Attributed Strings Programming Guide

Cocoa > Data Management

¢

2007-06-04

.

[

Apple Inc.

© 1997, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica, Palatino, and Times are registered
trademarks of Heidelberger Druckmaschinen
AG, available from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Attributed Strings Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

Attributed Strings 9

Creating Attributed Strings in Cocoa 11

Accessing Attributes 13

Retrieving Attribute Values 13
Effective and Maximal Ranges 14

Changing an Attributed String 17

Modifying Attributes 17
Fixing Inconsistencies 18

Drawing Attributed Strings 19

RTF Files and Attributed Strings 21

Reading and Writing RTF Data 21
Handling Document Attributes 22
Handling Attachments 23

Apple’s RTF Extensions 24

Word and Line Calculations in Attributed Strings 29

Standard Attributes 31

Document Revision History 33

Index 35

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Tables

RTF Files and Attributed Strings 21

Table 1 Document attributes supported by RTF-handling methods 22
Table 2 Character attribute RTF extensions 24

Table 3 Paragraph attribute RTF extensions 26

Table 4 Document attribute RTF extensions 26

Standard Attributes 31

Table 1 Table of standard attributes 31

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Introduction to Attributed Strings
Programming Guide

Attributed Strings Programming Guide describes the attributed string objects, instantiated from the
NSAttributedString class or the CFAttributedString Core Foundation opaque type, which manage sets
of text attributes, such as font and kerning, that are associated with character strings or individual characters.

Who Should Read This Document

You should read this document if you need to work directly with attributed string objects.

Organization of This Document

This programming topic contains the following articles:

= “Attributed Strings” (page 9) describes the attributed string objects instantiated from
NSAttributedString, NSMutableAttributedString, CFAttributedString and
CFMutableAttributedString.

m “Creating Attributed Strings in Cocoa” (page 11) describes how to create attributed strings with data
that you provide.

m “Accessing Attributes” (page 13) describes how to access text attributes.

m “Changing an Attributed String” (page 17) describes how to change characters and attributes in an
attributed string.

= “Drawing Attributed Strings” (page 19) describes how to draw an attributed string in a view.

m “RTF Files and Attributed Strings” (page 21) explains how to read and write attributed strings to and
from files of RTF data, and it describes Apple’s extensions to the RTF language.

= “Word and Line Calculations in Attributed Strings” (page 29) describes how to work with attributed
strings in editors.

= “Standard Attributes” (page 31) describes global NSString constants containing the attribute names.

See Also

For more information, refer to the following documents:

m String Programming Guide for Cocoa describes the string objects that hold the Unicode character
information in attributed strings.

Who Should Read This Document 7
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Introduction to Attributed Strings Programming Guide

m Text Attributes explains how the text system handles the various kinds of attributes applied to strings of
text.

See Also
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Attributed Strings

Attributed string objects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. The classes
NSAttributedStringand NSMutableAttributedStringdeclare the programmatic interface for read-only
attributed strings and modifiable attributed strings, respectively. The Foundation Kit defines the basic
functionality, while additional Objective-C methods are defined in the Application Kit. The Application Kit
also uses a subclass of NSMutableAttributedString, called NSTextStorage, to provide the storage for
the extended text-handling system (see Text System Storage Layer Overview).

NSAttributedStringand NSMutableAttributedString are toll-free bridged to their Core Foundation
counterparts, CFAttributedString and CFMutableAttributedString respectively. This means that a Foundation
attributed string is interchangeable in function or method calls with the corresponding bridged Core
Foundation type. Therefore, in a method where you see an NSMutableAttributedString * parameter,
you can pass in a variable of type CFMutableAttributedStringRef, and in a function where you see a
CFAttributedStringRef parameter, you can pass in an instance of NSAttributedString (or
NSMutableAttributedString).

NSAttributedStringis not a subclass of NSString. It contains an NSString object to which it applies
attributes. This protects users of attributed strings from ambiguities caused by the semantic differences
between simple and attributed strings. For example, equality can’t be simply defined between an NSString
and an attributed string. The attributed string classes adopt the NSCopying and NSMutableCopying
protocols, making it convenient to convert an attributed string from one type to the other.

NSAttributedStringand NSMutableAttributedStringadd a number of features to the basic content
storage of NSString:

m Association of arbitrary, programmer-defined attributes with ranges of characters.

m Preservation of attribute-to-character mapping after changes (NSMutableAttributedString).

= Support for RTF, including file attachments and graphics.

= Drawing in NSView objects (note that the Application Kit adds drawing methods to NSString as well)

= Linguistic unit (word) and line calculation.

An attributed string identifies attributes by name, storing their values as opaque idsinan NSDictionary
object. For example, the text font is stored as an NSFont object under the name given by
NSFontAttributeName. You can associate any object value, by any name, with a given range of characters
in the attributed string.

