
Pasteboard Programming Topics for Cocoa
Cocoa > Interapplication Communication

2007-07-13

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, and QuickDraw are trademarks of
Apple Inc., registered in the United States and
other countries.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Pasteboards Programming Topics 5

Organization of This Document 5

Pasteboard Fundamentals 7

The Pasteboard Server 7
Named Pasteboards 7
Pasteboard Data Types 8
Pasteboards Hold Multiple Representations 8
Change Count 9
Errors 9

Implementing Copy and Paste 11

Implementing Copy 11
Implementing Paste 12
Implementing Cut 13
Lazy Writing 13

Named Pasteboards 15

Data Types 17

Reading and Writing Font Data 19

Writing Font Data 19
Reading Font Data 19

Reading and Writing RTFD Data 21

Filter Services 23

Providing a Filter Service 25

Creating the Filter 25
Using Alternate Input Mechanisms 26

NSUnixStdio 26
NSMapFile 27
NSIdentity 27

3
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History 29

4
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

You typically use pasteboards in copy and paste operations, although pasteboards also provide the basis of
system services (see System Services). NSPasteboard objects transfer data to and from the pasteboard
server. The server is shared by all running applications. It contains data that the user has cut or copied, as
well as other data that one application wants to transfer to another. NSPasteboard objects are an application’s
sole interface to the server and to all pasteboard operations.

You should read this document to learn how to implement copy and paste in your application, and to learn
about the different types of pasteboard

Organization of This Document

This document contains the following articles:

 ■ “Pasteboard Fundamentals” (page 7) explains how pasteboards work.

 ■ “Implementing Copy and Paste” (page 11) explains the basics of implementing copy and paste in your
application.

 ■ “Named Pasteboards” (page 15) discusses the ability to name pasteboards to reflect their function and
the data they contain.

 ■ “Data Types” (page 17) discusses the variety of data that can be placed on pasteboards.

 ■ “Reading and Writing Font Data” (page 19) describes how to work with fonts.

 ■ “Reading and Writing RTFD Data” (page 21) describes how to work with RTFD data.

 ■ “Filter Services” (page 23) discusses the ability of pasteboards to convert data from one type to another
using filter services.

 ■ “Providing a Filter Service” (page 25) describes how to create a filter service.

Organization of This Document 5
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Pasteboards Programming
Topics

6 Organization of This Document
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Pasteboards Programming Topics

On Mac OS X, copy and paste operations are supported by a pasteboard server process. In Cocoa, you access
the pasteboard server through an NSPasteboard object. This article describes how the pasteboard process
works.

The basic operations you want to perform when implementing copy and paste are (a) to write data to a
pasteboard and (b) to read data from a pasteboard. These operations are conceptually very simple, but mask
a number of important details. In practical terms for you as an application developer, the main underlying
complicating issue is that there may be a number of ways to represent data—this leads in turn to
considerations of efficiency. From the systems perspective, there are additional issues to consider.

The Pasteboard Server

Whether the data is transferred between objects in the same application or two different applications, in a
Cocoa application the interface is the same—an NSPasteboard object accesses a shared repository where
writers and readers meet to exchange data. The writer, referred to as the pasteboard owner, deposits data
on a pasteboard instance and moves on. The reader then accesses the pasteboard asynchronously, at some
unspecified point in the future. By that time, the writer object may not even exist anymore. For example, a
user may have closed the source document or quit the application.

Consequently, when moving data between two different applications, and therefore two different address
spaces, a third memory space gets involved so the data persists even in the absence of the source.
NSPasteboard provides access to a third address space—a pasteboard server process (pbs)—that is always
running in the background. The pasteboard server maintains an arbitrary number of individual pasteboards
to distinguish among several concurrent data transfers.

