
Core Animation Programming Guide
Graphics & Imaging > Quartz

2008-11-13

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iPod, Mac, Mac
OS, Objective-C, Quartz, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

iPhone is a trademark of Apple Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR

PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Core Animation Programming Guide 11

Organization of This Document 11
See Also 12

What Is Core Animation? 13

Core Animation Classes 13
Layer Classes 14
Animation and Timing Classes 15
Layout Manager Classes 16
Transaction Management Classes 17

Core Animation Rendering Architecture 19

Layer Geometry and Transforms 21

Layer Coordinate System 21
Specifying a Layer’s Geometry 21
Transforming a Layer’s Geometry 24

Transform Functions 25
Modifying the Transform Data Structure 26
Modifying a Transform Using Key Paths 27

Layer-Tree Hierarchy 29

What Is a Layer-Tree Hierarchy? 29
Displaying Layers in Views 29
Adding and Removing Layers from a Hierarchy 30
Repositioning and Resizing Layers 30

Autoresizing Layers 31
Clipping Sublayers 32

Providing Layer Content 33

Providing CALayer Content 33
Setting the Contents Property 33
Using a Delegate to Provide Content 33
Providing CALayer Content by Subclassing 35

Positioning Content Within a Layer 36

3
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animation 39

Animation Classes and Timing 39
Implicit Animation 39
Explicit Animation 40
Starting and Stopping Explicit Animations 41

Actions 43

What are Actions? 43
Action Object Search Pattern 43
CAAction Protocol 44
Overriding an Implied Animation 44
Temporarily Disabling Actions 45

Transactions 47

Implicit transactions 47
Explicit Transactions 47

Temporarily Disabling Layer Actions 47
Overriding the Duration of Implied Animations 48
Nesting Transactions 48

Laying Out Core Animation Layers 51

Constraints Layout Manager 51

Core Animation Extensions To Key-Value Coding 55

Key-Value Coding Compliant Container Classes 55
Default Value Support 55
Wrapping Conventions 56
Key Path Support for Structure Fields 56

Layer Style Properties 59

Geometry Properties 59
Background Properties 60
Layer Content 61
Sublayers Content 61
Border Attributes 62
Filters Property 63
Shadow Properties 63
Opacity Property 64
Composite Property 65
Mask Properties 65

4
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application 67

The User Interface 67
Examining the Nib File 68
The Layer Hierarchy 69

The Code 70
Examining MenuView.h 70
Examining MenuView.m 71

Animatable Properties 77

CALayer Animatable Properties 77
CIFilter Animatable Properties 79

Document Revision History 81

5
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

6
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

What Is Core Animation? 13

Figure 1 Core Animation class hierarchy 14

Core Animation Rendering Architecture 19

Figure 1 Core Animation Rendering Architecture 19

Layer Geometry and Transforms 21

Figure 1 CALayer geometry properties 22
Figure 2 Three anchorPoint values 23
Figure 3 Layer Origin of (0.5,0.5) 23
Figure 4 Layer Origin of (0.0,0.0) 24
Table 1 CATransform3D transform functions for translation, rotation, and scaling 25
Table 2 CATransform3D transform functions for CGAffineTransform conversion 26
Table 3 CATransform3D transform functions for testing equality 26
Table 4 CATransform3D key paths 27
Listing 1 CATransform3D structure 26
Listing 2 Modifying the CATransform3D data structure directly 26

Layer-Tree Hierarchy 29

Figure 1 Layer autoresizing mask constants 32
Figure 2 Example Values of the masksToBounds property 32
Table 1 Layer-tree management methods. 30
Table 2 Autoresizing mask values and descriptions 31
Listing 1 Inserting a layer into a view 29

Providing Layer Content 33

Figure 9 Position constants for a layer’s contentsGravity property 37
Figure 10 Scaling constants for a layer’s contentsGravity property 37
Table 7 Positioning constants for a layer’s contentsGravity property 36
Table 8 Scaling constants for a layer’s contentsGravity property 37
Listing 4 Setting a layer’s contents property 33
Listing 5 Example implementation of the delegate method displayLayer: 34
Listing 6 Example implementation of the delegate method drawLayer:inContext: 34
Listing 7 Example override of the CALayer display method 35
Listing 8 Example override of the CALayer drawInContext: method 35

7
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animation 39

Listing 1 Implicitly animating a layer’s position property 40
Listing 2 Implicitly animating multiple properties of multiple layers 40
Listing 3 Explicit animation 40
Listing 4 Continuous explicit animation example 41

Actions 43

Table 1 Action triggers and their corresponding identifiers 43
Listing 1 runActionForKey:object:arguments: implementation that initiates an animation

44
Listing 2 Implied animation for the contents property 44
Listing 3 Implied animation for the sublayers property 45

Transactions 47

Listing 1 Animation using an implicit transaction 47
Listing 2 Temporarily disabling a layer’s actions 48
Listing 3 Overriding the animation duration 48
Listing 4 Nesting explicit transactions 48

Laying Out Core Animation Layers 51

Figure 1 Constraint layout manager attributes 51
Figure 2 Example constraints based layout 52
Listing 1 Configuring a layer’s constraints 52