A mutable attributed string keeps track of the attribute mapping as characters are added to and deleted
from it and as attributes are changed. It allows you to group batches of edits with the beginEditing and
endEditing methods, and to consolidate changes to the attribute-to-character mapping with the fix. ..
methods.

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

10

Attributed Strings

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Creating Attributed Strings in Cocoa

You create an NSAttributedString object in a number of different ways:

You can create a new string with the initWithString:, initWithString:attributes:, or
initWithAttributedString: method. These methods initialize an attributed string with data you
provide, as illustrated in the following example:

NSFont *font = [NSFont fontWithName:@"Palatino-Roman" size:14.071;
NSDictionary *attrsDictionary =
[NSDictionary dictionaryWithObject:font
forKey:NSFontAttributeNamel;
NSAttributedString *attrString =
[[NSAttributedString alloc] initWithString:@"strigil”
attributes:attrsDictionaryl];

For a list of attributes provided by the Application Kit framework see the Constants section in
NSAttributedString Additions.

The attribute values assigned to an attributed string become the property of that string, and should not
be modified “behind the attributed string” by other objects. Doing so can render inconsistent the
attributed string’s internal state. Always use NSMutableAttributedString'ssetAttributes:range:
and related methods to change attribute values. See “Changing an Attributed String” (page 17) for more
details.

You can can create an attributed string from rich text (RTF) or rich text with attachments (RTFD) data
using the initialization methods, initWithRTF:documentAttributes:,
initWithRTFD:documentAttributes:,andinitWithRTFDFileWrapper:documentAttributes:,
as illustrated in the following example:

NSData *rtfData = ...; // assume rtfData is an NSData object containing valid
RTF data

NSDictionary *docAttributes;

NSSize paperSize;

NSAttributedString *attrString;

if ((attrString = [[NSAttributedString alloc]
initWithRTF: data documentAttributes: &docAttributes])) {

NSValue *value = [docAttrs objectForKey:@"PaperSize"];
paperSize = [value sizeValuel;
// implementation continues...

You can can create an attributed string from HTML data using the initialization methods
initWithHTML:documentAttributes:andinitWithHTML:baseURL:documentAttributes:.The
methods return text attributes defined by the HTML as the attributes of the string. They return
document-level attributes defined by the HTML, such as paper and margin sizes, by reference to an
NSDictionary object, as described in “RTF Files and Attributed Strings” (page 21). The methods translate
HTML as well as possible into structures of the Cocoa text system, but the Application Kit does not provide
complete, true rendering of arbitrary HTML.

n

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

12

Creating Attributed Strings in Cocoa

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Accessing Attributes

An attributed string identifies attributes by name, storing a value under the attribute name in an
NSDictionary object, which is in turn associated with an NSRange that indicates the characters to which
the dictionary’s attributes apply. You can assign any attribute name-value pair you wish to a range of characters,
in addition to the standard attributes.

Retrieving Attribute Values

With an immutable attributed string, you assign all attributes when you create the string. In Java, you use
the constructors. In Objective-C, you use methods suchas initWithString:attributes:, which explicitly
take an NSDictionary object of name-value pairs, or initWithString:, which assigns no attributes. And
the Application Kit's extensions to NSAttributedString adds methods that take an RTF file or an HTML
file. See “Changing an Attributed String” (page 17) for information on assigning attributes with a mutable
attributed string.

To retrieve attribute values from either type of attributed string, use any of these methods:

attributesAtIndex:effectiveRange:
attributesAtIndex:longestEffectiveRange:inRange:
attribute:atIndex:effectiveRange:
attribute:atIndex:longestEffectiveRange:inRange:
fontAttributesInRange:

rulerAttributesInRange:

The first two methods return all attributes at a given index, the attribute: ... methods return the value
of a single named attribute. The Application Kit's extensions to NSAttributedString add
fontAttributesInRange: and rulerAttributesInRange:, which return attributes defined to apply
only to characters or to whole paragraphs, respectively.

The first four methods also return by reference the effective range and the longest effective range of the
attributes. These ranges allow you to determine the extent of attributes. Conceptually, each character in an
attributed string has its own collection of attributes; however, it's often useful to know when the attributes
and values are the same over a series of characters. This allows a routine to progress through an attributed
string in chunks larger than a single character. In retrieving the effective range, an attributed string simply
looks up information in its attribute mapping, essentially the dictionary of attributes that apply at the index
requested. In retrieving the longest effective range, the attributed string continues checking characters past
this basic range as long as the attribute values are the same. This extra comparison increases the execution
time for these methods but guarantees a precise maximal range for the attributes requested.

Retrieving Attribute Values 13
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Accessing Attributes

Effective and Maximal Ranges

14

Methods that return an effective range by reference are not guaranteed to return the maximal range to which
the attribute(s) apply; they are merely guaranteed to return some range over which they apply. In practice
they will return whatever range is readily available from the attributed string's internal storage mechanisms,
which may depend on the implementation and on the precise history of modifications to the attributed
string.