Named Pasteboards

There are several standard pasteboards provided for well-defined operations system-wide:

 ■ NSGeneralPboard—for cut, copy, and paste

 ■ NSRulerPboard—for copy and paste of rulers

 ■ NSFontPboard—for cut, copy, and paste of NSFont objects

 ■ NSFindPboard—application-specific find panels can share a sought after text value

 ■ NSDragPboard—for graphical drag and drop operations

The Pasteboard Server 7
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Pasteboard Fundamentals

These are described in more detail in “Named Pasteboards” (page 15). Typically you use one of the
system-defined pasteboards, but if necessary you can create your own pasteboard for exchanges that fall
outside the predefined set using pasteboardWithName: Lastly, if you invoke pasteboardWithUniqueName,
the pasteboard server will provide you with a uniquely-named pasteboard.

Pasteboard Data Types

The pasteboard owner declares the data types it can write. Pasteboard data generally refer to an object
instance whether a string, an arbitrarily complex object graph such as a dictionary of arrays, an instance of
NSData, or an object wrapper for an arbitrary block of data. You can name your own pasteboard types for
special-purpose data types.

Any object written to an NSPasteboardmust conform to the NSCodingprotocol—it must be able to archive
and unarchive itself. Generally, pasteboard data consists of a value class object or a collection containing
such objects.

Like the standard named pasteboards used for common operations, there are several commonly used
system-defined data types, including:

 ■ NSStringPboardType

 ■ NSTabularTextPboardType

 ■ NSFilenamesPboardType

 ■ NSTIFFPboardType

 ■ NSFontPboardType

 ■ NSRulerPboardType

 ■ NSColorPboardType

These and others are described in detail in “Data Types” (page 17).

Pasteboards Hold Multiple Representations

Pasteboard operations are often carried out between two different applications. For example, an editor,
capable of handling rich text format, may allow a user to select a region of text and copy it to the general
pasteboard. Another application provides a simple NSTextView instance configured to provide ASCII text.
It allow the user to paste from the general pasteboard. Neither application has knowledge about the other
and the kinds of data each can handle. It is impossible for the owner to determine which of several applications
might show up as the next reader of pasteboard data.

To maximize the potential for sharing, a pasteboard can hold multiple representations of the same data,
each identified by a different pasteboard type string. Pasteboard owners should provide as many different
representations as possible. In the previous example, the rich text editor might provide RTFD, RTF, and
NSString representations of the copied data. A reader, on the other hand, must find the data type that best
suits its capabilities. Generally, this means selecting the richest type available.

8 Pasteboard Data Types
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Pasteboard Fundamentals

Change Count

The change count is a computer-wide variable that increments every time the contents of the pasteboard
changes (a new owner is declared). An independent change count is maintained for each named pasteboard.
By examining the change count, an application can determine whether the current data in the pasteboard
is the same as the data it last received.

The changeCount, addTypes:owner:, and declareTypes:owner: methods return the change count. A
types or availableTypeFromArray: message should be sent by the pasteboard before reading data so
the change count is valid.

Errors

Except where errors are specifically mentioned in the NSPasteboard method descriptions, any
communications error with the pasteboard server raises anNSPasteboardCommunicationException.

Change Count 9
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Pasteboard Fundamentals

10 Errors
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Pasteboard Fundamentals

This article describes how you can implement copy and paste in your application.

To implement a copy operation you must first tell an NSPasteboard object what types of data you want to
write, and then you typically write the data, once for each data type. To implement a paste operation, you
typically first give the NSPasteboard object a list of data types your application can deal with (in your
preferred order) and receive back from the pasteboard the identifier for the most preferred type that is
actually available. You can then read the data for that type from the pasteboard.

Reading and writing most data types is straightforward, but fonts and RTFD data in particular have some
peculiarities—see “Reading and Writing RTFD Data” (page 21) and “Reading and Writing Font Data” (page
19).

Implementing Copy

The first step in implementing a copy method is to decide what representations of your data you want to
support. If your application has a custom data type that you want the user to be able to copy and paste
within your application, then you need to write a representation of that data to the pasteboard. It may be,
though, that you also want to allow the user to paste information from your application into other applications,
in which case you need to write your data in a standard representation (such as a string) that other applications
can deal with.

