if you’re dragging objects within a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

DrawGrowIcon
Draws a grow icon in the window frame. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void DrawGrowIcon (
 WindowRef window
);

Special Considerations

This function is not needed in Mac OS X. Theme-savvy windows include the grow box in the window frame.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 259
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Declared In
MacWindows.h

FrontWindow
Identifies the frontmost visible window. (Deprecated in Mac OS X v10.5. Use
ActiveNonFloatingWindow (page 31), FrontNonFloatingWindow (page 50), or
GetFrontWindowOfClass (page 55) instead.)

WindowRef FrontWindow (
 void
);

Return Value
The first visible window in the window list. If there are no visible windows, FrontWindow returns NULL.

Discussion
Most applications should call ActiveNonFloatingWindow (page 31) or FrontNonFloatingWindow (page
50) instead of FrontWindow because ActiveNonFloatingWindow and FrontNonFloatingWindow return
the active and frontmost document window, respectively, skipping over other types of windows that may
be in front of the active document, such as the menubar window, floating windows, help tags and toolbars.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

GetGrayRgn
Returns a region that covers the desktop area of all active displays. (Deprecated in Mac OS X v10.5. To
determine the area in which a window may be positioned, use
HIWindowGetAvailablePositioningBounds (page 96) or
HIWindowCopyAvailablePositioningShape (page 90).)

RgnHandle GetGrayRgn (
 void
);

Return Value
A handle to the current desktop region from the global variable GrayRgn.

Discussion
When your application calls DragWindow to let the user drag a window, it can use GetGrayRgn to set the
limiting rectangle to the entire desktop area. The desktop region represents all available screen space, that
is, the desktop area displayed by all monitors attached to the computer.

260 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Special Considerations

Your application should not modify the desktop region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

GetNewCWindow
Creates a color window from a window resource. (Deprecated in Mac OS X v10.5. Use nib files and
CreateWindowFromNib instead.)

WindowRef GetNewCWindow (
 short windowID,
 void *wStorage,
 WindowRef behind
);

Parameters
windowID

On input, the resource ID of the 'WIND' resource that defines the properties of the window.

wStorage
On input, a pointer to memory space for the window structure. If you specify a value of null for
wStorage, the GetNewCWindow function allocates the window structure as a nonrelocatable object
in the heap. You can reduce the chances of heap fragmentation by allocating the memory your
application needs for window structures early in your initialization code. Whenever you need to create
a window, you can allocate memory from your own block and pass a pointer to it in the wStorage
parameter.

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)-1L. When you place a window in front of all others, GetNewCWindow removes the
highlighting from the previously active window, highlights the newly created window, and generates
the appropriate activate events. Note that if you create an invisible window in front of all others on
the desktop, the user sees no active window until you make the new window visible (or make another
window active).

To place a new window behind all other windows, specify a value of null.

Return Value
A pointer to the newly created window structure.

Deprecated in Mac OS X v10.5 261
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Discussion
The GetNewCWindow function creates a new color window from the specified window resource and returns
a pointer to the newly created window structure. You can use the returned window pointer to refer to this
window in most Window Manager functions. If GetNewCWindow is unable to read the window or window
definition function from the resource file, it returns null.

The GetNewCWindow function looks for a 'wctb' resource with the same resource ID as that of the ' WIND '
resource. If it finds one, it uses the window color information in the ' wctb ' resource for coloring the window
content area.

If the window’s definition function (specified in the window resource) is not already in memory,
GetNewCWindow reads it into memory and stores a handle to it in the window structure.

To create the window, GetNewCWindow retrieves the window characteristics from the window resource and
then calls the NewCWindow function, passing the characteristics as parameters.

The GetNewCWindow function creates a window in a color graphics port. Your application typically sets up
its own global variables reflecting the system setup during initialization by calling the Gestalt function.

Special Considerations

If you must get your window definition from a resource, use CreateWindowFromResource. Otherwise, use
CreateWindowFromNib or CreateNewWindow.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetNewWindow
Creates a window from a window resource. (Deprecated in Mac OS X v10.5. Use nib files and
CreateWindowFromNib instead.)

WindowRef GetNewWindow (
 short windowID,
 void *wStorage,
 WindowRef behind
);

Parameters
windowID

On input, the resource ID of the 'WIND' resource that defines the properties of the window.

wStorage
On input, a pointer to memory space for the window structure. If you specify a value of null for
wStorage, the GetNewWindow function allocates the window structure as a nonrelocatable object
in the heap. You can reduce the chances of heap fragmentation by allocating the memory your
application needs for window structures early in your initialization code. Whenever you need to create
a window, you can allocate memory from your own block and pass a pointer to it in the wStorage
parameter.

262 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)-1l. When you place a window in front of all others, GetNewWindow removes the
highlighting from the previously active window, highlights the newly created window, and generates
the appropriate activate events. Note that if you create an invisible window in front of all others on
the desktop, the user sees no active window until you make the new window visible (or make another
window active). To place a new window behind all other windows, specify a value of null.

Return Value
A pointer to the newly created color window structure.

Discussion
The GetNewWindow function takes the same parameters as GetNewCWindow (page 261) and returns a value
of type WindowRef. The only difference is that it creates a monochrome graphics port, not a color graphics
port, regardless of the presence of a corresponding ' wctb ' resource (it loads the resource but doesn’t use
it). The window structure and graphics port structure that describe monochrome and color graphics ports
are the same size and can be used interchangeably in most Window Manager functions.

The GetNewWindow function creates a new window from the specified window resource and returns a pointer
to the newly created window structure. You can use the returned window pointer to refer to this window in
most Window Manager functions. If GetNewWindow is unable to read the window or window definition
function from the resource file, it returns null.

If the window’s definition function (specified in the window resource) is not already in memory, GetNewWindow
reads it into memory and stores a handle to it in the window structure. It allocates space in the application
heap for the structure and content regions of the window.

To create the window, GetNewWindow retrieves the window characteristics from the window resource and
then calls the function NewWindow, passing the characteristics as parameters.

Special Considerations

If you must get your window definition from a resource, use CreateWindowFromResource. Otherwise, use
CreateWindowFromNib or CreateNewWindow.

Version Notes
The GetNewWindow function was originally implemented prior to Color QuickDraw. In Mac OS 8, you should
call the Color QuickDraw function GetNewCWindow instead of GetNewWindow to programmatically create
a window, because Color QuickDraw is always available in Mac OS 8. Use of this function is not recommended
with Mac OS 8 and later. GetNewWindow is described here only for completeness.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowOwnerCount
Obtains the number of existing references to a window. (Deprecated in Mac OS X v10.5. Use
CFGetRetainCount instead.)

Deprecated in Mac OS X v10.5 263
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

OSStatus GetWindowOwnerCount (
 WindowRef window,
 ItemCount *outCount
);

Parameters
window

The window whose reference (owner) count is to be determined.

outCount
A pointer to a value that, on return, contains the current number of references to the window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
All windows are created with a reference count (owner count) of one. The function CloneWindow (page 253)
increments the number of references to a window, and the earlier function DisposeWindow decrements
the number of references. When the reference count reaches zero, DisposeWindow disposes of the window.

In Mac OS X v10.2 and later, you can also call CFGetRetainCount to get the number of existing references
to a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowPic
Returns a handle to a window’s picture. (Deprecated in Mac OS X v10.5. Use an HIImageView object to draw
a window's content and ask the view for its image instead.)

PicHandle GetWindowPic (
 WindowRef window
);

Parameters
window

The window whose picture handle is to be returned.

Return Value
A handle to the picture to be drawn in a specified window’s content region. The handle must have been
stored previously with the function SetWindowPic (page 281).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

264 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

GetWindowProxyFSSpec
Obtains a file system specification structure for the file that is associated with a window. (Deprecated in Mac
OS X v10.5. Use HIWindowGetProxyFSRef (page 100) instead.)

OSStatus GetWindowProxyFSSpec (
 WindowRef window,
 FSSpec *outFile
);

Parameters
window

A pointer to the window for which you wish to determine the associated file.

outFile
On input, a pointer to an FSSpec structure. On return, this structure contains a copy of the file system
specification data for the file associated with the specified window.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
You can use the GetWindowProxyFSSpec function to obtain identifying information about a proxy file: its
volume reference number, directory ID, and file name.

See also the function SetWindowProxyFSSpec.

Special Considerations

The use of file specification structures is no longer recommended.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

GetWindowRegion
Obtains a handle to a specific window region. (Deprecated in Mac OS X v10.5.)

OSStatus GetWindowRegion (
 WindowRef window,
 WindowRegionCode inRegionCode,
 RgnHandle ioWinRgn
);

Parameters
window

The window for which a window region handle is to be obtained.

Deprecated in Mac OS X v10.5 265
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

inRegionCode
A constant representing the window region whose handle you want to obtain; see “Window Region
Constants” (page 217) for a list of possible values.

ioWinRgn
On input, a handle to a region created by your application. On return, the handle is set to the specified
window region.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The GetWindowRegion function produces a handle to a window definition function’s window region in
response to a kWindowMsgGetRegion message. The visibility of the window is unimportant for
GetWindowRegion to work correctly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

See Also
HIWindowCopyShape (page 91)

Declared In
MacWindows.h

GetWindowRetainCount
Returns the retain count of a window. (Deprecated in Mac OS X v10.5. Use CFGetRetainCount instead.)

ItemCount GetWindowRetainCount (
 WindowRef inWindow
);

Parameters
inWindow

The window whose retain count to retrieve.