Core Animation Extensions To Key-Value Coding 55

Listing 1 Example implementation of defaultValueForKey: 55

Layer Style Properties 59

Figure 1 Layer geometry 59
Figure 2 Layer with background color 60
Figure 3 Layer displaying a content image 61
Figure 4 Layer displaying the sublayers content 62
Figure 5 Layer displaying the border attributes content 62
Figure 6 Layer displaying the filters properties 63
Figure 7 Layer displaying the shadow properties 64
Figure 8 Layer including the opacity property 64
Figure 9 Layer composited using the compositingFilter property 65
Figure 10 Layer composited with the mask property 66

8
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application 67

Figure 1 Core Animation Menu Interface 68
Listing 1 MenuView.h listing 70

Animatable Properties 77

Table 10 Default Implied Basic Animation 79
Table 11 Default Implied Transition 79

9
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

10
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

This document describes the fundamental concepts involved in using Core Animation. Core Animation is an
Objective-C framework that combines a high-performance compositing engine with a simple to use animation
programming interface.

You should read this document to gain an understanding of working with Core Animation in a Cocoa
application. The Objective-C 2.0 Programming Language should be considered a prerequisite because Core
Animation makes extensive use of Objective-C properties. You should also be familiar with key-value coding
as described in Key-Value Coding Programming Guide. Familiarity with the Quartz 2D imaging technologies
described in Quartz 2D Programming Guide is also helpful, although not required.

You can build Cocoa applications for two platforms: the Mac OS X operating system and iPhone OS, the
operating system for multi-touch devices such as iPhone and iPod touch. Core Animation Programming
Guide presents Cocoa-related information for both platforms, integrating the information as much as possible
and pointing out platform differences when necessary.

Organization of This Document

Core Animation Programming Guide consists of the following articles:

 ■ “What Is Core Animation?” (page 13) provides an overview of Core Animation’s capabilities.

 ■ “Layer Geometry and Transforms” (page 21) describes layer geometry and transformations.

 ■ “Layer-Tree Hierarchy” (page 29) describes how the layer-tree and how an application can manipulate
it.

 ■ “Providing Layer Content” (page 33) describes how to provide basic layer content.

 ■ “Animation” (page 39) describes the Core Animation animation model.

 ■ “Actions” (page 43) describes layer actions and how to implement implicit animations.

 ■ “Transactions” (page 47) describes how to group animations using transactions.

 ■ “Laying Out Core Animation Layers” (page 51) describes the constraints layout manager

 ■ “Core Animation Extensions To Key-Value Coding” (page 55) describes the key-value coding extensions
that Core Animation provides.

 ■ “Layer Style Properties” (page 59) describes the layer style properties and provides examples of their
visual effects.

 ■ “Example: Core Animation Menu Application” (page 67) dissects a Core Animation driven user interface.

 ■ “Animatable Properties” (page 77) summarizes the animatable properties of layers and filters.

Organization of This Document 11
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Core Animation Programming
Guide

See Also

These programming guides discuss some of the technologies that are used by Core Animation:

 ■ Animation Types and Timing Programming Guide describes the animation classes and timing features
used by Core Animation.

 ■ Core Animation Cookbook contains code fragments that demonstrate common Core Animation tasks.

 ■ Quartz 2D Programming Guide describes the two-dimensional drawing engine used to draw the content
of a CALayer instance.

 ■ Core Image Programming Guide describes the Mac OS X image processing technology and shows how
to use the Core Image API.

12 See Also
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Core Animation Programming Guide

Core Animation is a collection of Objective-C classes for graphics rendering, projection, and animation. It
provides fluid animations using advanced compositing effects while retaining a hierarchical layer abstraction
that is familiar to developers using the Application Kit and Cocoa Touch view architectures.

Dynamic, animated user interfaces are hard to create, but Core Animation makes creating these interfaces
easier by providing:

 ■ High performance compositing with a simple approachable programming model.

 ■ A familiar view-like abstraction that allows you to create complex user interfaces using a hierarchy of
layer objects.

 ■ A lightweight data structure. You can display and animate hundreds of layers simultaneously.

 ■ An abstract animation interface that allows animations to run on a separate thread, independent of your
application's run loop. Once an animation is configured and starts, Core Animation assumes full
responsibility for running it at frame rate.

 ■ Improved application performance. Applications need only redraw content when it changes. Minimal
application interaction is required for resizing and providing layout services layers. Core Animation also
eliminates application code that runs at the animation frame-rate.

 ■ A flexible layout manager model, including a manager that allows the position and size of a layer to be
set relative to attributes of sibling layers.

Using Core Animation, developers can create dynamic user interfaces for their applications without having
to use low-level graphics APIs such as OpenGL to get respectable animation performance.

Core Animation Classes

Core Animation classes can be grouped into several categories:

 ■ Layer classes that provide content for display

 ■ Animation and timing classes

 ■ Layout and constraint classes

 ■ A transaction class that groups multiple layer changes into an atomic update

The basic Core Animation classes are contained in the Quartz Core framework, although additional layer
classes can be defined in other frameworks. “Core Animation Classes” shows the class hierarchy of Core
Animation.

