
View Programming Guide for Cocoa
Cocoa > Graphics & Imaging

2008-04-10

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, Quartz, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to View Programming Guide for Cocoa 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

Chapter 1 What Are Views? 9

The Role of NSView 9
Cocoa-Provided View Classes 9

Container Views 9
The Text System 10
Controls 10
Non-Quartz Graphic Environments 11

Chapter 2 View Geometry 13

The View Coordinate System 13
Understanding a View's Frame and Bounds 13
Transforming the Coordinate System 15

Chapter 3 Working with the View Hierarchy 19

What Is a View Hierarchy? 19
Benefits of a View Hierarchy 20
Locating Views in the View Hierarchy 20
Adding and Removing Views from a Hierarchy 21
Repositioning and Resizing Views 22

Moving and Resizing Views Programmatically 22
Autoresizing of Subviews 23
Notifications 25

Hiding Views 25
Converting Coordinates in the View Hierarchy 26
View Tags 28

Chapter 4 Creating a Custom View 29

Allocating the View 29
Initializing View Instances Created in Interface Builder 30

Drawing View Content 31
Implementing the drawRect: Method 31
Marking a View as Needing Display 32

3
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

View Opacity 33
Responding to User Events and Actions 33

Becoming First Responder 34
Handling Mouse Click and Dragging Events 34
Tracking Mouse Movements 39
Handling Key Events in a View 41
Handling Action Methods via the Responder Chain 42

Property Accessor Methods 43
Deallocating the View 44

Chapter 5 Advanced Custom View Tasks 45

Determining the Output Device 45
Drawing Outside of drawRect: 45

Chapter 6 Optimizing View Drawing 47

Avoid the Overuse of Views 47
Specify View Opacity 47
Invalidating Portions of Your View 48
Constraining Drawing to Improve Performance 48
Suppressing Default Clipping 49
Drawing During Live Window Resizing 50

Draw Minimally 50
Cocoa Live Resize Notifications 51
Preserve Window Content 51

Document Revision History 53

4
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 2 View Geometry 13

Figure 2-1 Relationship between a view's frame rectangle and bounds rectangle 14
Figure 2-2 View's bounds content stretched to fit the frame rectangle 14
Figure 2-3 View's content clipped to its superview 15
Figure 2-4 Altering a view's bounds 16
Figure 2-5 Flipped view coordinates 17
Figure 2-6 Visible rectangle of a rotated view 18

Chapter 3 Working with the View Hierarchy 19

Figure 3-1 View hierarchy 19
Figure 3-2 Relationships among objects in a hierarchy 21
Figure 3-3 View autoresizing mask constants 24
Figure 3-4 Converting values in a rotated view 27
Table 3-1 Autoresizing mask constants 23
Listing 3-1 Marking view contents for display after modifying the frame 23
Listing 3-2 Converting event locations using convertPoint:fromView: 26
Listing 3-3 Converting a view location to the screen location 27

Chapter 4 Creating a Custom View 29

Listing 4-1 DraggableItemView implementation of initWithFrame: 29
Listing 4-2 DraggableItemView implementation of setItemPropertiesToDefault: 30
Listing 4-3 DraggableItemView implementation of calculatedItemBounds: 31
Listing 4-4 DraggableItemView implementation of drawRect: 32
Listing 4-5 DraggableItemView implementation of isOpaque 33
Listing 4-6 DraggableItemView implementation of acceptsFirstResponder 34
Listing 4-7 DraggableItemView implementation of mouseDown: 35
Listing 4-8 DraggableItemView implementation of isPointInItem: 35
Listing 4-9 DraggableItemView implementation of mouseDragged: 36
Listing 4-10 DraggableItemView implementation of offsetLocationByX:andY: 37
Listing 4-11 DraggableItemView implementation of mouseUp: 37
Listing 4-12 Alternate mouseDown: implementation 37
Listing 4-13 DraggableItemView implementation of resetCursorRects 40
Listing 4-14 DraggableItemView implementation of keyDown: 41
Listing 4-15 DraggableItemView implementation of moveUp:, moveDown:, moveLeft:, and

moveRight: actions 42
Listing 4-16 DraggableItemView implementation of changeColor: 42
Listing 4-17 DraggableItemView accessor methods 43

5
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

Chapter 5 Advanced Custom View Tasks 45

Listing 5-1 Testing the output device 45
Listing 5-2 Using lockFocus and unlockFocus explicitly 46

Chapter 6 Optimizing View Drawing 47

Listing 6-1 Explicit intersection testing of known regions against dirty rectangles 48
Listing 6-2 Simplified intersection testing using needsToDrawRect: 49

6
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

A view instance is responsible for drawing and responding to user actions in a rectangular region of a window.
This document describes the role of views in a Cocoa application, how to manipulate views in a window, and
how to create a custom view subclass for an application.

Who Should Read This Document

You should read this document to gain an understanding of working with views in a Cocoa application. You
are expected to be familiar with Cocoa development, including the Objective-C language and memory
management. The Cocoa Fundamentals Guide should be considered a prerequisite. The “Creating a Custom
View” (page 29) article expects that a developer is familiar with the Cocoa event model described in Cocoa
Event-Handling Guide as well as the graphics drawing environment described in Cocoa Drawing Guide.

Organization of This Document

View Programming Guide for Cocoa consists of the following chapters:

 ■ “What Are Views?” (page 9) describes the role of the view in Cocoa applications and an overview of
the views provided by Cocoa.

 ■ “View Geometry” (page 13) describes how views establish their base coordinate system.

 ■ “Working with the View Hierarchy” (page 19) describes how an application inserts and removes views
from the view hierarchy.

 ■ “Creating a Custom View” (page 29) describes the various aspects of NSView that an application can
subclass, and provides a dissection of a custom NSView subclass.

 ■ “Advanced Custom View Tasks” (page 45) describes the advanced view subclass drawing tasks.

 ■ “Optimizing View Drawing” (page 47) describes techniques to optimize view drawing.

See Also

There are other technologies, not fully covered in this document, that are fundamental to using views in
your application. Refer to these documents for more details:

 ■ Cocoa Event-Handling Guide describes the event model used by Cocoa applications and explains how
your objects can handle events and participate in the responder chain.

Who Should Read This Document 7
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to View Programming Guide for
Cocoa

 ■ Cocoa Drawing Guide describes the basic methods used to draw curves, fill shapes, and modify the
coordinate system.

 ■ Drag and Drop Programming Topics for Cocoa describes how to implement drag and drop in a view
subclass.

There is also sample code available that provides detailed examples of view usage. The following sample
code is installed in /Developer/Examples/Appkit:

 ■ DotView is a simple application that implements a basic NSView subclass.

 ■ Sketch is a scriptable graphics application. It provides a look at a complex view subclass than handles
many types of events.

 ■ Worm provides three several different NSView implementations that demonstrate techniques for
improving a view's performance.

Additional sample code is available through Apple Developer Connection:

 ■ Bindings Joystick implements a “joystick” user interface item that illustrates a bindings-enabled subclass
of NSView.

 ■ ColorSampler demonstrates using lockFocus to read pixel colors from a view.

 ■ Reducer demonstrates use of Core Image, the NSAnimation class, and view drawing redirection. Includes
a collapsible NSView subclass that is Cocoa bindings-enabled.

8 See Also
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to View Programming Guide for Cocoa

http://developer.apple.com/samplecode/BindingsJoystick/index.html
http://developer.apple.com/samplecode/Color_Sampler/index.html
http://developer.apple.com/samplecode/Reducer/index.html

In Cocoa, a view is a rectangular section of the screen contained in a window. It is responsible for handling
all drawing and user-initiated events within its frame. Cocoa provides the NSView class as an abstract view
implementation that subclasses use as the basis for implementing custom display and user interaction.

The Role of NSView

Cocoa provides a high-level class, NSView, that implements the fundamental view behavior. An NSView
instance defines the rectangular location of the view, referred to as its frame rectangle, and takes responsibility
for rendering a visual representation of its data within that area. In addition to drawing, a view takes
responsibility for handling user events directed towards the view.

NSView is an abstract class that provides the underlying mechanisms for concrete subclasses to implement
their own behavior. It provides overrideable methods for handling drawing and printing. NSView is a subclass
of NSResponder and, as a result, also provides overrideable methods for handling user-initiated mouse and
keyboard events.

In addition to drawing content and responding to user events, NSView instances act as containers for other
views. By nesting views within other views, an application creates a hierarchy of views. This view hierarchy
provides a clearly defined structure for how views draw relative to each other and pass messages from one
view to another, up to the enclosing window, and on to the application for processing.

Cocoa-Provided View Classes

In addition to the NSView class, Cocoa provides a number of view subclasses that provide the user interface
elements common to many applications. Your application can use these views classes directly, subclass them
to provide additional functionality, or create entirely new custom view classes. Other frameworks provide
additional views that can be used in Cocoa applications, including Web Kit, QuickTime Kit, and Quartz
Composer.

The Cocoa view subclasses can be classified into several groups: container views, views that are part of the
text system, user controls, and views that support non-Quartz graphics environments.

Container Views

Container views enhance the function of other views, or provide additional visual separation of the content.
The NSBox class provides visual separation of groups of subviews that are related in their function. The
NSTabView class provides a way to swap different views into and out of its content view, so that the tab

The Role of NSView 9
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

What Are Views?

view's content area can be reused by multiple sets of views. The NSSplitView class allows an application
to stack multiple views horizontally or vertically, divided by a separator bar that the user can drag to resize
the views.

The NSScrollView class displays a portion of the contents of a view that’s too large to be displayed in a
window. It coordinates a number of other views and controls to provide its functionality. A scroll view's
scrollers, instances of the NSScroller class, allow the user to scroll the document. The scroll view's content
view, an instance of the NSClipView class, actually manages positioning and redrawing the content view
as the scroll view content scrolls. The NSRulerView class provides horizontal and vertical rulers that follow
the scrolling of the document view. All these views work together to provide scrolling to an application.

The Text System

The NSTextView class is the front-end to the Cocoa text system. It draws the text managed by several
underlying model and controller classes and handles user events to select and modify its text. The text classes
exceed most other classes in the Application Kit in the richness and complexity of their interface. NSTextView
is a subclass of NSText, which is in turn a subclass of NSView. Applications use the NSTextView class rather
than NSText. See Text System Overview for more information on the Cocoa text system.

When used in a view hierarchy, an NSTextView instance is usually set as the document view of a scroll view.
For simple text-field style interface items, Cocoa defines a number of simpler text controls, including the
NSTextField class.

Controls

Typically, the majority of an application's user interface is created using controls. As a descendent of NSView,
controls are responsible for drawing their content and handling user-initiated events. Controls typically
display a specific value and allow the user to change that value. Individual controls provide value editing out
of context; it's the overall user interface that puts that data into context.

Controls act as containers for lightweight objects called cells. Cells are actually responsible for the majority
of the visual representation and event handling that controls provide. This delegation allows cells to be
reused in more complex user interface objects. For example, an instance of the NSTextFieldCell class is
used by an NSTextField instance to display text and respond to user edits. That same NSTextFieldCell
class is also used by an NSTableView instance to allow editing of data within a column. This delegation of
responsibility is one of the key distinctions between controls and views.

Controls also support the target-action paradigm. Controls send target objects an action message in response
to user actions. For example, clicking a button results in the action message being sent to the button's target
object, if set, or up the responder chain if a specific target object is not specified.