Consider an application that allows a user to track expenses. You may have a custom Expense class to represent
expense items. In a copy operation, you need to write the currently selected Expense object to the pasteboard.
If you want the user to be able to paste the information into another application, such as TextEdit or Mail,
then you should also write a textual representation of the data to the pasteboard. If you want to support a
custom data type, you must define a name for the type as it will appear on the pasteboard, for example:

NSString *ExpensePBoardType = @"ExpensePBoardType";

Typically this must be a global value, visible to any objects within your application that will copy this data
type to or retrieve it from the pasteboard. Often you assign the variable in an implementation file and declare
it as an external variable in a header file that you import from other implementation files:

extern NSString *ExpensePBoardType;

The first step in copying is to tell the pasteboard (for standard copy and paste operations, this is typically the
general pasteboard) what representations you will write (using the method, declareTypes:owner:):

NSPasteboard *pb = [NSPasteboard generalPasteboard];
NSArray *types = [NSArray arrayWithObjects:
 ExpensePBoardType, NSStringPboardType, NSRTFPboardType, nil];
[pb declareTypes:types owner:self];

The owner is typically self, and is used if you support lazy initialization (see “Lazy Writing” (page 13)).

Implementing Copy 11
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Implementing Copy and Paste

You then write the representations to the pasteboard, one at a time. Note that pasteboards support only a
limited range of data types, so for custom representations you often need to transform the data into one of
the types supported (for example, by archiving an object). In the following example, the Expense class
implements custom methods stringRepresentation and rtfRepresentation to generate a string and
RTF representation of the expense respectively.

// archive the given expense, and add it to the pasteboard as an Expense
[pb setData:[NSArchiver archivedDataWithRootObject:expense]
 forType:ExpensePBoardType];

// add the string representation
[pb setString:[expense stringRepresentation] forType:NSStringPboardType];

// add the RTF representation
NSAttributedString *rtfDescription = [expense rtfRepresentation];
NSData *rtfData = [rtfDescription
 RTFFromRange:(NSMakeRange(0, [rtfDescription length]))
 documentAttributes:nil];
[pb setData:rtfData forType:NSRTFPboardType];

Implementing Paste

To implement paste, you first need to determine what data representations are present on the pasteboard,
and in particular find the best one available for the situation. You can do this in a single method call,
availableTypeFromArray:. You pass in an array of types you can support, ordered by preference, and
get back the identifier for the best match (assuming there is one, otherwise nil). For example, if an Expense
class provides a method to parse a string to extract attributes for a new Expense object, you might support
both your custom type and the string type:

NSArray *pasteTypes = [NSArray arrayWithObjects:
 ExpensePBoardType, NSStringPboardType, nil];
NSString *bestType = [pb availableTypeFromArray:pasteTypes];
if (bestType != nil) {
 // pasteboard has data we can deal with
 // ...

Often, though, you support paste operations only for your custom types. In some cases, you might also factor
out the code that determines whether the pasteboard contains a supported type:

- (BOOL)pasteboardHasExpense {
 // has the pasteboard got an expense?
 NSPasteboard *pb = [NSPasteboard generalPasteboard];
 NSArray *types = [NSArray arrayWithObject:ExpensePBoardType];
 NSString *bestType = [pb availableTypeFromArray:types];
 return (bestType != nil);
}

This is useful if you want to support user interface validation, so that for example the Paste menu item is
enabled only if the pasteboard contains a data representation you support:

- (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)item
{
 if ([item action] == @selector(paste:)) {
 return [self pasteboardHasExpense];

12 Implementing Paste
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Implementing Copy and Paste

 }
 else {
 // ...

For more about menu validation, see Enabling Menu Items and User Interface Validation.

Assuming that the pasteboard does contain a representation that you support, then you retrieve the
corresponding data with dataForType:.

