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Action messages (or methods) and target objects are part of the mechanism by which NSControls respond
to user actions and enable users to communicate their intentions to an application.

Organization of This Document

“About Action Cells” (page 9) gives basic information on action cells. “Targets and Actions” (page 7)
describes the interactions between action messages and their target objects.
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Action messages (or methods) and target objects are part of the mechanism by which NSControls respond
to user actions and enable users to communicate their intentions to an application. A target is an object an
NSControl uses as the receiver of action messages. The target’s class defines an action message to enable its
instances to respond to these messages, which are sent as users click or otherwise manipulate the NSControl.
NSControl’s sendAction:to: asks the NSApplication object NSApp to send an action message to the
NSControl’s target object.

An action method takes only one argument: the sender. The sender may be either the NSControl that sends
the action message or, on occasion, another object that the target should treat as the sender. When it receives
an action message, a target can return messages to the sender requesting additional information about its
status.

You can also set the target to nil and allow it to be determined at run time. When the target is nil, the
NSApplication object must look for an appropriate receiver. It conducts its search in a prescribed order, by
following the responder chain until it finds an object that can respond to the message:

 ■ It begins with the first responder in the key window and follows nextResponder links up the responder
chain to the NSWindow’s content view.

 ■ It tries the NSWindow object and then the NSWindow’s delegate.

 ■ If the main window is different from the key window, it then starts over with the first responder in the
main window and works its way up the main window’s responder chain to the NSWindow object and
its delegate.

 ■ Next, the NSApplication object tries to respond itself. If it can’t respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these
methods require that an NSControl’s cell (or cells) be NSActionCells or custom cells that hold action and
target as instance variables and can respond to the NSControl methods.
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An action cell defines an active area inside a control (an instance of NSControl or one of its subclasses). As
an NSControl’s active area, an action cell does three things: it usually performs display of text or an icon; it
provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by properly
highlighting its area and sending action messages to its target based on cursor movement.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. As a user
manipulates an NSControl, NSActionCell’strackMouse:inRect:ofView:untilMouseUp:method (inherited
from NSCell) updates its appearance and sends the action message to the target object with the NSControl
object as the only argument. See “Targets and Actions” (page 7).

Usually, the responsibility for an NSControl’s appearance and behavior is completely given over to a
corresponding NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don’t follow this rule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every NSActionCell
has an integer tag. Note, however, that no checking is done by the NSActionCell object itself to ensure that
the tag is unique. See NSMatrix for an example of a subclass of NSControl that contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, such as setFont: and
setBordered:, are reimplementations of methods inherited from NSCell. They’re overridden to ensure the
NSActionCell is redisplayed when “visual” attributes change.
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This table describes the changes to Action Messages.

NotesDate

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.
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