Methods that return a longest effective range by reference, on the other hand, are guaranteed to return the
longest range containing the specified index to which the attribute(s) in question apply (constrained by the
value of the argument passed in for inRange:). For efficiency, it is important that the inRange: argument
should be as small as appropriate for the range of interest to the client.

When you iterate over an attributed string by attribute ranges, either sort of method may be appropriate
depending on the situation. If there is some processing to be done for each range, and you know that the
full range for a given attribute is going to have to be handled eventually, it may be more efficient to use the
longest-effective-range variant, so as not to have to handle the range in pieces. However, you should use
the longest-effective-range methods with caution, because the longest effective range could be quite
long—potentially the entire length of the document, if the inRange: argument is not constrained.

The Objective-C code fragment below progresses through an attributed string in chunks based on the effective
range. The fictitious analyzer object here counts the number of characters in each font. The while loop
progresses as long as the effective range retrieved does not include the end of the attributed string, retrieving
the font in effect just past the latest retrieved range. For each font attribute retrieved, the analyzer tallies the
number of characters in the effective range. In this example, it is possible that consecutive invocations of
attribute:atIndex:effectiveRange: will return the same value.

NSAttributedString *attrStr;
unsigned int length;

NSRange effectiveRange;

id attributeValue;

length = [attrStr lengthl;
effectiveRange = NSMakeRange(0, 0);

while (NSMaxRange(effectiveRange) < Tength) {
attributeValue = [attrStr attribute:NSFontAttributeName
atIndex:NSMaxRange(effectiveRange) effectiveRange:&effectiveRange];
[analyzer tallyCharacterRange:effectiveRange font:attributeValuel];
}

In contrast, the next Objective-C code fragment progresses through the attributed string according to the
maximum effective range for each font. In this case, the analyzer counts font changes, which may not be
represented by merely retrieving effective ranges. In this case the while loop is predicated on the length of
the limiting range, which begins as the entire length of the attributed string and is whittled down as the
loop progresses. After the analyzer records the font change, the limit range is adjusted to account for the
longest effective range retrieved.

NSAttributedString *attrStr;
NSRange TimitRange;

NSRange effectiveRange;

id attributeValue;

limitRange = NSMakeRange(0, [attrStr lengthl);

Effective and Maximal Ranges
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Accessing Attributes

while (1imitRange.length > 0) {
attributeValue = [attrStr attribute:NSFontAttributeName

atIndex:1imitRange.location longestEffectiveRange:&effectiveRange

inRange:1imitRange];
[analyzer recordFontChange:attributeValue];
limitRange = NSMakeRange(NSMaxRange(effectiveRange),
NSMaxRange(limitRange) - NSMaxRange(effectiveRange));

}

Note that the second code fragment is more complex. Because of this, and because
attribute:atIndex:longestEffectiveRange:inRange: is somewhat slower than
attribute:atIndex:effectiveRange:, you should typically use it only when absolutely necessary for

the work you're performing. In most cases working by effective range is enough.

Effective and Maximal Ranges
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

15

Accessing Attributes

16 Effective and Maximal Ranges
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Changing an Attributed String

NSMutableAttributedStringdeclaresa number of methods for changing both characters and attributes.
You must take care not to modify attribute values after they have been passed to an attributed string. You
may also need to repair inconsistencies that can be introduced if you modify an attributed string.

Modifying Attributes

NSMutableAttributedStringdeclares a number of methods for changing both characters and attributes,
such as the primitive replaceCharactersInRange:withString: and setAttributes:range:, orthe
more convenient methods addAttribute:value:range:,applyFontTraits:range:, and so on.

The following example illustrates how to specify a link attribute for a selected range in an attributed string,
underline the text, and color it blue. Note that you can define whatever value you want for the link attribute, it
is up to you to interpret the value when the link is selected—see “Accessing Attributes” (page 13)—typically,
however, you use either a string or an URL. For an explanation of the role of beginEditingand endEditing
(shown in the sample), see “Fixing Inconsistencies” (page 18).

NSMutableAttributedString *string; // assume string exists
NSRange selectedRange; // assume this is set

NSURL *TinkURL = [NSURL URLWithString:@"http://www.apple.com/"];

[string beginEditing];

[string addAttribute:NSLinkAttributeName
value:TinkURL
range:selectedRange];

[string addAttribute:NSForegroundColorAttributeName
value:[NSColor blueColor]
range:selectedRange];

[string addAttribute:NSUnderlineStyleAttributeName
value:[NSNumber numberWithInt:NSSingleUnderlineStyle]
range:selectedRange];

[string endEditing];

Attribute values assigned to an attributed string become the property of that string, and should not be
modified “behind the attributed string” by other objects. Doing so can render inconsistent the attributed
string’s internal state. There are two main reasons for this:

= How an attribute value propagates through an attributed string is not predictable. If you change the
value, you might be editing more of the attributed string than you thought. In fact the value could have
been copied to the undo stack, or to a totally different document, and so on.

m Attributed strings do caching and uniquing of attributes, which assumes attribute values do not change.
The assumption is that isEqual: and hash on attribute values will not change once the attribute value
has been set.

