
Combo Box Programming Topics
Cocoa > User Experience

2002-11-12

Apple Inc.
© 2002 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Combo Boxes 5

Organization of This Document 5

How Combo Boxes Work 7

Providing Data for a Combo Box 9

Working With an External Data Source 9
Working with an Internal List 10

Managing the Combo Box’s List 11

Setting the List’s Appearance 11
Manipulating the List’s Selection 11
Scrolling the List 11

Setting the Combo Box’s Value 13

Using Automatic Completion in Combo Boxes 15

Document Revision History 17

3
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

4
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

A Combo box is a control that gives the user two ways to enter a value: entering it directly in a text field, or
choosing it from a pop-up list of pre-selected values.

Developers who want to incorporate a combo box into their user interface should read this document.

Organization of This Document

This topic describes how to use a combo box; “How Combo Boxes Work” (page 7) gives basic information
on combo boxes. “Providing Data for a Combo Box” (page 9) describes how to provide data for the combo
box’s pop-up list. “Setting the Combo Box’s Value” (page 13) describes how to set and retrieve the combo
box’s value. “Managing the Combo Box’s List” (page 11) describes how to use the combo box’s pop-up list.
“Using Automatic Completion in Combo Boxes” (page 15) describes how the combo box can try to complete
what the user enters into the text field.

Because NSComboBox is a subclass of NSTextField, see Text Fields for more information.

Organization of This Document 5
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Introduction to Combo Boxes

6 Organization of This Document
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Introduction to Combo Boxes

A combo box is a control that gives the user two ways to enter a value: entering it directly in a text field, or
choosing it from a pop-up list of pre-selected values. Use this control whenever you want the user to enter
information that can be selected from a finite list of options. Note that while you can construct your
NSComboBox so that users are restricted to only selecting items from the combo box’s pop-up list, this isn’t
the combo box’s normal behavior.

While the pop-up list is visible, typing into the text field causes an incremental search to be performed on
the list. If there’s a match, the selection in the pop-up list changes to reflect the match.

The NSComboBox normally looks like this:

When you click the downward-pointing arrow at the right-hand side of the text field the pop-up list appears,
like this:

If there isn’t sufficient room for the pop-up list to be displayed below the text field, it’s instead displayed
above the text field. Selecting an item from the list, clicking anywhere outside the control, or activating
another window dismisses the pop-up list.

Note that NSComboBox is a also a subclass of NSTextField, and thus inherits all of NSTextField’s methods.
NSComboBox relies heavily upon its cell class, NSComboBoxCell. NSComboBoxCell is a NSTextFieldCell
subclass, which combines a text field cell with a button cell.

A combo box is implemented by two classes: NSComboBoxCell, the cell which does most of the work, and
NSComboBox, the control that contains that cell. Every method in NSComboBoxCell has a cover in
NSComboBox. (A cover is a method of the same name that calls the original method.)

7
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

How Combo Boxes Work

8
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

How Combo Boxes Work

The NSComboBox control can be set up to populate the pop-up list either from an internal item list or from
an object that you provide, called its data source. Specify which to use with setUsesDataSource:. By
default, a combo box uses the internal list.

If you specify that a combo box uses an external data source and then try to invoke a method that uses the
internal list—such as addItemWithObjectValue:—the method throws an exception.

Working With an External Data Source

An external data source declares the methods that the combo box uses to access its data. Use one if an
internal list isn’t efficient for your data. An external data source can store its items in any way, but it must be
able to identify them by an integer index.

To specify that combo box uses an external data source, first use setUsesDataSource: with YES as the
argument, then use setDataSource: with your data source object as the argument. If you use
setDataSource: before setUsesDataSource:, setDataSource: throws an exception.

The data source must define these methods. The method setDataSource: logs a warning if its argument
doesn’t implement them.

 ■ numberOfItemsInComboBox: returns how many items to display.

 ■ comboBox:objectValueForItemAtIndex: returns the object that corresponds to the specified index.

The data source can optionally define these methods. The method setDataSource doesn’t check for them
and the combo box invokes them only if they’re available.

 ■ comboBox:indexOfItemWithStringValue: returns the index for the item that matches the specified
string. If this method is available, the combo box performs incremental searches when the user types
into the text field with the pop-up list displayed.

 ■ comboBox:completedString: returns a string that begins with the specified string. If autocompletion
is enabled, the combo box tries to complete what the user enters into the text field with an item from
the pop-up list. If this method isn’t available and autocompletion is enabled, the combo box goes through
each item one-by-one to find a completion.

And here are some NSComboBox methods your data source may need if it loads data in the background:

 ■ noteNumberOfItemsChanged informs the combo box that the number of items in the data source has
changed.

 ■ reloadData marks the combo box as needing redisplay, so it reloads the data for the visible pop-up
items and draws the new values.

Working With an External Data Source 9
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Providing Data for a Combo Box

The combo box treats objects provided by its data source as values to be displayed in the combo box’s
pop-up list. If these objects aren’t of common value classes—such as strings, numbers, and so on—you’ll
need to create a custom NSFormatter to display them. See Data Formatting Programming Guide for Cocoa for
more information.

