
Animation Types and Timing Programming
Guide
Cocoa > Graphics & Imaging

2008-04-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, Quartz, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Animation Types and Timing Programming Guide 7

Organization of This Document 7
See Also 7

Animation Class Roadmap 9

Timing, Timespaces, and CAAnimation 11

Media Timing Protocol 11
Repeating Animations 12
Fill Mode 12

Animation Pacing 12
Animation Delegates 14

Property-Based Animations 15

Property-Based Abstraction 15
Basic Animations 15

Configuring a Basic Animation’s Interpolation Values 16
An Example Basic Animation 16

Keyframe Animations 17
Providing Keyframe Values 17
Keyframe Timing and Pacing Extensions 18
An Example Keyframe Animation 18

Transition Animation 21

Creating a Transition Animation 21
Configuring a Transition 21

Document Revision History 23

3
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

4
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Animation Class Roadmap 9

Figure 1 Core Animation classes and protocol 10

Timing, Timespaces, and CAAnimation 11

Figure 1 Cubic Bezier curve representations of the predefined timing functions 13
Listing 1 Custom CAMediaTimingFunction code fragment 13

Property-Based Animations 15

Figure 1 3 second basic animation of a layer’s position property 16
Figure 2 5 second keyframe animation of a layer’s position property 17
Listing 1 CABasicAnimation code fragment 16
Listing 2 CAKeyframeAnimation code fragment 19

Transition Animation 21

Table 1 Default CATransition property values 21
Table 2 Common transition types 22
Table 3 Common transition subtypes 22

5
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

6
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

This document describes the fundamental concepts involving the timing and animation classes used with
Core Animation. Core Animation is an Objective-C framework that combines a high-performance compositing
engine with a simple to use animation programming interface.

Note: Animation is an inherently visual medium. The HTML version ofAnimationTypesandTimingProgramming
Guide contains QuickTime movies (along with static images) that show example animations to help illustrate
concepts. The PDF version contains only the static images.

You should read this document to gain an understanding of working with Core Animation in a Cocoa
application. The Objective-C 2.0 Programming Language should be considered a prerequisite because Core
Animation makes extensive use of Objective-C properties. You should also be familiar with key-value coding
as described in Key-Value Coding Programming Guide. Familiarity with the Quartz 2D imaging technologies
described in Quartz 2D Programming Guide is also helpful, although not required.

Organization of This Document

Animation Types and Timing consists of the following articles:

 ■ “Animation Class Roadmap” (page 9) provides an overview of the animation classes and timing protocol.

 ■ “Timing, Timespaces, and CAAnimation” (page 11) describes in detail the timing model for Core Animation
and the abstract CAAnimation class.

 ■ “Property-Based Animations” (page 15) describes the property-based animations: CABasicAnimation
and CAKeyframeAnimation.

 ■ “Transition Animation” (page 21) describes the transition animation class, CATransition.

See Also

These programming guides discuss some of the technologies that are used by Core Animation:

 ■ Animation Overview describes the animation technologies available on Mac OS X.

 ■ Core Animation ProgrammingGuide contains code fragments that demonstrate common Core Animation
tasks.

 ■ Animation Programming Guide for Cocoa describes the animation capabilities available to Cocoa
Applications.

Organization of This Document 7
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Animation Types and Timing
Programming Guide

8 See Also
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Animation Types and Timing Programming Guide

Core Animation provides an expressive set of animation classes you can use in your application:

 ■ CAAnimation is the abstract class that all animations subclass. CAAnimation adopts the CAMediaTiming
protocol which provides the simple duration, speed, and repeat count for an animation. CAAnimation
also adopts the CAAction protocol. This protocol provides a standardized means for starting an animation
in response to an action triggered by a layer.

The CAAnimation class also defines an animation’s timing as an instance of CAMediaTimingFunction.
The timing function describes the pacing of the animation as a simple Bezier curve. A linear timing
function specifies that the animation's pace is even across its duration, while an ease-in timing function
causes an animation to speed up as it nears its duration.