Discussion
This API is equivalent to GetWindowOwnerCount (page 263). For consistency with Core Foundation and
Carbon Events, it is preferred over GetWindowOwnerCount. Both APIs will continue to be supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

266 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

GetWTitle
Retrieves the title of a window as a Pascal string. (Deprecated in Mac OS X v10.5. Use
CopyWindowTitleAsCFString (page 39) instead.)

void GetWTitle (
 WindowRef window,
 Str255 title
);

Parameters
window

On input, a pointer to the window structure.

title
A Pascal string. On output, the string contains the window title.

Discussion
The GetWTitle function returns the title of the window in the title parameter.

When you need to retrieve a window’s title, you should always use GetWTitle instead of reading the title
from a window structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWVariant
Returns a window’s variation code. (Deprecated in Mac OS X v10.5. Use GetWindowAttributes (page 59)
to determine aspects of a window's appearance or behavior.)

short GetWVariant (
 WindowRef window
);

Parameters
window

On input, a pointer to the window structure.

Return Value
A short integer that specifies the variation code of the specified window. Depending on the window definition
function, the result of GetWVariant can represent one of the standard variation codes or a variation code
defined by your own window definition function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

Deprecated in Mac OS X v10.5 267
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

GrowWindow
Allows the user to change the size of a window. (Deprecated in Mac OS X v10.5. Use ResizeWindow (page
125) instead.)

long GrowWindow (
 WindowRef window,
 Point startPt,
 const Rect *bBox
);

Parameters
window

On input, a pointer to the window structure of the window to drag.

startPt
On input, the location of the cursor at the time the mouse button was first pressed, in global
coordinates. Your application retrieves this point from the where field of the event structure.

bBox
On input, a pointer to a rectangle structure that specifies the limits on the vertical and horizontal
measurements of the port rectangle, in pixels.

Although the bBox parameter gives the address of a structure which is in the form of the Rect data
type, the four numbers in the structure represent lengths, not screen coordinates. The top, left,
bottom, and right fields of the bBox parameter specify the minimum vertical measurement (top),
the minimum horizontal measurement (left), the maximum vertical measurement (bottom), and
the maximum horizontal measurement (right).

The minimum measurements must be large enough to allow a manageable rectangle 64 pixels on a
side is typical. Because the user cannot ordinarily move the cursor off the screen, you can safely set
the upper bounds to the largest possible length (65,535 pixels) when you’re using GrowWindow to
follow cursor movements.

Return Value
A long integer that specifies the new dimensions, in pixels, of the resulting window: the height in the
high-order word of the returned long-integer value and the width in the low-order word. A return value of
0 means that the new size is the same as the size of the current port rectangle.

Discussion
The GrowWindow function displays an outline (grow image) of the window as the user moves the cursor to
make the window larger or smaller; it handles all user interaction until the user releases the mouse button.
After calling GrowWindow, you call the function SizeWindow to change the size of the window.

The GrowWindow function moves a dotted-line image of the window’s right and lower edges around the
screen, following the movements of the cursor until the mouse button is released. You can use the functions
HiWord and LoWord, described in the Mathematical and Logical Utilities Reference , to retrieve only the
high-order and low-order words, respectively.

Special Considerations

In non-Carbon implementations of GrowWindow on Mac OS 8 and 9, the maximum size that the specified
window is allowed to grow to is actually one less than the values specified in the bBox parameter. For example,
if you pass the values 500 in the bBox.bottom field and 600 in the bBox.right field, the maximum height
and width of the window would actually be 499 and 599, respectively.

However, in Carbon, the maximum height and width allowed for the specified window is equal to the values
passed in the bBox.bottom and bBox.right fields, respectively.

268 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

InstallWindowContentPaintProc
Installs a window content painting callback. (Deprecated in Mac OS X v10.5. Use a kEventControlDraw
Carbon event handler on a window's content view instead.)

OSStatus InstallWindowContentPaintProc (
 WindowRef window,
 WindowPaintUPP paintProc,
 WindowPaintProcOptions options,
 void *refCon
);

Parameters
window

The window whose default content painting function you want to override.

paintProc
A UPP to your window painting callback function. See WindowPaintProcPtr (page 174) for more
information about the format of this function.

options
The options that are to be set. See “Window Paint Callback Options” (page 239) for a list of possible
values.

refCon
Application-defined data. This data is passed to your callback when it is called.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
To remove a previously-installed paint proc (returning to the standard window manager erase-to-white
content painting), pass NULL in the paintProc and refCon parameters.

Special Considerations

Instead of using this function, you should install a Carbon event handler for the kEventControlDraw event
on a window's content view.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

Deprecated in Mac OS X v10.5 269
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

InvokeWindowDefUPP
Invokes the UPP for a window definition. (Deprecated in Mac OS X v10.5. The WDEF interface is deprecated;
use a custom HIView to draw your custom window frame instead.)

long InvokeWindowDefUPP (
 short varCode,
 WindowRef window,
 short message,
 long param,
 WindowDefUPP userUPP
);

Parameters
varCode

The window’s variation code.

window
The window whose UPP is to be invoked.

message
The message.

param
The parameter.

userUPP
The UPP to invoke.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

InvokeWindowPaintUPP
Invokes the UPP for the specified painting region. (Deprecated in Mac OS X v10.5. The window content
painting interface is deprecated; use a kEventControlDrawCarbon event handler on a compositing window’s
content view instead.)

OSStatus InvokeWindowPaintUPP (
 GDHandle device,
 GrafPtr qdContext,
 WindowRef window,
 RgnHandle inClientPaintRgn,
 RgnHandle outSystemPaintRgn,
 void *refCon,
 WindowPaintUPP userUPP
);

Parameters
device

The graphics device on which the window background should be painted.

270 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

qdContext
The QuickDraw port in which the window background should be painted.

window
The window whose UPP is to be invoked.

inClientPaintRgn
The region of the window background that needs to be painted, in local coordinates.

outSystemPaintRgn
On return, the region of the window background that the paint proc requests the Window Manager
to paint.

refCon
Application-defined data.

userUPP
The UPP to invoke. For more information on this data type, see WindowPaintUPP (page 183).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
MacWindows.h

IsWindowPathSelectClick
Reports whether a mouse click should activate the window path pop-up menu. (Deprecated in Mac OS X
v10.5. Use IsWindowPathSelectEvent (page 117) instead.)

Boolean IsWindowPathSelectClick (
 WindowRef window,
 const EventRecord *event
);

Parameters
window

The window in which the mouse-down event occurred.

event
A pointer to the EventRecord structure containing the mouse-down event that
IsWindowPathSelectClick is to examine.

Return Value
A Boolean whose value is true f the mouse click should activate the window path pop-up menu; otherwise
false.

Discussion
The Window Manager provides system support for your application to display window path pop-up menus,
such as those used in Finder windows. When the user presses the Command key and clicks on the window’s
title, the window displays a pop-up menu containing a standard file system path, informing the user of the
location of the document displayed in the window and allowing the user to open windows for folders along
the path.

Deprecated in Mac OS X v10.5 271
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Because the window title includes both the proxy icon region and part of the drag region of the window,
your application must be prepared to respond to a click in either region by displaying a window path pop-up
menu. Therefore, when the FindWindow (page 48) function returns either the inDrag or the inProxyIcon
result code—you should pass the event to the IsWindowPathSelectClick function to determine whether
the mouse-down event should activate the window path pop-up menu. If IsWindowPathSelectClick
returns a value of true, your application should then call the function WindowPathSelect (page 166) to
display the menu.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

NewCWindow
Creates a window with a specified list of characteristics. (Deprecated in Mac OS X v10.5. Use
CreateNewWindow (page 41) instead.)

WindowRef NewCWindow (
 void *wStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 short procID,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon
);

Parameters
wStorage

On input, a pointer to the window structure. If you specify null as the value of wStorage, NewCWindow
allocates the window structure as a nonrelocatable object in the application heap. You can reduce
the chances of heap fragmentation by allocating memory from a block of memory reserved for this
purpose by your application and passing a pointer to it in the wStorage parameter.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that specifies the window’s initial size
and location. This rectangle becomes the port rectangle of the window’s graphics port. For the standard
window types, the boundsRect field defines the content region of the window. The NewCWindow
function places the origin of the local coordinate system at the upper-left corner of the port rectangle.
NewCWindow calls the QuickDraw function OpenCPort to create the graphics port. The bitmap, pen
pattern, and other characteristics of the window’s graphics port are the same as the default values
set by OpenCPort, except for the character font, which is set to the application font instead of the
system font.

title
On input, a pascal string that specifies the window’s title. If the title is too long to fit in the title bar,
the title is truncated. To suppress the title in a window with a title bar, pass an empty string, not null,
in the title parameter. null is an invalid value and may cause runtime errors.

272 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

visible
On input, a Boolean value indicating visibility status: true means that the Window Manager displays
the window; false means it does not. If the value of the visible parameter is true, the Window
Manager draws a new window as soon as the window exists. The Window Manager first calls the
window definition function to draw the window frame. If the value of the goAwayFlag parameter is
also true and the window is frontmost (that is, if the value of the behind parameter is
(WindowRef)–1L), the Window Manager instructs the window definition function to draw a close box
in the window frame. After drawing the frame, the Window Manager generates an update event to
trigger your application’s drawing of the content region.

When you create a window, you typically specify false as the value of the visible parameter. When
you’re ready to display the window, call ShowWindow.

procID
On input, the window’s definition ID, a value that specifies both the window definition function and
the variation code within that definition function. For a list of possible values, see “Pre-Appearance
Window Definition IDs” (page 244).

