Application Architecture Overview

Cocoa > Design Guidelines

¢

2006-08-07

.

[

Apple Inc.

© 2001, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Mac, Mac OS, Objective-C, and Xcode
are trademarks of Apple Inc,, registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Application Architecture 7

Who Should Read This Document 7
Organization of This Document 7

Features of a Cocoa Application 9

Document Architecture 11

NSDocuments Are Model-Controllers 11
NSWindowControllers Are View-Controllers 12
Type Information and NSDocumentControllers 12
Typical Usage Patterns 13

Documents and Scripting 13

Scripting 15

Scripting and the Model Layer 15
Scripting and Key-Value Coding 16
Object Specifiers 17

Script Commands 18

Script Suites 18

Built-in Suites 19

Custom Suites 19

Undo and Redo 21

Undo and the Document Architecture 21
Undo and the Model Layer 22

Undo and the Control and View Layers 22
Undo and Scripting 23

Graceful Application Termination 25

Applications Based on the Document Architecture 25
Summary of Document-Saving Procedure 26

An Example: Text Edit 27

Cleaning Up 31

Document Revision History 33

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Listings

Graceful Application Termination 25

Listing 1
Listing 2
Listing 3
Listing 4
Listing 5
Listing 6
Listing 7

Implementing applicationShouldTerminate: 27
Recursively reviewing document changes 28

Displaying and handling a sheet for saving a document 29
Callback methods for NSBeginAlertSheet 29

Handling the explicit closing of a window 30

Removing a reference in windowWillClose: 31

Saving user preferences in applicationWillTerminate: 31

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Application Architecture

This document describes the essential components of a Cocoa application and how they work together. It
also discusses features of Cocoa applications and the principles related to their design.

Who Should Read This Document

Every developer who creates Cocoa applications should read this document.

To understand the information in this document you should have a general knowledge of Cocoa programming
paradigms, which are described in the Cocoa Fundamentals Guide.

Organization of This Document

Three important features of the Cocoa frameworks—the document architecture, scripting, and undo and
redo—have a great deal in common conceptually. This document explains their shared conceptual
underpinnings. It does not go into great detail about the specifics of the classes implementing these features
or how to use them. Instead it concentrates on the recommended structure of an application and how that
structure supports these features.

The Cocoa frameworks are AppKit.framework and Foundation.framework.You can examine them in
/System/Library/Frameworks/.

This document contains the following articles:

m “Features of a Cocoa Application” (page 9) describes the features provided by the Application Kit that
are shared by all Cocoa applications.

= “Document Architecture” (page 11) explains how the Application Kit supports document-based
applications. This common type of application enables users to create and edit documents: container
objects that manage user data and present it in windows.

= “Scripting” (page 15) explains the concepts you need to understand to make your application
scriptable—that is, one that responds to Apple events using the AppleScript system.

= “Undo and Redo” (page 21) describes the support Cocoa provides for implementing undo and redo,
and explains how those features work with the document architecture and other application mechanisms.

m “Graceful Application Termination” (page 25) explains how a Cocoa application can quit executing
gracefully—that is, ensuring that the user's data is saved and cleaning up after itself.

This document uses Objective-C to describe specific APIs. However, all scripting, document, and undo APIs
published in Mac OS X versions through version 10.4 are also available in Java. Special issues related to Java

are discussed where appropriate, and if Java isn't mentioned specifically, it is because there is nothing special
to say about it.

Who Should Read This Document 7
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Application Architecture

Organization of This Document
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Features of a Cocoa Application

A Cocoa application has behind it the powerful resources of the Cocoa frameworks, particularly the Application
Kit. These software resources—along with Xcode, Interface Builder, and the rest of the Cocoa development
environment—make possible the speedy development of robust, full-featured applications.

The simplest Cocoa application, even one without a line of code added to it, includes a wealth of features
that you get “for free.” In other words, you either do not have to program these features yourself or the
programming effort is trivial. You can simply create an application project with Xcode, create a graphical
user interface with Interface Builder, and build the application to get the following features:

Window Management and Workspace Integration. In response to user actions, an application takes
care of closing, miniaturizing, and resizing its windows. In coordination with the Finder, the application
handles its own deactivation and reactivation, hiding and exposing its windows and doing all necessary
redraws.

Event Handling. The application creates its event loop and, in coordination with the window system,
receives and distributes events to the windows and views in which user actions occurred. Many user
actions are handled automatically, but you can implement your own handling of events.

Menu Management. As with an application’s windows, an application menu is automatically displayed
and removed from the menu bar as the application is started, deactivated, reactivated, and terminated.
The application takes care of menu-item tracking and highlighting, submenu display, and accelerator
keys. In many instances, an application triggers actions in expected objects when menu items are disabled
and it enables or disables items appropriately. Of course, you can customize menu behavior to more
sophisticated requirements.

Text and Font Support. When you add the necessary objects to your user interface in Interface Builder,
your application automatically gains many capabilities related to text editing:menu selection of font
families, sizes, and styles and textual attributes such as alignment, kerning and ligatures; a text object
with a ruler, automatic scrolling, and wrapping, built-in support for displaying simple text, RTF, and
HTML (and writing simple text and RTF). (Although much of the behavior is free, you still must
programmatically provide for saving and reading text files.)

Control Behavior. Applications automatically handle control highlighting, cursor display, pop-up list
display, radio-button coordination, and many other aspects of control appearance and behavior. You
can customize most of these aspects in Interface Builder. Applications also handle the invocation of
actions (methods) in target objects when controls are activated (you set these associations in Interface
Builder). You can create your own custom controls.

Cocoa applications are distributed as application bundles. An application bundle is a special type of a bundle:
a directory that presents itself to the user in the Finder as a single file. In the case of an application bundle,
the file is an executable. Double-clicking it causes the Finder to launch the application. Application bundles
have an extension of .app.

An application bundle contains the application executable and the resources needed by that executable.
For more information about bundles and application packaging, see Bundle Programming Guide.

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

10

Features of a Cocoa Application

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Document Architecture

This article begins by describing the Model-View-Controller (MVC) design pattern because this pattern informs
application design that is most supportive of scripting, document-based applications, and undo. It does not
fully describe the MVC design pattern in any formal way, because that’s not really its purpose, but it does
discuss the pattern enough to give some background for the remaining discussion. More information about
MVC is presented in the Cocoa Fundamentals Guide. In addition, Cocoa Bindings Programming Topics explains
how you can use Cocoa bindings technology to keep model and view values synchronized.