Core Animation Classes 13
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

Figure 1 Core Animation class hierarchy

QuartzCore.framework
NSObject

CABasicAnimation

CAKeyframeAnimation

CAAnimationGroup

CAPropertyAnimation

CATransition

CAScrollLayer

CAEAGLLayer *

CATiledLayer

CAConstraintLayoutManager

CAConstraint

CAMediaTimingFunction

CARenderer

CATransaction

QuartzComposer.framework

CATextLayer

QTKit.framework

CAOpenGLLayer

QTCaptureLayer

QTMovieLayer

CAAnimation
<CAAction, CAMediaTiming>

CALayer
<CAMediaTiming>

QCCompositionLayer

* iPhone OS only

Layer Classes

The layer classes are the foundation of Core Animation and provide an abstraction that should be familiar
to developers who have used NSView or UIView. Basic layer functionality is provided by the CALayer class,
which is the parent class for all types of Core Animation layers.

As with an instance of a view class, a CALayer instance has a single parent layer (the superlayer) and a
collection of sublayers, creating a hierarchy of layers that is referred to as the layer tree. Layers are drawn
from back to front just like views and specify their geometry relative to their superlayer, creating a local
coordinate system. However, layers allow a more complex visual display by incorporating transform matrices
that allow you to rotate, skew, scale, and project the layer content. “Layer Geometry and Transforms” (page
21) discusses layer geometry and transforms in more detail.

CALayer diverges from the Application Kit and Cocoa Touch view classes in that it is not necessary to subclass
CALayer in order to display content. The content displayed by a CALayer instance can be provided by:

 ■ Setting the layer’s content property to a Core Graphics image representation directly, or through
delegation.

 ■ Providing a delegate that draws directly into a Core Graphics image context.

 ■ Setting any of the number of visual style properties that all layer types have in common, for example,
background colors, opacity, and masking. Mac OS X applications also have access to visual properties
that make use of Core Image filters.

14 Core Animation Classes
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

 ■ Subclassing CALayer and implementing any of the above techniques in a more encapsulated manner.

“Providing Layer Content” (page 33) describes the available techniques for providing the content for a layer.
The visual style properties and the order in which they are applied to the content of a layer is discussed in
“Layer Style Properties” (page 59).

In addition to the CALayer class, the Core Animation class collection provides additional classes that allow
applications to display other types of content. The available classes differ slightly between Mac OS X and
iPhone OS. The following classes are available on both Mac OS X and iPhone OS:

 ■ CAScrollLayer class is a subclass of CALayer that simplifies displaying a portion of a layer. The extent
of the scrollable area of a CAScrollLayer object is defined by the layout of its sublayers. CAScrollLayer
does not provide keyboard or mouse event-handling, nor does it provide visible scrollers.

 ■ CATiledLayer allows the display of large and complex images in incremental stages.

Mac OS X provides these additional classes:

 ■ CATextLayer is a convenience class that creates a layer's content from a string or attributed string.

 ■ CAOpenGLLayer provides an OpenGL rendering environment. You must subclass this class to provide
content using OpenGL. The content can be static or can be updated over time.

 ■ QCCompositionLayer (provided by the Quartz Composer framework) animates a Quartz Composer
composition as its content.

 ■ QTMovieLayer andQTCaptureLayer (provided by the QTKit framework) provides playback of QuickTime
movies and live video.

iPhone OS adds the following class:

 ■ CAEAGLLayer provides an OpenGLES rendering environment.

The CALayer class introduces the concept of a key-value coding compliant container class–that is, a class
that can store arbitrary values, using key-value coding compliant methods, without having to create a subclass.
CALayer also extends the NSKeyValueCoding informal protocol, adding support for default key values and
automatic object wrapping for the additional structure types (CGPoint, CGSize, CGRect,
CGAffineTransform and CATransform3D) and provides access to many of the fields of those structures
by key path.

CALayer also manages the animations and actions that are associated with a layer. Layers receive action
triggers in response to layers being inserted and removed from the layer tree, modifications being made to
layer properties, or explicit developer requests. These actions typically result in an animation occurring. See
“Animation” (page 39) and “Actions” (page 43) for more information.

Animation and Timing Classes

Many of the visual properties of a layer are implicitly animatable. By simply changing the value of an animatable
property the layer will automatically animate from the current value to the new value. For example, setting
a layer's hidden property to YES triggers an animation that causes the layer to gradually fade away. Most
animatable properties have an associated default animation which you can easily customize and replace. A
complete list of the animatable properties and their default animations are listed in “Animatable
Properties” (page 77).

Core Animation Classes 15
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

Animatable properties can also be explicitly animated. To explicitly animate a property you create an instance
of one of Core Animation’s animation classes and specify the required visual effects. An explicit animation
doesn’t change the value of the property in the layer, it simply animates it in the display.

