
Action Messages
Cocoa > Events & Other Input

2002-11-12



Apple Inc.
© 2002 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction to Action Messages 5

Organization of This Document 5

Targets and Actions 7

About Action Cells 9

Document Revision History 11

3
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.



4
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.



Action messages (or methods) and target objects are part of the mechanism by which NSControls respond
to user actions and enable users to communicate their intentions to an application.

Organization of This Document

“About Action Cells” (page 9) gives basic information on action cells. “Targets and Actions” (page 7)
describes the interactions between action messages and their target objects.

Organization of This Document 5
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

Introduction to Action Messages



6 Organization of This Document
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

Introduction to Action Messages



Action messages (or methods) and target objects are part of the mechanism by which NSControls respond
to user actions and enable users to communicate their intentions to an application. A target is an object an
NSControl uses as the receiver of action messages. The target’s class defines an action message to enable its
instances to respond to these messages, which are sent as users click or otherwise manipulate the NSControl.
NSControl’s sendAction:to: asks the NSApplication object NSApp to send an action message to the
NSControl’s target object.

An action method takes only one argument: the sender. The sender may be either the NSControl that sends
the action message or, on occasion, another object that the target should treat as the sender. When it receives
an action message, a target can return messages to the sender requesting additional information about its
status.

You can also set the target to nil and allow it to be determined at run time. When the target is nil, the
NSApplication object must look for an appropriate receiver. It conducts its search in a prescribed order, by
following the responder chain until it finds an object that can respond to the message:

 ■ It begins with the first responder in the key window and follows nextResponder links up the responder
chain to the NSWindow’s content view.

 ■ It tries the NSWindow object and then the NSWindow’s delegate.

 ■ If the main window is different from the key window, it then starts over with the first responder in the
main window and works its way up the main window’s responder chain to the NSWindow object and
its delegate.

 ■ Next, the NSApplication object tries to respond itself. If it can’t respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these
methods require that an NSControl’s cell (or cells) be NSActionCells or custom cells that hold action and
target as instance variables and can respond to the NSControl methods.

7
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

Targets and Actions



8
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

Targets and Actions



An action cell defines an active area inside a control (an instance of NSControl or one of its subclasses). As
an NSControl’s active area, an action cell does three things: it usually performs display of text or an icon; it
provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by properly
highlighting its area and sending action messages to its target based on cursor movement.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. As a user
manipulates an NSControl, NSActionCell’strackMouse:inRect:ofView:untilMouseUp:method (inherited
from NSCell) updates its appearance and sends the action message to the target object with the NSControl
object as the only argument. See “Targets and Actions” (page 7).

Usually, the responsibility for an NSControl’s appearance and behavior is completely given over to a
corresponding NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don’t follow this rule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every NSActionCell
has an integer tag. Note, however, that no checking is done by the NSActionCell object itself to ensure that
the tag is unique. See NSMatrix for an example of a subclass of NSControl that contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, such as setFont: and
setBordered:, are reimplementations of methods inherited from NSCell. They’re overridden to ensure the
NSActionCell is redisplayed when “visual” attributes change.

9
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

About Action Cells



10
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

About Action Cells



This table describes the changes to Action Messages.

NotesDate

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

11
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

Document Revision History



12
2002-11-12   |   © 2002 Apple Computer, Inc. All Rights Reserved.

Document Revision History


	Action Messages
	Contents
	Introduction
	Targets and Actions
	About Action Cells
	Revision History


