
Application File Management
Cocoa > File Management

2006-11-07



Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Objective-C, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction to Application File Management 7

Organization of This Document 7

The Save and Open Panels 9

File Wrappers 11

Working With File Wrappers 13

Working With Directory Wrappers 15

Using a Save Panel 17

Using an Open Panel 19

Getting the Current Selection 21

Filtering Out Browser Items 23

Configuring a Choose Dialog 25

Managing Accessory Views 27

Creating an Accessory View 27
Adding an Accessory View to a Panel 28

Document Revision History 31

3
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.



4
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.



Figures and Listings

Getting the Current Selection 21

Figure 1 Displaying information about the current selection 21
Listing 1 Getting the selection in the panel browser 21

Filtering Out Browser Items 23

Listing 1 Implementing the panel:shouldShowFilename: method 23

Configuring a Choose Dialog 25

Listing 1 Configuring and running a Choose dialog 25

Managing Accessory Views 27

Figure 1 Adding a view to the top level of a nib file 27
Figure 2 Connecting an outlet 28
Listing 1 Adding an accessory view and accessing its control 28

5
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.



6
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.



This topic describes the Application Kit’s facilities for representing file system objects (files and directories)
and allowing users to interact with the file system.

Organization of This Document

This document has the following articles:

 ■ Concepts

 ❏ “File Wrapper” (page 11) describes the object that encapsulates a file, directory, or link.

 ❏ “The Save and Open Panels” (page 9) describes the panels that you run to let users specify files
(and sometimes directories) to save and open.

 ■ Tasks

 ❏ “Working With File Wrappers” (page 13) describes how to make and manage file wrappers.

 ❏ “Working With Directory Wrappers” (page 15) describes how to make and manage directory wrappers.

 ❏ “Using a Save Panel” (page 17) explains how to create and display a save panel.

 ❏ “Using an Open Panel” (page 19) explains how to create and display an open panel.

 ❏ “Getting the Current Selection” (page 21) describes how to find out what the currently selected file
or directory is.

 ❏ “Filtering Out Browser Items” (page 23) explains how to make specific items in the browser
unselectable.

 ❏ “Configuring a Choose Dialog” (page 25) describes how to configure an Open panel as a Choose
dialog.

 ❏ “Managing Accessory Views” (page 27) explains how to make, add, and manage accessory views.

 ■ See Also

Document-Based Applications Overview
Low-Level File Management Programming Topics

Organization of This Document 7
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Application File Management



8 Organization of This Document
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Application File Management



NSSavePanel creates and manages a Save panel, and allows you to run the panel in a modal loop. The Save
panel provides a simple way for a user to specify a file to use when saving a document or other data. It can
restrict the user to files of a certain type, as specified by an extension. It also allows you to do several other
things with the Save panel:

 ■ Add an accessory view to the panel.

 ■ Customize the user interface of the panel, including the Hide Extension check box and the New Folder
button.

 ■ Modify the behavior of the panel through messages exchanged with a delegate.

NSOpenPanel provides the Open panel for the Cocoa user interface. Applications use the Open panel as a
convenient way to query the user for the name of a file to open. The Open panel can only be run modally.

Most of this class’s behavior is defined by its superclass, NSSavePanel. NSOpenPanel adds to this behavior
by:

 ■ Letting you specify the types (by file-name extension or encoded HFS file type) of the items that will
appear in the panel

 ■ Letting the user select files, directories, or both

 ■ Letting the user select multiple items at a time

9
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

The Save and Open Panels



10
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

The Save and Open Panels



An NSFileWrapper holds a file’s contents in dynamic memory. In this role it enables a document object to
embed a file, treating it as a unit of data that can be displayed as an image (and possibly edited in place),
saved to disk, or transmitted to another application. It can also store an icon for representing the file in a
document or in a dragging operation.

Instances of this class are referred to as file wrapper objects, and when no confusion will result, merely as
file wrappers. A file wrapper can be one of three specific types: a regular file wrapper, which holds the contents
of a single actual file; a directory wrapper, which holds a directory and all of the files or directories within it;
or a link wrapper, which simply represents a symbolic link in the file system (sometimes called a shortcut or
alias).

Because the purpose of a file wrapper is to represent files in memory, it’s very loosely coupled to any disk
representation. A file wrapper doesn’t record the path to the disk representation of its contents. This allows
you to save the same file wrapper with different paths, but it also requires you to record those paths if you
want to update the file wrapper from disk later.