 ■ CAPropertyAnimation is an abstract subclass of CAAnimation that provides support for animating
a layer property specified by a key path.

 ■ CABasicAnimation is a subclass of CAPropertyAnimation that provides simple interpolation for a
layer property.

 ■ CAKeyframeAnimation (a subclass of CAPropertyAnimation) provides support for key frame
animation. You specify the key path of the layer property to be animated, an array of values that represent
the value at each stage of the animation, as well as arrays of key frame times and timing functions. As
the animation runs, each value is set in turn using the specified interpolation.

 ■ CATransition provides a transition effect that affects the entire layer's content. It fades, pushes, or
reveals layer content when animating. The stock transition effects can be extended by providing your
own custom Core Image filters.

 ■ CAAnimationGroup allows an array of animation objects to be grouped together and run concurrently.

Figure 1 shows the animation class hierarchy, and also summarizes the properties available through inheritance.

9
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Animation Class Roadmap

Figure 1 Core Animation classes and protocol

CAAnimationGroup

CAAnimation

CAPropertyAnimation CATransition

Adopted by

beginTime
timeOffset
repeatCount

repeatDuration
duration
speed

autoreserves
fillMode

animations keyPath
additive
cumulative

type
subtype

startProgress
endProgress

filter

CABasicAnimation CAKeyframeAnimation

fromValue
toValue
byValue

values
path

keyTimes
timingFunctions
calculationMode

timingFunction
delegate

removedOnCompletion

CAMediaTiming (Protocol)

10
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Animation Class Roadmap

When broken down to its simplest definition an animation is simply the varying of a value over a time. Core
Animation provides base timing functionality for both animations and layers, providing a powerful timeline
capability.

This chapter discusses the timing protocol and the basic animation support common to all animation
subclasses.

Media Timing Protocol

The Core Animation timing model is described by the CAMediaTiming protocol and adopted by the
CAAnimation class and its subclasses. The timing model specifies the time offset, duration, speed, and
repeating behavior of an animation.

The CAMediaTiming protocol is also adopted by the CALayer class, allowing a layer to define a timespace
relative to its superlayer; similar manner to describing a relative coordinate space. This concept of a layer-tree
timespace provides a scalable timeline that starts at the root layer, through its descendants. Since an animation
must be associated with a layer to be displayed, the animation's timing is scaled to the timespace defined
by the layer.

The speed property of an animation or layer specifies this scaling factor. For example, a 10 second animation
that is attached to a layer with a timespace that has a speed value of 2 will take 5 seconds to display (twice
the speed). If a sublayer of that layer also defines a speed factor of 2, then its animations will display in 1/4
the time (the speed of the superlayer * the speed of the sublayer).

Similarly, a layer's timespace can also affect the playback of dynamic layer media such as Quartz Composer
compositions. Doubling the speed of a QCCompositionLayer causes the composition to play twice as fast,
as well as doubling the speed of any animations attached to that layer. Again, this affect is hierarchical, so
any sublayers of the QCCompositionLayers will also display their content using the increased speed.

The duration property of the CAMediaTiming protocol is used by animations to define how long, in
seconds, a single iteration of an animation will take to display. The default duration for subclasses of
CAAnimation is 0 seconds, which indicates that the animation should use the duration specified by the
transaction in which it is run, or .25 seconds if no transaction duration is specified.

The timing protocol provides the means of starting an animation a certain number of seconds into its duration
using two properties: beginTime and timeOffset. The beginTime specifies the number of seconds into
the duration the animation should start and is scaled to the timespace of the animation's layer. The
timeOffset specifies an additional offset, but is stated in the local active time. Both values are combined
to determine the final starting offset.

Media Timing Protocol 11
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Timing, Timespaces, and CAAnimation

Repeating Animations

The repetition behavior of an animation is also determined by the CAMediaTiming protocol by the
repeatCount and repeatDuration properties. The repeatCount specifies the number of times the
animation should repeat and can be a fractional number. Setting the repeatCount to a value of 2.5 for a
10 second animation would cause the animation to run for a total of 25 seconds, ending half way through
its third iteration. Setting the repeatCount to 1e100f will cause the animation to repeat until it is removed
from the layer.