Core Animation provides animation classes that can animate the entire contents of a layer or selected
attributes using both basic animation and key-frame animation. All Core Animation's animation classes
descend from the abstract class CAAnimation. CAAnimation adopts the CAMediaTiming protocol which
provides the simple duration, speed, and repeat count for an animation. CAAnimation also adopts the
CAAction protocol. This protocol provides a standardized means for starting an animation in response to
an action triggered by a layer.

The animation classes also define a timing function that describes the pacing of the animation as a simple
Bezier curve. For example, a linear timing function specifies that the animation's pace is even across its
duration, while an ease-in timing function causes an animation to slow down as it nears its duration.

Core Animation provides a number of additional abstract and concrete animation classes:

 ■ CATransition provides a transition effect that affects the entire layer's content. It fades, pushes, or
reveals layer content when animating. The stock transition effects can be extended by providing your
own custom Core Image filters.

 ■ CAAnimation allows an array of animation objects to be grouped together and run concurrently.

 ■ CAPropertyAnimation is an abstract subclass that provides support for animating a layer property
specified by a key path.

 ■ CABasicAnimation provides simple interpolation for a layer property.

 ■ CAKeyframeAnimation provides support for key frame animation. You specify the key path of the layer
property to be animated, an array of values that represent the value at each stage of the animation, as
well as arrays of key frame times and timing functions. As the animation runs, each value is set in turn
using the specified interpolation.

These animation classes are used by both Core Animation and Cocoa Animation proxies. “Animation” (page
39) describes the classes as they pertain to Core Animation, Animation Types and Timing Programming Guide
contains a more in-depth exploration of their capabilities.

Layout Manager Classes

Application Kit view classes provide the classic "struts and springs" model of positioning layers relative to
their superlayer. While layers support this model, Core Animation on Mac OS X also provides a more flexible
layout manager mechanism that allows developers to write their own layout managers.

Core Animation’s CAConstraint class is a layout manager that arranges sublayers using a set of constraints
that you specify. Each constraint (encapsulated by instances of the CAConstraint class) describes the
relationship of one geometric attribute of a layer (the left, right, top, or bottom edge or the horizontal or
vertical center) in relation to a geometric attribute of one of its sibling layers or its superlayer.

Layout managers in general, and the constraint layout manager are discussed in “Laying Out Core Animation
Layers” (page 51)

16 Core Animation Classes
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

Transaction Management Classes

Every modification to an animatable property of a layer must be part of a transaction. CATransaction is
the Core Animation class responsible for batching multiple animation operations into atomic updates to the
display. Nested transactions are supported.

Core Animation supports two types of transactions: implicit transactions and explicit transactions. Implicit
transactions are created automatically when an animatable property of a layer is modified by a thread without
an active transaction and are committed automatically when the thread's run-loop next iterates. Explicit
transactions occur when the application sends the CATransaction class a begin message before modifying
the layer, and a commit message afterwards.

Transaction management is discussed in “Transactions” (page 47).

Core Animation Classes 17
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

18 Core Animation Classes
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

What Is Core Animation?

While there are obvious similarities between Core Animation layers and Cocoa views the biggest conceptual
divergence is that layers do not render directly to the screen.

Where NSView and UIView are clearly view objects in the model-view-controller design pattern, Core
Animation layers are actually model objects. They encapsulate geometry, timing and visual properties, and
they provide the content that is displayed, but the actual display is not the layer’s responsibility.

Each visible layer tree is backed by two corresponding trees: a presentation tree and a render tree. Figure 1
shows an example layer-tree using the Core Animation layer classes available in Mac OS X.

Figure 1 Core Animation Rendering Architecture

CALayer CALayer

Layer-Tree Presentation Tree

Object Model Values Presentation Values

Render-Tree (Private)

CATextLayer

CATextLayer

CAOpenGLLayer

CATiledLayer

CALayer

CALayer

CATextLayer

CATextLayer

CAOpenGLLayer

CATiledLayer

CALayer

CALayer

The layer tree contains the object model values for each layer. These are the values you set when you assign
a value to a layer property.

The presentation tree contains the values that are currently being presented to the user as an animation
takes place. For example, setting a new value for the backgroundColor of a layer immediately changes the
value in the layer tree. However, the backgroundColor value in the corresponding layer in the presentation
tree will be updated with the interpolated colors as they are displayed to the user.

The render-tree uses the value in the presentation-tree when rendering the layer. The render-tree is responsible
for performing the compositing operations independent of application activity; rendering is done in a separate
process or thread so that it has minimal impact on the application's run loop.

You can query an instance of CALayer for its corresponding presentation layer while an animation transaction
is in process. This is most useful if you intend to change the current animation and want to begin the new
animation from the currently displayed state.

19
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Rendering Architecture

20
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Rendering Architecture

This chapter describes the components of a layer’s geometry, how they interrelate, and how transform
matrices can produce complex visual effects.

Layer Coordinate System

The layer's location and size are expressed using the same coordinate system that the Quartz graphics
environment uses. By default, the graphics environment origin (0.0,0.0) is located in the lower left, and values
are specified as floating-point numbers that increase up and to the right in coordinate system units. The
coordinate system units, the unit square, is the size of a 1.0 by 1.0 rectangle.