The document architecture in the Application Kit is based on three classes: NSDocument,
NSWindowController,and NSDocumentController.NSDocument is the principal class. It represents a
single document in your application. Developers must subclass NSDocument to give it knowledge of the
application’s model layer and to implement persistence (loading and saving). NSWindowControl1er objects
own and control the application’s user interface. An NSDocument object has one or more
NSWindowController objects. Developers often subclass NSWindowControl1er to add specific knowledge
of the view layer that the controller is responsible for managing. NSDocumentController is a singleton
class. Each document-based application has a single instance of NSDocumentController to track and
manage all open documents. Developers typically don’t need to subclass NSDocumentController.

You can find more information about the document architecture in the Document-Based Applications Overview.

NSDocuments Are Model-Controllers

NSDocument is a model-controller class. Its main job is to own and manage the model objects that make up
a document and to provide a way of saving those objects to a file and reloading them later. Any and all
objects that are part of the persistent state of a document should be considered part of that document’s
model. Sometimes the NSDocument object itself has some data that would be considered part of the model.
For example, the Sketch example application has a subclass of NSDocument named SKTDrawDocument;
objects of this class might have an array of SKTGraphic objects that comprises the model of the document.
In addition to the actual SKTGraphic objects, the SKTDrawDocument object contains some data that should
technically be considered part of the model because the order of the graphics within the document’s array
matters in determining the front-to-back ordering of the SKTGraphic objects.

An NSDocument object should not contain or require the presence of any objects that are specific to the
application’s user interface. Although a document can own and manage NSWindowController
objects—which present the document visually and allow the user to edit it—it should not depend on these
objects being there. For example, it might be desirable to have a document open in your application without
having it visually displayed. For instance, a script might have opened a document to do some processing on
it. If the script does not need the user to become involved in the processing, the script might want the
document to be opened, manipulated, saved, and closed again, without it ever appearing onscreen.

NSDocuments Are Model-Controllers 1
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Document Architecture

NSWindowControllers Are View-Controllers

NSWindowController is a view-controller class. Its main job is to own and manage the view objects that
are used to display and edit a document. A document that is visible to the user has one or more
NSWindowController objects to own and manage the visual presentation. Although you can use an
NSWindowController instance, most often you must subclass NSWindowController to add specific
knowledge of the interface. An NSWindowController object usually gets its interface from a nib file.
Subclasses often add outlets and actions for the controls and views within the nib file and the
NSWindowController object usually acts as the file's owner for the nib.

In very simple cases where there is only one window for a document, you may want your NSDocument class
to have outlets and actions for the nib. In this case, the NSDocument subclass acts as the file’s owner for the
nib, but it still creates an NSWindowController instance to own and manage the objects that are loaded
from the nib. If you do choose to adopt this approach when quickly prototyping an application, you should
be careful to localize the portions of your code that deal with the user interface, so you can later extract them
from the document and put them into a custom window controller as your application becomes more
complex.

Type Information and NSDocumentControllers

12

An NSDocumentController object manages documents. It keeps track of all open documents; it knows
how to create new documents and how to open existing documents. It knows how to find open documents
given either a window whose window controller refers to the document or the path of the file the document
was loaded from. Developers typically won't have to worry about what it does. NSDocumentController
knows how to read and use the metadata that a document-based application provides about the types of
documents it can open. NSDocumentController can provide information based on that metadata, such
as lists of file types supported by an application and which NSDocument subclasses are used for them.

All document-based applications declare information about the document types they support in the
information property list (Info.p11st) of the application. Xcode provides an editor for creating and modifying
this metadata. See the NSDocumentController class specification for details on the Info.plist keys
required by the document architecture and how to include this metadata in your application project.

The metadata in the information property list declares the types of documents supported by an application.
Cocoa defines a set of abstract types; these types are usually the same as the pasteboard type that represents
such data. For each abstract type, the Info.plist lists specific information such as:

= The file extensions used to identify files of that type
= The HFS four-letter type code for files of that type
= The icon the Finder should use to display files of that type

m The subclass of NSDocument used by an application to deal with files of that type

NSDocumentController loads all this type information and uses it. When NSDocumentController runs
an open panel it obtains the list of all file extensions for document types that your application can read; it
passes that list to the open panel so that it can list the files that can be opened. When the user actually
chooses a file to open, the NSDocumentController object uses the metadata to identify the subclass of
NSDocument to use to create the document and load its data.

NSWindowControllers Are View-Controllers
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Document Architecture

Typical Usage Patterns

You can use the document architecture in three general ways. The following discussion starts with the simplest
and proceeds to the most complex.

The simplest way to use the document architecture is appropriate for documents that have only one window
and are simple enough that there isn't much benefit in splitting the controller layer into a model-controller
and a view-controller. In this case, the developer needs only to create a subclass of NSDocument. The
NSDocument subclass provides storage for the model and the ability to load and save document data. It also
has any outlets and actions required for the user interface. It overrides windowNibName to return the nib
file name used for documents of this type. NSDocument automatically creates an NSWindowController
instance to manage that nib file, but the NSDocument object itself serves as the nib file’s file's owner.

If your document has only one window, but it is complex enough that you'd like to split up some of the logic
in the controller layer, you can subclass NSWindowController as well as NSDocument. In this case, any
outlets and actions and other behavior that is specific to the management of the user interface goes into
the NSWindowController subclass. Your NSDocument subclass must override makeWindowControllers
instead of windowNibName. The makeWindowControllers method should create an instance of your
NSWindowController subclass and add it to the list of managed window controllers with
addWindowController:.The NSWindowController should be the file's owner for the nib file because
this creates better separation between the view-related logic and the model-related logic. This approach is
recommended for all but the most simple cases.