The repeatDuration is similar to the repeatCount, although it is specified in seconds rather than iterations.
The repeatDuration can also be a fractional value.

The autoreverses property of an animation determines whether the animation plays backwards after it
finishes playing forwards; assuming that multiple repetitions are specified.

Fill Mode

The fillMode property of the timing protocol defines how an animation will be displayed outside of its
active duration. The animation can be frozen at its starting position, at its ending position, both, or removed
entirely from display. The default behavior is to remove the animation from display when it has completed.

Animation Pacing

The pacing of an animation determines how the interpolated values are distributed over the duration of the
animation. Using the appropriate pacing for a particular visual effect can greatly enhance its affect on the
user.

The pacing of an animation is represented by a timing function that is expressed as a cubic Bezier curve. This
function maps the duration of a single cycle of the animation (normalized to the range [0.0,1.0]) to the output
time (also normalized to that range).

The timingFunction property of theCAAnimation class specifies an instance of theCAMediaTimingFunction,
the class responsible for encapsulating the timing functionality.

CAMediaTimingFunction provides two options for specifying the mapping function: constants for the
common pacing curves, and methods for creating custom functions by specifying two control points.

The predefined timing functions are returned by specifying one of the following constants to the
CAMediaTimingFunction class method functionWithName::

 ■ kCAMediaTimingFunctionLinear specifies linear pacing. A linear pacing causes an animation to occur
evenly over its duration.

 ■ kCAMediaTimingFunctionEaseIn specifies ease-in pacing. Ease-in pacing causes the animation to
begin slowly, and then speed up as it progresses.

 ■ kCAMediaTimingFunctionEaseOut specifies ease-out pacing. An ease-out pacing causes the animation
to begin quickly, and then slow as it completes.

12 Animation Pacing
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Timing, Timespaces, and CAAnimation

 ■ kCAMediaTimingFunctionEaseInEaseOut specifies ease-in ease-out pacing. An ease-in ease-out
animation begins slowly, accelerates through the middle of its duration, and then slows again before
completing.

Figure 1 shows the predefined timing functions as their cubic Bezier timing curves.

Figure 1 Cubic Bezier curve representations of the predefined timing functions

kCAMediaTimingFunctionEaseIn

x(t)

t

kCAMediaTimingFunctionEaseInEaseOut

x(t)

t

kCAMediaTimingFunctionEaseOut

x(t)

t

kCAMediaTimingFunctionLinear

x(t)

t

Custom timing functions are created using the functionWithControlPoints:::: class method or the
initWithControlPoints:::: instance method. The end points of the Bezier curve are automatically set
to (0.0,0.0) and (1.0,1.0). and the creation methods expect the c1x, c1y, c2x, and c2y as the parameters. The
resulting control points defining the bezier curve are:[(0.0,0.0), (c1x,c1y), (c2x,c2y), (1.0,1.0)].

Listing 1 shows an example code fragment that creates a custom timing function using the points
[(0.0,0.0), (0.25,0.1), (0.25,0.1), (1.0,1.0)].

Listing 1 Custom CAMediaTimingFunction code fragment

CAMediaTimingFunction *customTimingFunction;
customTimingFunction=[CAMediaTimingFunction functionWithControlPoints:0.25f
:0.1f :0.25f :1.0f];

Animation Pacing 13
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Timing, Timespaces, and CAAnimation

Note: Keyframe animation requires a more nuanced pacing and timing model than can be provided by a
single instance of CAMediaTimingFunction. See “Keyframe Timing and Pacing Extensions” (page 18) for
more information.

Animation Delegates

The CAAnimation class provides the means to notify a delegate object when an animation starts and stops.

If an animation has a delegate specified it will receives animationDidStart:message, passing the animation
instance that began. When an animation stops the delegate receives an animationDidStop:finished:
message, passing the animation instance that stopped and a Boolean indicating whether the animation
completed its duration successfully or was stopped manually.