Modifying Attributes 17
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Fixing

18

Changing an Attributed String

If you must change attribute values, and are sure that the change will apply to the correct range, there are
two strategies you can adopt:

= Use an attribute value whose isEqual: and hash do not depend on the values you are modifying.

m Useindirection: use the attribute value as a lookup key into a table where the actual value can be changed.
For instance, this might be the appropriate approach for having a “stylesheet”-like attribute.

Inconsistencies

All of the methods for changing a mutable attributed string properly update the mapping between characters
and attributes, but after a change some inconsistencies can develop. Here are some examples of attribute
consistency requirements:

m Paragraph styles must apply to entire paragraphs.

= Scripts may only be assigned fonts that support them. For example, Kanji and Arabic characters can’t be
assigned the Times-Roman font, and must be reassigned fonts that support these scripts.

= Deleting attachment characters from the string requires the corresponding attachment objects to be
released. Similarly, removing attachment objects requires the corresponding attachment characters to
be removed from the string.

= A code editing application that displays all language keywords in boldface can automatically assign this
attribute as the user changes the font or edits the text.

The Application Kit's extensions to NSMutableAttributedString define methods to fix these inconsistencies
as changes are made. This allows the attributes to be cleaned up at a low level, hiding potential problems
from higher levels and providing for very clean update of display as attributes change. There are four methods
for fixing attributes and two to group editing changes:

fixAttributesInRange:
fixAttachmentAttributelInRange:
fixFontAttributelnRange:
fixParagraphStyleAttributelnRange:
beginEditing

endEditing

The first method, fixAttributesInRange:, invokes the other three fix. .. methods to clean up deleted
attachment references, font attributes, and paragraph attributes, respectively. The individual method
descriptions explain what cleanup entails for each case.

NSMutableAttributedString provides beginkEditing and endEditing methods for subclasses of
NSMutableAttributedStringtooverride. These methods allow instances of a subclass to record or buffer
groups of changes and clean themselves up on receiving an endEditing message. The endEditing method
also allows the receiver to notify any observers that it has been changed. NSTextStorage’simplementation
of endEditing, for example, fixes changed attributes and then notifies its layout managers that they need
to re-lay and redisplay their text. The default implementations do nothing.

Fixing Inconsistencies
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Drawing Attributed Strings

The Application Kit's NSStringDrawing extensions let you draw an attributed string in a focused graphics
context (typically an NSView) using a number of methods: drawAtPoint:, drawInRect:, and (with Mac
OS Xv10.4 and later) drawWithRect:options:. These methods are designed for drawing small amounts
of text or text that must be drawn rarely. They create and dispose of various supporting text objects every
time you call them. To draw strings repeatedly, it is more efficient to use NSLayoutManager, as described in
“Drawing Strings”.

Note that the Application Kit defines drawing methods for NSString as well, allowing any string object to
draw itself. These methods, drawAtPoint:withAttributes:,drawInRect:withAttributes:,and (with
Mac OS X v10.4 and later) drawWithRect:options:attributes:, are described in NSString Additions.

With Mac OS X v10.4 and later, you can find out the rectangle required to lay out an attributed string using
the method, boundingRectWithSize:options:. Again, there is an analogous method to determine the
rectangle required to render an NSString object, given a set of
attributes—boundingRectWithSize:options:attributes:.

19
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

20

Drawing Attributed Strings

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

RTF Files and Attributed Strings

Rich Text Format (RTF) is a text formatting language devised by Microsoft Corporation. You can represent
character, paragraph, and document format attributes using plain text with interspersed RTF commands,
groups, and escape sequences. RTF is widely used as a document interchange format to transfer documents
with their formatting information across applications and computing platforms. The Application Kit has
support for reading and writing RTF. For text attributes not available in standard RTF, Apple has extended
RTF with custom commands.

Reading and Writing RTF Data

The Application Kit's extensions for NSAttributedString add support for reading text attributes from, and
writing them to, RTF files or RTFD (rich text with attachments) files.

Important: The Application Kit extensions write the standard character-level attributes from the attributed
string and the standard document-level attributes from the document attributes dictionary; however, custom
attributes that you define and add to an attributed string are not written to the RTF file. Standard
character-level attribute keys are described in “Standard Attributes” (page 31), and the document attributes
are described in Table 1 (page 22).

The NSAttributedString methods for writing rich text are defined in NSAttributedString Application Kit
Additions Reference:

RTFFromRange:documentAttributes: Returns an NSData object that contains an RTF
stream corresponding to the characters and
attributes within the given range, omitting all
attachment attributes.

RTFDFromRange:documentAttributes: Returns an NSData object that contains an
RTFD stream corresponding to the characters
and attributes within aRange.