Every layer instance defines and maintains its own coordinate system, and all sublayers are positioned, and
drawing is done, relative to this coordinate system. Methods are provided to convert points, rectangles and
sizes from one layer coordinate system to another. A layer's coordinate system should be considered the
base coordinate system for all the content of the layer, including its sublayers.

iPhone OS Note: The default root layer of a UIView instance uses a flipped coordinate system that matches
the default coordinate system of a UIView instance–the origin is in the top-left and values increase down
and to the right. Layers created by instantiating CALayer directly use the standard Core Animation coordinate
system.

Specifying a Layer’s Geometry

While layers and the layer-tree are analogous to Cocoa views and the view hierarchy in many ways, how a
layer's geometry is specified is different, and often simpler, manner. All of a layer’s geometric properties,
including the layer’s transform matrices, can be implicitly and explicitly animated.

Figure 1 shows the properties used to specify a layer's geometry in context.

Layer Coordinate System 21
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Figure 1 CALayer geometry properties

bounds.width

outerLayer

innerLayer

bounds.height

position

frame

bounds.origin

cornerRadius

The position property is a CGPoint that specifies the position of the layer relative to its superlayer, and is
expressed in the superlayer's coordinate system.

The bounds property is a CGRect that provides the size of the layer (bounds.size) and the origin
(bounds.origin). The bounds origin is used as the origin of the graphics context when you override a layer's
drawing methods.

Layers have an implicit frame that is a function of the position, bounds, anchorPoint, and transform
properties. Setting a new frame rectangle changes the layer's position and bounds properties appropriately,
but the frame itself is not stored. When a new frame rectangle is specified the bounds origin is undisturbed,
while the bounds size is set to the size of the frame. The layer's position is set to the proper location relative
to the anchor point. When you get the frame property value, it is calculated relative to the position,
bounds, and anchorPoint properties.

The anchorPointproperty is a CGPoint that specifies a location within the bounds of a layer that corresponds
with the position coordinate. The anchor point specifies how the bounds are positioned relative to the
position property, as well as serving as the point that transforms are applied around. It is expressed in the
unit coordinate system-the lower left of the layer bounds is 0.0,0.0, and the upper right is 1.0,1.0.

When you specify the frame of a layer, position is set relative to the anchor point. When you specify the
position of the layer, bounds is set relative to the anchor point.

Figure 2 shows three example values for an anchor point.

22 Specifying a Layer’s Geometry
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Figure 2 Three anchorPoint values

(1.0,1.0)

(0.0,0.0)

(1.0,0.0)

B A

C

(0.0,0.5) (0.5,0.5)

The default value for anchorPoint is (0.5,0.5) which corresponds to the center of the layer's bounds (shown
as point A in Figure 2.) Point B shows the position of an anchor point set to (0.0,0.5). Finally, point C (1.0,0.0)
causes specifies that the layer’s position is set to the bottom right corner of the frame.

The relationship of the frame, bounds, position, and anchorPoint properties is shown in Figure 3.

Figure 3 Layer Origin of (0.5,0.5)

bounds = (0.0,0.0, 120.0,80.0)
frame = (40.0,60.0, 120.0,80.0)
anchorPoint = (0.5,0.5)
position = (100.0, 100.0)

frame
anchorPoint

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

rotation applied

original
frame

rotated
frame

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

scale applied

original
frame

scaled
frame

In this example the anchorPoint is set to the default value of (0.5,0.5), which corresponds to the center of
the layer. The position of the layer is set to (100.0,100.0), and the bounds is set to the rectangle (0.0, 0.0,
120.0, 80.0). This causes the frame property to be calculated as (40.0, 60.0, 120.0, 80.0).

If you created a new layer, and set only the layer’s frame property to (40.0, 60.0, 120.0, 80.0), the position
property would be automatically set to (100.0,100.0), and the bounds property to (0.0, 0.0, 120.0, 80.0).

Specifying a Layer’s Geometry 23
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Figure 4 shows a layer with the same frame rectangle as the layer in Figure 3. However, in this case the
anchorPoint of the layer is set to (0.0,0.0), which corresponds with the bottom left corner of the layer.

Figure 4 Layer Origin of (0.0,0.0)

anchorPoint = (0.0,0.0)
position = (40.0, 60.0)
bounds = (0.0,0.0, 120.0,80.0)
frame = (40.0,60.0, 120.0,80.0)

frame

anchorPoint

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

rotation applied

original
frame

rotated
frame

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

160

140

120

100

80

60

40

20

0

160

140

120

100

806040200

scale applied

original
frame

scaled
frame

With the frame set to (40.0, 60.0, 120.0, 80.0), the value of the bounds property is the same, but the value of
the position property has changed.

Another aspect of layer geometry that differs from Cocoa views is that you can specify a radius that is used
to round the corners of the layer. The cornerRadius property specifies a radius the layer uses when drawing
content, clipping sublayers, and drawing the border and shadow.

The zPosition property specifies the z-axis component of the layer's position. The zPosition is intended
to be used to set the visual position of the layer relative to its sibling layers. It should not be used to specify
the order of layer siblings, instead reorder the layer in the sublayer array.