Important: The CAAnimation delegate object is retained by the receiver. This is a rare exception to the
memory management rules described in Memory Management Programming Guide for Cocoa.

14 Animation Delegates
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Timing, Timespaces, and CAAnimation

Property-based animations are animations that interpolate values of a single attribute of a layer, for example,
the position, background color, bounds, etc.

This chapter discusses how Core Animation abstracts property animation and the classes it provides to
support basic and multiple keyframe animation of layer properties.

Property-Based Abstraction

The CAPropertyAnimation class is the abstract subclass of CAAnimation that provides the base functionality
for animating a specific property of a layer. Property-based animations are supported for all value types that
can be mathematically interpolated, including:

 ■ integers and doubles

 ■ CGRect, CGPoint, CGSize, and CGAffineTransform structures

 ■ CATransform3D data structures

 ■ CGColor and CGImage references

As with all animations, a property animation must be associated with a layer. The property that is to be
animated is specified using a key-value coding key path relative to the layer. For example, to animate the x
component of the position property of “layerA” you’d create an animation using the key path “position.x”
and add that animation to “layerA”.

You will never need to instantiate an instance of CAPropertyAnimation directly. Instead you would create
an instance of one its subclasses, CABasicAnimation or CAKeyframeAnimation. Likewise, you would
never subclass CAPropertyAnimation, instead you would subclass CABasicAnimation or
CAKeyframeAnimation to add functionality or store additional properties.

Basic Animations

The CABasicAnimation class provides basic, single-keyframe animation capabilities for a layer property.
You create an instance of CABasicAnimation using the inherited animationWithKeyPath: method,
specifying the key path of the layer property to be animated. Animatable Properties in Core Animation
Programming Guide summarize the animatable properties for CALayer and its filter properties.

Figure 1 shows a 3-second animation of a layer’s position property from (74.0,74.0) to a final position of
(566.0,406.0). The parent layer is assumed to have a bounds of (0.0,0.0,640.0,480.0).

Property-Based Abstraction 15
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Property-Based Animations

Figure 1 3 second basic animation of a layer’s position property

Animation at 0 seconds
(start)

Animation at 1 second Animation at 2 seconds Animation at 3 seconds
(complete)

Configuring a Basic Animation’s Interpolation Values

The fromValue, byValue and toValue properties of the CABasicAnimation class define the values being
interpolated between. All are optional, and no more than two should be non-nil. The object type that the
property is set to should match the type of the property being animated.

The interpolation values are used as follows:

 ■ Both fromValue and toValue are non-nil. Interpolates between fromValue and toValue.

 ■ fromValue and byValue are non-nil. Interpolates between fromValue and (fromValue + byValue).

 ■ byValue and toValue are non-nil. Interpolates between (toValue - byValue) and toValue.

 ■ fromValue is non-nil. Interpolates between fromValue and the current presentation value of the
property.

 ■ toValue is non-nil. Interpolates between the current value of keyPath in the target layer’s presentation
layer and toValue.

 ■ byValue is non-nil. Interpolates between the current value of keyPath in the target layer’s presentation
layer and that value plus byValue.

 ■ All properties are nil. Interpolates between the previous value of keyPath in the target layer’s
presentation layer and the current value of keyPath in the target layer’s presentation layer.

An Example Basic Animation

Listing 1 shows a code fragment that implements an explicit animation equivalent to the animation in Figure
1.

Listing 1 CABasicAnimation code fragment

CABasicAnimation *theAnimation;

// create the animation object, specifying the position property as the key path
// the key path is relative to the target animation object (in this case a
CALayer)
theAnimation=[CABasicAnimation animationWithKeyPath:@"position"];

16 Basic Animations
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Property-Based Animations

// set the fromValue and toValue to the appropriate points
theAnimation.fromValue=[NSValue valueWithPoint:NSMakePoint(74.0,74.0)];
theAnimation.toValue=[NSValue valueWithPoint:NSMakePoint(566.0,406.0)];

// set the duration to 3.0 seconds
theAnimation.duration=3.0;

// set a custom timing function
theAnimation.timingFunction=[CAMediaTimingFunction functionWithControlPoints:0.25f
 :0.1f :0.25f :1.0f];

Keyframe Animations

Keyframe animation, supported in Core Animation by the CAKeyframeAnimation class, is similar to basic
animation; however it allows you to specify an array of target values. Each of these target values is interpolated,
in turn, over the duration of the animation.