NSData *data = [pb dataForType:ExpensePBoardType];
Expense *expense = [NSUnarchiver unarchiveObjectWithData:data];

Implementing Cut

A cut operation is simply a copy operation followed by a delete operation. In an Expenses application, the
cut: method might be implemented as follows:

- (IBAction)cut:(id)sender
{
 [self copy: nil];
 [self deleteSelectedExpense: nil];
}

Lazy Writing

The ability to provide multiple representations of data to the pasteboard is a powerful feature but can result
in your application incurring considerably more overhead than is necessary. Consider a bitmap-editing
application where you want to support copying of images in a variety of different formats. If in your copy
method you had to create each representation, this could require a lot of processing and significant memory
overhead—after which the user might decide not to paste anyway. To avoid this situation, NSPasteboard
supports the technique of lazy writing.

If you use lazy writing, you declare the types you can supply to a pasteboard but you do not set the
corresponding data. If data is subsequently requested from a pasteboard in a format that is not present, the
pasteboard owner is sent a pasteboard:provideDataForType: message asking it to supply the data in
that format. The pasteboard owner must obviously keep the original data as long as necessary to fulfill any
request. Following this pattern, the copy method in the Expenses application might simply contain:

NSPasteboard *pb = [NSPasteboard generalPasteboard];
NSArray *types = [NSArray arrayWithObjects:
 ExpensePBoardType, NSStringPboardType, NSRTFPboardType, nil];
[pb declareTypes:types owner:self];
// cache the item to be copied, in its current state

You then implement a pasteboard:provideDataForType:method. For the Expenses application, it might
look similar to the following:

- (void)pasteboard:(NSPasteboard *)sender provideDataForType:(NSString *)type
{
 if ([type isEqualToString:ExpensePBoardType]) {
 [sender setData:[NSKeyedArchiver archivedDataWithRootObject:cachedExpense]

Implementing Cut 13
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Implementing Copy and Paste

 forType:ExpensePBoardType];
 }
 else if ([type isEqualToString:NSStringPboardType]) {
 [sender setString:[cachedExpense stringRepresentation]
 forType:NSStringPboardType];
 }
 else if ([type isEqualToString:NSRTFPboardType]) {
 NSAttributedString *rtfDescription = [cachedExpense rtfRepresentation];
 NSData *rtfData = [rtfDescription
 RTFFromRange:(NSMakeRange(0, [rtfDescription length]))
 documentAttributes:nil];
 [sender setData:rtfData forType:NSRTFPboardType];
 }
}

The pasteboard:provideDataForType: messages may also be sent to the owner when the application
is shut down through an application’s terminate: method (invoked in response to a Quit command). The
user can therefore copy something, quit the application, and still paste the data that was copied.

To ensure you don’t keep the cached data longer than necessary, you also need to know when the user
copies something else. If the user performs another copy, the pasteboard owner is sent a
pasteboardChangedOwner: message.

- (void)pasteboardChangedOwner:(NSPasteboard *)sender
{
 // remove cached expense
}

14 Lazy Writing
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Implementing Copy and Paste

Data in the pasteboard server is associated with a name (a string) that indicates how it is to be used. Each
set of data and its associated name is, in effect, a separate pasteboard, distinct from the others. An application
keeps a separate NSPasteboard object for each named pasteboard that it uses. There are five standard
pasteboards in common use, each named by a global string variable:

DescriptionPasteboard Name

The pasteboard that is used for ordinary cut, copy, and paste operations. It holds the
contents of the last selection that has been cut or copied.

NSGeneralPboard

The pasteboard that holds font and character information and supports Copy Font
and Paste Font commands that may be implemented in a text editor.

NSFontPboard

The pasteboard that holds information about paragraph formats in support of the
Copy Ruler and Paste Ruler commands that may be implemented in a text editor.

NSRulerPboard

The pasteboard that holds information about the current state of the active
application’s Find panel. This information permits users to enter a search string into
the Find panel, then switch to another application to conduct another search.

NSFindPboard

The pasteboard that stores data to be moved as the result of a drag operation. For
additional information on working with the drag pasteboard, see Drag and Drop.

NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object with any name other than those
listed above. Data in a private pasteboard may then be shared by passing its name between applications.