Transforming a Layer’s Geometry

Once established, you can transform a layer's geometry using matrix transformations. The Transform data
structure defines a homogenous three-dimensional transform (a 4 by 4 matrix of CGFloat values) that is
used to rotate, scale, offset, skew, and apply perspective transformations to a layer.

Two layer properties specify transform matrices: transform and sublayerTransform. The matrix specified
by the transform property is applied to the layer and its sublayers relative to the layer's anchorPoint.
Figure 3 shows how rotation and scaling transforms affect a layer when using an anchorPoint of (0.5,0.5), the
default value. Figure 4 shows how the same transform matrices affect a layer when an anchorPoint of (0.0,0.0).
The matrix specified by the sublayerTransform property is applied only to the layer’s sublayers, rather
than to the layer itself.

You create and modify CATransform3D data structures in one of the following ways:

 ■ using the CATransform3D functions

 ■ modifying the data structure members directly

 ■ using key-value coding and key paths.

24 Transforming a Layer’s Geometry
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

The constant CATransform3DIdentity is the identity matrix, a matrix that has no scale, rotation, skewing,
or perspective applied. Applying the identity matrix to a layer causes it to be displayed with its default
geometry.

Transform Functions

The transform functions available in Core Animation operate on matrices. You can use these functions (shown
in Table 1) to construct a matrix that you later apply to a layer or its sublayers by modifying the transform
or sublayerTransform properties respectively. The transform functions either operate on, or return, a
CATransform3D data structure. This enables you to construct simple or complex transforms that you can
readily reuse.

Table 1 CATransform3D transform functions for translation, rotation, and scaling

UseFunction

Returns a transform that translates by '(tx, ty, tz)'. t' = [1 0 0 0; 0 1 0
0; 0 0 1 0; tx ty tz 1].

CATransform3DMakeTranslation

Translate 't' by '(tx, ty, tz)' and return the result: * t' = translate(tx, ty,
tz) * t.

CATransform3DTranslate

Returns a transform that scales by `(sx, sy, sz)': * t' = [sx 0 0 0; 0 sy 0
0; 0 0 sz 0; 0 0 0 1].

CATransform3DMakeScale

Scale 't' by '(sx, sy, sz)' and return the result: * t' = scale(sx, sy, sz) *
t.

CATransform3DScale

Returns a transform that rotates by 'angle' radians about the vector
'(x, y, z)'. If the vector has length zero the identity transform is
returned.

CATransform3DMakeRotation

Rotate 't' by 'angle' radians about the vector '(x, y, z)' and return the
result. t' = rotation(angle, x, y, z) * t.

CATransform3DRotate

The angles of rotation is specified in radians rather than degrees. The following functions allow you to convert
between radians and degrees.

CGFloat DegreesToRadians(CGFloat degrees) {return degrees * M_PI / 180;};
CGFloat RadiansToDegrees(CGFloat radians) {return radians * 180 / M_PI;};

Core Animation provides a transform function that inverts a matrix, CATransform3DInvert. Inversion is
generally used to provide reverse transformation of points within transformed objects. Inversion can be
useful when you need to recover a value that has been transformed by a matrix: invert the matrix, and multiply
the value by the inverted matrix, and the result is the original value.

Functions are also provided that allow you to convert a CATransform3D matrix to a CGAffineTransform
matrix, if the CATransform3D matrix can be expressed as such.

Transforming a Layer’s Geometry 25
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Table 2 CATransform3D transform functions for CGAffineTransform conversion

UseFunction

Returns a CATransform3D with the same effect as the passed
affine transform.

CATransform3DMakeAffineTransform

Returns YES if the passed CATransform3D can be exactly
represented an affine transform.

CATransform3DIsAffine

Returns the affine transform represented by the passed
CATransform3D.

CATransform3DGetAffineTransform

Functions are provided for comparing transform matrices for equality with the identity matrix, or another
transform matrix.

Table 3 CATransform3D transform functions for testing equality

UseFunction

Returns YES if the transform is the identity transform.CATransform3DIsIdentity

Returns YES if the two transforms are exactly equal..CATransform3DEqualToTransform

Modifying the Transform Data Structure

You can modify the value of any of the CATransform3D data structure members as you would any other
data structure. Listing 1 contains the definition of the CATransform3D data structure, the structure members
are shown in their corresponding matrix positions.

Listing 1 CATransform3D structure

struct CATransform3D
{
 CGFloat m11, m12, m13, m14;
 CGFloat m21, m22, m23, m24;
 CGFloat m31, m32, m33, m34;
 CGFloat m41, m42, m43, m44;
};

typedef struct CATransform3D CATransform3D;

The example in Listing 2 illustrates how to configure a CATransform3D as a perspective transform.

