Assertions and Logging

Cocoa > Performance

¢

2006-04-04

.

[

Apple Inc.

© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and
Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Assertions and Logging 5

Organization of This Document 5

How Assertions Work 7

Using the Assertion Macros 9

Logging Messages 11

Using a Custom Assertion Handler 13

Document Revision History 15

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Assertions and Logging

Assertions are mechanisms that print error messages and raise exceptions when a given condition in code
is false. Logging prints error or informational messages, typically to the standard error device.

Limitations: This programming topic applies only to programs written in Objective-C. In Java there is no

equivalent to assertions. For logging in Java, you can simply print messages to the standard error device or
use the NSSystem method 10g.

Organization of This Document

This programming topic covers exception handling insofar as it relates to evaluations of given conditions
and the logging of messages. For more sophisticated exception handling, namely techniques involving the
raising (or throwing) and handling of exception objects, see Exceptions.

The articles covered in this programming topic are:
m “How Assertions Work” (page 7)

m “Using the Assertion Macros” (page 9)

= “Logging Messages” (page 11)

m “Using a Custom Assertion Handler” (page 13)

Organization of This Document
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Assertions and Logging

Organization of This Document
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

How Assertions Work

In your code you make an assertion using an assertion macro. These macros evaluate a condition and, if the
condition evaluates to false, they pass a string (and possibly additional print f-style arguments formatted
into the string) describing the failure to their NSAssertionHandler. Each thread has its own NSAssertionHandler
object created for it. When invoked with an assertion, an NSAssertionHandler prints an error message that
includes the method and class (or function) containing the assertion and then it raises an
NSInternallInconsistencykException.

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

How Assertions Work

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using the Assertion Macros

This document describes how to use the Assert (and related) macros to evaluate a condition and create an
assertion.

You use an assortment of macros to evaluate a condition—these macros serve as a front end to
NSAssertionHandler. These macros fall into two categories: those you use in Objective-C methods, and those
you use in C functions. For example, NSAssert is for use within methods and NSCAssert is for use within
functions. Each macro has two arguments: the condition—an expression that evaluates to true or false—and
the NSString describing the failure. Other macros are available if one or more arguments are needed for a
printf-style description. For example, NSAssert1 is used within methods if one argument is needed as in:

NSAssertl((0 <= component) && (component <= 255),
@"Value %i out of range!", component);

For more details on these macros see NSAssert.

You create assertions only using the above macros—you rarely need to invoke NSAssertionHandler methods
directly. The macros for use inside methods and functions send
handleFailurelInMethod:object:file:1ineNumber:description: and
handleFailurelInFunction:file:TineNumber:description: messages respectively to the current
assertion handler. The assertion handler for the current thread is obtained using the NSAssertionHandler
currentHandler class method.

Assertions are not compiled into code if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

10

Using the Assertion Macros

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Logging Messages

You use the NSLog and NSLogv functions to log error and informational messages. These messages are
written to stderr.

The message consists of a timestamp and the process ID prefixed to the string you pass in. You compose
this string with a format string and one or more arguments to be inserted into the string. The format
specification allowed by these functions is that which is understood by NSString’s formatting capabilities
(which is not necessarily the set of format escapes and flags understood by printf). For example, the
following code fragment, outputs a string constructed from NSString and int arguments.

int recNum;

NSString *recName;

/* o0 */

NSLog(@"Record %d is %@", recNum, recName);

See “Using Format Strings” for a description of the various format specifiers.

In general, you should use the NSLog function instead of calling NSLogv directly. If you do call NSLogv
directly, you must have prepared the required variable argument list by calling the standard C macro
va_start. Upon completion, you must similarly call the standard C macro va_end for this list.

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

n

12

Logging Messages

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Using a Custom Assertion Handler

In some cases, you might want to define your own assertion handler to print error messages to a different
error console or to raise custom exceptions, instead of the genericNSInternalInconsistencyException.
To implement these features, you must define a subclass of NSAssertionHandler and override its
handleFailureInMethod:object:file:TineNumber:description: and
handleFailurelnFunction:file:1TineNumber:description: methodsto handle assertionsin methods
and functions, respectively.

To add your assertion handler to a thread, you must add the assertion handler to the thread’s attributes
dictionary. Use the current NSThread’s threadDictionary method to retrieve the dictionary. Add your
assertion-handler object to the dictionary using the key NSAssertionHand1er. This technique is used to
specify a custom assertion handler on any thread, including the main thread. You must execute these steps
in the thread which you wish to modify; one thread cannot modify the thread attributes dictionary of another.

Typically, you should add your assertion handler to the thread dictionary immediately after creating the
thread. However, a default assertion handler is not created until an assertion macro is encountered and you
can always replace the existing assertion handler in the thread dictionary. If your assertion handler already
exists in the thread dictionary, it is used in place of the default assertion handler.

13
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

14

Using a Custom Assertion Handler

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Assertions and Logging.

Date Notes

2006-04-04 Clarified that output of NSLog is to stderr.

2003-07-01 Clarified that the information provided in “Using a Custom Assertion
Handler” (page 13) also applies to the main thread. Added that you must modify
the dictionary in the same thread.

2003-06-03 “Logging Messages” (page 11) now includes a link to the article describing
format specifiers.

2002-11-12 Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

15

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

16

Document Revision History

2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

	Assertions and Logging
	Contents
	Introduction
	How Assertions Work
	Using the Assertion Macros
	Logging Messages
	Using a Custom Assertion Handler
	Revision History