11
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

File Wrappers



12
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

File Wrappers



You can create a file wrapper from data in memory using initWithSerializedRepresentation: or from
data on disk using initWithPath:. Both create the appropriate type of file wrapper based on the nature
of the serialized representation or of the file on disk. Three convenience methods each create a file wrapper
of a specific type: initRegularFileWithContents:, initDirectoryWithFileWrappers:, and
initSymbolicLinkWithDestination:. Because each initialization method creates file wrappers of different
types or states, they’re all designated initializers for this class—subclasses must meaningfully override them
all as necessary.

Some NSFileWrapper methods apply only to a specific type, and an exception is raised if sent to a file wrapper
of the wrong type. To determine the type of a file wrapper, use the isRegularFile, isDirectory, and
isSymbolicLink methods.

A file wrapper stores file system information (such as modification time and access permissions), which it
updates when reading from disk and uses when writing files to disk. The fileAttributes method returns
this information in the format described in the NSFileManager class specification. You can also set the file
attributes using the setFileAttributes: method.

NSFileWrapper allows you to set a preferred filename for save operations and records the last filename it was
actually saved to; the preferredFilename and filename methods return these names. This feature is
more important for directory wrappers, though, and so is discussed under “Working With Directory
Wrappers” (page 15).

When saving a file wrapper to disk, you typically determine the directory you want to save it in, then append
the preferred filename to that directory path and use writeToFile:atomically:updateFilenames:,
which saves the file wrapper’s contents and updates the file attributes. You can save a file wrapper under a
different name if you wish, but this may result in the recorded filename differing from the preferred filename,
depending on how you invoke the writeToFile:atomically:updateFilenames: method.

Besides saving its contents to disk, a file wrapper can re-read them from disk when necessary. The
needsToBeUpdatedFromPath: method determines whether a disk representation may have changed,
based on the file attributes stored the last time the file was read or written. If the file wrapper’s modification
time or access permissions are different from those of the file on disk, this method returns YES. You can then
use updateFromPath: to re-read the file from disk.

Finally, to transmit a file wrapper to another process or system (for example, over a distributed objects
connection or through the pasteboard), you use the serializedRepresentationmethod to get an NSData
object containing the file wrapper’s contents in the NSFileContentsPboardType format. You can safely
transmit this representation over whatever channel you desire. The recipient of the representation can then
reconstitute the file wrapper using the initWithSerializedRepresentation: method.

13
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Working With File Wrappers



14
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Working With File Wrappers



A directory wrapper contains other file wrappers (of any type), and allows you to access them by keys derived
from their preferred filenames. You can add any type of file wrapper to a directory wrapper with
addFileWrapper: or addFileWithPath:, and remove it with removeFileWrapper:. The convenience
methods addRegularFileWithContents:preferredFilename: and
addSymbolicLinkWithDestination:preferredFilename: allow you to add regular file and link wrappers
while also setting their preferred names.

A directory wrapper stores its contents in an NSDictionary, which you can retrieve using the fileWrappers
method. The keys of this dictionary are based on the preferred filenames of each file wrapper contained in
the directory wrapper. There exist, then, three identifiers for a file wrapper within a directory wrapper:

 ■ Preferred filename. This doesn’t uniquely identify the file wrapper, but the following identifiers are always
based on it.

 ■ Dictionary key. This is always equal to the preferred name when there are no other file wrappers of the
same preferred name in the same directory wrapper. Otherwise, it’s a string made by adding a unique
prefix to the preferred filename (note that the same file wrapper can have a different dictionary key for
each directory wrapper that contains it). You use the dictionary key to retrieve the file wrapper object
in memory, in order to get its contents or its filename (to update it from disk). You can get a file wrapper’s
dictionary key by sending a keyForFileWrapper: message to the directory wrapper that contains it.

 ■ Filename. This is usually based on the preferred filename, but isn’t necessarily the same as it or the
dictionary key. You use the filename to update a single file wrapper relative to the path of the directory
wrapper that contains it. Note that the filename may change whenever you save a directory wrapper
containing the file wrapper (particularly if the file wrapper has been added to several different directory
wrappers); thus, you should always retrieve the filename from the file wrapper itself each time you need
it rather than caching it.

When working with the contents of a directory wrapper, you can use a dictionary enumerator to retrieve
each file wrapper and perform whatever operation you need. Note that with the exceptions of saving and
updating, a directory file wrapper defines no recursive operations for its contents. To set the file attributes
for all contained file wrappers, or to perform any other such operation, you must define a recursive method
that examines the type of each file wrapper and invokes itself anew for any directory wrapper it encounters.