RTFDFileWrapperFromRange:documentAttributes: | Returnsan NSFileWrapper object that contains
an RTFD document corresponding to the
characters and attributes within the given
range.

initWithRTF:documentAttributes: Initializes a new NSAttributedString object by
decoding the stream of RTF commands and
data contained in the given data object.

initWithRTFD:documentAttributes: Initializes a new NSAttributedString object by
decoding the stream of RTFD commands and
data contained in the given data object.

Reading and Writing RTF Data 21
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

22

RTF Files and Attributed Strings

initWithRTFDFileWrapper:documentAttributes: | Initializes a new NSAttributedString object
from the given NSFileWrapper object
containing an RTFD document.

In addition to these explicit RTF-reading methods, four methods implicitly allow loading RTF data from a file
or URL-specified resource. NSAttributedString defines:

initWithPath:documentAttributes: | Initializes a new NSAttributedString object from RTF or RTFD
data contained in the file at the given path.

initWithURL:documentAttributes: | Initializes a new NSAttributedString object from the data at
the given URL.

NSMutableAttributedString defines:

readFromURL:options:documentAttributes: | Setsthe contents of receiver from the file at url.

readFromData:options:documentAttributes: | Sets the contents of the receiver from the stream
at data.

Handling Document Attributes

Attributed strings store attribute information for characters and paragraphs only, while RTF also supports
more general attributes of a document, such as paper size and page layout. The Application Kit methods
that work with RTF read and write some RTF directives for document attributes, stored inan NSDictionary
object.

Many init methods return a dictionary containing the attributes read from RTF data, which you can use to
set up a page layout. Similarly, RTF extraction methods such as RTFFromRange:documentAttributes:,
accept a dictionary containing those attributes and write them into the RTF data, thus preserving the page
layout information.

Table 1 lists the RTF document attributes supported by the Application Kit.

Table 1 Document attributes supported by RTF-handling methods

Attribute Key Type

PaperSize NSValue, containing NSSize

LeftMargin NSNumber, containing a float, in points
RightMargin NSNumber, containing a float, in points
TopMargin NSNumber, containing a float, in points
BottomMargin NSNumber, containing a float, in points
HyphenationFactor | NSNumber, containing a float

Reading and Writing RTF Data
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

RTF Files and Attributed Strings

Attribute Key

Type

DocumentType

NSString; may be NSPTainTextDocumentType, NSRTFTextDocumentType,
NSRTFDTextDocumentType, NSMacSimpleTextDocumentType, or
NSHTMLTextDocumentType.

CharacterEncoding

NSNumber, containing an int specifyingthe NSStringEncoding used to interpret
the file; for plain text files only.

ViewSize NSValue, containing NSSize.
ViewZoom NSValue, containing a float. 100 = 100% zoom.
ViewMode NSValue, containing an int. 0 = normal; 1 = page layout (use value of PaperSize

attribute).

CocoaRTFVersion

NSNumber, containing an int. If RTF file, stores the version of Cocoa with which
the file was created. Absence of this value indicates RTF file not created by Cocoa
or its predecessors. 0 = Not Cocoa writer, 1 = NextStep, 40 = OpenStep, 100 = Mac
0OS X 10.0, 102 = 10.2. (Other than incrementing the number for future versions,
no assumptions should be made as to how the number will change in the future.)

Converted

NSNumber, containing an int. Indicates whether the file was converted by a filter
service. If missing or zero, the file was originally in the format specified by document
type. If 1 or more, it was converted to this type by a filter service. If negative, the
file was converted “lossily,” meaning that some features of the original document
were left out.

Handling Attachments

Attachments, such as embedded images or files, are represented in an attributed string by both a special
character and an attribute. The character is identified by the global name NSAttachmentCharacter, and
indicates the presence of an attachment at its location in the string. The attribute, identified in the string by
the attribute name NSAttachmentAttributeName,isan NSTextAttachment object. An
NSTextAttachment object contains the data for the attachment itself, as well as an image to display when

the string is drawn.

You can use NSAttributedString'sattributedStringWithAttachment: class method to construct
an attachment string, which you can then add to a mutable attributed string using
appendAttributedString: orinsertAttributedString:atIndex:.To writerich text data containing
one or more attachments, use the RTFDFromRange:documentAttributes: method and the
RTFDFileWrapperFromRange:documentAttributes: method. To initialize an attributed string with rich
text data containing attachments, use the initWithRTFD:documentAttributes:, and
initWithRTFDFileWrapper:documentAttributes: methods.

Reading and Writing RTF Data 23
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

RTF Files and Attributed Strings

Apple’s RTF Extensions

24

Apple has extended the RTF language to support text attributes and formatting constructs available in the
Cocoa text system but not representable with standard RTF. The Apple extensions take the same form as
standard RTF commands, groups, and escapes. RTF commands consist of a backslash followed by a string of
alphabetic characters (case sensitive) followed by an optional integer parameter value which can be positive
or negative. RTF groups begin with a left brace ({), followed by RTF sequences optionally including other
groups, closed by a right brace (}). RTF escapes consist of a backslash followed by a special character, such
as \ {, which indicates a literal left brace instead of the beginning of a group.