If your document requires multiple windows (or allows multiple windows) on a single document you should
subclass NSWindowController as well as NSDocument. In your NSDocument subclass you override
makeWindowControllers justasinthe second procedure described above. However, in this case you might
create more than one instance of NSWindowController, possibly from different subclasses of
NSWindowController.Some applications need several different windows to represent one document.
Therefore you probably need several different subclasses of NSWindowControl1ler and you must create
one of each in makeWindowControllers. Some applications need only one window for a document but
want to allow the user to create several copies of the window for a single document (sometimes this is called
a multiple-view document) so that the user can have each window scrolled to a different position, or displayed
in different ways. In this case, your makeWindowControllers may only create one NSWindowController
instance, but there will be a menu command or similar control that allows the user to create others.

Documents and Scripting

Scripting support is mostly automatic for applications based on the document architecture, for several reasons.
First, NSDocument and the other classes in the document architecture directly implement the standard
document scripting class (as expected by AppleScript) and automatically support many of the scripting
commands that apply to documents. Second, because the document architecture is intended to work with
application designs that use MVC separation, and because scripting support depends on many of the same
design points, applications that use the document architecture are already in better shape to support scripting
than other applications that are not designed that way. Finally, the document plays an important role in the
scripting APl of most applications; NSDocument knows how to fill that role and provides a good starting
point for allowing scripted access to the model layer of your application.

Typical Usage Patterns 13
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Document Architecture

If an application is not based on the document architecture, making it scriptable requires that you duplicate
work you would otherwise get for free. The TextEdit application project (distributed with Mac OS X) shows
how to make a document-based application that is not based on NSDocument scriptable. See the Sketch
example project for an example of how to implement a scriptable NSDocument-based application.

14 Documents and Scripting
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Scripting

This section describes concepts that will help you design a scriptable Cocoa application. You should read
this section before reading Cocoa Scripting Guide. However, if you are new to AppleScript and scripting, you
should start by reading “AppleScript for Mac OS X” and “Glossary of AppleScript Terms”.

A scriptable application is one that can respond to Apple events. An Apple event is a type of high-level
message used to send commands and data between processes. The AppleScript scripting system lets users
automate tasks involving multiple applications by executing scripts, or series of English-like statements. Script
statements are converted to Apple events and sent to the specified applications, which can include the Finder
and other parts of the Mac OS.

To help you take advantage of the demand for scriptable applications, the Cocoa scripting architecture is
designed to minimize the amount of work needed to make your application scriptable.

Scripting and the Model Layer

The scripting support in the Cocoa frameworks is geared towards making it easy for an application to
implement scripting through its model objects. AppleScript has never encouraged scripting an application’s
user interface because much of the time, the most efficient way for a script to do something is not the way
a user might do the same thing in the application. If scripting were concerned solely with providing access
to the user interface, it would just be glorified journaling.

Scripts that work with model objects are like batch processing. They perform their operations and don't need
or want the user’s involvement. A scripting system that extracts data from a database, processes it through
other applications, then sends it all to a page-layout program to generate the classified ads page for a
newspaper, is an example of such batch processing. The goal in batch-processing is not to involve the user,
but to go directly to the application’s model objects to get the work done.

Sometimes, however, you may want to affect certain aspects of the user interface while scripting. Scripts that
work with view objects are like macros. They do a very specific manipulation of an application, usually a
relatively small and self-contained one, and their purpose is to automate a small repetitive task for the user.
For instance, a script that gets the selected graphic in a page-layout program, places a caption beneath it,
and sets up blue-line guides along the outer edges of the resulting group to aid with alignment, would be
a script of this type.

Such a script is like a macro in that the user does a little preparation (such as selecting the graphic), invokes
the script, then continues on when it is done. For this type of script, your application must make some of its
user-interface structure scriptable—for example, you might need to make windows and selections scriptable.
Making these user-interface structures scriptable should, however, be in addition to the support you provide
for directly scripting model objects.

There are certain programming practices to avoid in designing your application’s model layer for scripting.
Many simple applications keep state in their view layer (that is, in a user-interface object). For instance, a
Preferences panel controller might be implemented so that the state of a Boolean attribute is “stored” in a
checkbox in the Preferences panel and is retrieved and set with the state and setState: methods. However,

Scripting and the Model Layer 15
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Scripting

keeping state in a view object is generally not a good strategy for data that is part of a document’s model
because it is antithetical to the MVC pattern. If a script needs to be able to access and modify state, the state
value should be separated from the view layer and stored in a model object or, if it doesn’t belong in the
model layer, in a controller object. Often this separation is necessary or desirable even without scripting as
a consideration.

For example, if a Preferences-panel controller stores current preference settings only in the controls of the
panel, it cannot answer any questions about the current settings without loading the panel. If other parts of
the application need to find out about preferences even if the user has not brought up the Preferences panel
(a likely situation), then it would be much better if the preferences controller itself stored the settings. This
would allow it to avoid having to load a nib file (a somewhat expensive activity) until it is actually needed.

The same argument holds for primitive behaviors as well. For instance, if you have a Find panel, instead of
implementing the logic to actually perform the find in the action method invoked by the Find Next button,
you should probably define some API in your document class or in your model objects that is capable of
performing the find. The Find Next button’s action method would then invoke this API. The advantage of
this scheme is that when you want scripts to be able to search documents, you can let the script go through
the document or model APl instead of requiring use of the Find panel itself.

Scripting and Key-Value Coding

16

Scripting in Mac OS X relies heavily on key-value coding to provide automatic support for executing AppleScript
commands. In key-value coding, each model object defines a set of keys that it supports. A key represents a
specific piece of data that the model object has. Some examples of scripting-related keys are “words,” “font,”
“documents,” and “color.”

The key-value coding API provides a generic and automatic way to query an object for the values of its keys
and to set new values for those keys. The primitive methods for key-value coding are valueForKey: and
takeValue:forKey:.NSObject has generic implementations of these methods that first look to use
standard accessor set and get methods based on the key (such as color and setColor: for the key named
“color”). If the class of the object does not implement accessor methods, key-value coding directly sets or
gets the value of the instance variable (“color”). Key-value coding defines many other extended methods
that are implemented in terms of the two primitives, but these aren’t discussed here because they have little
bearing on implementing scripting support.

As you design the objects of your application, you should define the set of keys for your model objects and
implement the accessor methods. Then when you define the script suites for your application, you can specify
the keys that each scriptable class supports. If you support key-value coding, you will get a great deal of
scripting support “for free.”