15
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Working With Directory Wrappers



16
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Working With Directory Wrappers



Typically, you access an NSSavePanel by invoking the savePanelclass method. A typical programmatic
use of NSSavePanel requires you to:

 ■ Invoke savePanel

 ■ Configure the panel (for instance, set its title or add a custom view)

 ■ Run the panel in a modal loop

 ■ Test the result; if successful, save the file under the chosen name and in the chosen directory

The following Objective-C code fragment demonstrates this sequence. (Two objects in this example, newView
and textData, are assumed to be defined and created elsewhere.)

NSSavePanel *sp;
int runResult;

/* create or get the shared instance of NSSavePanel */
sp = [NSSavePanel savePanel];

/* set up new attributes */
[sp setAccessoryView:newView];
[sp setRequiredFileType:@"txt"];

/* display the NSSavePanel */
runResult = [sp runModalForDirectory:NSHomeDirectory() file:@""];

/* if successful, save file under designated name */
if (runResult == NSOKButton) {
    if (![textData writeToFile:[sp filename] atomically:YES])
         NSBeep();
}

When the class receives a savePanel message, it tries to reuse an existing panel rather than create a new
one. When a panel is reused its attributes are reset to the default values so the effect is the same as receiving
a new panel. Because a Save panel may be reused, you shouldn't modify the instance returned by savePanel
except through the methods listed below. For example, you can set the panel’s title and required file type,
but not the arrangement of the buttons within the panel. If you must modify the Save panel substantially,
create and manage your own instance using the alloc... and init...methods rather than the savePanel
method.

17
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Using a Save Panel



18
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Using a Save Panel



Typically, you access an NSOpenPanel by invoking the openPanel method. When the class receives an
openPanel message, it tries to reuse an existing panel rather than create a new one. If a panel is reused, its
attributes are reset to the default values so that the effect is the same as receiving a new panel. Because
Open panels may be reused, you shouldn’t modify the instance returned by openPanel except through the
methods listed below (and those inherited from NSSavePanel). For example, you can set the panel’s title and
whether it allows multiple selection, but not the arrangement of the buttons within the panel. If you must
modify the Open panel substantially, create and manage your own instance using the constructors or the
alloc... and init... methods rather than the openPanel method.

The following Objective-C code example shows the NSOpenPanel displaying only files with extensions of
“.td” and allowing multiple selection. If the user makes a selection and clicks the OK button (that is,
runModalInDirectoryrunModalForDirectory:file:types: returns NSOKButton), this method opens
each selected file:

- (void)openDoc:(id)sender
{
    int result;
    NSArray *fileTypes = [NSArray arrayWithObject:@"td"];
    NSOpenPanel *oPanel = [NSOpenPanel openPanel];

    [oPanel setAllowsMultipleSelection:YES];
    result = [oPanel runModalForDirectory:NSHomeDirectory()
                    file:nil types:fileTypes];
    if (result == NSOKButton) {
        NSArray *filesToOpen = [oPanel filenames];
        int i, count = [filesToOpen count];
        for (i=0; i<count; i++) {
            NSString *aFile = [filesToOpen objectAtIndex:i];
            id currentDoc = [[ToDoDoc alloc] initWithFile:aFile];
        }
    }
}

NSOpenPanel can accept file types specified as either filename extensions or encoded HFS file types. To
encode an HFS file type into an acceptable NSString use the function NSFileTypeForHFSTypeCode. (See
“HFS File Types” for details.) When specifying file types for NSOpenPanel, you should include any allowed
HFS file types as well as the filename extensions. For example, if you want to open text files, specify a file
types array like this:

NSArray *fileTypes = [NSArray arrayWithObjects: @"txt", @"text",
                        NSFileTypeForHFSTypeCode( 'TEXT' ), nil];

19
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Using an Open Panel



20
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Using an Open Panel



You can get the currently selected item in the browser of an NSSavePanel or NSOpenPanel object by having
the delegate of the panel object implement the panelSelectionDidChange: delegation method. The
delegate then can perform some operation based on the user’s selection, such as displaying metadata about
a chosen file in an accessory view, as illustrated in Figure 1.

Figure 1 Displaying information about the current selection

In its implementation of panelSelectionDidChange:, the delegate sends a message back to the
NSOpenPanel or NSSavePanel object (sender) to get the current filename. For NSSavePanel, this message
is filename; for NSOpenPanel, send filenames and then get the first item in the array. Listing 1 shows
how you might implement the method to display in the information in the accessory view in Figure 1.