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)–1L. When you place a new window in front of all others, NewCWindow removes
highlighting from the previously active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows. Note that if you create an
invisible window in front of all others on the desktop, the user sees no active window until you make
the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of null.

goAwayFlag
On input, a Boolean value that determines whether the window has a close box. If the value of
goAwayFlag is true and the window type supports a close box, the Window Manager draws a close
box in the title bar and recognizes mouse clicks in the close region; if the value of goAwayFlag is
false or the window type does not support a close box, it does not.

refCon
On input, a window’s reference constant, set and used only by your application.

Return Value
A pointer to the newly created window structure.

Discussion
The NewCWindow function creates a window as specified by its parameters, adds it to the window list, and
returns a pointer to the newly created window structure. You can use the returned window pointer to refer
to this window in most Window Manager functions. If NewCWindow is unable to read the window definition
function from the resource file, it returns null.

The NewCWindow function looks for a ' wctb ' resource with the same resource ID as the ' WIND ' resource.
If it finds one, it uses the window color information in the ' wctb ' resource for coloring the window content
region.

If the window’s definition function is not already in memory, NewCWindow reads it into memory and stores
a handle to it in the window structure. It allocates space for the structure and content regions of the window.

Storing the characteristics of your windows as resources, especially window titles and window items, makes
your application easier to localize.

Deprecated in Mac OS X v10.5 273
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

The NewCWindow function creates a window in a color graphics port. Creating color windows whenever
possible ensures that your windows appear on color monitors with whatever color options the user has
selected. Your application typically sets up its own set of global variables reflecting the system setup during
initialization by calling the Gestalt function.

Special Considerations

If you let the Window Manager create the window structure in your application’s heap, call DisposeWindow
to close the window and dispose of its window structure. If you allocated the memory for the window structure
yourself and passed a pointer to NewCWindow, use the function CloseWindow to close the window and the
appropriate disposal function (determined by how you have allocated memory) to dispose of the window
structure.

Carbon Porting Notes

In Carbon, you cannot pass your own storage in to the wStorage parameter.

Carbon does not support custom window definitions stored in 'WDEF' resources. If you want to specify a
custom window definition for NewCWindow, you must compile your definition function directly in your
application and then register the function by calling RegisterWindowDefinition. When NewCWindow
gets a procID value that doesn't recognize, it checks a special mapping table to find the pointer that's
registered for the resource ID embedded in the procID parameter. It then calls that function to implement
your window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

NewWindow
Creates a window from a parameter list. (Deprecated in Mac OS X v10.5. Use CreateNewWindow (page 41)
instead.)

WindowRef NewWindow (
 void *wStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 short theProc,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon
);

Parameters
wStorage

On input, a pointer to the window structure. If you specify null as the value of wStorage, NewWindow
allocates the window structure as a nonrelocatable object in the heap. You can reduce the chances
of heap fragmentation by allocating the storage from a block of memory reserved for this purpose
by your application and passing a pointer to it in the wStorage parameter.

274 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

boundsRect
On input, a pointer to a rectangle, given in global coordinates, which specifies the window’s initial
size and location. This rectangle becomes the port rectangle of the window’s graphics port. For the
standard window types, boundsRect defines the content region of the window. The NewWindow
function places the origin of the local coordinate system at the upper-left corner of the port rectangle.
NewWindow calls the QuickDraw function OpenPort to create the graphics port. The bitmap, pen
pattern, and other characteristics of the window’s graphics port are the same as the default values
set by OpenPort, except for the character font, which is set to the application font instead of the
system font. The coordinates of the graphics port’s port boundaries and visible region are changed
along with its port rectangle.

title
On input, a pascal string that specifies the window’s title. If the title is too long to fit in the title bar,
the title is truncated. To suppress the title in a window with a title bar, pass an empty string, not null.
null is an invalid value and may cause runtime errors.

visible
On input, a Boolean value indicating visibility status: true means that the Window Manager displays
the window; false means it does not.

If the value of the visible parameter is true, the Window Manager draws a new window as soon
as the window exists. The Window Manager first calls the window definition function to draw the
window frame. If the value of the goAwayFlag parameter (described below) is also true and the
window is frontmost (that is, if the value of the behind parameter is (WindowRef(–1L), the Window
Manager instructs the window definition function to draw a close box in the window frame. After
drawing the frame, the Window Manager generates an update event to trigger your application’s
drawing of the content region.

When you create a window, you typically specify false as the value of the visible parameter. When
you’re ready to display the window, you call the function ShowWindow.

theProc
On input, the window’s definition ID, which specifies both the window definition function and the
variation code for that definition function. For a list of possible values, see “Pre-Appearance Window
Definition IDs” (page 244).

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)–1L. When you place a new window in front of all others, NewWindow removes
highlighting from the previously active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows. Note that if you create an
invisible window in front of all others on the desktop, the user sees no active window until you make
the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of null.

goAwayFlag
On input, a Boolean value that determines whether or not the window has a close box. If the value
of goAwayFlag is true and the window type supports a close box, the Window Manager draws a
close box in the title bar and recognizes mouse clicks in the close region; if the value of goAwayFlag
is false or the window type does not support a close box, it does not. The goAwayFlag parameter
is ignored for movable modal or modal dialog boxes which do not support a close box.

refCon
On input, the window’s reference constant, set and used only by your application.

Deprecated in Mac OS X v10.5 275
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Discussion
The NewWindow function takes the same parameters as NewCWindow and returns a WindowRef as its function
result. The only difference is that NewWindow creates a window in a monochrome graphics port, not a color
graphics port. The window structure and graphics port structure that describe monochrome and color graphics
ports are the same size and can be used interchangeably in most Window Manager functions.

The NewWindow function creates a window as specified by its parameters, adds it to the window list, and
returns a pointer to the newly created window structure. You can use the returned window pointer to refer
to this window in most Window Manager functions. If NewWindow is unable to read the window definition
function from the resource file, it returns null.

If the window’s definition function is not already in memory, NewWindow reads it into memory and stores a
handle to it in the window structure. It allocates space for the structure and content regions of the window.

Storing the characteristics of your windows as resources, especially window titles and window items, makes
your application easier to localize.

Special Considerations

If you let the Window Manager create the window structure in your application’s heap, call DisposeWindow
to close the window and dispose of its window structure. If you allocated the memory for the window structure
yourself and passed a pointer to NewWindow, use the function CloseWindow to close the window and the
appropriate disposal function (determined by how you have allocated memory) to dispose of the window
structure.

Version Notes
The NewWindow function was originally implemented prior to Color QuickDraw. In Mac OS 8, you should call
the Color QuickDraw function NewCWindow instead of NewWindow to programmatically create a window,
because Color QuickDraw is always available in Mac OS 8. Use of this function is not recommended with Mac
OS 8 and later. NewWindow is described here only for completeness.

Carbon Porting Notes

In Carbon, you cannot pass your own storage in to the wStorage parameter.

In Carbon, NewWindow is functionally equivalent to the NewCWindow, in that NewWindow returns a color
window instead of a monochrome window.

Carbon does not support custom window definitions stored in 'WDEF' resources. If you want to specify a
custom window definition for NewWindow, you must compile your definition function directly in your
application and then register the function by calling RegisterWindowDefinition. When NewWindow gets
a procID value that doesn't recognize, it checks a special mapping table to find the pointer that's registered
for the resource ID embedded in the procID parameter. It then calls that function to implement your window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

276 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

NewWindowDefUPP
Creates a new UPP for a window definition. (Deprecated in Mac OS X v10.5. The WDEF interface is deprecated;
use a custom HIView to draw your custom window frame instead.)

WindowDefUPP NewWindowDefUPP (
 WindowDefProcPtr userRoutine
);

Parameters
userRoutine

For information, see WindowDefProcPtr (page 169).

Return Value
For a description of the WindowDefUPP data type, see WindowDefUPP (page 182).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

NewWindowPaintUPP
Creates a new UPP for a painting region. (Deprecated in Mac OS X v10.5. The window content painting
interface is deprecated; use a kEventControlDraw Carbon event handler on a compositing window’s
content view instead.)

WindowPaintUPP NewWindowPaintUPP (
 WindowPaintProcPtr userRoutine
);

Parameters
userRoutine

For information, see WindowPaintProcPtr (page 174).

Return Value
A UPP to the window paint function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
MacWindows.h

PaintBehind
Redraws a series of windows in the window list. (Deprecated in Mac OS X v10.5. Use InvalWindowRect (page
109), InvalWindowRgn (page 110), or HIViewSetNeedsDisplay to invalidate a portion of a window.)

Deprecated in Mac OS X v10.5 277
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

void PaintBehind (
 WindowRef startWindow,
 RgnHandle clobberedRgn
);

Parameters
startWindow

On input, a pointer to the window’s complete window structure.

clobberedRgn
On input, a handle to the region that has become invalid.

Discussion
The Window Manager calls the PaintBehind function; your application does not normally need to.
PaintBehind calls PaintOne for startWindow and all the windows behind startWindow, clipped to
clobberedRgn.

Special Considerations

Mac OS X applications never need to call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

PaintOne
Redraws the invalid, exposed portions of one window on the desktop. (Deprecated in Mac OS X v10.5. Use
InvalWindowRect (page 109), InvalWindowRgn (page 110), or HIViewSetNeedsDisplay to invalidate a
portion of a window.)

void PaintOne (
 WindowRef window,
 RgnHandle clobberedRgn
);

Parameters
window

On input, a pointer to the window structure.

clobberedRgn
On input, a handle to the region that has become invalid.