Some control subclasses actually have “view” in their name, which can be confusing. The NSImageView,
NSTableView, and NSOutlineView classes are all subclasses of NSControl, although they inherit indirectly
from NSView. It's because these objects rely on cells to provide much of their functionality that they are
subclasses of NSControl rather than NSView. Note that the NSTableView and NSOutlineView classes do
not provide their scrolling directly; they are set as the document view of a scroll view.

10 Cocoa-Provided View Classes
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

What Are Views?

Non-Quartz Graphic Environments

The NSView class supports the standard drawing environment in Mac OS X, the Quartz graphic environment.
However, Cocoa also supports several non-Quartz drawing environments for additional functionality and
compatibility. The NSOpenGLView class allows an application to render content using OpenGL. An application
subclasses NSOpenGLView and overrides the drawRect: method to display the OpenGL content. Unlike its
superclass, the NSOpenGLView class does not support subviews. QTMovieView is a subclass of NSView that
can be used to display, edit, and control QuickTime movies. The QTMovieView class is part of the QuickTime
Kit framework rather than the Cocoa framework.

Cocoa-Provided View Classes 11
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

What Are Views?

12 Cocoa-Provided View Classes
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

What Are Views?

A view is responsible for the drawing and event handling in a rectangular area of a window. In order to specify
that rectangle of responsibility, you define its location as an origin point and size using a coordinate system.
This chapter describes the coordinate system used by views, how a view's location and size is specified, and
how the size of a view interacts with its content.

The View Coordinate System

From its inception, the Quartz graphics environment was designed to be resolution independent across
output devices. That is, 1 unit square does not necessarily correspond directly to 1 pixel. When it comes to
support for resolution independence, Quartz in combination with NSView provides much of the support you
need automatically. When a view draws its content, the resolution independence scaling factors are managed
automatically.

A view's location is expressed using the same coordinate system that the Quartz graphics environment uses.
By default, the graphics environment origin (0.0,0.0) is located in the lower left, and values are specified as
floating-point numbers that increase up and to the right in coordinate system units. The coordinate system
units, the unit square, is the size of a 1.0 by 1.0 rectangle.

Every view instance defines and maintains its own coordinate system, and all drawing is done relative to this
coordinate system. Mouse events are provided in the enclosing window's coordinate system but are easily
converted to the view's. A view's coordinate system should be considered the base coordinate system for all
the content of the view, including its subviews.

Understanding a View's Frame and Bounds

Graphically, a view can be regarded as a framed canvas. The frame locates the view in its superview, defines
its size, and clips drawing to its edges, while the canvas hosts the actual drawing. The frame can be moved,
resized, and rotated in the superview and the view's content moves with it. Similarly, the canvas can be
shifted, stretched, and rotated, and the view contents move within the frame.

A view tracks its size and location using two rectangles: a frame rectangle and a bounds rectangle. The frame
rectangle defines the view's location and size in the superview using the superview’s coordinate system. The
bounds rectangle defines the interior coordinate system that is used when drawing the contents of the view,
including the origin and scaling. Figure 2-1 shows the relationship between the frame rectangle, on the left,
and the bounds rectangle, on the right.

The View Coordinate System 13
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

View Geometry

Figure 2-1 Relationship between a view's frame rectangle and bounds rectangle

Frame rectangle at (5.0, 5.0), size (73.0, 88.0) Bounds rectangle at (0.0, 0.0), size (73.0, 88.0)

Superview

The frame of a view is specified when a view instance is created programmatically using the initWithFrame:
method. The frame rectangle is passed as the parameter. The NSView method frame returns the receiver's
frame rectangle. When a view is initialized, the bounds rectangle is set to originate at (0.0, 0.0) and the bounds
size is set to the same size as the view's frame. If an application changes a view's bounds rectangle, it typically
does so immediately after initialization. A view's bounds rectangle is returned by the method bounds.

If the size of the bounds rectangle differs from the frame rectangle, the content is stretched or compressed
so that all the contents within the bounds are displayed in the view. Figure 2-2 shows the display results
when the frame rectangle is twice the width of the bounds rectangle. The view's content is stretched
horizontally to fill the width of the frame rectangle.

Figure 2-2 View's bounds content stretched to fit the frame rectangle

Frame rectangle at (5.0, 5.0), size (146.0, 88.0) Bounds rectangle at (0.0, 0.0), size (73.0, 88.0)

Superview

Although the bounds rectangle indicates the portion of the view content that is shown in the view's frame,
there are situations where only a subsection of the view contents are displayed–for example, if the frame
runs outside of the superview's frame. When this occurs, the contents are clipped as shown on the left in
Figure 2-3.

14 Understanding a View's Frame and Bounds
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

View Geometry

Figure 2-3 View's content clipped to its superview

A view's visible rectangle reflects the portion of the contents that are actually displayed, in terms of the view's
bounds coordinate system (the rectangle on the right in Figure 2-3). It isn’t often important to know what
the visible rectangle is, since the display mechanism automatically limits drawing to visible portions of a
view. If a subclass must perform expensive precalculation to build its image, it can use the visibleRect
method to limit its work to what’s actually needed.

Transforming the Coordinate System

By default, a view's coordinate system is based at (0.0, 0.0) in the lower-left corner of its bounds rectangle,
its unit square (the size of a 1.0 by 1.0 rectangle) is the same size as those of its superview, and its axes are
parallel to that of its frame rectangle. The coordinate system of a view can be changed in four distinct ways:
It can be translated, scaled, flipped, or rotated.

To translate or scale the coordinate system, you alter the view's bounds rectangle. Changing the bounds
rectangle sets up the basic coordinate system with which all drawing performed by the view begins. Concrete
subclasses of NSView typically alter the bounds rectangle immediately as needed in their initWithFrame:
methods or upon loading a nib file that contains the view.

The method for changing the bounds rectangle is setBounds:, which both positions and scales the canvas.
The origin of the rectangle provided to setBounds: becomes the lower-left corner of the bounds rectangle,
and the size of the rectangle is made to fit in the frame rectangle, effectively scaling the view's drawn image.
In Figure 2-4, the bounds rectangle from Figure 2-1 is moved and doubled in size; the result appears on the
right.

Transforming the Coordinate System 15
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

View Geometry

Figure 2-4 Altering a view's bounds

You can also set the components of the bounds rectangle independently, using setBoundsOrigin: and
setBoundsSize:.

Note: Once an application explicitly sets the bounds rectangle of a view using any of the setBounds...
methods, altering the view's frame rectangle no longer automatically changes the bounds rectangle. See
“Repositioning and Resizing Views” (page 22) for details.

Another set of methods translate and scale the coordinate system in relative terms; if you invoke them
repeatedly, their effects accumulate. These methods are translateOriginToPoint: and
scaleUnitSquareToSize:.

Translating the bounds rectangle of a view shifts all subviews along with the drawing of the view's content.
Scaling also affects the drawing of the subviews, as their coordinate systems inherit and build on these
alterations.

A view can also specify that its coordinate system is flipped. A flipped coordinate system is based on the
origin (0.0,0.0) being in the upper-left corner of its bounds rectangle, as shown in Figure 2-5.

16 Transforming the Coordinate System
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

View Geometry

Figure 2-5 Flipped view coordinates

Flipped coordinates

Standard (unflipped) coordinates

(0,0)

y

x

y

x(0,0)

A flipped coordinate system is useful when the contents of a view naturally originate at the top of a view,
and flow downwards. For example, a view that scrolls text up and off the screen as new text appears would
be best implemented using a flipped coordinate system.

Specifying that a view subclass uses a flipped coordinate system is done by overriding the isFlipped
method. The default implementation of NSView returns NO, which means that the origin of the coordinate
system lies at the lower-left corner of the default bounds rectangle, and the y-axis runs from bottom to top.
When a subclass overrides this method to return YES, the view machinery automatically adjusts itself to
assume that the upper-left corner is the origin.

A flipped coordinate system affects all drawing in the flipped view itself as well as the placement of the frame
rectangles of all immediate subviews. It doesn’t affect the coordinate systems of those subviews or the
drawing performed by them.

It is also possible to rotate the coordinate system around its origin within the bounds rectangle (not the
origin of the bounds rectangle itself). The setBoundsRotation:method sets the rotation of the coordinate
system to the angle, in degrees, passed as the parameter. The rotateByAngle: method allows you to
specify the rotation angle relative to the current rotation of the coordinate system.

Rotating a view's coordinate system also enlarges the visible rectangle to account for the rotation, so that
it’s expressed in the rotated coordinates yet completely covers the visible portion of the frame rectangle.
This adds regions that must be drawn, yet will never be displayed (the triangular areas shown in Figure 2-6).

Transforming the Coordinate System 17
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

View Geometry

Figure 2-6 Visible rectangle of a rotated view

Bounds rectangle at (0.0, 40.0), size (108.0, 75.0)
Bounds rotation 20 degrees

Superview

Visible rectangle

Frame rectangle at (10.0, 10.0), size (108.0, 75.0)

Note: For performance reasons, rotating the bounds rectangle is discouraged. It’s better to rotate the
coordinate system using graphic operators in the drawRect: method than to rotate the bounds coordinate
system. See Coordinate Systems and Transforms in Cocoa Drawing Guide for more information.

A view instance can provide notification to interested objects when its frame or bounds rectangles are altered.
See “Notifications” (page 25) in “Working with the View Hierarchy” (page 19) for more information.

18 Transforming the Coordinate System
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

View Geometry

Along with their own direct responsibilities for drawing and event handling, views also act as containers for
other views, creating a view hierarchy. This chapter describes the view hierarchy, its benefits, and how you
work with views within a hierarchy.

What Is a View Hierarchy?

In addition to being responsible for drawing and handling user events, a view instance can act as a container,
enclosing other view instances. Those views are linked together creating a view hierarchy. Unlike a class
hierarchy, which defines the lineage of a class, the view hierarchy defines the layout of views relative to other
views.

The window instance maintains a reference to a single top-level view instance, call the content view. The
content view acts as the root of the visible view hierarchy in a window. The view instances enclosed within
a view are called subviews. The parent view that encloses a view is referred to as its superview. While a view
instance can have multiple subviews, it can have only one superview. In order for a view and its subviews to
be visible to the user, the view must be inserted into a window's view hierarchy.

Figure 3-1 shows a sample application window and its view hierarchy.

Figure 3-1 View hierarchy

Content view

A

B C

This window's view hierarchy has these parts.

 ■ The window is represented by an NSWindow instance.

 ■ The content view serves as the root of the window's view hierarchy.

 ■ The content view contains a single subview, an instance of the NSBox class.

 ■ The NSBox instance in turn has two subviews, an NSButton instance, and an NSTextField instance.

 ■ The superview for both the button and text field is the NSBox object. The NSBox container actually
encloses the button and text field views.

What Is a View Hierarchy? 19
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

Benefits of a View Hierarchy

Managing views as a hierarchy benefits application design in several ways:

 ■ Complex view functionality can be assembled by using simpler NSView subclasses, avoiding monolithic
and complex view classes. For example, a graphical keypad might be an NSView subclass that utilizes
NSButton subviews for each key.

 ■ Each subview's coordinate system is positioned relative to its superview's coordinate system. NSView
instances are positioned within their superviews, so that when an NSView instance is moved or its
coordinate system is transformed, all its subviews are moved and transformed with it. Similarly, scaling
an NSView instance causes all of the subviews to scale their drawing relative to the superview. Since
each view draws within its own coordinate system, its drawing instructions remain constant no matter
where it or its superview moves on the screen or how it is scaled.