The NSPasteboard class makes sure there is never more than one object for each named pasteboard on
the computer for each user. If you ask for a new object when one has already been created for the pasteboard
with that name, the existing object is returned.

15
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Named Pasteboards

16
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Named Pasteboards

Data can be placed in the pasteboard server in more than one representation. For example, an image might
be provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code (EPS). Multiple
representations give pasting applications the option of choosing which data type to use. In general, an
application taking data from the pasteboard should choose the richest representation it can handle—rich
text over plain ASCII, for example. An application putting data in the pasteboard should promise to supply
it in as many data types as possible, so that as many different applications as possible can use it.

Filtering services (see “Filter Services” (page 23)) transform the data from one representation to another.
Typically, these services are not invoked until data are read from a pasteboard.

Data types are identified by string objects containing the full type name. These global variables identify the
string objects for the standard pasteboard types:

NSColor dataNSColorPboardType

Ink text data. For information on ink text objects, see Using
Ink Services in Your Application. Available in Mac OS X v10.4
and later..

NSInkTextPboardType

A representation of a file’s contentsNSFileContentsPboardType

Promised filesNSFilesPromisePboardType

Returns a pasteboard type based on the passed file type.NSCreateFileContentsPboardType

Returns a pasteboard type based on the passed file type.NSCreateFilenamePboardType

Array of NSString objects designating one or more filenamesNSFilenamesPboardType

Type for NSFindPanel metadata property list. Used with the
NSPasteBoard method propertyListForType:.

NSFindPanelSearchOptionsPboardType

Font and character informationNSFontPboardType

HTML (which an NSTextView object can read from, but not
write to)

NSHTMLPboardType

PDF dataNSPDFPboardType

QuickDraw picture dataNSPICTPboardType

Encapsulated PostScript (EPS) codeNSPostScriptPboardType

Rich Text Format (RTF)NSRTFPboardType

RTFD formatted file contentsNSRTFDPboardType

17
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Data Types

Paragraph formatting informationNSRulerPboardType

NSSound dataNSSoundPboardType

NSString dataNSStringPboardType

An NSString object containing tab-separated fields of textNSTabularTextPboardType

Tag Image File Format (TIFF)NSTIFFPboardType

NSURL data for one file or resourceNSURLPboardType

VCard dataNSVCardPboardType

The pasteboard type constant used when adding or
accessing a WebArchive on the pasteboard.

WebArchivePboardType

Typically, data is written to the pasteboard using setData:forType: and read using dataForType:. Some
of these types can only be written with certain methods. For instance, NSFilenamesPboardType’s form is
an array of NSString objects and requires special handling. Use these methods to write these types:

Reading MethodWriting MethodType

NSColor class methodsNSColor class methodsNSColorPboardType

readFileContentsType:
toFile:

writeFileContents:NSFileContentsPboardType

propertyListForType:setPropertyList: forType:NSFilenamesPboardType

stringForType:setString:forType:NSStringPboardType

URLFromPasteboard: (NSURL)writeToPasteboard: (NSURL)NSURLPboardType

See “Reading Font Data” (page 19)See “Writing Font Data” (page 19)NSFontPboardType

Types other than those listed above can also be used. For example, your application may keep data in a
private format that is richer than any of the existing types. That format can also be used as a pasteboard
type.

18
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Data Types

Font information is stored on the font pasteboard as an attribute of RTF data from an attributed string. To
copy and paste a font, therefore, you need to respectively create an attributed string with the appropriate
attribute and unpack the information from an attributed string.

Writing Font Data

You copy a font using the pasteboard named NSFontPboard. You must first get the pasteboard, then declare
the appropriate type—NSFontPboardType. To create the data to place on the pasteboard, you create an
instance of NSAttributedString; the string itself is arbitrary, but you must specify an attribute dictionary
that contains the key NSFontAttributeName and the corresponding value the font that you want to write
to the pasteboard. You then create from the string an NSData object to represent the RTF data and set that
as the data on the pasteboard for the NSFontPboardType.