Keys fall into three categories, which have their roots in relational databases. Keys are either attribute keys
(for example, “color”), to-one relationship keys (a document’s NSTextStorage object), or to-many relationship
keys (an application’s documents). This categorization makes sense in situations other than relational databases,
including scripting. In AppleScript parlance, these key types map clearly to properties and elements. Think
of AppleScript elements as relationship keys (where no distinction is made between to-one and to-many
relationships) and think of AppleScript properties as attribute keys.

So why is key-value coding so important for scripting? In AppleScript, “object hierarchies” define the structure
of the model objects in an application. For instance, a drawing application has documents and those
documents have graphic objects. The graphic objects in turn have a fill color and line thickness. Most
AppleScript commands specify one or more objects within your application by drilling down this object
hierarchy from parent container to child element.

Scripting and Key-Value Coding
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Scripting

For instance, some graphics might be identified by the statement graphics 5 thru 7 of the document
"MyDocument' of application 'MyDraw'.There must be some way of finding these graphics so they
can be acted upon. Key-value coding makes this search entirely automatic. An application has the key
“documents,” which is a to-many relationship (because the application can open multiple documents). Each
document has a “name” key that identifies the file it represents. To find the document named MyDocument
the framework can ask for all the documents of the application and check each one’s name until it finds the
one named MyDocument. Because key-value coding defines a uniform way of asking for the value of a key
(valueForKey:), all this work can be done automatically with no extra effort from the developer. Similarly,
once the key-value coding-driven scripting system finds the document, it obtains the “graphics” key and
from it gets elements 5 thru 7.

If you have previous experience with AppleScript, you know that in a Carbon application, the work just
described depends on the Object Support Library in the Mac OS. The Cocoa version of the Object Support
Library knows how to use key-value coding to evaluate object specifiers. Instead of specifically invoking the
library and passing in all sorts of evaluation handlers, the Cocoa developer simply relies on the key-value
coding mechanism. Of course, you can be more directly involved in the evaluation if you need to do so for
performance reasons or if your scripting model does not match your internal model closely enough for the
automatic support to work.

The usefulness of key-value coding does not stop with object-specifier evaluation. Most of the core commands
defined by AppleScript have default implementations in Cocoa based on key-value coding. For instance, the
Get Data and Set Data commands require no extra code for your objects to support if the classes for these
objects define their keys properly and implement the standard accessors. The same holds true of the Move,
Clone, Delete, Create, Count, and Exists commands. Most script commands have been generically implemented
with key-value coding so most model objects will not have to worry about them at all. If your model class
must handle a particular command in a special way, even if the command has a default implementation, it
can do so.

Object Specifiers

A script command is an AppleScript expression such as words whose color is red of the fourth
paragraph of the front document of application 'TextEdit'.Withina Cocoa application,
elements of this command are represented by objects of the NSScript0ObjectSpecifier class, which use
key-value coding to evaluate the underlying objects they represent. Concrete subclasses of this abstract class
represent the different reference forms supported by AppleScript, such as index references (word 5) and
filter references (tests or “whose” clauses, such as words whose color is red).

NSScriptObjectSpecifiers can be nested, so the example in the preceding paragraph would actually be
represented by a chain of three references: one for the words, one for the paragraph, one for the document.
(Thephrase application 'TextEdit' doesnotneed representation because the specifier exists in TextEdit
by the time the command is executed.) NSScriptObjectSpecifier objects know how to evaluate
themselves within their containing specifier. The explicit top-level specifier (front document in the example)
evaluates itself within a default top-level container, which is usually the application itself.

You should not need to know much about specifiers to make an application scriptable, because Cocoa’s
built-in scripting support can create and resolve specifiers automatically. However, you will need to know
how to work with them if your application has scripting needs that go beyond the built-in support. For
example, applications that wish to support recording will need to create object specifiers for recorded actions.

Object Specifiers 17
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Scripting

Script Commands

When a scripter executes a script that sends a command (such as set the height of the first
rectangle to 37)to an application, the application receives an Apple event that encapsulates the script
command. Cocoa’s built-in scripting support converts Apple events into script command objects based on
the NSScriptCommand class. An application may receive many consecutive script commands, but each one
is separate, distinct and complete.

A script command may be an instance of NSScriptCommand itself, but Cocoa also provides several subclasses
of NSScriptCommand, whose defaultimplementations use key-value coding to handle standard AppleScript
commands such as Get Data, Set Data, and others. A subclass might also be needed if a command has
arguments that need special processing to be converted to a useful form.

An NSScriptCommand object has an object specifier that identifies the receiver (or receivers) of the command
and can have another object specifier for any arguments defined by the command. Command arguments
can be actual values or object specifiers that identify where to find the actual values within the application’s
object hierarchy.

A scriptable class declares what commands it supports. For commands that have a default implementation,
scriptable classes can choose to use it, or they can choose to implement the behavior required by the
command themselves. For commands without default implementations, scriptable objects must implement
and specify a method that handles the command.

It may seem odd that script commands are separate from the classes that support them. Although this differs
from standard object-oriented style, AppleScript is designed to have a small set of commands that act on a
wide set of objects. This provides some advantages—for example, it gives the Cocoa frameworks the ability
to support default implementations for commands, if the commands are generic enough to be implemented
through key-value coding.

Script Suites

18

AppleScript groups chunks of scripting information in “suites.” A suite consists of a set of class descriptions,
a set of command descriptions, and a set of terminologies for each supported AppleScript dialect. On Mac
OS X, the suites an application supports are defined in the 'aete' resource of the application. In the Cocoa
frameworks, suites are defined in property lists. You can create and examine property lists with the Property
List Editor application, which is distributed with Mac OS X.

Any framework, application, or loadable bundle can declare script suites. The set of suites an application
supports is a result of the union of all the suites defined by the application itself, the frameworks it links
against, and the bundles it loads dynamically. The Cocoa frameworks declare two suites and thus any scriptable
application automatically supports these suites. These suites are the Core suite and the Text suite. Thus, if
you expose access toan NSTextStorage object through your object hierarchy, that NSTextStorage object
is fully and automatically scriptable through the standard Text suite. If your application uses the Application
Kit's document architecture (discussed below), it automatically supports all the Core suite commands that
can be applied to documents.