 ■ A view hierarchy provides a clear definition of responsibility for event handling. When a view receives
an event that it doesn't respond to, the event is forwarded up the view hierarchy through the superview
for processing. The key window's view hierarchy takes part in an application's responder chain.

 ■ A view hierarchy also provides a defined structure for managing the redrawing of the window's content.
When an NSView instance receives a display request, it draws itself, and then passes drawing responsibility
to each of its subviews in turn. Each branch of the view hierarchy completes drawing before the next
branch begins.

 ■ A view hierarchy is dynamic. It can be reconfigured as an application runs. View instances can be moved
from window to window and installed as a subview first of one superview, then of another.

Locating Views in the View Hierarchy

A rich selection of methods allows applications to access a view's hierarchy. The superview method returns
the view that contains the receiver, while the subviews method returns an array containing the view's
immediate descendants. If a view is the root of a view hierarchy, it returns nil when asked for its superview.
Sending a view the windowmessage returns the window the view resides in, or nil if the view is not currently
in a window's view hierarchy. Figure 3-2 illustrates the relationships of the objects in the view hierarchy
shown in Figure 3-1.

20 Benefits of a View Hierarchy
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

Figure 3-2 Relationships among objects in a hierarchy

superview
subviews
window

viewB

contentView

aWindow

superview
subviews
window

contentView

superview
subviews
window

viewA

superview
subviews
window

viewC

Other methods allow you to inspect relationships among views: isDescendantOf: confirms the containment
of the receiver; ancestorSharedWithView: finds the common container containing the receiver and the
view instance specified as the parameter. For example, assuming a view hierarchy as shown in Figure 3-2,
sending viewC a isDescendentOf: message with contentView as the parameter returns YES. Sending
viewB the ancestorSharedWithView: message, passing viewC as the parameter, returns viewA.

The opaqueAncestor method returns the closest parent view that’s guaranteed to draw every pixel in the
receiver’s frame (possibly the receiver itself).

Adding and Removing Views from a Hierarchy

Creating a view subclass using the initWithFrame:method establishes an NSView object's frame rectangle,
but doesn’t insert it into a window's view hierarchy. You do this by sending an addSubview: message to
the intended superview, passing the view to insert as the parameter. The frame rectangle is then interpreted
in terms of the superview, properly locating the new view by both its place in the view hierarchy and its
location in the superview’s window. An existing view in the view hierarchy can be replaced by sending the
superview a replaceSubview:with: message, passing the view to replace and the replacement view as
parameters. An additional method, addSubview:positioned:relativeTo:, allows you to specify the
ordering of views.

Adding and Removing Views from a Hierarchy 21
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

Note: For performance reasons, Cocoa does not enforce clipping among sibling views or guarantee correct
invalidation and drawing behavior when sibling views overlap. If you want a view to be drawn in front of
another view, you should make the front view a subview (or descendant) of the rear view.

You remove a view from the view hierarchy by sending it a removeFromSuperview message. The
removeFromSuperviewWithoutNeedingDisplay method is similar, removing the receiver from its
superview, but it does not cause the superview to redraw.

When an NSView object is added as a subview of another view, it automatically invokes the
viewWillMoveToSuperview: and viewWillMoveToWindow: methods. You can override these methods
to allow an instance to query its new superview or window about relevant state and update itself accordingly.

Important: When considering memory management, the view hierarchy should be thought of as any other
Cocoa collection object. When an item is added to a collection, it is retained. When it is removed, it is released.

Specifically, when you insert a view as a subview using the addSubview: or
addSubview:positioned:relativeTo: methods, it is retained by the receiving view. Inversely, when
you remove a subview from a view hierarchy by sending its superview a removeFromSuperview message,
the view is released. The replaceSubview:with:method acts the same, releasing the view that is replaced
and retaining the view that is inserted in its place.

See Memory Management Programming Guide for Cocoa for a complete discussion of the Cocoa memory
management conventions.

Repositioning and Resizing Views

Repositioning or resizing a view is a potentially complex operation. When a view moves or resizes it can
expose portions of its superview that weren’t previously visible, requiring the superview to redisplay. Resizing
can also affect the layout of the view’s subviews. Changes to a view's layout in either case may be of interest
to other objects, which might need to be notified of the change. The following sections explore each of these
areas.

Moving and Resizing Views Programmatically

After a view instance has been created, you can move it programmatically using any of the frame-setting
methods: setFrame:, setFrameOrigin:, and setFrameSize:. If the bounds rectangle of the view has
not been explicitly set using one of the setBounds...methods, the view's bounds rectangle is automatically
updated to match the new frame size.

When you change the frame rectangle, the position and size of subviews' frame rectangles often need to be
altered as well. If the repositioned view returns YES for autoresizesSubviews, its subviews are automatically
resized as described in “Autoresizing of Subviews” (page 23). Otherwise, it is the application's responsibility
to reposition and resize the subviews manually.

None of the methods that alter a view's frame rectangle automatically redisplay the view or marks it as
needing display. When using the setFrame... methods, you must mark both the view being repositioned
and its superview as needing display as in the code fragment shown in Listing 3-1.

22 Repositioning and Resizing Views
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

Listing 3-1 Marking view contents for display after modifying the frame

NSView *theView; /* Assume this exists. */
NSRect newFrame; /* Assume this exists. */

[[theView superview] setNeedsDisplayInRect:[theView frame]];
[theView setFrame:newFrame];
[theView setNeedsDisplay:YES];

This code fragment marks the superview as needing display in the frame of the view about to be moved.
Then, after the new frame rectangle of theView is set, the altered view is marked as needing display in its
entirety, which is nearly always the case. The setBounds... methods also don’t redisplay the receiving
view, but because their changes don’t affect superviews, you can simply mark the receiving view instance
as needing display.

Autoresizing of Subviews

NSView provides a mechanism for automatically moving and resizing subviews in response to their superview
being moved or resized. In many cases simply configuring the autoresizing mask for a view provides the
appropriate behavior for an application. Autoresizing is on by default for views created programmatically,
but you can turn it off using the setAutoresizesSubviews: method.

Interface Builder allows you to set a view's autoresizing mask graphically with its Size inspector, and in test
mode you can immediately examine the effects of autoresizing. The autoresizing mask can also be set
programmatically.

A view's autoresizing mask is specified by combining the autoresizing mask constants using the bitwise OR
operator and sending the view a setAutoresizingMask: message, passing the mask as the parameter.
Table 3-1 shows each mask constant and how it effects the view's resizing behavior.

Table 3-1 Autoresizing mask constants

DescriptionAutoresizing Mask

If set, the view's height changes proportionally to the change in the superview's
height. Otherwise, the view's height does not change relative to the superview's
height.

NSViewHeightSizable

If set, the view's width changes proportionally to the change in the superview's
width. Otherwise, the view's width does not change relative to the superview's
width.

NSViewWidthSizable

If set, the view's left edge is repositioned proportionally to the change in the
superview's width. Otherwise, the view's left edge remains in the same position
relative to the superview's left edge.

NSViewMinXMargin

If set, the view's right edge is repositioned proportionally to the change in the
superview's width. Otherwise, the view's right edge remains in the same position
relative to the superview.

NSViewMaxXMargin

Repositioning and Resizing Views 23
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

DescriptionAutoresizing Mask

If set and the superview is not flipped, the view's top edge is repositioned
proportionally to the change in the superview's height. Otherwise, the view's
top edge remains in the same position relative to the superview.

If set and the superview is flipped, the view's bottom edge is repositioned
proportionally to the change in the superview's height. Otherwise, the view's
bottom edge remains in the same position relative to the superview.

NSViewMinYMargin

If set and the superview is not flipped, the view's bottom edge is repositioned
proportional to the change in the superview's height. Otherwise, the view's
bottom edge remains in the same position relative to the superview.

If set and the superview is flipped, the view's top edge is repositioned
proportional to the change in the superview's height. Otherwise, the view's top
edge remains in the same position relative to the superview.

NSViewMaxYMargin

For example, to keep a view in the lower-left corner of its superview, you specify NSViewMaxXMargin |
NSViewMaxYMargin. When more than one aspect along an axis is made flexible, the resize amount is
distributed evenly among them. Figure 3-3 provides a graphical representation of the position of the constant
values in both normal and flipped superviews.

Figure 3-3 View autoresizing mask constants

NSViewWidthSizable

NSViewMaxXMargin

NSViewMaxYMargin

NSViewHeightSizable

Superview

View

NSViewMinYMargin

NSViewMinXMargin

(0.0, 0.0)
Viewʼs superview is not flipped

Viewʼs superview is flipped

NSViewWidthSizable

NSViewMaxXMargin

NSViewMaxYMargin

NSViewHeightSizable

Superview

View

NSViewMinYMargin

NSViewMinXMargin

(0.0, 0.0)

24 Repositioning and Resizing Views
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

When one of these constants is omitted, the view's layout is fixed in that aspect; when a constant is included
in the mask the view's layout is flexible in that aspect. Including a constant in the mask is the same as
configuring that autoresizing aspect with a spring in Interface Builder.

Note: If a view is created in Interface Builder and no autoresizing flags are set in the view's inspector, then
setAutoresizesSubviews: is automatically set to NO. Before programmatically modifying the autoresizing
mask, you need to explicitly enable autoresizing for the superview by sending the superview a
setAutoresizesSubviews: message, passing YES as the parameter.

When you turn off a view's autoresizing, all of its descendants are likewise shielded from changes in the
superview. Changes to subviews, however, can still percolate downward. Similarly, if a subview has no
autoresize mask, it won’t change in size, and therefore none of its subviews autoresize.

A subclass can override resizeSubviewsWithOldSize: or resizeWithOldSuperviewSize: to customize
the autoresizing behavior for a view. A view's resizeSubviewsWithOldSize: method is invoked
automatically by a view whenever its frame size changes. This method then simply sends a
resizeWithOldSuperviewSize: message to each subview. Each subview compares the old frame size to
the new size and adjusts its position and size according to its autoresize mask.

Important: Several cautions apply to autoresizing. For autoresizing to work correctly, the subview being
autoresized must lie completely within its superview’s frame. Autoresizing doesn’t work at all in views that
have been rotated. Subviews that have been rotated can autoresize within a nonaltered superview, but then
their descendants aren’t autoresized.

Notifications

Beyond resizing its subviews, by default an NSView instance broadcasts notifications to interested observers
any time its bounds or frame rectangles change. The notification names are
NSViewFrameDidChangeNotification and NSViewBoundsDidChangeNotification, respectively.

An NSView instance that bases its own display on the layout of its subviews should register itself as an
observer for those subviews and update itself any time they’re moved or resized. Both NSScrollView and
NSClipView instances cooperate in this manner to adjust the scroll view's scrollers.

By default both frame and bounds rectangle changes are sent for a view instance. You can prevent an NSView
instance from providing the notifications using setPostsFrameChangedNotifications: and
setPostsBoundsChangedNotifications: and passing NO as the parameter. If your application does
complicated view layout, turning change notifications off before layout and then restoring them upon
completion may provide a performance improvement. As with all performance tuning, it is best to first sample
your application to determine if the change notifications are having a negative impact on performance.

Hiding Views

You hide and “unhide” (that is, show) the views of a Cocoa application using the NSViewmethod setHidden:.
This method takes a Boolean parameter: YES (hide the receiving view) or NO (show the receiver).