Listing 2 Modifying the CATransform3D data structure directly

 CATransform3D aTransform = CATransform3DIdentity;
// the value of zDistance affects the sharpness of the transform.
zDistance = 850;
aTransform.m34 = 1.0 / -zDistance;

26 Transforming a Layer’s Geometry
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Modifying a Transform Using Key Paths

Core Animation extends the key-value coding protocol to allow getting and setting of the commonly values
of a layer's CATransform3D matrix through key paths. Table 4 describes the key paths for which a layer’s
transform and sublayerTransform properties are key-value coding and observing compliant.

Table 4 CATransform3D key paths

DescriptionField Key Path

The rotation, in radians, in the x axis.rotation.x

The rotation, in radians, in the y axis.rotation.y

The rotation, in radians, in the z axis.rotation.z

The rotation, in radians, in the z axis. This is identical to setting the rotation.z field.rotation

Scale factor for the x axis.scale.x

Scale factor for the y axis.scale.y

Scale factor for the z axis.scale.z

Average of all three scale factors.scale

Translate in the x axis.translation.x

Translate in the y axis.translation.y

Translate in the z axis.translation.z

Translate in the x and y axis. Value is an NSSize or CGSize.translation

You can not specify a structure field key path using Objective-C 2.0 properties. This will not work:

myLayer.transform.rotation.x=0;

Instead you must use setValue:forKeyPath: or valueForKeyPath: as shown below:

[myLayer setValue:[NSNumber numberWithInt:0] forKeyPath:@"transform.rotation.x"];

Transforming a Layer’s Geometry 27
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

28 Transforming a Layer’s Geometry
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Geometry and Transforms

Along with their own direct responsibilities for providing visual content and managing animations, layers
also act as containers for other layers, creating a layer hierarchy.

This chapter describes the layer hierarchy and how you manipulate layers within that hierarchy.

What Is a Layer-Tree Hierarchy?

The layer-tree is the Core Animation equivalent of the Cocoa view hierarchy. Just as an instance of NSView
or UIView has superview and subviews, a Core Animation layer has a superlayer and sublayers. The layer-tree
provides many of the same benefits as the view hierarchy:

 ■ Complex interfaces can be assembled using simpler layers, avoiding monolithic and complex subclassing.
Layers are well suited to this type of ‘stacking’ due to their complex compositing capabilities.

 ■ Each layer declares its own coordinate system relative to its superlayer's coordinate system. When a layer
is transformed, its sublayers are transformed within it.

 ■ A layer-tree is dynamic. It can be reconfigured as an application runs. Layers can be created, added as a
sublayer first of one layer, then of another, and removed from the layer-tree.

Displaying Layers in Views

Core Animation doesn't provide a means for actually displaying layers in a window, they must be hosted by
a view. When paired with a view, the view must provide event-handling for the underlying layers, while the
layers provide display of the content.

The view system in iPhone OS is built directly on top of Core Animation layers. Every instance of UIView
automatically creates an instance of a CALayer class and sets it as the value of the view’s layer property.
To display custom layer content in a UIView instance you simply add the layers as sublayers of the view’s
layer.

On Mac OS X you must configure an NSView instance in such a way that it can host a layer. To display the
root layer of a layer tree, you set a view's layer and then configure the view to use layers as shown in Table
2.

Listing 1 Inserting a layer into a view

// theView is an existing view in a window
// theRootLayer is the root layer of a layer tree

[theView setLayer: theRootLayer];
[theView setWantsLayer:YES];

What Is a Layer-Tree Hierarchy? 29
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Adding and Removing Layers from a Hierarchy

Simply instantiating a layer instance doesn’t insert it into a layer-tree. Instead you add, insert, replace, and
remove layers from the layer-tree using the methods described in .Table 1.

Table 1 Layer-tree management methods.

ResultMethod

Appends the layer to the receiver’s sublayers array.addSublayer:

Inserts the layer as a sublayer of the receiver at the specified index.insertSublayer: atIndex:

Inserts the layer into the receiver’s sublayers array, below the specified
sublayer.

insertSublayer: below:

Inserts the layer into the receiver’s sublayers array, above the specified
sublayer.

insertSublayer: above:

Removes the receiver from the sublayers array or mask property of the
receiver’s superlayer.

removeFromSuperlayer

Replaces the layer in the receiver’s sublayers array with the specified new
layer.

replaceSublayer: with:

You can also set the sublayers of a layer using an array of layers, and setting the intended superlayer’s
sublayers property. When setting the sublayers property to an array populated with layer objects you must
ensure that the layers have had their superlayer set to nil.

By default, inserting and removing layers from a visible layer-tree triggers an animation. When a layer is
added as a sublayer the animation returned by the parent layer for the action identifier kCAOnOrderIn is
triggered. When a layer is removed from a layer’s sublayers the animation returned by the parent layer for
the action identifier kCAOnOrderOut is triggered. Replacing a layer in a sublayer causes the animation
returned by the parent layer for the action identifier kCATransition to be triggered. You can disable
animation while manipulating the layer-tree, or alter the animation used for any of the action identifiers.

Repositioning and Resizing Layers

After a layer has been created, you can move and resize it programmatically simply by changing the value
of the layer’s geometry properties: frame, bounds, position, anchorPoint, or zPosition.