The property list that describes a suite contains all the information about the classes and commands in that
suite that are needed by the scripting frameworks. For classes, this includes all the supported keys (attribute
and relationship keys) for the class and their types. It also includes all the commands that the class supports
(both from the class’s own suite and others). For commands this includes the number and types of the

Script Commands
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Scripting

arguments, whether they are required, and the return data type. The suite definition also includes information
needed to map the classes and commands to the appropriate four-letter codes used to structure the data
in an Apple event representing a script command.

As a Cocoa application developer, you don't typically have to deal with Apple events directly to support
scripting, because Cocoa converts incoming Apple events into script commands. However, you will have to
provide the information necessary to map classes, commands, keys, and related information to the codes
used in Apple events.

In addition to the suite definition, which is a language-independent resource, a suite terminology contains
dialect-specific terminology information that identifies the actual scripting vocabulary used for the various
classes and commands.

Suite definitions and suite terminologies are described in more detail in Cocoa Scripting Guide.

Built-in Suites

The Cocoa frameworks define two standard suites, the Core suite and the Text suite. In addition, Cocoa classes
implement scripting for these standard suites so that, for instance, the NSTextStorage object is completely
scriptable using the Text suite and the NSDocumentController and NSDocument objects support the Core
scripting commands that make sense for documents.

Custom Suites

Any application can define its own suites. In these suites they can define new script classes and new script
commands.

Built-in Suites 19
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Scripting

20 Custom Suites
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Undo and Redo

The Cocoa frameworks provide support for implementing undo and redo. NSUndoManager objects are
responsible for tracking of the actions necessary to undo changes that are made to a document. The basic
premise of the undo architecture is that when you are about to do something you first tell the NSUndoManager
object how to undo it. The main API is invocation based, so if you have a setColor: method, it sends a
message similar to the following before it actually sets the new color:

[LundoManager prepareWithInvocationTarget:self] setColor:oldColor]

This message causes the creation of an NSInvocation instance; if the user chooses Undo, that invocation
(of the method setColor: with the parameter being the old color) is invoked. Because undone changes
are put on a redo stack, if the user chooses the Redo command, the changes are redone.

Because many discrete changes might be involved in a user-level action, all the undo registrations that
happen during a single cycle of the event loop are usually grouped together and are undone all at once.
NSUndoManager has methods that allow you to control the grouping behavior further if you need to.

Undo and the Document Architecture

If you use the document architecture, some aspects of undo handling happen automatically. By default, each
NSDocument object has an NSUndoManager object. (If you don't want your application supporting Undo,
you can use the NSDocument method setHasUndoManager: to prevent the creation of the undo manager.)
You can use the setUndoManager: method if you need to use a subclass or if you otherwise need to change
the undo manager used by the document.

When an NSDocument object has an NSUndoManager object, the document automatically keeps its edited
state up to date by watching for notifications from the undo manager that tell it when changes are done,
undone, or redone. In this case, you should never have to invoke the NSDocument method
updateChangeCount: directly, since it is invoked automatically at the appropriate times.

The important thing to remember about supporting undo in a document-based application is that all changes
that affect the persistent state of the document must be undoable. With a multilevel undo architecture, this
is very important. If it is possible to make some changes to the document that cannot be undone, then the
chain of edits that the NSUndoManager keeps for the document can become inconsistent with the document
state. For example, imagine that you have a drawing program that is able to undo a resize, but not a delete.
If the user selects a graphic and resizes it, the NSUndoManager gets an invocation that can undo that resize
operation. Now the user deletes that graphic (which is not recorded for undo). If users now try to undo
nothing would happen (at the very least) since the graphic that was resized is no longer there and undoing
the resize can’t have any visual effect. At worst, the application might crash trying to send a message to a
freed object. So when you implement undo, remember that everything that causes a change to the document
should be undoable.

Undo and the Document Architecture 21
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Undo and Redo

Undo and the Model Layer

The most important code supporting undo should be in your model layer. Each model object in your
application should be able to register undo invocations for all primitive methods that change the object.

It is often useful to structure the APIs of your model object to consist of primitive methods and extended
methods. Examples of this sort of separation can be found throughout the Foundation framework (including
NSString, NSArray,and NSDictionary) as well as in the Sketch example project. If you have such a
separation in your model objects, remember that only the primitives should register for undo since, by
definition, the extended methods are implemented in terms of the primitives.

Some situations might require you to temporarily suspend undo registration for certain actions. For example,
a Sketch application lets the user resize a graphic by grabbing a resize knob and dragging it. During this
dragging, hundreds or thousands of changes may be made to the bounds rectangle of the selected graphic.
Changing the bounds of a graphic is a primitive operation and would normally result in an undo registration.
While the user is actively resizing, though, it would be better if those thousands of undo registrations did
not happen. In these cases, your model object might provide API to temporarily suspend and resume some
or all of its undo registration. It is up to you to decide how to handle this. Certainly, it would work if those
thousands of undo registrations did happen, but it would be a tremendous waste of memory to have to
remember all those intermediate rectangles when you will never have to restore one of those intermediate
states.

Undo and the Control and View Layers

22

Although the most important part of your undo support should be in the model, there are two situations

where you need some undo-related code in either your controller or view objects. The first case is when you
want the Undo and Redo menu items to have more specific titles. You can use the NSUndoManager method
setActionName: to give a name to the current undo group. The last invocation of setActionName: during
an event cycle is the effective one. These names should reflect the intent of the user action, not the primitive
operation that the action results in. Therefore, it is in your action methods that you should set action names.

It is not absolutely necessary to name an undo group. The menu items just say “Undo” and “Redo” without
being specific about what is to be undone or redone. But when you do register a name it can help the user
to know what will be undone or redone. It isn't too hard to sprinkle a few calls to setActionName: in your
view or controller action messages, so it is recommended that you try to give meaningful action names.

The second case where you might have some undo code in the controller or view layers is when there are
some things that change that do not affect the actual state of the document but that still need to be undoable.
Undoing selection changes is often such a case. For example, the Sketch application might not consider the
selection to be a part of the document. In fact, if the document can have multiple views open on it, you might
be able to have different selections in each one. However, you might want changes in the selection to be
able to be undone for the user’s convenience and for visual continuity when the user is actually undoing
things. In this case, the view that displays the graphics might keep track of the selection. It should register
undo invocations as the selection changes.