Hiding Views 25
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

When you hide a view using the setHidden: method it remains in its view hierarchy, even though it
disappears from its window and does not receive input events. A hidden view remains in its superview’s list
of subviews and participates in autoresizing. If a view marked as hidden has subviews, they and their view
descendants are hidden as well. When you hide a view, the Application Kit also disables any cursor rectangle,
tool-tip rectangle, or tracking rectangle associated with the view.

Hiding the view that is the window’s current first responder causes the view’s next valid key view
(nextValidKeyView) to become the new first responder. A hidden view remains in the nextKeyView chain
of views it was previously part of but is ignored during keyboard navigation.

You can query the hidden state of a view by sending it either isHidden or isHiddenOrHasHiddenAncestor
(both defined by NSView). The former method returns YES when the view has been explicitly marked as
hidden with a setHidden: message. The latter returns YES both when the view has been explicitly marked
as hidden and when it is hidden because an ancestor view has been marked as hidden.

Note: Before Mac OS X v10.3, to hide a view you had to remove it from its superview and retain it for later
reinsertion into the view hierarchy. Because this approach separates a view from its hierarchy, it has some
limitations. If the superview is resized, the removed view is not automatically adjusted to this new size upon
reinsertion. In addition, if the removed view was part of a chain of key views (each responding to
nextKeyView), it has to be reintegrated into the chain upon reinsertion. It is the application's responsibility
to manage these issues programmatically.

Converting Coordinates in the View Hierarchy

At various times, particularly when handling events, an application needs to convert rectangles or points
from the coordinate system of one NSView instance to another (typically the superview or subview) in the
same window. The NSView class defines six methods that convert rectangles, points, and sizes in either
direction:

Convert from the receiver to the specified viewConvert to the receiver from the specified view

convertPoint:toView:convertPoint: fromView:

convertRect:toView:convertRect: fromView:

convertSize:toView:convertSize: fromView:

The convert...:fromView: methods convert the values to the receiver's coordinate system, from the
coordinate system of the view passed as the second parameter. If nil is passed as the view, the values are
assumed to be in the window's base coordinate system and are converted to the receiver's coordinate system.
The convertPoint:fromView: method is commonly used to convert mouse-event coordinates, which are
provided by NSEvent as relative to the window, to the receiving view as shown in Listing 3-2 (page 26).

Listing 3-2 Converting event locations using convertPoint:fromView:

-(void)mouseDown:(NSEvent *)event
{
 NSPoint clickLocation;

26 Converting Coordinates in the View Hierarchy
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

 // convert the click location into the view coords
 clickLocation = [self convertPoint:[event locationInWindow]
 fromView:nil];
 // do something with the click location
}

The convert..:toView: methods do the inverse, converting values in the receiver's coordinate system to
the coordinate system of the view passed as a parameter. If the view parameter is nil, the values are converted
to the base coordinate system of the receiver's window.

For converting to and from the screen coordinate system, NSWindow defines the convertBaseToScreen:
and convertScreenToBase: methods. Using the NSView conversion methods along with these methods
allows you to convert a geometric structure between a view's coordinate system and the screen’s with only
two messages, as shown in Listing 3-3.

Listing 3-3 Converting a view location to the screen location

NSPoint pointInWindowCoordinates;
NSPoint pointInScreenCoords;

pointInWindowCoordinates=[self convertPoint:viewLocation toView:nil];
pointInScreenCoords=[[self window] convertBaseToScreen:pointInWindowCoordinates];

Conversion is straightforward when neither view is rotated or when dealing only with points. When converting
rectangles or sizes between views with different rotations, the geometric structure must be altered in a
reasonable way. In converting a rectangle, the NSView class makes the assumption that you want to guarantee
coverage of the original screen area. To this end, the converted rectangle is enlarged so that when located
in the appropriate view, it completely covers the original rectangle. Figure 3-4 shows the conversion of a
rectangle in the rotatedView object's coordinate system to that of its superview, outerView.

Figure 3-4 Converting values in a rotated view

superview
subviews
frame

superview
subviews
frame

outerView

rotatedView

Rectangle in
rotatedView
coordinate system

Rectangle converted to
outerView
coordinate system

In converting a size, NSView simply treats it as an delta offset from (0.0, 0.0) that you need to convert from
one view to another. Though the offset distance remains the same, the balance along the two axes shifts
according to the rotation. It's useful to note that in converting sizes Cocoa will always return sizes that consist
of positive numbers.

Converting Coordinates in the View Hierarchy 27
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

View Tags

The NSView class defines methods that allow you to tag individual view objects with integer tags and to
search the view hierarchy based on those tags. The receiver's subviews are searched depth-first, starting at
the first subview returned by the receiver's subviews method.

The NSView method tag always returns –1. Subclasses can override this method to return a different value.
It is common for a subclass to implement a setTag:method that stores the tag value in an instance variable,
allowing the tag to be set on an individual view basis. Several Application Kit classes, including the NSControl
subclasses, do just this. The viewWithTag: method proceeds through all of the receiver’s descendants
(including itself) using a depth-first search, from back to front in the receiver's view hierarchy, looking for a
subview with the given tag and returning it if it’s found.

28 View Tags
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Working with the View Hierarchy

The NSView class acts mainly as an abstract superclass; generally you create instances of its subclasses, not
of NSView itself. NSView provides the general mechanism for displaying content on the screen and for
handling mouse and keyboard events, but its instances lack the ability to actually draw anything. If your
application needs to display content or handle mouse and keyboard events in a specific manner, you'll need
to create a custom subclass of NSView.

In order to provide a concrete example, this chapter describes the implementation of DraggableItemView,
a subclass of NSView. The DraggableItemView class displays a simple item and allows the user to drag it
within the view. The view also supports moving the item by pressing the arrow keys and setting the color
of the item. It provides key-value-coding compliance for the location of the item, its color, and the background
color of the view. The class illustrates the following view programming tasks:

 ■ Allocating and deallocating the view.

 ■ Drawing the view content.

 ■ Marking portions of the view for updating in response to value changes.

 ■ Responding to user-initiated mouse events.

 ■ Updating the cursor when the mouse is over the draggable item.

 ■ Responding to user-initiated key press events.

 ■ Implementing NSResponder action methods.

 ■ Providing key-value-coding compliant accessors for its settable properties.

The DragItemAround source code is available through Apple Developer Connection.

Allocating the View

Applications create a new instance of a view object using initWithFrame:, the designated initializer for
the NSView class. A subclass can specify another method as its designated initializer, but the initWithFrame:
method must provide the basic functionality required. As an example, the NSTextView implementation of
initWithFrame: creates the entire collection of container objects associated with an NSTextView instance
while the designated initializer, initWithFrame:textContainer: expects the underlying container objects
to be provided explicitly. The initWithFrame: method creates the collection, and then calls
initWithFrame:textContainer:. Your custom classes should take the same approach.

The DraggableItemView class overrides initWithFrame: and sets the exposed properties of the draggable
item to the default values, as shown in Listing 4-1.

Listing 4-1 DraggableItemView implementation of initWithFrame:

- (id)initWithFrame:(NSRect)frame {
 self = [super initWithFrame:frame];

Allocating the View 29
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

 if (self) {
 // setup the initial properties of the
 // draggable item
 [self setItemPropertiesToDefault:self];
 }
 return self;
}

The code for initializing the item color, background color, and location of the draggable item is factored into
a separate method. This allows the item's properties to be reset to their default values, shown later. The
implementation in Listing 4-2 simply calls the accessor methods for the properties, providing the default
values.

Listing 4-2 DraggableItemView implementation of setItemPropertiesToDefault:

- (void)setItemPropertiesToDefault:sender
{
 [self setLocation:NSMakePoint(0.0,0.0)];
 [self setItemColor:[NSColor redColor]];
 [self setBackgroundColor:[NSColor whiteColor]];
}

Initializing View Instances Created in Interface Builder

View instances that are created in Interface Builder don't call initWithFrame: when their nib files are
loaded, which often causes confusion. Remember that Interface Builder archives an object when it saves a
nib file, so the view instance will already have been created and initWithFrame: will already have been
called.

The awakeFromNib method provides an opportunity to provide initialization of a view when it is created as
a result of a nib file being loaded. When a nib file that contains a view object is loaded, each view instance
receives an awakeFromNib message when all the objects have been unarchived. This provides the object
an opportunity to initialize any attributes that are not archived with the object in Interface Builder. The
DraggableItemView class is extremely simple, and doesn't implement awakeFromNib.

There are two exceptions to the initWithFrame: behavior when creating view instances in Interface Builder.
Its important to understand these exceptions to ensure that your views initialize properly.

If you have not created an Interface Builder palette for your custom view, there are two techniques you can
use to create instances of your subclass within Interface Builder. The first is using the Custom View proxy
item in the Interface Builder containers palette. This view is a stand-in for your custom view, allowing you to
position and size the view relative to other views. You then specify the subclass of NSView that the view
represents using the inspector. When the nib file is loaded by the application, the custom view proxy creates
a new instance of the specified view subclass and initializes it using the initWithFrame: method, passing
along any autoresizing flags as necessary. The view instance then receives an awakeFromNib message.

The second technique is to specify a custom class is used when your custom view subclass inherits from a
view that Interface Builder provides support for directly. For example, you can create an NSScrollView
instance in Interface Builder and specify that a custom subclass (MyScrollView) should be used instead,
again using the inspector. In this case, when the nib file is loaded by the application, the view instance has
already been created and the MyScrollView implementation of initWithFrame: is never called. The
MyScrollView instance receives an awakeFromNib message and can configure itself accordingly.

30 Allocating the View
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

Drawing View Content

Rather than drawing immediately when it determines that drawing is necessary, Cocoa uses a deferred
drawing mechanism. An application typically marks a view or a portion of a view as requiring update. At the
end of the event loop or in response to an explicit display request, the view machinery locks focus on the
view and calls the view's drawRect:method to cause the view to be redrawn. By coalescing update requests
in this manner, an application can reduce redundant drawing, increasing performance.

If you need to force immediate drawing of a view, send the view one of the display... messages declared
by both NSView and NSWindow. You can also lock focus on a view yourself, draw something, and then unlock
focus. However, posting deferred drawing requests through the setNeedsDisplay: or
setNeedsDisplayInRect: methods is the preferred approach because it is more efficient.

In addition to drawing to the screen, views are responsible for providing the content when printing. As with
displaying to the screen, the Application Kit locks focus on the view and calls the view's drawRect: method.
While it is drawing a view can determine if it is drawing to the screen or another device and customize its
output appropriately. Views can also customize their printed output by adding headers and footers as well
as customizing pagination. See Printing Programming Topics for Cocoa for more information on the Cocoa
printing architecture and views.

Implementing the drawRect: Method

In order for a concrete subclass of NSView to display any kind of content, it need only implement the
drawRect: method. This method is invoked during the display process to generate code that’s rendered
by the window server into a raster image. drawRect: takes a single argument, a rectangle describing the
area that needs to be drawn in the receiver’s own coordinate system.

The DraggableItemView implementation of drawRect: fills the bounds of the view with the specified
background color. It then calculates the bounds of the draggable item (Listing 4-3) and fills it with the specified
color.