RTF includes the concept of a destination, which is a group containing an RTF command and text possibly
to be inserted at a different location in a document, such as a footnote. The escape sequence * indicates
that RTF readers that don’t understand the command that follows should ignore the contents of the
destination.

Dimensions in RTF are expressed in twips—one twip is one twentieth of a point.

Table 2 lists Apple’s RTF extensions for character attributes.

Table 2 Character attribute RTF extensions

RTF Sequence Description Parameter(s)

\CocoaligatureN Ligature control Value of NSLigatureAttributeName.
0 = no ligatures, 1 = default ligatures, 2 = all
ligatures. Default value 1.

\expansionN Expansion factor to be 2000 * value of NSExpansionAttributeName

applied to glyphs (log of expansion factor).

Default value 0.

\obliquenessN Skew to be applied to glyphs | 2000 * value of NSOb1iquenessAttributeName.
0 = no skew. Default value 0.

\fsmilliN A finer specification for font | 1000 * font size.

S1z€ Written in addition to \fs when \fs is not an integral
or half-point value; value is overridden by \fs, so
this should be written immediately after \fs. Default
driven by \fs.

\shadxN \shadyN Shadow offset, written in X and Y offsets in twips (0 = no offset).
conjunction with \shad Defaults are \shadx3 and \shady-3.
\shadrN Shadow blur, written in Blur radius in twips.
conjunction with \shad 0 = no blur. Default value 0.
\strikecN Strikethrough color Color number.
Default same as foreground text color.

Apple’s RTF Extensions
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

RTF Files and Attributed Strings

RTF Sequence Description Parameter(s)
\strikestyleN Strikethrough style, written | Style and pattern mask, value of

where \strike, \striked, NSObliquenessAttributeName.

\strikew are not sufficient 0 = none; 0x8000 = by word; styles: 1 =single, 2 =
thick, 9 = double; patterns: 0x100 = dotted, 0x200
= dash, 0x300 = dash dot, 0x400 = dash dot dot.
Default value 0.

\strokecN Stroke color Color number.
Default same as foreground text color.

\strokewidthN Glyph stroke width, written | 20 * stroke width as percentage of font point size.

in conjunction with\outl. | _ g stroke. Default value 0. Negative values

indicate that glyphs are both stroked and filled;
the stroke width is taken from the absolute value
of the parameter.

\ulstyleN Underline style, written where | Style and pattern mask, value of

the standard \ul commands | NSUnderlineStyleAttributeName.

are not sufficient 0 = none; 0x8000 = by word; styles: 1 =single, 2 =
thick, 9 = double; patterns: 0x100 = dotted, 0x200
= dash, 0x300 = dash dot, 0x400 = dash dot dot.
Default value 0.

{{\NeXTGraphic Name of attachment file in | The attachment is the attachment file name,
attachment \widthN the same folder as the RTF file | encoded in UTF-8 and properly RTF-escaped.
\heightN} string} (typically packaged within an

RTFD document)

The width and height parameters optionally specify
the attachment size in twips. The string is always
OxAC.

{H*\glidN
basestring}string}

Glyph ID for explicitly
specified glyphs. (The extra {}
pair is necessary to work
around an RTF reader bug in
Mac OS X version 10.2 and
earlier.)

Glyph identifier (parameter to \glid). The basestring
is the string the glyph id is intended to override;
this attribute is then applied to the specified string.
Typically string and basestring are the same,
although string might contain multiple instances
of basestring.

{H*\glidN

Glyph ID for explicitly

Character identifier (parameter to \glid) and

basestring\glcolN} specified glyphs character collection (parameter to \glcol).

string} Collection IDs: 0 = identity, 1 = Adobe-CNS1, 2 =
Adobe-GB1, 3 = Adobe-Japan1, 4 = Adobe-Japan2,
5 = Adobe-Korea.

{H*\glid Glyph ID for explicitly The glyphname is the glyph name in UTF-8

basestring\glnam specified glyphs encoding.

glyphnamelstring}

Apple’s RTF Extensions

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

25

26

RTF Files and Attributed Strings

RTF Sequence

Description

Parameter(s)

\AppleTypeServicesUN

Character shape control

Value of NSCharacterShapeAttributeName.

The value is interpreted as Apple Type Services
kCharacterShapeType selector + 1. The value 0
disables this attribute. Default value 0.

Table 3 lists Apple’s RTF extensions for paragraph attributes.

Table 3 Paragraph attribute RTF extensions

RTF Sequence | Description Parameter(s)

\pardeftabN Default tab interval for paragraph Tab interval value in twips. 0 = no tabs
other than those explicitly specified.
Default value 0.