Discussion
The Window Manager calls the PaintOne function; your application does not normally need to. PaintOne
“paints” the invalid portion of the specified window and all windows above it. PaintOne draws as much of
the window frame as is in clobberedRgn and, if some content region is exposed, erases the exposed area
(paints it with the content pattern rather than the background pattern using SetWinColor or
SetThemeWindowBackground) and adds it to the window’s update region.

If the value of the window parameter is null, the window is the desktop, and PaintOne paints it with the
desktop pattern.

278 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Special Considerations

Mac OS X applications never need to call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ReleaseQDContextForCollapsedWindowDockTile
Releases a port and other state created by CreateQDContextForCollapsedWindowDockTile. (Deprecated
in Mac OS X v10.5. Use HIWindowReleaseCollapsedDockTileContext (page 104) instead.)

OSStatus ReleaseQDContextForCollapsedWindowDockTile (
 WindowRef inWindow,
 CGrafPtr inContext
);

Parameters
inWindow

The window whose port is to be released.

inContext
The port that is to be released.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
You must call this function instead of calling DisposePort directly, or you may leak system resources.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

ReleaseWindow
Decrements the retain count of a window, and destroys the window if the retain count falls to zero. (Deprecated
in Mac OS X v10.5. Use CFRelease instead.)

Deprecated in Mac OS X v10.5 279
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

OSStatus ReleaseWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window whose retain count is to be decremented.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This API is equivalent to DisposeWindow (page 45). For consistency with Core Foundation and Carbon
Events, it is preferred over DisposeWindow. Both APIs will continue to be supported.

In Mac OS X v10.2 and later, you can also call CFRelease to decrement the retain count of a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

RetainWindow
Increments the retain count of a window. (Deprecated in Mac OS X v10.5. Use CFRetain instead.)

OSStatus RetainWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window whose retain count is to be incremented.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This API is equivalent to CloneWindow (page 253). For consistency with Core Foundation and Carbon Events,
it is preferred over CloneWindow. Both APIs will continue to be supported.

In Mac OS X v10.2 and later, you can also call CFRetain to increment the retain count of a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

280 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

SetWindowClass
Sets the class of a window. (Deprecated in Mac OS X v10.5. Use HIWindowChangeClass (page 87),
SetWindowGroup (page 140), or HIWindowChangeAttributes (page 86) instead.)

OSStatus SetWindowClass (
 WindowRef inWindow,
 WindowClass inWindowClass
);

Parameters
window

The window whose class you want to set.

inClass
The class that is to be set. See “Window Class Constants” (page 184) for a list of possible window
classes.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
This function changes the class of a window. It also changes the window's z-order so that it is grouped with
other windows of the same class. It does not change the visual appearance of the window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowPic
Sets a picture for the Window Manager to draw in a window’s content region. (Deprecated in Mac OS X v10.5.
Use an HIImageView object to draw a window's content instead.)

void SetWindowPic (
 WindowRef window,
 PicHandle pic
);

Parameters
window

The window whose picture is to be set.

pic
On input, a handle to the picture to be drawn in the window.

Discussion
The SetWindowPic function stores in a window structure a handle to a picture to be drawn in the window.
When the window’s content region must be updated, the Window Manager then draws the picture or part
of the picture, as necessary, instead of generating an update event.

Deprecated in Mac OS X v10.5 281
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

The DisposeWindow (page 45) function assumes that any picture pointed to by the window structure field
windowPic is stored as data, not as a resource. If your application uses a picture stored as a resource, you
must release the memory it occupies by calling the Resource Manager’s ReleaseResource function and
set the WindowPic field to NULL before you close the window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowProxyFSSpec
Associates a file with a window. (Deprecated in Mac OS X v10.5. Use HIWindowSetProxyFSRef (page 106)
instead.)

OSStatus SetWindowProxyFSSpec (
 WindowRef window,
 const FSSpec *inFile
);

Parameters
window

A pointer to the window with which the specified file is to be associated.

inFile
Set the file system specification structure to contain the data for the file to associate with the specified
window. You can obtain an FSSpec structure by calling the function GetWindowProxyFSSpec (page
265).

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
Your application should call the SetWindowProxyFSSpec function to establish a proxy icon for a given
window. The creator code and file type of the file associated with a window determine the proxy icon that
is displayed for the window.

Because the SetWindowProxyFSSpec function won’t work without a saved file, you must establish the initial
proxy icon for a new, untitled window with the function SetWindowProxyCreatorAndType , which requires
that you know the file type and creator code for the file, but does not require that the file have been saved.

You must save and restore the current graphics port—by calling the QuickDraw functions GetPort and
SetPort—around each call to the SetWindowProxyFSSpec function.

See also the function SetWindowProxyAlias.

Special Considerations

The use of file specifications is no longer recommended.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

282 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

SetWTitle
Specifies a window’s title. (Deprecated in Mac OS X v10.5. Use SetWindowTitleWithCFString (page 151)
instead.)

void SetWTitle (
 WindowRef window,
 ConstStr255Param title
);

Parameters
window

On input, a pointer to the window structure.

title
On input, a Pascal string containing the window title. To suppress the title in a window with a title
bar, pass an empty string, not null.

Discussion
The SetWTitle function changes a window’s title to the specified string, both in the window structure and
on the screen, and redraws the window’s frame as necessary. Always use SetWTitle instead of changing
the title in a window structure.

When the user opens a previously saved document, you typically create a new (invisible) window with the
title “untitled” and then call SetWTitle to give the window the document’s name before displaying it. You
also call SetWTitle when the user saves a document under a new name.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

StoreWindowIntoCollection
Stores data describing a window into a collection. (Deprecated in Mac OS X v10.5. Use
HIArchiveEncodeCFType to encode a window to an archive instead.)

Deprecated in Mac OS X v10.5 283
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

OSStatus StoreWindowIntoCollection (
 WindowRef window,
 Collection collection
);

Parameters
window

The window to be stored.

collection
A reference to the collection into which the window is to be stored. You pass a reference to a previously
created collection, such as that returned by the Collection Manager function NewCollection.

Return Value
A result code. See “Window Manager Result Codes” (page 247).

Discussion
The StoreWindowIntoCollection function stores any window—including those not created by the
Window Manager calls—into the specified collection. The Window Manager does not empty the collection
beforehand, so any existing items in the collection remain.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

284 Deprecated in Mac OS X v10.5
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Window Manager Functions

This table describes the changes to Window Manager Reference.

NotesDate

Made minor technical corrections.2007-10-31

Updated for Mac OS X v10.5.2006-12-06

Added information about new and deprecated functions. Added new “Window
Attribute Identifiers” (page 188). Retired the Window Manager Legacy Reference
and moved supported legacy API back into this document.

Revised for Mac OS X v10.4.2005-09-08

Added “Window Group Attributes” (page 227), and deprecated the previously
listed group attributes (now under “Obsolete Window Group Attributes” (page
228).

2003-03-01

Updated formatting and linking.2003-02-01

Added abstracts and availability info for new Jaguar APIs.

Folded in API information from Carbon Window Manager API Preliminary
Documentation for CarbonLib 1.0

285
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

286
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

ActivateWindow function 30
ActiveNonFloatingWindow function 31
altDBoxProc constant 245
Appearance-Compliant Window Definition ID Constants

200
Appearance-Compliant Window Resource IDs 199
AreFloatingWindowsVisible function 31

B

Basic Window Description State Constant 206
Basic Window Description Version Constants 219
BasicWindowDescription structure 175
BeginUpdate function 31
BeginWindowProxyDrag function 32
BringToFront function 33

C

CalcVis function (Deprecated in Mac OS X v10.5) 251
CalcVisBehind function (Deprecated in Mac OS X v10.5)

251
ChangeWindowAttributes function 34
ChangeWindowGroupAttributes function 35
ChangeWindowPropertyAttributes function 35
CheckUpdate function (Deprecated in Mac OS X v10.5)

252
ClipAbove function (Deprecated in Mac OS X v10.5) 253
CloneWindow function (Deprecated in Mac OS X v10.5)

253
CloseDrawer function 36
CollapseAllWindows function 37
CollapseWindow function 37
ConstrainWindowToScreen function 38
CopyWindowAlternateTitle function 38
CopyWindowGroupName function 39

CopyWindowTitleAsCFString function 39
CountWindowGroupContents function 40
CreateCustomWindow function 40
CreateNewWindow function 41
CreateQDContextForCollapsedWindowDockTile

function (Deprecated in Mac OS X v10.5) 254
CreateStandardWindowMenu function 42
CreateWindowFromCollection function (Deprecated

in Mac OS X v10.5) 255
CreateWindowFromResource function (Deprecated in

Mac OS X v10.5) 255
CreateWindowGroup function 43

D

dBoxProc constant 245
DebugPrintAllWindowGroups function 43
DebugPrintWindowGroup function 44
Desk Pattern Resource ID 240
deskPatID constant 240
DetachSheetWindow function 44
dialogKind constant 226
DisableScreenUpdates function 45
DisposeWindow function 45
DisposeWindowDefUPP function (Deprecated in Mac OS

X v10.5) 256
DisposeWindowPaintUPP function (Deprecated in Mac

OS X v10.5) 257
documentProc constant 245
DragGrayRgn function (Deprecated in Mac OS X v10.5)