Figure 2 shows a 5-second animation of a layer’s position property using a CGPathRef for the keyframe values.

Figure 2 5 second keyframe animation of a layer’s position property

Animation at 0 seconds
(start)

Animation at 1 second Animation at 2 seconds

Animation at 3 seconds Animation at 4 seconds Animation at 5 seconds
(complete)

Providing Keyframe Values

Keyframe values are specified using one of two properties: a Core Graphics path (the path property) or an
array of objects (the values property).

Keyframe Animations 17
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Property-Based Animations

A Core Graphics path is suitable for animating a layer’s anchorPoint or position properties, that is,
properties that are CGPoints. Each point in the path, except for moveto points, defines a single keyframe
segment for the purpose of timing and interpolation. If the path property is specified, the values property
is ignored.

By default, as a layer is animated along a CGPath it maintains the rotation to which it has been set. Setting
the rotationModeproperty to kCAAnimationRotateAuto or kCAAnimationRotateAutoReverse causes
the layer to rotate to match the path tangent.

Providing an array of objects to the values property allows you to animate any type of layer property. For
example:

 ■ Provide an array of CGImage objects and set the animation key path to the content property of a layer.
This causes the content of the layer to animate through the provided images.

 ■ Provide an array of CGRects (wrapped as objects) and set the animation key path to the frame property
of a layer. This causes the frame of the layer to iterate through the provided rectangles.

 ■ Provide an array of CATransform3D matrices (again, wrapped as objects) and set the animation key
path to the transformproperty. This causes each transform matrix to be applied to the layer’s transform
property in turn.

Keyframe Timing and Pacing Extensions

Keyframe animation requires a more complex timing and pacing model than that of a basic animation.

The inherited timingFunction property is ignored. Instead you can pass an optional array of
CAMediaTimingFunction instances in the timingFunctions property. Each timing function describes
the pacing of one keyframe to keyframe segment.

While the inherited duration property is valid for CAKeyframeAnimation, you can attain more subtle control
of timing by using the keyTimes property.

The keyTimes property specifies an array of NSNumber objects that define the duration of each keyframe
segment. Each value in the array is a floating point number between 0.0 and 1.0 and corresponds to one
element in the values array. Each element in the keyTimes array defines the duration of the corresponding
keyframe value as a fraction of the total duration of the animation. Each element value must be greater than,
or equal to, the previous value.

The appropriate values for the keyTimes array are dependent on the calculationMode property.

 ■ If the calculationMode is set to kCAAnimationLinear, the first value in the array must be 0.0 and
the last value must be 1.0. Values are interpolated between the specified keytimes.

 ■ If the calculationMode is set to kCAAnimationDiscrete, the first value in the array must be 0.0.

 ■ If the calculationMode is set to kCAAnimationPaced, the keyTimes array is ignored.

An Example Keyframe Animation

Listing 2 shows a code fragment that implements an explicit animation equivalent to the animation in Figure
2.