\gnatural Natural text alignment for paragraph (based on | None

script), written along with \ql
\slleadingN Paragraph line spacing (NSParagraphStyle Line spacing value in twips. Default

lineSpacing method)

value 0.

\sImaximumN

Maximum line height (NSParagraphStyle
maximumLineHeight method), written along
with \sl and if needed \sImult

Maximum line height value in twips.
Default value 0, implying no maximum.

\sIminimumN

Minimum line height (NSParagraphStyle
minimumLineHeight method), written along with
\sl and if needed \sImult

Minimum line height value in twips.
Default value 0.

Table 4 lists Apple’s RTF extensions for document attributes.

Table 4

Document attribute RTF extensions

RTF Sequence

Description

Parameter(s)

\readonlydocN

Read-only document. This has nothing to
do with the file system permissions or
ownership of the file; it's just a hint that
indicates that the document should be
presented in a read-only fashion to the user,
if the viewer or editor is capable.

0 = Not read-only, 1 = read-only. Default
value 0.

Apple’s RTF Extensions
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

RTF Files and Attributed Strings

RTF Sequence

Description

Parameter(s)

\cocoartfN

Cocoa RTF-writer version number. This is a
number used by Apple to indicate the
version number of the RTF writer used to
write this document.

Incrementing version number. 0 = Not
Cocoa writer, 1 = NextStep, 40 = OpenStep,
100 = Mac OS X 10.0, 102 = 10.2. (Other than
incrementing the number for future
versions, no assumptions should be made
as to how the number will change in the
future.) Default value 0, although some
heuristics are used to recognize pre—-Mac OS
X documents as such.

\viewhN
\viewwN

Size of display area (not window or view
size) to be used for displaying the document

Display area dimension in twips. Default
value unspecified.

Apple’s RTF Extensions
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

27

RTF Files and Attributed Strings

28 Apple’s RTF Extensions
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Word and Line Calculations in Attributed
Strings

The Application Kit's extensions to NSAttributedString support the typical behavior of text editors in

selecting a word on a double-click with the doubleC1ickAtIndex: method, and finds word breaks with
nextWordFromIndex:forward:. It also calculates line breaks with the
lineBreakBeforelIndex:withinRange: method.

29
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

30

Word and Line Calculations in Attributed Strings

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Standard Attributes

The identifiers listed in Table 1 are global NSString constants containing the attribute names. The value
class is the class of the value corresponding to that attribute.

Table 1 Table of standard attributes
Attribute Identifier Value Class Default Value
NSAttachmentAttributeName NSTextAttachment | none (no attachment)
NSBackgroundColorAttributeName | NSColor none (no background)

NSBaselineOffsetAttributeName

NSNumber, as a float

0.0

NSFontAttributeName NSFont Helvetica 12-point
NSForegroundColorAttributeName | NSColor black
NSKernAttributeName NSNumber, as a float | 0.0

NSLigatureAttributeName

NSNumber, as an int

1 (standard ligatures)

NSLinkAttributeName

id

none (no link)

NSParagraphStyleAttributeName

NSParagraphStyle

(as returned by NSParagraphStyle's
defaultParagraphStyle method)

NSSuperscriptAttributeName

NSNumber, as an int

0

NSUnderlineStyleAttributeName

NSNumber, as an int

none (no underline)

The natures of several attributes are not obvious from name alone:

= The baseline offset attribute is a literal distance, in pixels, by which the characters should be shifted
above the baseline (for positive offsets) or below (for negative offsets).

= The kerning attribute indicates how much the following character should be shifted from its default
offset as defined by the current character’s font; a positive kern indicates a shift farther along and a

negative kern indicates a shift closer to the current character.

The ligature attribute determines what kinds of ligatures should be used when displaying the string. A
value of 0 indicates that only ligatures essential for proper rendering of text should be used, 1 indicates
that standard ligatures should be used, and 2 indicates that all available ligatures should be used. Which
ligatures are standard depends on the script and possibly the font. Arabic text, for example, requires
ligatures for many character sequences, but has a rich set of additional ligatures that combine characters.
English text has no essential ligatures, and typically has only two standard ligatures, those for “fi” and
“fl”—all others being considered more advanced or fancy.

31

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

32

Standard Attributes

The link attribute specifies an arbitrary object that is passed to the NSTextView method
clickedOnlLink:atIndex: when the user clicks in the text range associated with the
NSLinkAttributeName attribute. The text view’s delegate object can implement
textView:clickedOnLink:atIndex: ortextView:clickedOnLink: to process the link object.
Otherwise, the default implementation checks whether the link object is an NSURL object and, if so,
opens it in the URL's default application.

The superscript attribute indicates an abstract level for both super- and subscripts. The user of the
attributed string can interpret this as desired, adjusting the baseline by the same or a different amount
for each level, changing the font size, or both.