Controller and view objects can come and go during the lifetime of a document object, and this is a
consideration when controller-layer or view-layer events must be undoable. Your model objects typically
live for the lifetime of the document and the document also owns the undo manager, so you don't generally
need to worry about what happens when the model goes away. But you may have to worry about what
happens when the controller and view objects go away. If your controller or view object registers any undo

Undo and the Model Layer
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Undo and Redo

invocations, you should make sure that they are cleared from the undo manager when the controller or view
is deallocated. You can use the NSUndoManager method removeAlTActionsWithTarget: forthis purpose.
Once a particular view on your document is closed, there is no point in keeping undo information about
things such as selection changes for that view.

Undo and Scripting

Itis usually desirable to make scripted changes undoable. This is one more reason to put your primary undo
support in your model objects. Since scripting is usually directed at the model, if your undo support is in
your model primitives, then scripted changes can be undone. Being able to undo scripted changes is actually
most important with macro-like scripts, where the script is used to automate relatively small tasks that are
interspersed with direct user manipulation. In these cases especially, you want the scripted changes recorded
along with the direct user changes, and for the same reason—it is important to have all changes to a document
recorded. If an application doesn’t do this, a document can easily become inconsistent with the undo stack.

Undo and Scripting 23
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Undo and Redo

24 Undo and Scripting
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Graceful Application Termination

When a user quits an application (by choosing the Quit command or pressing Command-Q) or when a user
logs out, restarts, or shuts down the system, an application should do whatever is necessary to terminate

itself gracefully. It should ensure that all data associated with the application and its documents is properly
saved, all state (such as user preferences) is stored, and that all necessary clean-up takes place. What graceful
termination entails depends on the type of application. For example, an application with multiple documents
to save must do a lot more than a simple document-less application that needs only to free allocated resources.

In Cocoa, all raw events requiring application termination result in the invocation of the NSApplication
delegation method applicationShouldTerminate:. If the delegate does not implement this method,
the application is terminated regardless of any unsaved documents. Moreover, quitting, logging out, restarting,
or shutting down does not automatically lead to the invocation of the NSWindow delegation method
windowShouldClose: inany of the application’s windows. This method is immediately invoked when users
click the close box or choose the Close command. It is typically the place the window’s (NSWindow) delegate
displays a sheet asking users if they want to save any data associated with the window. To gracefully terminate
your application (assuming it has data to save) you must ensure that windowShouldClose: is invoked for
each of your windows, or that the behavior commonly implemented in this method occurs elsewhere in your
application.

An application that gracefully terminates can be one of several kinds:

= multi-document applications based on Cocoa’s document architecture
= multi-document applications not based on the document architecture
= single-document applications

= applications that need to save state and do any clean-up tasks not handled by the application itself

The procedure differs for each of these kinds of application. The following discussion focuses primarily on
the second type of application— multi-document applications that are not based on the document
architecture—because the procedure is most comprehensive. The code examples used to illustrate the
procedure come from the Text Edit example application located at
/Developer/Examples/AppKit/TextEdit/.

Applications Based on the Document Architecture

If your multi-document application uses Cocoa’s document architecture—that is, the constellation of
NSDocument, NSWindowController,and NSDocumentControl1er objects, along with their delegates—the
good news is that you have to do absolutely nothing to effect a graceful termination of the application. This
“free” behavior is implemented largely in NSDocumentController.

In case you don't use the default NSDocumentController object, or want to create a subclass of it, you
may need to know more about how the NSDocumentController class gracefully terminates execution;
here is a summary:

Applications Based on the Document Architecture 25
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Graceful Application Termination

InapplicationShouldTerminate:,ifthere are multiple unsaved documents, NSDocumentController
calls a method with an impossibly long name:
reviewUnsavedDocumentsWithAlertTitle:cancellable:delegate:didReviewAl1Selector:contextinfo:.
This method displays an alert dialog containing buttons for reviewing unsaved documents, quitting
despite unsaved documents, and canceling the impending save operation.

If the user chooses to cancel, NSDocumentController simply returns NSTerminateCancel.

If the user chooses to quit without saving or if there are no documents to save, the method identified
by the didReviewAl1Selector selector is invoked with a parameter of YES, allowing the specified
delegate to do whatever is necessary before terminating.

If the user chooses to review unsaved documents, NSDocumentController calls
closeAlTDocumentsWithDelegate:didCloseAl1Selector:contextInfo:. This method simply
displays a sheet, in order, for each of the windows with unsaved document data.

For more information on Cocoa’s document architecture, see the programming topic Document-Based
Applications Overview.

Summary of Document-Saving Procedure

26

A multi-document application that is not based on Cocoa’s document architecture has to do much more of
the termination work itself. This work is similar to what NSDocumentController does, as described in
“Applications Based on the Document Architecture” (page 25). In summary, the steps are the following:

1.

The application delegate should implement applicationShouldTerminate: to handle any request
to quit the application or log out, restart, or shut down the system.

InapplicationShouldTerminate: the delegate should get an array of the application’s windows
and determine if any associated documents have unsaved data.

If there are unsaved documents, the delegate displays an alert dialog asking the user if he or she wants
to save the documents before quitting, discard any changes (and quit), or cancel the operation.

Of course, if there are no unsaved documents, the delegate should return NSTerminateNow, which tells
the application object to proceed with termination (closing all windows, and so on).

If users want to review changes and save document data, the application delegate should, in
applicationShouldTerminate:,initiate the window-save procedure and return NSTerminatelater.
Otherwise, it should return NSTerminateNow or NSTerminateCancel, as appropriate.

In a window-save routine, each window with unsaved data should display a sheet asking users if they
wish to save the document, close the window without saving, or cancel the operation. Each window
should display its sheet in an orderly sequence, not all at once, and should respond appropriately to the
user’s choice.

Because the goals are the same (saving document data), the code used for this purpose can be the same
code that is executed when the user closes the window (typically invoked by the window’s delegate in
windowShouldClose:).

After all document data has been saved (or when users choose “close without saving”), send
replyToApplicationShouldTerminate: tothe application object (NSApp) with an argument of YES.

Summary of Document-Saving Procedure
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Graceful Application Termination

If the user is logging out, or is restarting or shutting down the system, You need to send
replyToApplicationShouldTerminate: within two minutes after returning NSTerminatelater
inapplicationShouldTerminate: orthe procedure will time out.