The following code example illustrates how to write font information to the font pasteboard. The example
uses a statically-defined font; in your code you typically find the font of the currently-selected text item and
use that.

NSPasteboard *pb = [NSPasteboard pasteboardWithName:NSFontPboard];
[pb declareTypes:[NSArray arrayWithObject:NSFontPboardType] owner:self];

NSFont *font = [NSFont fontWithName:@"Helvetica" size:12.0];
NSDictionary *attributes = [NSDictionary dictionaryWithObject:font
forKey:NSFontAttributeName];

NSAttributedString *aString = [[NSAttributedString alloc] initWithString:@"a"
attributes:attributes];
NSRange aRange = NSMakeRange(0, 1);

NSData *aStringData = [aString RTFFromRange:aRange documentAttributes:nil];
[aString release];

[pb setData:aStringData forType:NSFontPboardType];

Reading Font Data

You read a font using the pasteboard named NSFontPboard. You must first get the pasteboard, then ask
the pasteboard for the appropriate type—NSFontPboardType. The font data is in the form of RTF data
created from an attributed string. You therefore create an instance of NSAttributedString from this data,
then get the font attribute from the attributed string.

The following code example illustrates how to read font information from the font pasteboard.

Writing Font Data 19
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Reading and Writing Font Data

NSPasteboard *pb = [NSPasteboard pasteboardWithName:NSFontPboard];
NSString *bestType = [pb availableTypeFromArray:
 [NSArray arrayWithObject:NSFontPboardType]];
NSFont *font;

if (bestType != nil) {

 NSData *data = [pb dataForType:NSFontPboardType];
 NSAttributedString *aString =
 [[NSAttributedString alloc] initWithRTF:data documentAttributes:NULL];

 if (aString != nil) {
 font = [aString attribute:NSFontAttributeName atIndex:0
effectiveRange:NULL];
 NSLog(@"font: %@", [font description]);
 }
 else {
 NSLog(@"couldn't get attributed string");
 }
 [aString release];
}
else {
 NSLog(@"couldn't get NSFontPboardType");
}

20 Reading Font Data
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Reading and Writing Font Data

The NSRTFDPboardType is used for the contents of an RTFD file package (a directory containing an RTF text
file and one or many image files). There are several ways to work with RTFD data. If you have an
NSFileWrapper object that represents an RTFD file wrapper, you can send it a serializedRepresentation
message to return the RTFD data and write that to the pasteboard as follows:

NSFileWrapper *tempRTFDData = [[[NSFileWrapper alloc]
 initWithPath:@"/tmp/MyTemporaryRTFDDocument.rtfd"] autorelease];
[pboard setData:[tempRTFDData serializedRepresentation]
 forType:NSRTFDPboardType];

In addition to NSFileWrapper, instances of classes such as NSAttributedString and NSText can return
RTFD data. If you are using one of these classes, you can write an RTFD representation of their contents to
the pasteboard as follows:

NSAttributedString *attrString = /* get an attributed string */;
NSRange wholeStringRange = NSMakeRange(0, [attrString length]);
NSData *rtfdData = [attrString RTFDFromRange:wholeStringRange
 documentAttributes:nil];
[pboard setData:rtfdData forType:NSRTFDPboardType];

Note that the NSText method does not require the documentAttributes parameter.

21
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Reading and Writing RTFD Data

22
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Reading and Writing RTFD Data

Filter services (see System Services) provide a way to extend the types of data NSPasteboard can provide
to applications. In addition to the data types explicitly declared for a pasteboard, you can request the data
in a type to which a filter service can convert any of the declared types. Files and NSData objects can be
converted as well using filters.

The NSPasteboard class uses filter services when you invoke one of the following methods:

+ (NSArray *)typesFilterableTo:(NSString *)type
+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename
+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data ofType:(NSString
*)type
+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pboard

The first returns an array of all the data types which can be converted to type. The last three return pasteboards
with data that is filtered into all types derivable from the current types using available filter services. Filter
services are not invoked, and the data converted, until data are requested from the pasteboard, so these
methods are reasonably inexpensive.