The underline attribute has only two values defined, NSNoUnder1ineStyle and
NSSingleUnderlineStyle, but these can be combined with NSUnder1ineByWordMask and
NSUnderlineStrikethroughMask to extend their behavior. By bitwise-ORing these values in different
combinations, you can specify no underlineg, a single underling, a single strikethrough, both an underline
and a strikethrough, and whether the line is drawn for whitespace or not.

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Document Revision History

This table describes the changes to Attributed Strings Programming Guide.

Date Notes

2007-06-04 Added links to methods defined in AppKit Extension.

2006-11-07 Moved table of standard attributes into separate article. Added statement that
custom attributes are not written out with RTF data.

2006-07-24 Augmented "Creating Attributed Strings in Cocoa" with code samples.

2006-01-10 Clarified use of NSLinkAttributeName in sample code.

2005-08-11 Added references to CFAttributedString; clarified the distinction between
"effective" and "longest effective" ranges.

2005-04-29 Updated for Mac OS X v10.4 and added references to CFAttributedString.
Included description of restrictions on modifying attribute values. Added example
of setting attributes. Changed title from "Attributed Strings."

2004-04-14 Added section describing Apple’s RTF extensions to the article “RTF Files and
Attributed Strings” (page 21).

2004-02-05 Rewrote introduction and added an index.

2002-11-12 Revision history was added to existing topic.

33

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

34

Document Revision History

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Index

A

appendAttributedString: method 23

attachment characters 18

attachments, text 23

attribute fixing 18

attribute:atIndex:effectiveRange: method 13,
14

attribute:atIndex:TongestEffectiveRange:inRange:

method 13

attributed strings

creating 11

defined 9

drawing 19

mutable 9
attributedStringWithAttachment: method 23
attributes of text. See text attributes
attributesAtIndex:effectiveRange: method 13

attributesAtIndex:TongestEffectiveRange:inRange:

method 13

B

drawInRect: method 19
drawInRect:withAttributes: method 19

E

effective range of text attributes 13
endEditing method 9, 18

F

fixAttachmentAttributeInRange: method 18
fixAttributesInRange: method 18
fixFontAttributeInRange: method 18
fixParagraphStyleAttributeInRange: method 18
fontAttributesInRange: method 13

H

baseline offset attribute 31
beginEditing method 9, 18

C

HTML 1

clickedOnLink:atIndex: method 32

D

document attributes 22
doubleClickAtIndex: method 29
drawAtPoint: method 19
drawAtPoint:withAttributes: method 19

2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

initWithAttributedString: method 1
initWithHTML:baseURL:documentAttributes:
method 11
initWithHTML:documentAttributes: method 11
initWithRTF:documentAttributes: method 11
initWithRTFD:documentAttributes: method 11,23
initWithRTFDFileWrapper:documentAttributes:
method 11, 23
initWithString: method 11,13
initWithString:attributes: method 11, 13
insertAttributedString:atIndex: method 23

35

K RTFFromRange:documentAttributes: method 22
rulerAttributesInRange: method 13

kerning attribute 31

S
L .

scripts
ligature attribute 31 fonts and 18
TineBreakBeforeIndex:withinRange: method 29 setAttributesInRange:range: method 1
lines of text superscript attribute 32

breaking 29

link attribute 32

T
N text attributes

access 13

nextWordFromIndex:forward: method 29 baseline offset 31
NSAttachmentAttributeName constant 23 effective range 13
NSAttachmentCharacter constant 23 fixing 18
NSAttributedString class 9 for documents 22
NSCopying protocol 9 identifiers 13
NSDictionary class 9 kerning 31
NSLayoutManager class 18, 19 ligature 31
NSMutableAttributedString class 9, 17, 18 link 32
NSMutableCopying protocol 9 storage 9
NSString class 19 superscript 32
NSTextAttachment class 23 underline 32
NSTextStorage class 9 values 11,17
NSView class 9 text editors 29

textView:clickedOnLink: method 32
textView:clickedOnLink:atIndex: method 32
twips 24

P

paragraph styles 18

U

underline attribute 32

R

rich text format (RTF)

described 21

initializing attributed strings with 11

reading and writing 21
RTF command formats 24
RTF extensions by Apple

character attributes 24

document attributes 26

introduced 24

paragraph attributes 26
RTFDFileWrapperFromRange:documentAttributes:

method 23

RTFDFromRange:documentAttributes: method 23

36
2007-06-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

	Attributed Strings Programming Guide
	Contents
	Tables
	Introduction
	Attributed Strings
	Creating Attributed Strings in Cocoa
	Accessing Attributes
	Retrieving Attribute Values
	Effective and Maximal Ranges

	Changing an Attributed String
	Modifying Attributes
	Fixing Inconsistencies

	Drawing Attributed Strings
	RTF Files and Attributed Strings
	Reading and Writing RTF Data
	Handling Document Attributes
	Handling Attachments

	Apple’s RTF Extensions

	Word and Line Calculations in Attributed Strings
	Standard Attributes
	Revision History
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	N
	P
	R
	S
	T
	U