257
DragTheRgn function (Deprecated in Mac OS X v10.5)

259
DragWindow function 46
Drawer State Constants 236
DrawGrowIcon function (Deprecated in Mac OS X v10.5)

259

287
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

Index

E

EnableScreenUpdates function 46
EndUpdate function 47
EndWindowProxyDrag function 47
errCorruptWindowDescription constant 248
errFloatingWindowsNotInitialized constant 248
errInvalidWindowProperty constant 247
errInvalidWindowRef constant 247
errUnrecognizedWindowClass constant 248
errUnsupportedWindowAttributesForClass

constant 247
errUserWantsToDragWindow constant 248
errWindowDoesNotFitOnscreen constant 248
errWindowDoesNotHaveProxy constant 247
errWindowDoesntSupportFocus constant 249
errWindowNotFound constant 248
errWindowPropertyNotFound constant 248
errWindowRegionCodeInvalid constant 249
errWindowsAlreadyInitialized constant 248

F

FindWindow function 48
FindWindowOfClass function 49
floatGrowProc constant 246
floatProc constant 246
floatSideGrowProc constant 246
floatSideProc constant 246
floatSideZoomGrowProc constant 247
floatSideZoomProc constant 247
floatZoomGrowProc constant 246
floatZoomProc constant 246
FrontNonFloatingWindow function 50
FrontWindow function (Deprecated in Mac OS X v10.5)

260

G

GetAvailableWindowAttributes function 51
GetAvailableWindowPositioningBounds function

51
GetAvailableWindowPositioningRegion function

52
GetDrawerCurrentEdge function 53
GetDrawerOffsets function 53
GetDrawerParent function 54
GetDrawerPreferredEdge function 54
GetDrawerState function 55
GetFrontWindowOfClass function 55

GetGrayRgn function (Deprecated in Mac OS X v10.5)
260

GetGrowImageRegionRec structure 177
GetIndexedWindow function 56
GetNewCWindow function (Deprecated in Mac OS X v10.5)

261
GetNewWindow function (Deprecated in Mac OS X v10.5)

262
GetNextWindow function 56
GetNextWindowOfClass function 57
GetPreviousWindow function 57
GetSheetWindowParent function 58
GetUserFocusWindow function 58
GetWindowActivationScope function 59
GetWindowAlpha function 59
GetWindowAttributes function 59
GetWindowBounds function 60
GetWindowCancelButton function 61
GetWindowClass function 61
GetWindowContentColor function 62
GetWindowContentPattern function 63
GetWindowDefaultButton function 63
GetWindowDockTileMenu function 64
GetWindowFeatures function 64
GetWindowFromPort function 65
GetWindowGreatestAreaDevice function 65
GetWindowGroup function 66
GetWindowGroupAttributes function 66
GetWindowGroupContents function 67
GetWindowGroupLevel function 68
GetWindowGroupLevelOfType function 68
GetWindowGroupOfClass function 69
GetWindowGroupOwner function 70
GetWindowGroupParent function 70
GetWindowGroupRetainCount function 70
GetWindowGroupSibling function 71
GetWindowIdealUserState function 71
GetWindowIndex function 72
GetWindowKind function 73
GetWindowList function 73
GetWindowModality function 74
GetWindowOwnerCount function (Deprecated in Mac OS

X v10.5) 263
GetWindowPic function (Deprecated in Mac OS X v10.5)

264
GetWindowPort function 74
GetWindowPortBounds function 75
GetWindowProperty function 75
GetWindowPropertyAttributes function 76
GetWindowPropertySize function 77
GetWindowProxyAlias function 78
GetWindowProxyFSSpec function (Deprecated in Mac

OS X v10.5) 265

288
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

GetWindowProxyIcon function 78
GetWindowRegion function (Deprecated in Mac OS X

v10.5) 265
GetWindowRegionRec structure 177
GetWindowResizeLimits function 79
GetWindowRetainCount function (Deprecated in Mac

OS X v10.5) 266
GetWindowStandardState function 79
GetWindowStructurePort function 80
GetWindowStructureWidths function 80
GetWindowToolbar function 81
GetWindowUserState function 81
GetWindowWidgetHilite function 82
GetWRefCon function 82
GetWTitle function (Deprecated in Mac OS X v10.5) 267
GetWVariant function (Deprecated in Mac OS X v10.5)

267
GrowWindow function (Deprecated in Mac OS X v10.5)

268

H

HideFloatingWindows function 83
HideSheetWindow function 84
HideWindow function 84
HiliteWindow function 84
HiliteWindowFrameForDrag function 85
HIWindowChangeAttributes function 86
HIWindowChangeAvailability function 87
HIWindowChangeClass function 87
HIWindowChangeFeatures function 88
HIWindowConstrain function 89
HIWindowCopyAvailablePositioningShape function

90
HIWindowCopyDrawers function 91
HIWindowCopyShape function 91
HIWindowCreate function 92
HIWindowCreateCollapsedDockTileContext function

93
HIWindowFindAtLocation function 94
HIWindowFlush function 95
HIWindowFromCGWindowID function 95
HIWindowGetAvailability function 96
HIWindowGetAvailablePositioningBounds function

96
HIWindowGetBounds function 97
HIWindowGetCGWindowID function 98
HIWindowGetGreatestAreaDisplay function 98
HIWindowGetIdealUserState function 99
HIWindowGetProxyFSRef function 100
HIWindowGetScaleMode function 100
HIWindowGetThemeBackground function 101

HIWindowInvalidateShadow function 102
HIWindowIsAttributeAvailable function 102
HIWindowIsDocumentModalTarget function 103
HIWindowIsInStandardState function 103
HIWindowRef data type 178
HIWindowReleaseCollapsedDockTileContext

function 104
HIWindowSetBounds function 105
HIWindowSetIdealUserState function 105
HIWindowSetProxyFSRef function 106
HIWindowSetToolbarView function 107
HIWindowShowsFocus function 107
HIWindowTestAttribute function 108
HIWindowTrackProxyDrag function 108

I

inCollapseBox constant 211
inContent constant 210
inDesk constant 210
inDrag constant 211
inGoAway constant 211
inGrow constant 211
inMenuBar constant 210
inNoWindow constant 210
inProxyIcon constant 211
InstallWindowContentPaintProc function

(Deprecated in Mac OS X v10.5) 269
inStructure constant 212
inSysWindow constant 210
inToolbarButton constant 212
InvalWindowRect function 109
InvalWindowRgn function 110
InvokeWindowDefUPP function (Deprecated in Mac OS

X v10.5) 270
InvokeWindowPaintUPP function (Deprecated in Mac

OS X v10.5) 270
inZoomIn constant 211
inZoomOut constant 211
IsValidWindowClass function 111
IsValidWindowPtr function 111
IsWindowActive function 112
IsWindowCollapsable function 112
IsWindowCollapsed function 113
IsWindowContainedInGroup function 114
IsWindowHilited function 114
IsWindowInStandardState function 115
IsWindowLatentVisible function 115
IsWindowModified function 116
IsWindowPathSelectClick function (Deprecated in

Mac OS X v10.5) 271
IsWindowPathSelectEvent function 117

289
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

IsWindowToolbarVisible function 117
IsWindowUpdatePending function 118
IsWindowVisible function 118

K

kAlertVariantCode constant 221
kAlertWindowClass constant 185
kAllWindowClasses constant 188
kAltPlainWindowClass constant 188
kApplicationWindowKind constant 226
kDialogWindowKind constant 226
kDocumentWindowClass constant 186
kDocumentWindowVariantCode constant 221
kDrawerWindowClass constant 188
kFirstWindowOfClass constant 229
kFloatingWindowClass constant 186
kFloatingWindowDefinition constant 242
kHelpWindowClass constant 186
kHIToolbarViewDrawBackgroundTag constant 238
kHIWindowBitAsyncDrag constant 192
kHIWindowBitAutoViewDragTracking constant 193
kHIWindowBitCanBeVisibleWithoutLogin constant

192
kHIWindowBitCloseBox constant 189
kHIWindowBitCollapseBox constant 190
kHIWindowBitCompositing constant 191
kHIWindowBitDoesNotCycle constant 191
kHIWindowBitDoesNotHide constant 193
kHIWindowBitDoesNotShowBadgeInDock constant

193
kHIWindowBitFrameworkScaled constant 192
kHIWindowBitHideOnFullScreen constant 193
kHIWindowBitHideOnSuspend constant 192
kHIWindowBitIgnoreClicks constant 193
kHIWindowBitInWindowMenu constant 193
kHIWindowBitLiveResize constant 193
kHIWindowBitNoActivates constant 191
kHIWindowBitNoConstrain constant 193
kHIWindowBitNoShadow constant 192
kHIWindowBitNoTexturedContentSeparator

constant 191
kHIWindowBitNoTitleBar constant 190
kHIWindowBitNoUpdates constant 191
kHIWindowBitOpaqueForEvents constant 191
kHIWindowBitResizable constant 190
kHIWindowBitSideTitlebar constant 190
kHIWindowBitStandardHandler constant 192
kHIWindowBitTextured constant 190
kHIWindowBitTexturedSquareCorners constant 191
kHIWindowBitToolbarButton constant 190

kHIWindowBitUnifiedTitleAndToolbar constant
190

kHIWindowBitZoomBox constant 189
kHIWindowDragPart constant 206
kHIWindowExposeHidden constant 243
kHIWindowMenuCreator constant 238
kHIWindowMenuWindowTag constant 238
kHIWindowScaleModeFrameworkScaled constant 244
kHIWindowScaleModeMagnified constant 243
kHIWindowScaleModeUnscaled constant 243
kHIWindowTitleBarPart constant 206
kHIWindowTitleProxyIconPart constant 207
kHIWindowVisibleInAllSpaces constant 243
kLastWindowOfClass constant 229
kModalDialogVariantCode constant 221
kModalWindowClass constant 185
kMovableAlertVariantCode constant 221
kMovableAlertWindowClass constant 185
kMovableModalDialogVariantCode constant 221
kMovableModalWindowClass constant 185
kNextWindowGroup constant 226
kOverlayWindowClass constant 187
kPlainDialogVariantCode constant 221
kPlainWindowClass constant 187
kPreviousWindowGroup constant 226
kRoundWindowDefinition constant 242
kScrollWindowEraseToPortBackground constant