Because filter services commonly translate data from unknown file formats into known formats, you need a
way of dynamically specifying pasteboard types. The filter services and pasteboard facilities define types
based on file extensions and HFS file types with these functions:

NSString *NSCreateFilenamePboardType(NSString *fileType)
NSString *NSCreateFileContentsPboardType(NSString *fileType)
NSString *NSGetFileType(NSString *pboardType)
NSArray *NSGetFileTypes(NSArray *pboardTypes)
NSString *NSFileTypeForHFSTypeCode(OSType hfsFileTypeCode)
OSType NSHFSTypeCodeFromFileType(NSString *fileTypeString)

The fileType argument is either a file extension, minus the period (for example, “eps” or “tiff”), or an
HFS file type encoded with the NSFileTypeForHFSTypeCode function (for example, “‘TEXT’” or “‘MooV’”).
You create pasteboard type strings with the first two functions, and get file types (extensions or encoded
HFS types) from pasteboard type strings with the second two functions. The last two functions convert
between HFS file types (OSType) and encoded HFS type strings.

23
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Filter Services

24
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Filter Services

You implement a filter service very much like a system service. See System Services for details on how services
generally work. The following sections focus on issues specific to filter services.

Creating the Filter

Like system services, filter services are defined with an NSServices property in the filter’s information
property list file (Info.plist). Filter services, though, do not show up in the Services menu, so you do not
need to have NSMenuItem and NSKeyEquivalent entries in the definition.

Because data is moving both in and out of the filter service, you must have entries for both NSSendTypes
and NSReturnTypes in the filter definition. You indicate send and return types as either
NSTypedFilenamesPboardType:fileType when you want file names and
NSTypedFileContentsPboardType:fileType when you want file contents, where fileType is either
a file name extension or an encoded HFS type, for example:

NSSendTypes = (NSTypedFilenamesPboardType:tiff);
NSSendTypes = (NSTypedFileContentsPboardType:’MooV’);

Finally, instead of an NSMessage entry, which identifies the method to invoke, filter services contain an
equivalent NSFilter entry. The invoked method is filterName:userData:error:, where filterName
is the value of the NSFilter entry. The method accepts a pasteboard, converts the contents of the pasteboard
to the requested type or types, and returns the converted data on the pasteboard.

The method identified by the NSFilter property is sent to the filter application’s service provider object,
which you register with the pasteboard server using the function NSRegisterServicesProvider when
the filter service is launched. This function’s declaration is:

void NSRegisterServicesProvider(id provider, NSString *name)

provider is the object that provides the services, and name is the same value you specify for the NSPortName
entry in the services specification. NSPortName is usually the filter application’s name. After calling
NSRegisterServicesProvider, the filter service must enter the run loop to respond to service requests.
The filter’s main function may look like this:

int main (int argc, const char *argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 ServiceTest *serviceProvider = [[ServiceTest alloc] init];

 NSRegisterServicesProvider(serviceProvider, @"SimpleService");

 NS_DURING
 [[NSRunLoop currentRunLoop] run];
 NS_HANDLER
 NSLog(@"Received exception: %@", localException);

Creating the Filter 25
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Providing a Filter Service

 NS_ENDHANDLER

 [serviceProvider release];
 [pool release];
 return 0;
}

If the serviceProvider object implements the method convertData:userData:error:, the filter’s
Info.plist file may contain the following service specification:

NSServices = (
 {
 NSFilter = "convertData";
 NSPortName = SimpleService;
 NSSendTypes = (NSTypedFilenamesPboardType:gif);
 NSReturnTypes = (NSTIFFPboardType);
 }
);

The filter service bundle should have a .service extension and be installed in the Library/Services
directory in one of the file system domains—System, Network, Local, or User. (See SystemOverview for details
on file-system domains.) The list of available services is created each time a user logs into the computer, so
you must log out and back in before a newly-installed service is available.