Working with an Internal List

NSComboBox provides a complete set of methods that allow you to add, insert, and delete items in the
internal item list for combo boxes that don’t use a data source:

 ■ To add one or more items to the end of the list, use addItemWithObjectValue: or
addItemsWithObjectValues:

 ■ To insert an item into the middle of the list, use insertItemWithObjectValue:atIndex:

 ■ To find the index for a particular object, use indexOfItemWithObjectValue:.

 ■ To find the object at a particular index, use itemObjectValueAtIndex:.

 ■ To remove items from the list, use removeAllItems, removeItemAtIndex:, or
removeItemWithObjectValue:.

 ■ To retrieve an array of all the list’s items, use objectValues.

 ■ To retrieve the number of items in the list, use numberOfItems.

If usesDataSource returns YES and you use any of the above methods, the method will throw an exception.
By default, usesDataSource returns NO.

10 Working with an Internal List
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Providing Data for a Combo Box

There are a number of ways that you can affect a combo box’s list’s appearance, as well as controlling them
programatically.

Setting the List’s Appearance

These methods let you control the list’s appearance.

 ■ To choose whether the pop-up list has a vertical scroll bar, use setHasVerticalScroller:. When
there’s no scroll bar, the user can still scroll to items that aren’t displayed by holding the mouse at the
top or bottom of the list. And when there is a scroll bar, the scroll bar is shown even when all items can
be displayed in the visible portion of the list.

 ■ To set the number of items displayed in the pop-up list, use setNumberOfVisibleItems:. The default
is 5.

 ■ To set the amount of space that surrounds each item in the list, use setIntercellSpacing: with an
argument of type NSSize. The width component is the size in points of the list’s left and right margins.
The height component is the space in points above and below each list item.

 ■ To set the height of each list item, use setItemHeight:.

Manipulating the List’s Selection

These methods let you manipulate the list’s selection:

 ■ To select a particular item, use selectItemAtIndex: or selectItemWithObjectValue:.

 ■ To retrieve the selected item, use indexOfSelectedItem or objectValueOfSelectedItem.

 ■ To deselect an item, use deselectItemAtIndex:.

Note that changing the list’s selection does not change the content’s of the combo box’s text field. For more
information, see “Setting the Combo Box’s Value” (page 13).

Scrolling the List

These methods let you scroll the list. The list doesn’t need to be visible to use these methods:

 ■ To scroll the list so that a particular item is as close to the top as possible, use scrollItemAtIndexToTop.

Setting the List’s Appearance 11
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Managing the Combo Box’s List

 ■ To scroll the list so that a particular item is visible, use scrollItemAtIndexToVisible.

12 Scrolling the List
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Managing the Combo Box’s List

When you set or retrieve a combo box’s value with the standard NSControl methods (such as
setStringValue:, stringValue, setFloatValue:, and floatValue), you’re setting or retrieving the
value of the combo box’s text field, and not the current selection of the list. Programmatically changing the
combo box’s value does not change what’s selected in the combo box’s list. Conversely, programmatically
changing what’s selected in the list does not change the text field’s value. If you want the text field value
and the list selection to match up, you need to set them individually.

For example, say you want to initialize the combo box’s list and text field to the list’s third item. This code
does that for a combo box that maintains an internal item list:

[myComboBox selectItemAtIndex:2]; // First item is at index 0
[myComboBox setObjectValue:[myComboBox objectValueOfSelectedItem]];

This code does that for a combo box with an external data source:

[myComboBox selectItemAtIndex:2];
[myComboBox setObjectValue:
 [myComboBoxDataSource comboBox:myComboBox
 ObjectValueForItemAtIndex:[myComboBox indexofSelectedItem]]];

And this code initializes the combo box’s text field to “Red” and selects it from the list if available. Note that
this works for combo boxes with either internal or external data sources:

[myComboBox setStringValue:@"Red"];
[myComboBox selectItemWithObjectValue:@"Red"];

13
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Setting the Combo Box’s Value

14
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Setting the Combo Box’s Value

A combo box can perform automatic completion, trying to complete what the user enters into the text field
with an item from the pop-up list. If it does, every time the user enters characters at the end of the text field,
the combo box calls the NSComboBoxCell method completedString:. If completedString: returns a
string that’s longer than the existing string, the combo box replaces the existing string with the returned
string, and selects the additional characters. If the user adds characters somewhere besides the end of the
string or deletes characters, the combo box does not try to complete it.

The default implementation of completedString: first checks whether the combo box uses a data source
and whether the data source responds to comboBox:completedString: or
comboBoxCell:completedString:. If so, the combo box cell returns that method’s return value. Otherwise,
this method goes through the combo box’s items one-by-one and returns the first item which starts with
the string that the user entered. This comparison is case-sensitive.

To read and set whether a combo box performs completion, use completes and setCompletes:. By default,
it does not.

15
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Using Automatic Completion in Combo Boxes

16
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Using Automatic Completion in Combo Boxes

This table describes the changes to Combo Box Programming Topics.

NotesDate

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

17
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Document Revision History

18
2002-11-12 | © 2002 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Combo Box Programming Topics
	Contents
	Introduction
	How Combo Boxes Work
	Providing Data for a Combo Box
	Working With an External Data Source
	Working with an Internal List

	Managing the Combo Box’s List
	Setting the List’s Appearance
	Manipulating the List’s Selection
	Scrolling the List

	Setting the Combo Box’s Value
	Using Automatic Completion in Combo Boxes
	Revision History