241
kScrollWindowInvalidate constant 240
kScrollWindowNoOptions constant 240
kShadowDialogVariantCode constant 221
kSheetAlertWindowClass constant 187
kSheetWindowClass constant 186
kSideFloaterVariantCode constant 222
kStandardWindowDefinition constant 242
kStoredBasicWindowDescriptionID constant 241
kStoredWindowPascalTitleID constant 241
kStoredWindowSystemTag constant 241
kStoredWindowTitleCFStringID constant 241
kToolbarWindowClass constant 187
kUserFocusAuto constant 198
kUtilityWindowClass constant 186
kWindowActivationScopeAll constant 224
kWindowActivationScopeIndependent constant 224
kWindowActivationScopeNone constant 224
kWindowAlertPositionMainScreen constant 215
kWindowAlertPositionOnMainScreen constant 214
kWindowAlertPositionOnParentWindow constant

214
kWindowAlertPositionOnParentWindowScreen

constant 214
kWindowAlertPositionParentWindow constant 215

290
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

kWindowAlertPositionParentWindowScreen
constant 216

kWindowAlertProc constant 203
kWindowAsyncDragAttribute constant 197
kWindowCanBeVisibleWithoutLoginAttribute

constant 197
kWindowCanCollapse constant 207
kWindowCanDrawInCurrentPort constant 208
kWindowCanGetWindowRegion constant 208
kWindowCanGrow constant 207
kWindowCanMeasureTitle constant 208
kWindowCanSetupProxyDragImage constant 208
kWindowCanZoom constant 207
kWindowCascadeOnMainScreen constant 213
kWindowCascadeOnParentWindow constant 214
kWindowCascadeOnParentWindowScreen constant

214
kWindowCascadeStartAtParentWindowScreen

constant 214
kWindowCenterMainScreen constant 215
kWindowCenterOnMainScreen constant 213
kWindowCenterOnParentWindow constant 213
kWindowCenterOnParentWindowScreen constant 213
kWindowCenterParentWindow constant 215
kWindowCenterParentWindowScreen constant 216
kWindowCloseBoxAttribute constant 194
kWindowCloseBoxRgn constant 217
kWindowCollapseBoxAttribute constant 195
kWindowCollapseBoxRgn constant 218
kWindowCompositingAttribute constant 196
kWindowConstrainAllowPartial constant 225
kWindowConstrainCalcOnly constant 225
kWindowConstrainMayResize constant 224
kWindowConstrainMoveMinimum constant 225
kWindowConstrainMoveRegardlessOfFit constant

225
kWindowConstrainStandardOptions constant 225
kWindowConstrainUseSpecifiedBounds constant

225
kWindowConstrainUseTransitionWindow constant

225
kWindowContentRgn constant 218
kWindowDefaultPosition constant 215
kWindowDefHIView constant 230
kWindowDefinitionVersionOne constant 220
kWindowDefinitionVersionTwo constant 220
kWindowDefObjectClass constant 230
kWindowDefProcID constant 230
kWindowDefProcPtr constant 230
kWindowDefProcType constant 230
kWindowDefSupportsColorGrafPort constant 209
kWindowDialogDefProcResID constant 199
kWindowDocumentDefProcResID constant 199

kWindowDocumentProc constant 201
kWindowDoesNotCycleAttribute constant 196
kWindowDragRgn constant 217
kWindowDrawerClosed constant 236
kWindowDrawerClosing constant 236
kWindowDrawerOpen constant 236
kWindowDrawerOpening constant 236
kWindowEdgeBottom constant 237
kWindowEdgeDefault constant 237
kWindowEdgeLeft constant 237
kWindowEdgeRight constant 237
kWindowEdgeTop constant 237
kWindowFadeTransitionEffect constant 223
kWindowFloatFullZoomGrowProc constant 204
kWindowFloatFullZoomProc constant 204
kWindowFloatGrowProc constant 203
kWindowFloatHorizZoomGrowProc constant 204
kWindowFloatHorizZoomProc constant 204
kWindowFloatProc constant 203
kWindowFloatSideFullZoomGrowProc constant 205
kWindowFloatSideFullZoomProc constant 205
kWindowFloatSideGrowProc constant 204
kWindowFloatSideHorizZoomGrowProc constant 205
kWindowFloatSideHorizZoomProc constant 205
kWindowFloatSideProc constant 204
kWindowFloatSideVertZoomGrowProc constant 205
kWindowFloatSideVertZoomProc constant 205
kWindowFloatVertZoomGrowProc constant 204
kWindowFloatVertZoomProc constant 204
kWindowFrameworkScaledAttribute constant 197
kWindowFullZoomAttribute constant 195
kWindowFullZoomDocumentProc constant 202
kWindowFullZoomGrowDocumentProc constant 202
kWindowGenieTransitionEffect constant 223
kWindowGlobalPortRgn constant 218
kWindowGroupAttrFixedLevel constant 228
kWindowGroupAttrHideOnCollapse constant 227
kWindowGroupAttrLayerTogether constant 227
kWindowGroupAttrMoveTogether constant 227
kWindowGroupAttrPositionFixed constant 228
kWindowGroupAttrSelectable constant 228
kWindowGroupAttrSelectAsLayer constant 227
kWindowGroupAttrSharedActivation constant 227
kWindowGroupAttrZOrderFixed constant 228
kWindowGroupContentsRecurse constant 229
kWindowGroupContentsReturnWindows constant 229
kWindowGroupContentsVisible constant 229
kWindowGroupLevelActive constant 244
kWindowGroupLevelInactive constant 244
kWindowGroupLevelPromoted constant 244
kWindowGrowDocumentProc constant 202
kWindowGrowRgn constant 217
kWindowHasTitleBar constant 208

291
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

kWindowHideOnFullScreenAttribute constant 197
kWindowHideOnSuspendAttribute constant 197
kWindowHideTransitionAction constant 222
kWindowHorizontalZoomAttribute constant 195
kWindowHorizZoomDocumentProc constant 202
kWindowHorizZoomGrowDocumentProc constant 202
kWindowIgnoreClicksAttribute constant 198
kWindowInWindowMenuAttribute constant 197
kWindowIsAlert constant 208
kWindowIsCollapsedState constant 206
kWindowIsModal constant 208
kWindowIsOpaque constant 209
kWindowLatentVisibleAppHidden constant 219
kWindowLatentVisibleCollapsedGroup constant

219
kWindowLatentVisibleCollapsedOwner constant

219
kWindowLatentVisibleFloater constant 219
kWindowLatentVisibleFullScreen constant 219
kWindowLatentVisibleSuspend constant 219
kWindowLiveResizeAttribute constant 198
kWindowMenuIncludeRotate constant 237
kWindowMetalAttribute constant 196
kWindowMetalNoContentSeparatorAttribute

constant 196
kWindowModalDialogProc constant 203
kWindowModalityAppModal constant 212
kWindowModalityNone constant 212
kWindowModalitySystemModal constant 212
kWindowModalityWindowModal constant 213
kWindowMovableAlertProc constant 203
kWindowMovableModalDialogProc constant 203
kWindowMovableModalGrowProc constant 203
kWindowMoveTransitionAction constant 222
kWindowMsgCalculateShape constant 233
kWindowMsgCleanUp constant 233
kWindowMsgDragHilite constant 234
kWindowMsgDraw constant 233
kWindowMsgDrawGrowBox constant 234
kWindowMsgDrawGrowOutline constant 233
kWindowMsgDrawInCurrentPort constant 234
kWindowMsgGetFeatures constant 234
kWindowMsgGetGrowImageRegion constant 235
kWindowMsgGetRegion constant 234
kWindowMsgHitTest constant 233
kWindowMsgInitialize constant 233
kWindowMsgMeasureTitle constant 235
kWindowMsgModified constant 234
kWindowMsgSetupProxyDragImage constant 235
kWindowMsgStateChanged constant 235
kWindowNoActivatesAttribute constant 196
kWindowNoAttributes constant 194
kWindowNoConstrainAttribute constant 198

kWindowNoPosition constant 215
kWindowNoShadowAttribute constant 197
kWindowNoTitleBarAttribute constant 196
kWindowNoUpdatesAttribute constant 196
kWindowOpaqueForEventsAttribute constant 196
kWindowOpaqueRgn constant 218
kWindowPaintProcOptionsNone constant 239
kWindowPlainDialogProc constant 202
kWindowPropertyPersistent constant 220
kWindowResizableAttribute constant 195
kWindowResizeTransitionAction constant 222
kWindowShadowDialogProc constant 203
kWindowSheetAlertDefProcResID constant 199
kWindowSheetAlertProc constant 205
kWindowSheetDefProcResID constant 199
kWindowSheetProc constant 205
kWindowSheetTransitionEffect constant 223
kWindowShowTransitionAction constant 222
kWindowSideTitlebarAttribute constant 195
kWindowSimpleDefProcResID constant 199
kWindowSimpleFrameProc constant 206
kWindowSimpleProc constant 206
kWindowSlideTransitionEffect constant 223
kWindowStaggerMainScreen constant 215
kWindowStaggerParentWindow constant 216
kWindowStaggerParentWindowScreen constant 216
kWindowStandardDocumentAttributes constant 198
kWindowStandardFloatingAttributes constant 198
kWindowStandardHandlerAttribute constant 197
kWindowStateTitleChanged constant 236
kWindowStructureRgn constant 218
kWindowSupportsDragHilite constant 208
kWindowSupportsGetGrowImageRegion constant 209
kWindowSupportsModifiedBit constant 208
kWindowTexturedSquareCornersAttribute constant