When the application object gets the go-ahead for termination, it closes any open window (among other
things). This results in the invocation of the NSWindow delegation method windowWil1Close: in which
the delegate can perform any necessary tasks (clean-up, for example) related to the window.

Just before the application ceases execution, the application delegate method
applicationWillTerminate: isinvoked; here the delegate can perform any tasks related to the
application itself, such as writing out application preferences.

The following section, “An Example: Text Edit,” illustrates the procedure outlined above and points out details
of implementation.

An Example: Text Edit

When you install the Developer package for Mac OS X, the Text Edit application, which is included in a
standard user installation of Mac OS X, is also included as an example Cocoa Application project
(/Developer/Examples/AppKit/TextEdit/). Even though Text Edit is a multi-document application it
does not (currently, at least) make use of the document architecture. Given this, how it handles graceful
application termination is instructive.

Listing 1 shows how Text Edit’s application delegate—which is its application controller object
(Controller.m—implements applicationShouldTerminate:.

Listing 1 Implementing applicationShouldTerminate:

{

(NSApplicationTerminateReply)applicationShouldTerminate: (NSApplication *)app

NSArray *windows = [app windows];
unsigned count = [windows count];
unsigned needsSaving = 0;

// Determine if there are any unsaved documents...
while (count--) {
NSWindow *window = [windows objectAtIndex:count];
Document *document = [Document documentForWindow:window];
if (document && [document isDocumentEdited]) needsSaving++;
}
if (needsSaving > 0) {
int choice = NSAlertDefaultReturn; // Meaning, review changes
if (needsSaving > 1) { // If we only have 1 unsaved document,
// we skip the "review changes?" panel
NSString *title = [NSString stringWithFormat:
NSLocalizedString(@"You have %d documents with unsaved
changes. Do you want to review these changes before
quitting?", @"Title of alert panel which comes up when user
chooses Quit and there are multiple unsaved documents."),
needsSaving];
choice = NSRunAlertPanel(title,
NSLocalizedString(@"If you don't review your documents, all

An Example: Text Edit 27
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

28

Graceful Application Termination

changes will be lost.", @"Warning in the alert panel which
comes up when user chooses Quit and there are unsaved
documents."),

NSLocalizedString(@"Review Changes...", @"Choice (on a button)
given to user which allows him/her to review all unsaved
documents if he/she quits the application without saving
them all first."),

NSLocalizedString(@"Discard Changes", @"Choice (on a button)
given to user which allows him/her to quit the application
even though there are unsaved documents."),

NSLocalizedString(@"Cancel", @"Button choice allowing user to

cancel."));
if (choice == NSAlertOtherReturn) return NSTerminateCancel; /* Cancel
*/
}
if (choice == NSAlertDefaultReturn) { /* Review unsaved; Quit Anyway

falls through */
[Document reviewChangesAndQuitEnumeration:YEST;
return NSTerminatelater;
}
}
return NSTerminateNow;
}

In this method, the delegate obtains the application object’s array of windows and queries the document
associated with each for its edited (or “dirty”) status. If there are no dirty documents, it returns
NSTerminateNow. If there are multiple dirty documents, it displays a dialog asking the user if he or she wants
to review changes, discard changes, or cancel the operation. Based on the user’s response, the delegate
returns an appropriate constant: NSTerminatelater, NSTerminateNow, or NSTerminateCancel. If the
user wants to review the windows and their documents, or if there is only one window with a dirty document,
the delegate sends the reviewChangesAndQuitEnumeration: message to the Document class before
returning the NSTerminatelater constant.

ThereviewChangesAndQuitEnumeration: cycles through the applications windows and, for each window
with unsaved document data, it calls askToSave: to have the window’s “do you want to save?” sheet
displayed. What's important is that it does this in a controlled sequence (instead of having all windows with
their alert sheets displayed at the same time). Listing 2 illustrates how Text Edit (in its Document class)
implements this class method.

Listing 2 Recursively reviewing document changes

+ (void)reviewChangesAndQuitEnumeration: (BOOL)cont {
if (cont) {
NSArray *windows = [NSApp windows];
unsigned count = [windows count];
while (count--) {
NSWindow *window =
Document *document
if (document) {
if ([document isDocumentEdited]) {
[document
askToSave:@selector(reviewChangesAndQuitEnumeration:)];
return;

[windows objectAtIndex:count];
= [Document documentForWindow:window];

}

An Example: Text Edit
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Graceful Application Termination

[NSApp replyToApplicationShouldTerminate:cont];
}

Text Edit accomplishes the orderly sequencing of window alert sheets by having
reviewChangesAndQuitEnumeration: invoked recursively (as will be shown). The flag passed into the
method (cont), if NO, signals that the user has canceled the termination; if YES, the method processes the
next unsaved document. When there are no more documents to review, or if cont is NO,
replyToApplicationShouldTerminate: is sent to the application object with the appropriate flag.

The value passed into askToSave: is a selector, in this case identifying the
reviewChangesAndQuitEnumeration: method. As shown in Listing 3, Text Edit simply implements
askToSave: to make the current document window visible and key and call the NSBeginAlertSheet
function, which displays the alert sheet asking if the user wants to save the document before closing the
window. Note that it passes the selector into this function as the context-information parameter.

Listing 3 Displaying and handling a sheet for saving a document

- (void)askToSave:(SEL)callback f{

[[self window] makeKeyAndOrderFront:nill;

NSBeginAlertSheet(NSLocalizedString(@"Do you want to save changes
to this document before closing?", @"Title in the alert panel when
the user tries to close a window containing an unsaved document."),
NSLocalizedString(@"Save",
@"Button choice which allows the user to save the document."),
NSLocalizedString(@"Don't Save",
@"Button choice which allows the user to abort the save of a
document which is being closed."),
NSLocalizedString(@"Cancel",
@"Button choice allowing user to cancel."),

[self window], self,
@selector(willEndCloseSheet:returnCode:contextInfo:),
@selector(didEndCloseSheet:returnCode:contextInfo:),

(void *)callback,
NSLocalizedString(@"If you don't save, your changes will be Tost.",
@"Subtitle in the alert panel when the user tries to close a
window containing an unsaved document."));

}

The Cocoa API for sheets specifies two callback methods that are potentially invoked in the modal delegate
as a result of the NSBeginAlertSheet call. The first, called the did-end method, is invoked after the user
clicks a button in the alert sheet but before the sheet is dismissed; the second, called the did-dismiss method,
is invoked after the sheet is dismissed. The function parameters identifying them are selectors. The methods
must conform to a certain signature. (See the programming topic Sheet Programming Topics for Cocoa for
further information.)