Listing 4-3 DraggableItemView implementation of calculatedItemBounds:

- (NSRect)calculatedItemBounds
{
 NSRect calculatedRect;

 // calculate the bounds of the draggable item
 // relative to the location
 calculatedRect.origin=location;

 // the example assumes that the width and height
 // are fixed values
 calculatedRect.size.width=60.0;
 calculatedRect.size.height=20.0;

 return calculatedRect;
}

The complete implementation of drawRect: is shown in Listing 4-4.

Drawing View Content 31
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

Listing 4-4 DraggableItemView implementation of drawRect:

- (void)drawRect:(NSRect)rect
{
 // erase the background by drawing white
 [[NSColor whiteColor] set];
 [NSBezierPath fillRect:rect];

 // set the current color for the draggable item
 [[self itemColor] set];

 // draw the draggable item
 [NSBezierPath fillRect:[self calculatedItemBounds]];
}

Sending drawing instructions and data to the window server has a cost, and it’s best to minimize that cost
where possible. You can do this by testing whether a particular graphic shape intersects the rectangle that
the drawRect: method is asked to draw. See “Optimizing View Drawing” (page 47) for more information,
as well as additional performance recommendations.

Note: The implementation of the NSView class before Mac OS X v10.4.3 could discard any rectangles marked
as needing display within a subclass's implementation of drawRect:. For maximum compatibility, when
marking areas as requiring display from within the drawRect: method it is best to call the view's
setNeedsDisplayInRect: method using the NSObject instance method
performSelector:withObject:afterDelay:.

Marking a View as Needing Display

The most common way of causing a view to redisplay is to tell it that its image is invalid. On each pass through
the event loop, all views that need to redisplay do so. NSView defines two methods for marking a view’s
image as invalid: setNeedsDisplay:, which invalidates the view’s entire bounds rectangle, and
setNeedsDisplayInRect:, which invalidates a portion of the view. The automatic display of views is
controlled by their window; you can turn this behavior off using the NSWindow setAutodisplay: method.
You should rarely need to do this, however; the autodisplay mechanism is well suited to most kinds of update
and redisplay.

The autodisplay mechanism invokes various methods that actually do the work of displaying. You can also
use these methods to force a view to redisplay itself immediately when necessary. display and
displayRect: are the counterparts to the methods mentioned above; both cause the receiver to redisplay
itself regardless of whether it needs to or not. Two additional methods, displayIfNeeded and
displayIfNeededInRect:, redisplay invalidated rectangles in the receiver if it’s been marked invalid with
the methods above. The rectangles that actually get drawn are guaranteed to be at least those marked as
invalid, but the view may coalesce them into larger rectangles to save multiple invocations of drawRect:.

If you want to exclude background views from drawing when forcing display to occur unconditionally, you
can use NSView methods that explicitly omit backing up to an opaque ancestor. These methods, are
displayRectIgnoringOpacity:, displayIfNeededIgnoringOpacity, and
displayIfNeededInRectIgnoringOpacity:.

In the DraggableItemView example, setNeedsDisplayInRect: is called when the draggable item's
location is set explicitly, when the location is being offset, and when the item's color is changed. When the
background color is set, the entire view is marked as needing display.

32 Drawing View Content
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

From a design perspective, especially with the Model-View-Controller pattern in mind, it is best to ensure
that calls to the display... methods be generated by the view itself, its superview, or a subview, rather
than a controller or model object. It is better to inform the view that a model value is about to change, change
the model value, and then inform the view that the change has occurred. This allows the view to invalidate
the appropriate rectangles before and after the changes. Key-value observing and its change notification
design is tailor-made for this use. See Key-Value Observing Programming Guide for more information.

View Opacity

The display... methods must find an opaque background behind the view that requires displaying and
begin drawing from there forward. The display... methods search up the view hierarchy to locate the
first view that responds YES to an isOpaque message, bringing the invalidated rectangles along.

If a view instance can guarantee that it will fill all the pixels within its bounds using opaque colors, it should
implement the method isOpaque, returning YES. The NSView implementation of isOpaque returns NO.
Subclasses should override this method to return YES if all pixels within the view's content will be drawn
opaquely.

The isOpaquemethod is called during drawing, and may be called several times for a given view in a drawing
pass. Subclasses should avoid computationally intensive calculations in their implementation of the isOpaque
method. Simple tests–for example determining if the background color is opaque as the DraggableItemView
does–are acceptable. The DraggableItemView implementation is shown in Listing 4-5.

Listing 4-5 DraggableItemView implementation of isOpaque

- (BOOL)isOpaque
{
 // If the background color is opaque, return YES
 // otherwise, return NO
 return [[self backgroundColor] alphaComponent] >= 1.0 ? YES : NO;
}

Responding to User Events and Actions

Views are typically the receivers of most event and action messages. An NSView subclass overrides the
appropriate event handling methods declared by the NSResponder class. When an instance of the custom
view instance is the first responder, it receives the event messages as they are posted, before other objects.
Similarly, by implementing the action methods, often sent by other user interface objects such as menu
items, when the custom view instance is the first responder, it receives those messages. See Cocoa
Event-Handling Guide for a complete discussion on event handling and the responder chain.

Event messages are passed up the responder chain from the first responder. For all views, with the exception
of a window's content view, a view's next responder is its superview. When view instances are inserted into
the view hierarchy the next responder is set automatically. You should never send the setNextResponder:
message directly to a view object. If you need to add objects to the responder chain, you should add them
at the top of a window's responder chain—by subclassing NSWindow itself if it has no delegate, or the delegate
class if it does.

Responding to User Events and Actions 33
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

As the class that handles display, NSView is typically the recipient of mouse and keyboard events. Mouse
events start at the view that the click occurs in, and are passed up the responder chain. Keyboard events
start at the first responder and are passed up the responder chain.

Becoming First Responder

A view that is the first responder receives key events and action messages before other objects. Views can
advertise that they can become the first responder by overriding the acceptsFirstResponder message
and returning YES. The default NSResponder implementation returns NO. If a view is not the first responder
it receives only mouse-down messages. Because the DraggableItemView object responds to basic key-down
events, as well as the NSResponder action messages that are generated in response to pressing the arrow
keys, it returns YES for acceptsFirstResponder as shown in Listing 4-6.

Listing 4-6 DraggableItemView implementation of acceptsFirstResponder

- (BOOL)acceptsFirstResponder
{
 return YES;
}

A view receives a becomeFirstResponder message when the window attempts to make the view first
responder. The default implementation of this method always returns YES. Similarly, when a view will resign
as first responder it receives a resignFirstResponder message. To resign first responder status,
resignFirstResponder returns YES. There may be valid reasons for a view to decline resigning first
responder status, for example if an action is incomplete.

If a view becomes the first responder specifically to accept key events or NSResponder actions, it should
reflect this by drawing a focus ring. The focus ring informs the user which object is the current first responder
for key events.

Views that can become first responder and handle key events typically take part in the key view loop of a
window. The key-view loop allows the user to switch between views in a window by pressing the Tab or
Shift-Tab keys. NSView provides a number of methods for setting and getting the views in the key-view loop.
Most often the key-view loop ordering is set in Interface Builder by connecting a view to another view's
nextKeyView outlet.

Handling Mouse Click and Dragging Events

Custom view subclasses can interpret mouse events in any way that is appropriate. Button type views send
a target-action message, whereas clicking in a drawing view might select a graphic. There are four basic types
of mouse events passed to a view: mouse down, mouse dragging, mouse up, and mouse movement.

By default a view does not receive mouse-down events if it isn't in the frontmost window, referred to as the
key window. By overriding the acceptsFirstMouse: method and returning YES, the window becomes
the key window immediately and acts upon the mouse-down.

Mouse-down events are sent when the user presses the mouse button while the cursor is in a view. If the
window containing the view is not the key window, the window becomes the key window and discards the
mouse-down event. An application can change this behavior, causing the initial mouse-down to make the
window key and be passed to the appropriate view by overriding the acceptsFirstMouse: method and
returning YES.

34 Responding to User Events and Actions
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

The window determines which view in the view hierarchy to send the mouse-down event using the NSView
method hitTest:. Once the correct view is located, it is sent a mouseDown: event. There are corresponding
mouse-down events posted for actions made with the right mouse button, as well as with other mouse
buttons using the rightMouseDown: and otherMouseDown: methods respectively. The location of the
mouse event in the coordinate system of the receiver's window is returned by sending the event object
passed to the mouseDown: method a locationInWindow message. To translate the point to the view's
coordinate system, use the method convertPoint:fromView: passing nil as the view parameter. Listing
4-7 illustrates the DraggableItemView subclass's implementation of the mouseDown: method.

Listing 4-7 DraggableItemView implementation of mouseDown:

-(void)mouseDown:(NSEvent *)event
{
 NSPoint clickLocation;
 BOOL itemHit=NO;

 // convert the mouse-down location into the view coords
 clickLocation = [self convertPoint:[event locationInWindow]
 fromView:nil];

 // did the mouse-down occur in the item?
 itemHit = [self isPointInItem:clickLocation];

 // Yes it did, note that we're starting to drag
 if (itemHit) {
 // flag the instance variable that indicates
 // a drag was actually started
 dragging=YES;

 // store the starting mouse-down location;
 lastDragLocation=clickLocation;

 // set the cursor to the closed hand cursor
 // for the duration of the drag
 [[NSCursor closedHandCursor] push];
 }
}

This implementation gets the mouse-down location and converts it to the view's coordinate system. Since
the dragging item subclass allows the user to drag the item only when the mouse-down event occurs in the
draggable rectangle, the implementation calls the isPointInItem: method, shown in Listing 4-8 to test
whether the mouse-down was within the draggable item's bounds. If it is, the dragging instance variable is
set to YES to note that the view should not ignore mouseDragged: events. To better reflect to the user that
a drag is in progress the cursor is set to the closed hand cursor.

Listing 4-8 DraggableItemView implementation of isPointInItem:

- (BOOL)isPointInItem:(NSPoint)testPoint
{
 BOOL itemHit=NO;

 // test first if we're in the rough bounds
 itemHit = NSPointInRect(testPoint,[self calculatedItemBounds]);

 // yes, lets further refine the testing
 if (itemHit) {

Responding to User Events and Actions 35
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

 // if this was a non-rectangular shape, you would refine
 // the hit testing here
 }

 return itemHit;
}

Notice that the mouseDown: implementation in Listing 4-7 does not call the super implementation. The
NSView class's default implementation for the mouse handling events are inherited from NSResponder and
pass the event up the responder chain for handling, bypassing the view in question entirely. Typically a
custom NSView subclass should not call the super implementation of any of the mouse-event methods.

Views often need to track the dragging of the mouse after a mouse-down event is received. While the mouse
button is held down and the mouse moves, the view receives mouseDragged: messages. The
DraggableItemView implementation of mouseDragged: is shown in Listing 4-9.

Listing 4-9 DraggableItemView implementation of mouseDragged:

-(void)mouseDragged:(NSEvent *)event
{
 if (dragging) {
 NSPoint newDragLocation=[self convertPoint:[event locationInWindow]
 fromView:nil];

 // offset the item by the change in mouse movement
 // in the event
 [self offsetLocationByX:(newDragLocation.x-lastDragLocation.x)
 andY:(newDragLocation.y-lastDragLocation.y)];

 // save the new drag location for the next drag event
 lastDragLocation=newDragLocation;

 // support automatic scrolling during a drag
 // by calling NSView's autoscroll: method
 [self autoscroll:event];
 }
}

The view instance receives all the mouse-dragged notifications for the view, but the subclass is only interested
in drag events that were initiated by mouse-down events in the draggable item itself. By testing the instance
variable dragging, the view can determine whether the drag should be acted upon. If so, then the draggable
item is offset by the change in mouse location since the last mouse event, which is tracked by the class's
instance variable lastDragLocation.