Listing 1 Getting the selection in the panel browser

- (void)panelSelectionDidChange:(id)sender {
    NSArray *curFiles = [sender filenames];
    if ([curFiles count] == 1) { // ignore multiple selections
        NSString *curPath = [curFiles objectAtIndex:0];

21
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Getting the Current Selection



        if (curPath != nil) {
            NSDictionary *fAttrs = [[NSFileManager defaultManager] 
fileAttributesAtPath:curPath traverseLink:YES];
            if (fAttrs != nil) {
                [infoFile setStringValue: [curPath lastPathComponent]];
                [infoMod setStringValue: [[fAttrs 
objectForKey:NSFileModificationDate] descriptionWithCalendarFormat:@"%a, %b %d,
 %Y %H:%M:%S" timeZone:nil locale:nil]];
                [infoOwner setStringValue: [fAttrs objectForKey: 
NSFileOwnerAccountName]];
                [infoGroup setStringValue: [fAttrs objectForKey: 
NSFileGroupOwnerAccountName]];
            }
        }
    }
}

In this code example, the delegate uses the NSFileManager method
fileAttributesAtPath:traverseLink: to fetch information about the currently selected file. It then
sets the string value of various text fields in the accessory view.

22
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Getting the Current Selection



Suppose you want to prevent certain files in an NSOpenPanel object from being selected by the user. You
don’t want to filter them out by their extension—other files with the same extension are valid selections—but
by some other characteristic. The files could be temporary files or files that contain data you don’t want users
to have access to. You can filter files from being selectable in a browser by implementing the delegation
method panel:shouldShowFilename:.

Let’s assume that the convention of an initial underscore for a filename marks it as a private file, and you
don’t want users to open these files in your application. There are two of these files in a certain directory:

testFile1.txt
testFile2.txt
_testFile3.txt
testFile4.txt
_testFile5.txt

When you configure an NSOpenPanel object, set a delegate for it; then implement the
panel:shouldShowFilename:method as illustrated in Listing 1. This method is called for each filename
to be displayed in the panel’s browser; return NO if the file should not be selectable.

Listing 1 Implementing the panel:shouldShowFilename: method

- (BOOL)panel:(id)sender shouldShowFilename:(NSString *)filename {
    NSString *lpc = [filename lastPathComponent];
    if ([lpc characterAtIndex:0] == '_')
        return NO;
    return YES;
}

When you next run the open panel and select the directory containing these files, you’ll find that he files
with the underscore prefixes are now grayed out and are not selectable.

23
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Filtering Out Browser Items



24
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Filtering Out Browser Items



The Choose dialog, according to Apple Human Interface Guidelines, “lets a user select an item as the target of
a task.“ The item is a file-system item, such as a file or a directory. But unlike an Open panel, a Choose dialog
allows users to select files or directories without necessarily opening them. If you need to display a Choose
dialog in your application, you can do so with a specially configured Open panel. A Choose dialog is an Open
panel that:

 ■ Has a title of “Choose ObjectOrAction”, where ObjectOrAction identifies the type of items or signifies the
task to be performed on the items

Ideally, the title of a Choose dialog and the title of the menu item or control initiating the command
should match (for example, “Choose Picture”). Also, it is helpful to include some instructional text in the
panel, such as “Choose a picture to display in the background.“

 ■ Restricts the selection of items to a particular type or types

 ■ Starts browsing at the user’s home directory

 ■ Allows multiple selection of items (if appropriate)

 ■ Can have an accessory view (see “Managing Accessory Views” (page 27)) with a Show pop-up menu to
filter the types of files that are selectable

Some requirements of a Choose dialog are supported by NSOpenPanel by default, such as document preview
and the ability to resize the dialog.

Listing 1 shows you might configure, run, and manage a Choose dialog.

Listing 1 Configuring and running a Choose dialog

- (IBAction)copyFiles:(id)sender
{
    int result;
    NSArray *fileTypes = [NSArray arrayWithObjects:@"txt", @"rtf", @"doc", nil];
    NSOpenPanel *oPanel = [NSOpenPanel openPanel];

    [oPanel setAllowsMultipleSelection:YES];
    [oPanel setTitle:@"Choose Document"];
    [oPanel setMessage:@"Choose documents to copy to the target destination."];
    [oPanel setDelegate:self];
    result = [oPanel runModalForDirectory:NSHomeDirectory() file:nil 
types:fileTypes];
    if (result == NSOKButton) {
        NSArray *filesToCopy = [oPanel filenames];
        int i, count = [filesToCopy count];
        NSFileManager *fm = [NSFileManager defaultManager];
        for (i=0; i<count; i++ ) {
            NSString *filePath = [filesToCopy objectAtIndex:i];
            NSString *destPath = [[self destinationPath] 
stringByAppendingPathComponent:[filePath lastPathComponent]];
            [fm copyPath:filePath toPath:destPath handler:self];