196
kWindowTitleBarRgn constant 217
kWindowTitleProxyIconRgn constant 218
kWindowTitleTextRgn constant 217
kWindowToolbarButtonAttribute constant 195
kWindowToolbarButtonRgn constant 218
kWindowUnifiedTitleAndToolbarAttribute

constant 195
kWindowUpdateRgn constant 218
kWindowUtilityDefProcResID constant 199
kWindowUtilitySideTitleDefProcResID constant

199
kWindowVerticalZoomAttribute constant 195
kWindowVertZoomDocumentProc constant 202
kWindowVertZoomGrowDocumentProc constant 202
kWindowWantsDisposeAtProcessDeath constant 209
kWindowZoomBoxRgn constant 217
kWindowZoomTransitionEffect constant 223

292
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

M

MeasureWindowTitleRec structure 178
movableDBoxProc constant 245
MoveWindow function 119
MoveWindowStructure function 119

N

NewCWindow function (Deprecated in Mac OS X v10.5)
272

NewWindow function (Deprecated in Mac OS X v10.5) 274
NewWindowDefUPP function (Deprecated in Mac OS X

v10.5) 277
NewWindowPaintUPP function (Deprecated in Mac OS X

v10.5) 277
noGrowDocProc constant 245

O

Obsolete Window Group Attributes 228
OpenDrawer function 120

P

PaintBehind function (Deprecated in Mac OS X v10.5)
277

PaintOne function (Deprecated in Mac OS X v10.5) 278
Part Identifier Constants 239
PicHandle data type 179
PinRect function 121
PixPatHandle data type 179
plainDBox constant 245
Pre-Appearance Window Definition IDs 244
PropertyCreator data type 179
PropertyTag data type 179

R

rDocProc constant 246
RegisterWindowDefinition function 122
ReleaseQDContextForCollapsedWindowDockTile

function (Deprecated in Mac OS X v10.5) 279
ReleaseWindow function (Deprecated in Mac OS X v10.5)

279
ReleaseWindowGroup function 122
RemoveWindowProperty function 123

RemoveWindowProxy function 123
RepositionWindow function 124
ReshapeCustomWindow function 125
ResizeWindow function 125
RetainWindow function (Deprecated in Mac OS X v10.5)

280
RetainWindowGroup function 127
RGBColor structure 180
RgnHandle data type 180
Rotating Window Menu Item Constant 237

S

ScrollWindowRect function 127
ScrollWindowRegion function 128
SelectWindow function 129
SendBehind function 129
SendWindowGroupBehind function 130
SetDrawerOffsets function 131
SetDrawerParent function 131
SetDrawerPreferredEdge function 132
SetPortWindowPort function 132
SetThemeTextColorForWindow function 133
SetThemeWindowBackground function 133
SetupWindowProxyDragImageRec structure 180
SetUserFocusWindow function 134
SetWindowActivationScope function 135
SetWindowAlpha function 135
SetWindowAlternateTitle function 136
SetWindowBounds function 136
SetWindowCancelButton function 137
SetWindowClass function (Deprecated in Mac OS X

v10.5) 281
SetWindowContentColor function 138
SetWindowContentPattern function 138
SetWindowDefaultButton function 139
SetWindowDockTileMenu function 140
SetWindowGroup function 140
SetWindowGroupLevel function 141
SetWindowGroupLevelOfType function 142
SetWindowGroupName function 143
SetWindowGroupOwner function 143
SetWindowGroupParent function 144
SetWindowIdealUserState function 144
SetWindowKind function 145
SetWindowModality function 145
SetWindowModified function 146
SetWindowPic function (Deprecated in Mac OS X v10.5)

281
SetWindowProperty function 147
SetWindowProxyAlias function 148
SetWindowProxyCreatorAndType function 148

293
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

SetWindowProxyFSSpec function (Deprecated in Mac
OS X v10.5) 282

SetWindowProxyIcon function 149
SetWindowResizeLimits function 150
SetWindowStandardState function 151
SetWindowTitleWithCFString function 151
SetWindowToolbar function 152
SetWindowUserState function 152
SetWRefCon function 153
SetWTitle function (Deprecated in Mac OS X v10.5) 283
ShowFloatingWindows function 153
ShowHide function 154
ShowHideWindowToolbar function 154
ShowSheetWindow function 155
ShowWindow function 156
SizeWindow function 156
StoreWindowIntoCollection function (Deprecated in

Mac OS X v10.5) 283
System 7 Window Positioning Constants 215

T

ToggleDrawer function 157
Toolbar View Background Tag 238
TrackBox function 158
TrackGoAway function 159
TrackWindowProxyDrag function 159
TrackWindowProxyFromExistingDrag function 160
TransitionWindow function 162
TransitionWindowAndParent function 163
TransitionWindowOptions structure 181
TransitionWindowWithOptions function 163

U

UpdateCollapsedWindowDockTile function 164
User Focus Auto-Select Constant 198
userKind constant 226

V

ValidWindowRect function 165
ValidWindowRgn function 166

W

wContentColor constant 239

wFrameColor constant 239
wHiliteColor constant 239
wInCollapseBox constant 232
wInContent constant 231
'wind' Resource Default Collection Item Constants 241
Window Activation Scope Constants 223
Window Attribute Identifiers 188
Window Attributes 194
Window Availability Constants 242
Window Class Constants 184
Window Class Position Constants 229
Window Constrain Options 224
Window Definition Hit Test Result Code Constants 230
Window Definition Message Constants 232
Window Definition Procedure Constant 230
Window Definition State-Changed Constant 235
Window Definition Type Constants 229
Window Edge Constants 237
Window Feature Bits 207
Window Frame View Part Codes 206
Window Group Attributes 227
Window Group Content Options 228
Window Group Level Constants 244
Window Group Selection Constants 226
Window Kinds 225
Window Latent Visibility Constants 219
Window Menu Item Property Constants 238
Window Modality Options 212
Window Paint Callback Options 239
Window Part Code Constants 209
Window Position Constants 213
Window Property Persistent Constant 220
Window Region Constants 217
Window Resource IDs 241
Window Scale Mode Constants 243
Window Scrolling Options 240
Window Transition Action Constants 222
Window Transition Effect Constants 223
Window Variant Constants 220
windowAppModalStateAlreadyExistsErr constant

249
windowAttributeImmutableErr constant 248
windowAttributesConflictErr constant 248
WindowDefProcPtr callback 169
WindowDefSpec structure 182
WindowDefUPP data type 182
windowGroupInvalidErr constant 249
WindowGroupRef data type 182
windowManagerInternalErr constant 248
windowNoAppModalStateErr constant 249
WindowPaintProcPtr callback 174
WindowPaintUPP data type 183
WindowPathSelect function 166

294
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

WindowRef data type 183
windowWrongStateErr constant 248
wInDrag constant 231
wInGoAway constant 231
wInGrow constant 231
wInProxyIcon constant 232
wInStructure constant 232
wInToolbarButton constant 232
wInZoomIn constant 231
wInZoomOut constant 232
wNoHit constant 231
WStateData structure 183
wTextColor constant 239
wTitleBarColor constant 239

Z

zoomDocProc constant 246
zoomNoGrow constant 246
ZoomWindow function 167
ZoomWindowIdeal function 168

295
2007-10-31 | © 1995, 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

	Window Manager Reference
	Contents
	Window Manager Reference
	Overview
	Functions by Task
	Accessing Information About a Window
	Activating Window Path Pop-Up Menus
	Associating Data With Windows
	Collapsing Windows
	Creating, Storing, and Closing Windows
	Displaying Floating Windows and Window Animations
	Displaying Windows
	Dragging Proxy Icons
	Establishing Proxy Icons
	Getting and Setting Window Structure Fields
	Handling Mouse Events in Windows
	Locating Windows
	Maintaining the Update Region
	Managing Activation Scope
	Managing Dock Tiles
	Managing Modality
	Managing Themes
	Managing Toolbars
	Managing Transitions
	Managing Transparency
	Managing UPPs
	Managing Window Attributes
	Managing Window Availability
	Managing Window Classes
	Managing Window Features
	Managing Window Focus
	Managing Window Groups
	Managing Window Titles
	Manipulating Drawers
	Manipulating Sheets
	Manipulating Window Color Information
	Referencing Windows
	Scrolling
	Sizing and Positioning Windows
	Updating the Screen
	Using Default and Cancel Buttons
	Zooming Windows
	Miscellaneous
	Legacy Functions