Note: The mouseDragged: implementation shown in Listing 4-9 calls the NSView method autoscroll:,
passing the event as the parameter. If a DraggableItemView instance is embedded in a scroll view, this
causes the scroll view to automatically scroll when the mouse is dragged outside of the view. When the view
is not contained within a scroll view, it does nothing. See Scroll View Programming Guide for more information.

The offsetLocationByX:andY: method called by the mouseDragged: method is shown in Listing 4-10.
It marks the draggable item's area as needing display before and after altering the item's location by the
requested amount. If the view returns YES when sent an isFlipped message, the offset in the vertical
direction is multiplied by -1 to correspond to the flipped view coordinates. In the DraggableItemView
implementation the code is factored into its own method because it will be reused later.

36 Responding to User Events and Actions
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

Listing 4-10 DraggableItemView implementation of offsetLocationByX:andY:

- (void)offsetLocationByX:(float)x andY:(float)y
{
 // tell the display to redraw the old rect
 [self setNeedsDisplayInRect:[self calculatedItemBounds]];

 // since the offset can be generated by both mouse moves
 // and moveUp:, moveDown:, etc.. actions, we'll invert
 // the deltaY amount based on if the view is flipped or
 // not.
 int invertDeltaY = [self isFlipped] ? -1: 1;

 location.x=location.x+x;
 location.y=location.y+y*invertDeltaY;

 // invalidate the new rect location so that it'll
 // be redrawn
 [self setNeedsDisplayInRect:[self calculatedItemBounds]];

}

Finally, when the mouse button is released, the view receives a mouseUp:message. The DraggableItemView
implementation shown in Listing 4-11 updates the dragging instance variable to indicate that the dragging
action has completed and resets the cursor. The invalidateCursorRectsForView: message is discussed
at the end of this section.

Listing 4-11 DraggableItemView implementation of mouseUp:

-(void)mouseUp:(NSEvent *)event
{
 dragging=NO;

 // finished dragging, restore the cursor
 [NSCursor pop];

 // the item has moved, we need to reset our cursor
 // rectangle
 [[self window] invalidateCursorRectsForView:self];
}

A second technique for handling mouse dragging is sometimes used, commonly referred to as “short circuting”
the event loop. An application can implement the mouseDown: method and loop continuously, collecting
mouse-dragged events until the mouse-up event is received. Events that do not match the event mask remain
in the event queue and are handled when the loop exists.

If the DraggableItemView class were to implement the same behavior using this technique, it would only
implement the mouseDown: method, eliminating the mouseDragged: and mouseUp: method
implementations. The mouseDown: implementation shown in Listing 4-12 uses the “short circuting” technique.

Listing 4-12 Alternate mouseDown: implementation

-(void)mouseDown:(NSEvent *)event
{
 BOOL loop = YES;

 NSPoint clickLocation;

Responding to User Events and Actions 37
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

 // convert the initial mouse-down location into the view coords
 clickLocation = [self convertPoint:[event locationInWindow]
 fromView:nil];

 // did the mouse-down occur in the draggable item?
 if ([self isPointInItem:clickLocation]) {
 // we're dragging, so let's set the cursor
 // to the closed hand
 [[NSCursor closedHandCursor] push];

 NSPoint newDragLocation;

 // the tight event loop pattern doesn't require the use
 // of any instance variables, so we'll use a local
 // variable localLastDragLocation instead.
 NSPoint localLastDragLocation;

 // save the starting location as the first relative point
 localLastDragLocation=clickLocation;

 while (loop) {
 // get the next event that is a mouse-up or mouse-dragged event
 NSEvent *localEvent;
 localEvent= [[self window] nextEventMatchingMask:NSLeftMouseUpMask |
NSLeftMouseDraggedMask];

 switch ([localEvent type]) {
 case NSLeftMouseDragged:

 // convert the new drag location into the view coords
 newDragLocation = [self convertPoint:[localEvent locationInWindow]
 fromView:nil];

 // offset the item and update the display
 [self offsetLocationByX:(newDragLocation.x-localLastDragLocation.x)
 andY:(newDragLocation.y-localLastDragLocation.y)];

 // update the relative drag location;
 localLastDragLocation=newDragLocation;

 // support automatic scrolling during a drag
 // by calling NSView's autoscroll: method
 [self autoscroll:localEvent];

 break;
 case NSLeftMouseUp:
 // mouse up has been detected,
 // we can exit the loop
 loop = NO;

 // finished dragging, restore the cursor
 [NSCursor pop];

 // the rectangle has moved, we need to reset our cursor
 // rectangle

38 Responding to User Events and Actions
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

 [[self window] invalidateCursorRectsForView:self];

 break;
 default:
 // Ignore any other kind of event.
 break;
 }
 }
 };
 return;
}

Note: Short circuiting the event loop using this pattern has both advantages and disadvantages. A tight
event loop provides more control over how other events interact with your application while a drag is in
progress. This approach also typically requires less code and all the dragging variables are local to the method.
It is more difficult for subclasses to override dragging behavior without re-implementing all the dragging
code. Also, during a tight event loop, timers do not fire as expected and the application’s main thread is
unable to process any other application requests.

Implementing the individual mouseDown:, mouseDragged:, and mouseUp:methods is often a better design
choice when writing an event-driven application. Each of the methods have a clearly defined scope, which
often leads to clearer code. This approach also makes it much easier for subclasses to override behavior for
handling mouse-down, mouse-dragged, and mouse-up events. However, this technique can require more
code and instance variables.

Tracking Mouse Movements

In addition to mouse-down, mouse-dragged, and mouse-up events, a view can also receive mouse-moved
events. Mouse-moved events allow the view to track the location of the cursor whenever it is located above
the view. By default, views don't receive mouse-moved events because they can occur very often, as a result
clogging the event queue.

Mouse-moved events are initiated by the NSWindow instance that contains a view. In order for a view to
receive mouse-moved events, it must explicitly request them by sending its window a
setAcceptsMouseMovedEvents: message, passing YES as the parameter. When enabled, a view receives
mouseMoved: events whenever the cursor is located within the view. Unfortunately, it is not possible to
enable mouse-moved events for a single view using this technique.

The NSView class allows a view instance to register tracking rectangles. Registering an object as the owner
of a tracking rectangle causes the owner to receive mouseEntered: and mouseExited: messages as the
cursor enters and exists the rectangle. An application registers tracking rectangles using the NSViewmethod
addTrackingRect:owner:userData:assumeInside:. The tracking rectangle is provided in the view's
coordinate system, and the owner is the object that will receive the mouseEntered: and mouseExited:
messages. The userData parameter is any arbitrary object that will be provided as the userData object in
the NSEvent object passed to the mouseEntered: and mouseExited: methods. The assumeInside
parameter indicates whether the cursor should be assumed to be inside the tracking rectangle initially. The
method returns a tracking tag that identifies the tracking rectangle, and the tracking tag is used to unregister
the owner for tracking notifications using the method removeTrackingRect:. An application can register
tracking rectangles only for views that are currently displayed in a window.

Responding to User Events and Actions 39
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

Although tracking rectangles are created and used by views, they are actually maintained by a view's window.
As a result, tracking rectangles do not automatically move or resize when the view does. It is a subclass's
responsibility to remove and re-register tracking rectangles when the frame of the view changes or it is
inserted as a subview. This is commonly done by overriding the NSView method resetCursorRects.

NSView also provides methods to support a common use of tracking rectangles; changing the cursor as a
result of the mouse entering a rectangle. The addCursorRect:cursor: method allows you to register a
rectangle using the view's coordinate system and specify the cursor that should be displayed while the mouse
is over that rectangle. Cursor rectangles are volatile. When the view's window resizes, the frame or bounds
of a view changes, the view is moved in the hierarchy, or the view is scrolled, the view receives a
resetCursorRects message. Subclasses should override resetCursorRects and register any required
cursor rectangles and tracking rectangles in that method. The removeCursorRect:cursor:method allows
you to explicitly remove a cursor rectangle that matches the provided parameters exactly. The
discardCursorRects method removes all the cursor rectangles for a view.

The DraggableItemView provides visual feedback that the cursor is over the draggable item by changing
the cursor to the open handle. The implementation of resetCursorRects, shown in Listing 4-13, discards
all the current cursor rectangles and adds a new cursor rectangle for the draggable item's bounds.

Listing 4-13 DraggableItemView implementation of resetCursorRects

-(void)resetCursorRects
{
 // remove the existing cursor rects
 [self discardCursorRects];

 // add the draggable item's bounds as a cursor rect

 // clip the draggable item's bounds to the view's visible rect
 NSRect clippedItemBounds = NSIntersectionRect([self visibleRect], [self
calculatedItemBounds]);

 // if the clipped item bounds isn't empty then the item is at least partially
 // in the visible rect. Register the clipped item bounds
 if (!NSIsEmptyRect(clippedItemBounds)) {
 [self addCursorRect:clippedItemBounds cursor:[NSCursor openHandCursor]];
 }
}

Adding a cursor rectangle for a view does not automatically restrict the cursor rectangle to the visible area
of the view. You must do this yourself by finding the intersection of the proposed cursor rectangle with the
view's visible rectangle. If the resulting rectangle is not empty it should be passed as the first argument to
the addCursorRect:cursor: method.

You should never call resetCursorRects directly; instead send the view's window an
invalidateCursorRectsForView: message, passing the appropriate view. The DraggableItemView
object needs to reset its cursor rectangle each time the draggable item moves. The mouseUp: implementation
shown in Listing 4-11 (page 37) sends the view's window an invalidateCursorRectsForView: message,
passing the view itself as the parameter. Likewise, in the version of mouseDown: that short circuits the event
loop, shown in Listing 4-12 (page 37), the invalidateCursorRectsForView: message is sent when the
mouse-up event is detected.

40 Responding to User Events and Actions
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

Handling Key Events in a View

As discussed in “Becoming First Responder,” a view receives key-down events only if it overrides
acceptsFirstResponder and returns YES. Because the DraggableItemView object responds to user
key-presses, the class overrides this method and returns YES.

There are two key-down related methods provided by NSResponder: the methods keyDown: and
performKeyEquivalent:. NSResponder also declares a number of responder actions that are triggered
by key-down events. These actions map specific keystrokes to common actions. By implementing the
appropriate action methods, you can bypass overriding the more complicated keyDown: method.

Your custom view should override the performKeyEquivalent: method if your view reacts to simple key
equivalents. An example usage of a key equivalent is setting the Return key as the key equivalent of a button.
When the user presses Return, the button acts as though it had been clicked. A subclass's implementation
of performKeyEquivalent: should return YES if it has handled the key event, NO if it should be passed
up the event chain. If a view implements performKeyEquivalent:, it typically does not also implement
keyDown:.

The DraggableItemView class overrides the keyDown: method, shown in Listing 4-14, which allows the
user to press the R key to reset the position of the draggable rectangle to the origin of the view.

Listing 4-14 DraggableItemView implementation of keyDown:

- (void)keyDown:(NSEvent *)event
{
 BOOL handled = NO;
 NSString *characters;

 // get the pressed key
 characters = [event charactersIgnoringModifiers];

 // is the "r" key pressed?
 if ([characters isEqual:@"r"]) {
 // Yes, it is
 handled = YES;

 // reset the rectangle
 [self setItemPropertiesToDefault:self];
 }
 if (!handled)
 [super keyDown:event];

}

Note: If your subclass overrides the keyDown: method, you must call the super implementation for key
events that your view does not handle; otherwise the action methods are ignored.