Using Alternate Input Mechanisms

A filter service can use data-transfer mechanisms other than the pasteboard, indicated by an optional entry
in the filter service specification. The key is NSInputMechanism, and it can have a value of NSUnixStdio,
NSMapFile, or NSIdentity. If you specify an input mechanism, the value for the NSFilter entry is ignored
(though it is still required).

NSUnixStdio

NSUnixStdio allows you to turn nearly any command-line program into a filter service. Instead of sending
an Objective-C message to an object in your filter service program, the services facility simply runs the
executable specified in the service specification with the contents of the pasteboard as the argument (which
must be of NSFilenamesPboardType or NSTypedFilenamesPboardType). If there is more than one
filename on the pasteboard, only the first is used. The output of the filter program (on stdout) is captured
by the services facility and put on a pasteboard for use by the requestor of the filter. Note that the program
must be relaunched every time the service is invoked; if you are creating a filter service from scratch it is
more efficient to package it as an application that can remain running. Here is a sample service specification
for a program that converts GIF images to TIFF:

NSServices = (
 {
 NSFilter = "";
 NSPortName = gif2tiff;
 NSInputMechanism = NSUnixStdio;
 NSSendTypes = (NSTypedFilenamesPboardType:gif);
 NSReturnTypes = (NSTIFFPboardType);
 }

26 Using Alternate Input Mechanisms
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Providing a Filter Service

);

NSMapFile

NSMapFile defines an “empty” service for data in files, used when you invoke NSPasteboard’s
pasteboardByFilteringFile: class method. Its value must be an NSFilenamesPboardType or an
NSTypedFilenamesPboardType. When the filter service is invoked for a file, the services facility merely
puts the contents of the file on the pasteboard. This input mechanism is useful for file types with nonstandard
or special extensions whose format is nonetheless the same as a standard type. For example, if you have
defined an image format based on a subset of TIFF and given it a file extension of stif, you can define a
service that maps the stif file extension to NSTIFFPboardType:

NSServices = (
 {
 NSFilter = "";
 NSInputMechanism = NSMapFile;
 NSSendTypes = (NSTypedFilenamesPboardType:stif);
 NSReturnTypes = (NSTIFFPboardType);
 }
);

NSMapFile does not result in any program being executed, so its service specification lacks the NSPortName
entry.

NSIdentity

NSIdentity defines an empty service for data in memory, used when you invoke NSPasteboard’s
pasteboardByFilteringData:ofType: class method. It declares that the send type is effectively identical
to the return type—though the reverse is not necessarily true. For example, you can define a service that
filters your custom image format in memory with this service specification:

NSServices = (
 {
 NSFilter = "";
 NSInputMechanism = NSIdentity;
 NSSendTypes = (MyCustomImagePboardType);
 NSReturnTypes = (NSTIFFPboardType);
 }
);

NSIdentity does not result in any program being executed, so its service specification lacks the NSPortName
entry.

Using Alternate Input Mechanisms 27
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Providing a Filter Service

28 Using Alternate Input Mechanisms
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Providing a Filter Service

This table describes the changes to Pasteboard Programming Topics for Cocoa.

NotesDate

Updated for Mac OS X v10.5.2007-07-13

Changed title from Copying and Pasting. Added new articles on implementing
copy and paste and reading and writing font data.

2006-05-23

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

29
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

30
2007-07-13 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Pasteboard Programming Topics for Cocoa
	Contents
	Introduction
	Pasteboard Fundamentals
	The Pasteboard Server
	Named Pasteboards
	Pasteboard Data Types
	Pasteboards Hold Multiple Representations
	Change Count
	Errors

	Implementing Copy and Paste
	Implementing Copy
	Implementing Paste
	Implementing Cut
	Lazy Writing

	Named Pasteboards
	Data Types
	Reading and Writing Font Data
	Writing Font Data
	Reading Font Data

	Reading and Writing RTFD Data
	Filter Services
	Providing a Filter Service
	Creating the Filter
	Using Alternate Input Mechanisms
	NSUnixStdio
	NSMapFile
	NSIdentity

	Revision History