	Functions
	ActivateWindow
	ActiveNonFloatingWindow
	AreFloatingWindowsVisible
	BeginUpdate
	BeginWindowProxyDrag
	BringToFront
	ChangeWindowAttributes
	ChangeWindowGroupAttributes
	ChangeWindowPropertyAttributes
	CloseDrawer
	CollapseAllWindows
	CollapseWindow
	ConstrainWindowToScreen
	CopyWindowAlternateTitle
	CopyWindowGroupName
	CopyWindowTitleAsCFString
	CountWindowGroupContents
	CreateCustomWindow
	CreateNewWindow
	CreateStandardWindowMenu
	CreateWindowGroup
	DebugPrintAllWindowGroups
	DebugPrintWindowGroup
	DetachSheetWindow
	DisableScreenUpdates
	DisposeWindow
	DragWindow
	EnableScreenUpdates
	EndUpdate
	EndWindowProxyDrag
	FindWindow
	FindWindowOfClass
	FrontNonFloatingWindow
	GetAvailableWindowAttributes
	GetAvailableWindowPositioningBounds
	GetAvailableWindowPositioningRegion
	GetDrawerCurrentEdge
	GetDrawerOffsets
	GetDrawerParent
	GetDrawerPreferredEdge
	GetDrawerState
	GetFrontWindowOfClass
	GetIndexedWindow
	GetNextWindow
	GetNextWindowOfClass
	GetPreviousWindow
	GetSheetWindowParent
	GetUserFocusWindow
	GetWindowActivationScope
	GetWindowAlpha
	GetWindowAttributes
	GetWindowBounds
	GetWindowCancelButton
	GetWindowClass
	GetWindowContentColor
	GetWindowContentPattern
	GetWindowDefaultButton
	GetWindowDockTileMenu
	GetWindowFeatures
	GetWindowFromPort
	GetWindowGreatestAreaDevice
	GetWindowGroup
	GetWindowGroupAttributes
	GetWindowGroupContents
	GetWindowGroupLevel
	GetWindowGroupLevelOfType
	GetWindowGroupOfClass
	GetWindowGroupOwner
	GetWindowGroupParent
	GetWindowGroupRetainCount
	GetWindowGroupSibling
	GetWindowIdealUserState
	GetWindowIndex
	GetWindowKind
	GetWindowList
	GetWindowModality
	GetWindowPort
	GetWindowPortBounds
	GetWindowProperty
	GetWindowPropertyAttributes
	GetWindowPropertySize
	GetWindowProxyAlias
	GetWindowProxyIcon
	GetWindowResizeLimits
	GetWindowStandardState
	GetWindowStructurePort
	GetWindowStructureWidths
	GetWindowToolbar
	GetWindowUserState
	GetWindowWidgetHilite
	GetWRefCon
	HideFloatingWindows
	HideSheetWindow
	HideWindow
	HiliteWindow
	HiliteWindowFrameForDrag
	HIWindowChangeAttributes
	HIWindowChangeAvailability
	HIWindowChangeClass
	HIWindowChangeFeatures
	HIWindowConstrain
	HIWindowCopyAvailablePositioningShape
	HIWindowCopyDrawers
	HIWindowCopyShape
	HIWindowCreate
	HIWindowCreateCollapsedDockTileContext
	HIWindowFindAtLocation
	HIWindowFlush
	HIWindowFromCGWindowID
	HIWindowGetAvailability
	HIWindowGetAvailablePositioningBounds
	HIWindowGetBounds
	HIWindowGetCGWindowID
	HIWindowGetGreatestAreaDisplay
	HIWindowGetIdealUserState
	HIWindowGetProxyFSRef
	HIWindowGetScaleMode
	HIWindowGetThemeBackground
	HIWindowInvalidateShadow
	HIWindowIsAttributeAvailable
	HIWindowIsDocumentModalTarget
	HIWindowIsInStandardState
	HIWindowReleaseCollapsedDockTileContext
	HIWindowSetBounds
	HIWindowSetIdealUserState
	HIWindowSetProxyFSRef
	HIWindowSetToolbarView
	HIWindowShowsFocus
	HIWindowTestAttribute
	HIWindowTrackProxyDrag
	InvalWindowRect
	InvalWindowRgn
	IsValidWindowClass
	IsValidWindowPtr
	IsWindowActive
	IsWindowCollapsable
	IsWindowCollapsed
	IsWindowContainedInGroup
	IsWindowHilited
	IsWindowInStandardState
	IsWindowLatentVisible
	IsWindowModified
	IsWindowPathSelectEvent
	IsWindowToolbarVisible
	IsWindowUpdatePending
	IsWindowVisible
	MoveWindow
	MoveWindowStructure
	OpenDrawer
	PinRect
	RegisterWindowDefinition
	ReleaseWindowGroup
	RemoveWindowProperty
	RemoveWindowProxy
	RepositionWindow
	ReshapeCustomWindow
	ResizeWindow
	RetainWindowGroup
	ScrollWindowRect
	ScrollWindowRegion
	SelectWindow
	SendBehind
	SendWindowGroupBehind
	SetDrawerOffsets
	SetDrawerParent
	SetDrawerPreferredEdge
	SetPortWindowPort
	SetThemeTextColorForWindow
	SetThemeWindowBackground
	SetUserFocusWindow
	SetWindowActivationScope
	SetWindowAlpha
	SetWindowAlternateTitle
	SetWindowBounds
	SetWindowCancelButton
	SetWindowContentColor
	SetWindowContentPattern
	SetWindowDefaultButton
	SetWindowDockTileMenu
	SetWindowGroup
	SetWindowGroupLevel
	SetWindowGroupLevelOfType
	SetWindowGroupName
	SetWindowGroupOwner
	SetWindowGroupParent
	SetWindowIdealUserState
	SetWindowKind
	SetWindowModality
	SetWindowModified
	SetWindowProperty
	SetWindowProxyAlias
	SetWindowProxyCreatorAndType
	SetWindowProxyIcon
	SetWindowResizeLimits
	SetWindowStandardState
	SetWindowTitleWithCFString
	SetWindowToolbar
	SetWindowUserState
	SetWRefCon
	ShowFloatingWindows
	ShowHide
	ShowHideWindowToolbar
	ShowSheetWindow
	ShowWindow
	SizeWindow
	ToggleDrawer
	TrackBox
	TrackGoAway
	TrackWindowProxyDrag
	TrackWindowProxyFromExistingDrag
	TransitionWindow
	TransitionWindowAndParent
	TransitionWindowWithOptions
	UpdateCollapsedWindowDockTile
	ValidWindowRect
	ValidWindowRgn
	WindowPathSelect
	ZoomWindow
	ZoomWindowIdeal

	Callbacks
	WindowDefProcPtr
	WindowPaintProcPtr

	Data Types
	BasicWindowDescription
	GetGrowImageRegionRec
	GetWindowRegionRec
	HIWindowRef
	MeasureWindowTitleRec
	PropertyCreator
	PropertyTag
	PicHandle
	PixPatHandle
	RGBColor
	RgnHandle
	SetupWindowProxyDragImageRec
	TransitionWindowOptions
	WindowDefSpec
	WindowDefUPP
	WindowGroupRef
	WindowPaintUPP
	WindowRef
	WStateData

	Constants
	Window Class Constants
	Window Attribute Identifiers
	Window Attributes
	User Focus Auto-Select Constant
	Appearance-Compliant Window Resource IDs
	Appearance-Compliant Window Definition ID Constants
	Basic Window Description State Constant
	Window Frame View Part Codes
	Window Feature Bits
	Window Part Code Constants
	Window Modality Options
	Window Position Constants
	System 7 Window Positioning Constants
	Window Region Constants
	Window Latent Visibility Constants
	Basic Window Description Version Constants
	Window Property Persistent Constant
	Window Variant Constants
	Window Transition Action Constants
	Window Transition Effect Constants
	Window Activation Scope Constants
	Window Constrain Options
	Window Kinds
	Window Group Selection Constants
	Window Group Attributes
	Obsolete Window Group Attributes
	Window Group Content Options
	Window Class Position Constants
	Window Definition Type Constants
	Window Definition Procedure Constant
	Window Definition Hit Test Result Code Constants
	Window Definition Message Constants
	Window Definition State-Changed Constant
	Drawer State Constants
	Window Edge Constants
	Rotating Window Menu Item Constant
	Window Menu Item Property Constants
	Toolbar View Background Tag
	Window Paint Callback Options
	Part Identifier Constants
	Desk Pattern Resource ID
	Window Scrolling Options
	'wind' Resource Default Collection Item Constants
	Window Resource IDs
	Window Availability Constants
	Window Scale Mode Constants
	Window Group Level Constants
	Pre-Appearance Window Definition IDs

	Result Codes

	Appendix A: Deprecated Window Manager Functions
	Deprecated in Mac OS X v10.5
	CalcVis
	CalcVisBehind
	CheckUpdate
	ClipAbove
	CloneWindow
	CreateQDContextForCollapsedWindowDockTile
	CreateWindowFromCollection
	CreateWindowFromResource
	DisposeWindowDefUPP
	DisposeWindowPaintUPP
	DragGrayRgn
	DragTheRgn
	DrawGrowIcon
	FrontWindow
	GetGrayRgn
	GetNewCWindow
	GetNewWindow
	GetWindowOwnerCount
	GetWindowPic
	GetWindowProxyFSSpec
	GetWindowRegion
	GetWindowRetainCount
	GetWTitle
	GetWVariant
	GrowWindow
	InstallWindowContentPaintProc
	InvokeWindowDefUPP
	InvokeWindowPaintUPP
	IsWindowPathSelectClick
	NewCWindow
	NewWindow
	NewWindowDefUPP
	NewWindowPaintUPP
	PaintBehind
	PaintOne
	ReleaseQDContextForCollapsedWindowDockTile
	ReleaseWindow
	RetainWindow
	SetWindowClass
	SetWindowPic
	SetWindowProxyFSSpec
	SetWTitle
	StoreWindowIntoCollection

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