A view handles the NSResponder action methods by simply implementing the appropriate method. The
DraggableItemView class implements four of these methods, corresponding to the up, down, left, and
right movement actions. The implementations are shown in Listing 4-15.

Responding to User Events and Actions 41
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

Listing 4-15 DraggableItemView implementation of moveUp:, moveDown:, moveLeft:, and
moveRight: actions

-(void)moveUp:(id)sender
{
 [self offsetLocationByX:0 andY: 10.0];
 [[self window] invalidateCursorRectsForView:self];
}

-(void)moveDown:(id)sender
{
 [self offsetLocationByX:0 andY:-10.0];
 [[self window] invalidateCursorRectsForView:self];
}

-(void)moveLeft:(id)sender
{
 [self offsetLocationByX:-10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
}

-(void)moveRight:(id)sender
{
 [self offsetLocationByX:10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
}

Each of the methods in Listing 4-15 offset the draggable item's location in the appropriate direction using
the offsetLocationByX:andY: method, passing the amount to offset the rectangle. The vertical offset is
adjusted by the offsetLocationByX:andY: implementation as appropriate if the view is flipped. After
moving the rectangle, each method invalidates the cursor rectangles. This functionality could also have been
implemented in keyDown: directly by examining the Unicode character of the pressed key, detecting the
arrow keys, and acting accordingly. However, using the responder action methods allow the commands to
be remapped by the user.

Handling Action Methods via the Responder Chain

NSResponder isn't the only class that can generate events on the responder chain. Any control that
implements target-action methods can send those actions through the responder chain rather than to a
specific object by connecting the control to the first responder proxy in Interface Builder and specifying the
action. A detailed discussion of sending action messages through the responder chain is available in "Event
and Action Messages in the Responder Chain" in Cocoa Event-Handling Guide.

The DraggableItemView class implements the changeColor: method that is sent through the responder
chain when the color is changed in a Color panel. Listing 4-16 shows the DraggableItemView implementation
of changeColor:.

Listing 4-16 DraggableItemView implementation of changeColor:

- (void)changeColor:(id)sender
{
 // Set the color in response
 // to the color changing in the Color panel.
 // get the new color by asking the sender, the Color panel
 [self setItemColor:[sender color]];

42 Responding to User Events and Actions
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

}

When the Color panel is visible and an instance of the DraggableItemView class is the first responder,
changing the color in the Color panel causes the rectangle to change color.

Property Accessor Methods

Classes should provide key-value-coding-compliant accessor methods for all their public properties. This
provides a published interface to other objects that need to set the various display aspects of the view.
Accessor methods also enforce good design and encapsulate memory management issues, which greatly
reduces the chance of memory leaks and crashes.

The DraggableItemView class implements getter and setter accessor methods for the following properties:
itemColor, backgroundColor, and location. Each of the setter accessor methods test to see if the new
value is different from the current value and, if it is, saves the new value and marks the view as needing to
redisplay the appropriate portion. In addition, the setLocation:method also invalidates the cursor tracking
rectangle when the location changes.

Listing 4-17 DraggableItemView accessor methods

- (void)setItemColor:(NSColor *)aColor
{
 if (![itemColor isEqual:aColor]) {
 [itemColor release];
 itemColor = [aColor retain];

 // if the colors are not equal, mark the
 // draggable rect as needing display
 [self setNeedsDisplayInRect:[self calculatedItemBounds]];
 }
}

- (NSColor *)itemColor
{
 return [[itemColor retain] autorelease];
}

- (void)setBackgroundColor:(NSColor *)aColor
{
 if (![backgroundColor isEqual:aColor]) {
 [backgroundColor release];
 backgroundColor = [aColor retain];

 // if the colors are not equal, mark the
 // draggable rect as needing display
 [self setNeedsDisplayInRect:[self calculatedItemBounds]];
 }
}

- (NSColor *)backgroundColor
{
 return [[backgroundColor retain] autorelease];

Property Accessor Methods 43
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

}

- (void)setLocation:(NSPoint)point
{
 // test to see if the point actually changed
 if (!NSEqualPoints(point,location)) {
 // tell the display to redraw the old rect
 [self setNeedsDisplayInRect:[self calculatedItemBounds]];

 // reassign the rect
 location=point;

 // display the new rect
 [self setNeedsDisplayInRect:[self calculatedItemBounds]];

 // invalidate the cursor rects
 [[self window] invalidateCursorRectsForView:self];
 }
}

- (NSPoint)location {
 return location;
}

Deallocating the View

The deallocmethod is called when a view's retain count is zero. Your application should never call dealloc
explicitly. The autorelease mechanism calls it when appropriate.

The DraggableItemView implementation of dealloc releases the display color object and calls the super
implementation of dealloc.

- (void)dealloc
{
 [color release];
 color=nil;
 [super dealloc];
}

44 Deallocating the View
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Creating a Custom View

The chapter “Creating a Custom View” (page 29) describes the common implementation details for a custom
view subclass. This chapter describes advanced view subclassing issues that, although not uncommon, are
not required by many view subclasses.

Determining the Output Device

Most of a view's displayed image is a stable representation of its state. View objects also interact dynamically
with the user, however, and this interaction often involves temporary drawing that isn’t integral to the image
itself—selections and other highlighting, for example. Such content should be displayed only to the screen
and never to a printer or fax device, or to the pasteboard.

You can determine if a view is drawing to the screen by sending the current graphics context an
isDrawingToScreen message as shown in Listing 5-1.

Listing 5-1 Testing the output device

- (void)drawRect:(NSRect)rect
{
 [[NSColor whiteColor] set];
 NSRectFill(rect);

 // draw a background grid only if we’re drawing to the screen
 if ([[NSGraphicsContext currentContext] isDrawingToScreen]) {
 [self drawGrid];
 }

 // insert view drawing code here
}

Drawing Outside of drawRect:

If you define methods that need to draw in a view without going through the drawRect: method, you must
send lockFocus to the target view before any drawing is started and send unlockFocus as soon as you
are done.

It’s perfectly reasonable to lock the focus on one view when another already has it. In fact, this is exactly what
happens when subviews are drawn in their superview. The focusing machinery keeps a stack containing the
views that have been focused, so that when one view is sent an unlockFocusmessage, the focus is restored
to the view that was focused immediately before.

Determining the Output Device 45
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Custom View Tasks

Listing 5-2 illustrates using the lockFocus and unlockFocus methods to determine the color of the pixel
at the cursor location. It would be called from a view's mouseDown:, mouseUp:, and mouseMoved:methods
in response to a mouse-down event in a view.

Listing 5-2 Using lockFocus and unlockFocus explicitly

- (void) examinePixelColor:(NSEvent *) theEvent
{
 NSPoint where;
 NSColor *pixelColor;
 float red, green, blue;

 where = [self convertPoint:[theEvent locationInWindow] fromView:nil];

 // NSReadPixel pulls data out of the current focused graphics context, so -lockFocus
 is necessary here.
 [self lockFocus];

 pixelColor = NSReadPixel(where);

 // always balance -lockFocus with an -unlockFocus.
 [self unlockFocus];

 red = [pixelColor redComponent];
 green = [pixelColor greenComponent];
 blue = [pixelColor blueComponent];

 // we have the color, code that does something with it
 // would reside here

 }

Note: It is possible for lockFocus to block if another thread has called lockFocus on the same view. The
queued lockFocus is executed when the other thread calls unlockFocus on the view.

46 Drawing Outside of drawRect:
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Advanced Custom View Tasks

Drawing is often a processor intensive operation. The CPU, graphics system, window server, kernel, and
physical memory must all contribute resources when an application draws something to the screen. The
high expense of drawing makes it an attractive candidate for optimization. This chapter describes design
choices and techniques you can apply in your custom views to eliminate redundant or unnecessary drawing
and improve drawing performance.

Note: You are encouraged to use the profiling utilities provided in the Developer Tools package, particularly
Sampler and Quartz Debug, to determine how your view subclass may be impacting your application's
performance. See PerformanceOverview for a detailed discussion of the available performance analysis tools.

Avoid the Overuse of Views

NSView offers tremendous flexibility in managing the content of your windows and provides the basic canvas
for drawing your application’s content. However, when you consider the design of your windows, think
carefully about how you use views. Although views are a convenient way to organize content inside a window,
if you create a complex, deeply nested hierarchy of views, you might experience performance problems.

Although Cocoa windows can manage a relatively large number of views (around one hundred) without
suffering noticeable performance problems, this number includes both your custom views and the standard
system controls and subviews you use. If your window has hundreds of custom visual elements, you probably
do not want to implement them all as subclasses of NSView. Instead, you should consider writing your own
custom classes that can be managed by a higher-level NSView subclass. The drawing code of your NSView
subclass can then be optimized to handle your custom objects.

A good example of when to use custom objects is a photo browser that displays thumbnail images of hundreds
or even thousands of photos. Wrapping each photo in an NSView instance would both be prohibitively
expensive and inefficient. Instead, you would be better off by creating a lightweight class to manage one or
more photos and a custom view to manage that lightweight class.

Specify View Opacity

If you implement a custom subclass of NSView, you can accelerate the drawing performance by declaring
your view object as opaque. An opaque view is one that fills all the pixels within its content using opaque
colors. The Cocoa drawing system does not need to send update messages to a superview for areas covered
by one or more opaque subviews.

The isOpaque method of NSView returns NO by default. To declare your custom view object as opaque,
override this method and return YES. If you create an opaque view, remember that your view object is
responsible for filling all the pixels within its bounding rectangle using opaque colors. See “View Opacity” (page
33) for an example implementation of isOpaque.

Avoid the Overuse of Views 47
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Optimizing View Drawing

Invalidating Portions of Your View

Cocoa provides two techniques for redrawing the content of your views. The first technique is to draw the
content immediately using display, displayRect:, or related methods. The second is to draw the content
at a later time by marking portions of your view as dirty and in need of an update. This second technique
offers significantly better performance and is appropriate for most situations.

NSView defines the methods setNeedsDisplay: and setNeedsDisplayInRect: for marking portions
of your view as dirty. Cocoa collects the dirty rectangles and saves them until the top of your run loop is
reached, at which point your view is told to redraw itself. The rectangle passed into your drawRect: routine
is a union of the dirty rectangles, but applications running Mac OS X version 10.3 and later can get a list of
the individual rectangles, as described in “Constraining Drawing to Improve Performance” (page 48).

In general, you should avoid calling the display family of methods to redraw your views. If you must call
them, do so infrequently. Because they cause an immediate call to your drawRect: routine, they can cause
performance to slow down significantly by preempting other pending operations. They also preclude the
ability to coalesce other changes and then redraw those changes all at once.

Constraining Drawing to Improve Performance

The sole parameter of the drawRect: method is a rectangle (specifically, an NSRect structure) that encloses
the area of a view that the view is being asked to draw. This rectangle is the union of the rectangles that
have been marked as needing updating since the view instance last received a display message. The view
may still draw anywhere within its own bounds because the Application Kit automatically clips out any
drawing that falls outside the rectangle passed into drawRect:. The view can improve its drawing
performance, however, by attempting to draw only those parts of its content that fall completely or partly
within the clipped rectangle.