The askToSave: implementation makes use of both callback methods. For the context Info parameter
of NSBeginAlertSheet it passes the selector passed it, which in this case identifies the class method
reviewChangesAndQuitEnumeration:. Then, for the modal delegate (self), it implements (as shown in
Listing 4) the did-end callback method wil11EndCloseSheet:returnCode:contextInfo: and the
did-dismiss method didEndCloseSheet:returnCode:contextInfo:.

Listing 4 Callback methods for NSBeginAlertSheet

- (void)willEndCloseSheet: (NSWindow *)sheet returnCode:(int)returnCode
contextInfo:(void *)contextInfo {
if (returnCode == NSAlertAlternateReturn) { /* "Don't Save" */

An Example: Text Edit 29
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

30

Graceful Application Termination

[[self window] closel;
if (contextInfo) ((void (*)(id, SEL, BOOL))objc_msgSend)([self class],
(SEL)contextInfo, YES); // Send callback (YES means continue save
}

- (void)didEndCloseSheet: (NSWindow *)sheet returnCode:(int)returnCode
contextInfo:(void *)contextInfo f{
if (returnCode == NSAlertDefaultReturn) { /* "Save" */
[self saveDocument:NO rememberName:YES shouldClose:YES
whenDone: (SEL)contextInfol;
} else if (returnCode == NSAlertOtherReturn) { /* "Cancel" */
if (contextInfo) ((void (*)(id, SEL, BOOL))objc_msgSend)([self class],
(SEL)contextInfo, NO); // Send callback indicating save cancel
}
}

Text Edit implements the wi11EndCloseSheet:returnCode:contextInfo: method for the case where
the user want to close the window regardless of unsaved data. In this case, it wants the preferred user
experience of the window closing before the sheet slides back up “under” the title bar. Note what this callback
method does after it closes the window. Using the Objective-C runtime function objc_msgSend,
willEndCloseSheet:returnCode:contextInfo: sendsthe message identified by the passed-in selector,
reviewChangesAndQuitEnumeration:,tothe Document class with a parameter of YES, thus causing the
display of the next window’s alert sheet.

ThedidEndCloseSheet:returnCode:contextInfo: handlesthe remaining button-identifying constants
potentially sent by the NSBeginAlertSheet function. If the user clicks the button to save the window’s
document, it invokes a method that not only saves the document (displaying the save browser, if necessary),
but afterwards closes the window and calls reviewChangesAndQuitEnumeration: with a parameter of
YES. (This detail is not shown.) If the user wants to cancel the termination operation,
didEndCloseSheet:returnCode:contextInfo: usesthe objc_msgSend function to send
reviewChangesAndQuitEnumeration: to the Document class, this time with a parameter of NO.

Text Edit ties in the relevant portions of its application-termination code with the code that is invoked when
users explicitly close a window. The delegate for a document window implements windowShouldClose:
in a way that results in the invocation of askToSave: if the document has unsaved data. This time NULL is
passed instead of a selector, so reviewChangesAndQuitEnumeration: isinvoked only once. Listing 5
illustrates how Text Edit does this.

Listing 5 Handling the explicit closing of a window

- (BOOL)windowShouldClose: (id)sender {
return [self canCloseDocument];

- (BOOL)canCloseDocument {
if (isDocumentEdited) {
[self askToSave:NULL];
return NO;
}
return YES;

An Example: Text Edit
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Graceful Application Termination

Cleaning Up

In terminating your application gracefully, there is really not much you typically need to do after saving
document data. The objects that comprise an application generally take care of freeing used objects and
allocated resources. There are a couple exceptions to this. One is to make sure that objects such as windows
with external references have those references removed. One such case is a delegate. In Text Edit’s
windowWil1Close: method (which is invoked right after windowShouldClose:), the delegate of the
window removes itself as a reference on the window (Listing 6).

Listing 6 Removing a reference in windowWillClose:

- (void)windowWil1Close: (NSNotification *)notification {
NSWindow *window = [self window];
[window setDelegate:nil];
[self releasel;

}

Another case where final tidying up might be necessary is when you need to save persistent data. User
preferences are one such case, and applicationWillTerminate: is an ideal place to save them. Listing
7 illustrates how Text Edit makes use of applicationWillTerminate:.

Listing 7 Saving user preferences in applicationWillTerminate:

- (void)applicationWillTerminate: (NSNotification *)notification {
[Preferences saveDefaults];

Cleaning Up 31
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Graceful Application Termination

32 Cleaning Up
2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Application Architecture Overview.

Date Notes

2006-08-07 Added reference to "Cocoa Bindings Programming Topics" in MVC discussion.

2006-04-04 Fixed links to related documents and articles. Rewrote introduction and made
minor editorial revisions throughout.

2005-10-04 Removed empty articles. Changed the title from "Application Architecture."

2004-05-27 Updated reference from obsolete System Overview to Bundles.

2003-05-12 Removed a mention of a non-existent feature in “Features of a Cocoa
Application” (page 9).

2002-11-12 Revision history was added to existing topic.

33

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

34

Document Revision History

2006-08-07 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

	Application Architecture Overview
	Contents
	Listings
	Introduction
	Features of a Cocoa Application
	Document Architecture
	NSDocuments Are Model-Controllers
	NSWindowControllers Are View-Controllers
	Type Information and NSDocumentControllers
	Typical Usage Patterns
	Documents and Scripting

	Scripting
	Scripting and the Model Layer
	Scripting and Key-Value Coding
	Object Specifiers
	Script Commands
	Script Suites
	Built-in Suites
	Custom Suites

	Undo and Redo
	Undo and the Document Architecture
	Undo and the Model Layer
	Undo and the Control and View Layers
	Undo and Scripting

	Graceful Application Termination
	Applications Based on the Document Architecture
	Summary of Document-Saving Procedure
	An Example: Text Edit
	Cleaning Up

	Revision History