18 Keyframe Animations
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Property-Based Animations

Listing 2 CAKeyframeAnimation code fragment

// create a CGPath that implements two arcs (a bounce)
CGMutablePathRef thePath = CGPathCreateMutable();
CGPathMoveToPoint(thePath,NULL,74.0,74.0);
CGPathAddCurveToPoint(thePath,NULL,74.0,500.0,
 320.0,500.0,
 320.0,74.0);
CGPathAddCurveToPoint(thePath,NULL,320.0,500.0,
 566.0,500.0,
 566.0,74.0);

CAKeyframeAnimation * theAnimation;

// create the animation object, specifying the position property as the key path
// the key path is relative to the target animation object (in this case a
CALayer)
theAnimation=[CAKeyframeAnimation animationWithKeyPath:@"position"];
theAnimation.path=thePath;

// set the duration to 5.0 seconds
theAnimation.duration=5.0;

// release the path
CFRelease(thePath);

Keyframe Animations 19
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Property-Based Animations

20 Keyframe Animations
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Property-Based Animations

Transition animation is used when it is impossible to mathematically interpolate the affect of changing the
value of a layer property, or the state of a layer in the layer tree.

This chapter discusses the transition animation functionality provided by Core Animation.

Creating a Transition Animation

The CATransition class provides transition functionality to Core Animation using Core Image filters. It is a
direct subclass of CAAnimation as it affects an entire layer, rather than a specific property of a layer.

A new instance of CATransition is created using the inherited class method animation. This will create
a transition animation with the default values shown in Table 1:

Table 1 Default CATransition property values

ValueTransition Property

Uses a fade transition. The value is kCATransitionFade.type

Not applicable.subType

Uses the duration of the current transaction or 0.25 seconds if the duration has not
been set for a transaction. The value is 0.0

duration

Uses linear pacing. The value is nil.timingFunction

0startProgress

ParaendProgress

Configuring a Transition

Once created, you can configure the transition animation using one of the predefined transition types or
create a custom transition using a Core Image filter.

The predefined transitions are used by setting the type property to one of the constants in Table 2.

Creating a Transition Animation 21
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Transition Animation

Table 2 Common transition types

DescriptionTransition Type

The layer fades as it becomes visible or hidden.kCATransitionFade

The layer slides into place over any existing content.kCATransitionMoveIn

The layer pushes any existing content as it slides into placekCATransitionPush

The layer is gradually revealed in the direction specified by the transition subtype.kCATransitionReveal

With the exception of kCATransitionFade, the predefined transition types also allow you to specify a
direction for the transition by setting the subType property to one of the constants in Table 3.

Table 3 Common transition subtypes

DescriptionTransition Subtype Constant

The transition begins at the right side of the layer.kCATransitionFromRight

The transition begins at the left side of the layer.kCATransitionFromLeft

The transition begins at the top of the layer.kCATransitionFromTop

The transition begins at the bottom of the layer.kCATransitionFromBottom

The startProgress property allows you to change the start point of the transition by setting a value that
represents a fraction of the entire animation. For example, to start a transition half way through its progress
the startProgress value would be set to 0.5. Similarly, you can specify the endProgress value for the
transition. The endProgress is the fraction of the entire transition that the transition should stop at. The
default values are 0.0 and 1.0, respectively.

If the predefined transitions don’t provide the desired visual effect, you can specify a custom Core Image
filter object that is used to display the transition. A custom filter must support both the kCIInputImageKey
and the kCIInputTargetImageKey input keys, and the kCIOutputImageKey output key. The filter may
optionally support the kCIInputExtentKey input key, which is set to a rectangle describing the region in
which the transition should run.

22 Configuring a Transition
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Transition Animation

This table describes the changes to Animation Types and Timing Programming Guide.

NotesDate

Corrected typos.2008-04-08

Corrected timing function image.2008-02-08

New document that describes the animation and timing classes used by both
Core Animation and Cocoa Animation proxies.

2007-10-31

23
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

24
2008-04-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Animation Types and Timing Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Animation Class Roadmap
	Timing, Timespaces, and CAAnimation
	Media Timing Protocol
	Repeating Animations
	Fill Mode

	Animation Pacing
	Animation Delegates

	Property-Based Animations
	Property-Based Abstraction
	Basic Animations
	Configuring a Basic Animation’s Interpolation Values
	An Example Basic Animation

	Keyframe Animations
	Providing Keyframe Values
	Keyframe Timing and Pacing Extensions
	An Example Keyframe Animation

	Transition Animation
	Creating a Transition Animation
	Configuring a Transition

	Revision History