In Mac OS X version 10.3 and later, views can constrain their drawing even further by using the NSView
methods getRectsBeingDrawn:count: and needsToDrawRect:. These methods provide direct and
indirect access, respectively, to the detailed representation of a view’s invalid areas—that is, its list of
non-overlapping rectangles—that the Application Kit maintains for each NSView instance. The Application
Kit automatically enforces clipping to this list of rectangles, and you can further improve performance in
views that do complex or expensive drawing by having them limit their drawing to objects that intersect
any of the rectangles in this list.

A view can invoke the method getRectsBeingDrawn:count: in its drawRect: implementation to retrieve
a list of non-overlapping rectangles that define the area the view is being asked to draw. It can then iterate
through this list of rectangles, performing intersection tests against its content to determine what actually
needs drawing. By eliminating those objects, the view can avoid unnecessary drawing work and improve
the drawing efficiency of the application.

Listing 6-1 shows the basic usage of getRectsBeingDrawn:count:. It and the following code example
(Listing 6-2)) illustrate techniques for intersection-testing the list of rectangles against drawable objects
within a view. For intersection testing, you can use the functions declared in the Foundation framework’s
NSGeometry.h header file. The NSIntersectsRect function is particularly useful.

Listing 6-1 Explicit intersection testing of known regions against dirty rectangles

 (void) drawRect:(NSRect)aRect {

48 Invalidating Portions of Your View
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Optimizing View Drawing

 const NSRect *rects;
 int count, i;
 id thing;
 NSEnumerator *thingEnumerator = [[self arrayOfAllThingsIDraw]
objectEnumerator];
 [self getRectsBeingDrawn:&rects count:&count];
 while (thing = [thingEnumerator nextObject]) {
 // First test against coalesced rect.
 if (NSIntersectsRect([thing bounds], aRect)) {
 // Then test per dirty rect
 for (i = 0; i < count; i++) {
 if (NSIntersectsRect([thing bounds], rects[i])) {
 [self drawThing:thing];
 break;
 }
 }
 }
 }
}

For each object that the view can potentially draw, this drawRect: implementation first tests the object’s
bounding rectangle against the drawRect: method’s parameter (aRect). If the two intersect, the view then
determines whether the object’s bounds intersect any of the rectangles in the list retrieved by
getRectsBeingDrawn:count:. If it does intersect, the view draws the object (or asks it to draw itself).

Because it is common for a view to render its content by drawing a set of individually positioned items, the
NSView class provides a convenience method that essentially does much of the work in Listing 6-1 for you.
This method, needsToDrawRect:, does not require you to fetch the list of dirty rectangles with
getRectsBeingDrawn:count: or perform an inner loop for intersection testing. The resulting code, as
illustrated in Listing 6-2, is much cleaner and simpler.

Listing 6-2 Simplified intersection testing using needsToDrawRect:

- (void) drawRect:(NSRect)aRect {
 id thing;
 NSEnumerator *thingEnumerator = [[self arrayOfAllThingsIDraw]
objectEnumerator];
 while (thing = [thingEnumerator nextObject]) {
 if ([self needsToDrawRect:[thing bounds]]) {
 [self drawThing:thing];
 }
 }
}

The needsToDrawRect:method is optimized to efficiently reject objects that lie entirely outside the bounds
of the area being drawn by employing the same “trivial rejection” test as that used in Listing 6-1.

Suppressing Default Clipping

By default, Cocoa automatically clips drawing done in a drawRect: method to the area that the view is
being asked to draw. If a view draws in a region that doesn’t fall within the clipped boundaries, none of that
drawing finds its way to the screen. For most kinds of views, this is appropriate behavior as it prevents drawing

Suppressing Default Clipping 49
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Optimizing View Drawing

in window areas owned by other views and does so without requiring the view to meticulously restrict its
drawing. But in some circumstances, it might not be what you want. Clipping incurs set-up, enforcement,
and clean-up costs that you might want to avoid if you can.

In these situations, your custom view can override the NSViewmethod wantsDefaultClipping and return
NO:

- (BOOL)wantsDefaultClipping {
 return NO;
}

Obviously, the absence of enforced clipping presents dangers as well as opportunities. You must not draw
outside the list of rectangles returned by getRectsBeingDrawn:count: as this could corrupt drawing in
other views.

You can take one of two (responsible) approaches:

 ■ You can draw very carefully.

 ■ You can provide your own clipping.

One possible implementation strategy for drawRect: in this case is to iterate over the list of rectangles being
drawn. Clip to each and draw the contents, one rectangle at a time. Whether such a strategy improves or
diminishes drawing performance in your view depends a great deal on the view’s content and typical drawing
behavior.

Drawing During Live Window Resizing

Live window resizing is an area where poorly optimized drawing code becomes particularly apparent. When
the user resizes your window, the movement of the window should be smooth. If your code tries to do too
much work during this time, the window movement may seem choppy and unresponsive to the user.

The following sections introduce you to several options for improving your live resizing code. Depending on
which versions of Mac OS X you are targeting, you might use one or more of these options in your
implementation.

Draw Minimally

When a live resize operation is in progress, speed is imperative. The simplest way to improve speed is to do
less work. Because quality is generally less important during a live resize operation, you can take some
shortcuts to speed up drawing. For example, if your drawing code normally performs high-precision
calculations to determine the location of items, you could replace those calculations with quick approximations
during a live resize operation.

NSView provides the inLiveResize method to let you know when a live resize operation is taking place.
You can use this method inside your drawRect: routine to do conditional drawing, as shown in the following
example:

- (void) drawRect:(NSRect)rect
{
 if ([self inLiveResize])

50 Drawing During Live Window Resizing
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Optimizing View Drawing

 {
 // Draw a quick approximation
 }
 else
 {
 // Draw with full detail
 }
}

Another way to minimize work is to redraw only those areas of your view that were exposed during the resize
operation. If you are targeting your application for Mac OS X version 10.3, you can use the
getRectsBeingDrawn:count: method to retrieve the rectangles that were exposed. If you are targeting
Mac OS X version 10.4 or later, the getRectsExposedDuringLiveResize:count: method is provided to
return only the rectangles that were exposed by resizing.

Cocoa Live Resize Notifications

You can use the viewWillStartLiveResize and viewDidEndLiveResize methods of NSView to help
optimize your live resize code. Cocoa calls these methods immediately before and immediately after a live
resize operation takes place. You can use the viewWillStartLiveResize method to cache data or do any
other initialization that can help speed up your live resize code. You use the viewDidEndLiveResize
method to clean up your caches and return your view to its normal state.

Cocoa calls viewWillStartLiveResize and viewDidEndLiveResize for every view in your window’s
hierarchy. This message is sent only once to each view. Views added during the middle of a live resize
operation do not receive the message. Similarly, if you remove views before the resizing operation ends,
those views do not receive the viewDidEndLiveResize message.

If you use these methods to create a low-resolution approximation of your content, you might want to
invalidate the content of your view in your viewDidEndLiveResize method. Invalidating the view causes
it be redrawn at full resolution outside of the live resize loop.

If you override either viewWillStartLiveResize or viewDidEndLiveResize, make sure to send the
message to super to allow subviews to prepare for the resize operation as well. If you need to add views
before the resize operation begins, make sure to do so before calling super if you want that view to receive
the viewWillStartLiveResize message.

Preserve Window Content

In Mac OS X v10.4 and later, Cocoa offers you a way to be even smarter about updating your content during
a live resize operation. Both NSWindow and NSView include support for preserving content during the
operation. This technique lets you decide what content is really invalid and needs to be redrawn.

To support the preservation of content, you must do the following:

1. Override thepreservesContentDuringLiveResizemethod in your custom view. Your implementation
should return YES to indicate that the view supports content preservation.

2. Override your view’s setFrameSize: method. Your implementation should invalidate any portions of
your view that need to be redrawn. Typically, this includes only the rectangular areas that were exposed
when the view size increased.

Drawing During Live Window Resizing 51
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Optimizing View Drawing

To find the areas of your view that were exposed during resizing, NSView provides two methods. The
rectPreservedDuringLiveResizemethod returns the rectangular area of your view that did not change.
The getRectsExposedDuringLiveResize:count: method returns the list of rectangles representing
any newly exposed areas. For most views, you need only pass the rectangles returned by this second method
to setNeedsDisplayInRect:. The first method is provided in case you still need to invalidate the rest of
your view.

The following example provides a default implementation you can use for your setFrameSize: method.
In the example below, the implementation checks to see if the view is being resized. If it is, and if any rectangles
were exposed by the resizing operation, it gets the newly exposed rectangles and invalidates them. If the
view size shrunk, this method does nothing.

- (void) setFrameSize:(NSSize)newSize
{
 [super setFrameSize:newSize];

 // A change in size has required the view to be invalidated.
 if ([self inLiveResize])
 {
 NSRect rects[4];
 int count;
 [self getRectsExposedDuringLiveResize:rects count:&count];
 while (count-- > 0)
 {
 [self setNeedsDisplayInRect:rects[count]];
 }
 }
 else
 {
 [self setNeedsDisplay:YES];
 }
}

52 Drawing During Live Window Resizing
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Optimizing View Drawing

This table describes the changes to View Programming Guide for Cocoa.

NotesDate

Corrected typos.2008-04-10

Corrected minor typos.2008-02-08

Clarified frame and bounds definition in "View Geometry".2007-01-08

Clarified the Tags section. Corrected typos.2006-06-28

Corrected the resetCursorRects implementation to clip the item bounds to the
view's visibleRect before registering the cursor rect.

2006-05-23

Corrected figure in "View Geometry."2006-04-04

New document that explains how to design and implement Cocoa views in your
applications. Some of the information in this document previously appeared in
"Drawing and Views."

2006-03-08

53
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

54
2008-04-10 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	View Programming Guide for Cocoa
	Contents
	Figures, Tables, and Listings
	Introduction
	What Are Views?
	The Role of NSView
	Cocoa-Provided View Classes
	Container Views
	The Text System
	Controls
	Non-Quartz Graphic Environments

	View Geometry
	The View Coordinate System
	Understanding a View's Frame and Bounds
	Transforming the Coordinate System

	Working with the View Hierarchy
	What Is a View Hierarchy?
	Benefits of a View Hierarchy
	Locating Views in the View Hierarchy
	Adding and Removing Views from a Hierarchy
	Repositioning and Resizing Views
	Moving and Resizing Views Programmatically
	Autoresizing of Subviews
	Notifications

	Hiding Views
	Converting Coordinates in the View Hierarchy
	View Tags

	Creating a Custom View
	Allocating the View
	Initializing View Instances Created in Interface Builder

	Drawing View Content
	Implementing the drawRect: Method
	Marking a View as Needing Display
	View Opacity

	Responding to User Events and Actions
	Becoming First Responder
	Handling Mouse Click and Dragging Events
	Tracking Mouse Movements
	Handling Key Events in a View
	Handling Action Methods via the Responder Chain

	Property Accessor Methods
	Deallocating the View

	Advanced Custom View Tasks
	Determining the Output Device
	Drawing Outside of drawRect:

	Optimizing View Drawing
	Avoid the Overuse of Views
	Specify View Opacity
	Invalidating Portions of Your View
	Constraining Drawing to Improve Performance
	Suppressing Default Clipping
	Drawing During Live Window Resizing
	Draw Minimally
	Cocoa Live Resize Notifications
	Preserve Window Content

	Revision History