25
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Configuring a Choose Dialog



        }
    }
}

This code displays a Choose dialog similar to the one depicted in the following screen shot:

26
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Configuring a Choose Dialog



An accessory view is a view containing controls and other views that you can add to an existing Cocoa panel.
The controls affect in some way the item (or items) chosen in the panel, and the views may display an image
or other data related to the selected item. Many Cocoa classes allow you to add an accessory view to their
objects via the setAccessoryView:method. These include NSSavePanel, and its subclass NSOpenPanel),
NSFontPanel, NSColorPanel, NSPrintPanel, NSPageLayout, NSSpellChecker (in its spelling-correction
panel), NSAlert, and NSRulerView. The location of the accessory view varies from object to object. However,
the procedure for creating, adding, and accessing an accessory (summarized in the sections below) is essentially
similar for all of these classes.

Creating an Accessory View

To create an accessory view in Interface Builder, start by dragging a CustomView object from the Containers
palette to a nib file window.

Figure 1 Adding a view to the top level of a nib file

Change the size of the view to generally fit the width of the panel it’s going to be added to. Add all required
controls, text fields, image views, and other palette objects to the accessory view.

Note:  The panel classes of the Application Kit embed an accessory view in an NSBox object . It also sets their
auto-resizing characteristics: the width of the accessory view is constant, but the length varies as the host
panel is resized, with the objects in the accessory view centered.

You next need to specify outlets from some controller object to both the accessory view and its individual
controls and connect those outlets. Instead of outlets, you could also define attributes in a controller or model
object and then establish bindings between the controls of the accessory view and those attributes. Figure
2 shows the former approach.

Creating an Accessory View 27
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Managing Accessory Views



Figure 2 Connecting an outlet

Save the nib file. The remainder of the procedure takes place in the Xcode application.

Adding an Accessory View to a Panel

In your application’s method that responds to the action message requesting the opening of a file, get the
shared instance of NSOpenPanel and configure it appropriately, as described in “Using an Open Panel” (page
19). As part of panel configuration, send the setAccessoryView: message to the panel object, passing in
the outlet to the accessory view. Then run the Open panel and, when the user clicks the OK button, check
the state of the controls on the accessory view (via outlets or bindings). Process the selected files accordingly.

Listing 1 illustrates how you might do this.

Listing 1 Adding an accessory view and accessing its control

- (IBAction)openFile:(id)sender
{
    int result;
    NSArray *fileTypes = [NSArray arrayWithObject:@"xml"];
    NSOpenPanel *oPanel = [NSOpenPanel openPanel];

    [oPanel setAllowsMultipleSelection:YES];
    [oPanel setAccessoryView:accessView]; // add the accessory view to the open
 panel
    result = [oPanel runModalForDirectory:NSHomeDirectory() file:nil 
types:fileTypes];
    if (result == NSOKButton) {
        NSArray *filesToOpen = [oPanel filenames];
        int i, count = [filesToOpen count];
        for (i=0; i<count; i++ ) {
            NSString *aFile = [filesToOpen objectAtIndex:i];
            if ([addToProj state] > 0) {   // is check box in accessory view 
checked?
                [self addToProject:aFile];
            }
            [[NSWorkspace sharedWorkspace] openFile:aFile 
withApplication:@"Sweet.app"];
        }

28 Adding an Accessory View to a Panel
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Managing Accessory Views



    }
}

This code causes an Open panel similar to the following to be displayed

Adding an Accessory View to a Panel 29
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Managing Accessory Views



30 Adding an Accessory View to a Panel
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Managing Accessory Views



This table describes the changes to Application File Management.

NotesDate

Added articles on managing accessory views, filtering browser items, configuring
Choose dialogs, and managing the current selection.

2006-11-07

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

31
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History



32
2006-11-07   |   © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History


	Application File Management
	Contents
	Figures and Listings
	Introduction
	The Save and Open Panels
	File Wrappers
	Working With File Wrappers
	Working With Directory Wrappers
	Using a Save Panel
	Using an Open Panel
	Getting the Current Selection
	Filtering Out Browser Items
	Configuring a Choose Dialog
	Managing Accessory Views
	Creating an Accessory View
	Adding an Accessory View to a Panel

	Revision History