If a layer’s needsDisplayOnBoundsChange property is YES, the layer’s content is recached when the layer’s
bounds changes. By default the needsDisplayOnBoundsChange property is no.

By default, setting the frame, bounds, position, anchorPoint, and zPosition properties causes the
layer to animate the new values.

30 Adding and Removing Layers from a Hierarchy
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Autoresizing Layers

CALayerprovides a mechanism for automatically moving and resizing sublayers in response to their superlayer
being moved or resized. In many cases simply configuring the autoresizing mask for a layer provides the
appropriate behavior for an application.

A layer's autoresizing mask is specified by combining the CAAutoresizingMask constants using the bitwise
OR operator and the layer's autoresizingMask property to the resulting value. Table 2 shows each mask
constant and how it effects the layer's resizing behavior.

Table 2 Autoresizing mask values and descriptions

DescriptionAutoresizing Mask

If set, the layer's height changes proportionally to the change in the
superlayer's height. Otherwise, the layer's height does not change relative
to the superlayer's height.

kCALayerHeightSizable

If set, the layer's width changes proportionally to the change in the
superlayer's width. Otherwise, the layer's width does not change relative to
the superlayer's width.

kCALayerWidthSizable

If set, the layer's left edge is repositioned proportionally to the change in the
superlayer's width. Otherwise, the layer's left edge remains in the same
position relative to the superlayer's left edge.

kCALayerMinXMargin

If set, the layer's right edge is repositioned proportionally to the change in
the superlayer's width. Otherwise, the layer's right edge remains in the same
position relative to the superlayer.

kCALayerMaxXMargin

If set, the layer's top edge is repositioned proportionally to the change in the
superlayer's height. Otherwise, the layer's top edge remains in the same
position relative to the superlayer.

kCALayerMinYMargin

If set, the layer's bottom edge is repositioned proportional to the change in
the superlayer's height. Otherwise, the layer's bottom edge remains in the
same position relative to the superlayer.

kCALayerMaxYMargin

For example, to keep a layer in the lower-left corner of its superlayer, you use the mask kCALayerMaxXMargin
| kCALayerMaxYMargin. When more than one aspect along an axis is made flexible, the resize amount is
distributed evenly among them. Figure 1 provides a graphical representation of the position of the constant
values.

Repositioning and Resizing Layers 31
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Figure 1 Layer autoresizing mask constants

kCALayerWidthSizable

kCALayerMaxXMargin

kCALayerMaxYMargin

kCALayerHeightSizable

Superlayer

Layer

kCALayerMinYMargin

kCALayerMinXMargin

(0.0, 0.0)

When one of these constants is omitted, the layer's layout is fixed in that aspect; when a constant is included
in the mask the layer's layout is flexible in that aspect.

A subclass can override the CALayer methods resizeSublayersWithOldSize: and
resizeWithOldSuperlayerSize: to customize the autoresizing behavior for a layer. A layers
resizeSublayersWithOldSize: method is invoked automatically by a layer whenever bounds property
changes, and sends a resizeWithOldSuperlayerSize:message to each sublayer. Each sublayer compares
the old bounds size to the new size and adjusts its position and size according to its autoresize mask.

Clipping Sublayers

When subviews of a Cocoa view lie outside of the parent view’s bounds, the views are clipped to the parent
view. Layers remove this limitation, allowing sublayers to be displayed in their entirety, regardless of their
position relative to the parent layer.

The value of a layer’s masksToBounds property determines if sublayers are clipped to the parent. The default
value of the masksToBounds property is NO, which prevents sublayers from being clipped to the parent.
Figure 2 shows the results of setting the masksToBounds for layerA and how it will affect the display of
layerB and layerC.

Figure 2 Example Values of the masksToBounds property

layerB

layerC

layerA

Layer-Tree

layerA

layerB layerC

layerA.masksToBounds=NO;

layerC

layerA.masksToBounds=YES;

layerA

layerB

32 Clipping Sublayers
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer-Tree Hierarchy

Providing CALayer Content

When using Cocoa views you must subclass NSView or UIView and implement drawRect: in order to display
anything. However CALayer instances can often be used directly, without requiring you to create a subclass.
Because CALayer is a key-value coding compliant container class, that is you can store arbitrary values in
any instance, subclassing can often be avoided entirely.

You specify the content of a CALayer instance in one of the following ways:

 ■ Explicitly set the contents property of a layer instance using a CGImageRef that contains the content
image.

 ■ Specify a delegate that provides, or draws, the content.

 ■ Subclass CALayer and override one of the display methods.

Setting the Contents Property

A layer’s content image is specified by contents property to a CGImageRef. This can be done from another
object when the layer is created (as shown in Table 3) or at any other time.

Listing 4 Setting a layer’s contents property

CALayer *theLayer;

// create the layer and set the bounds and position
theLayer=[CALayer layer];
theLayer.position=CGPointMake(50.0f,50.0f);
theLayer.bounds=CGRectMake(0.0f,0.0f,100.0f,100.0f);

// set the contents property to a CGImageRef
// specified by theImage (loaded elsewhere)
theLayer.contents=theImage;

Using a Delegate to Provide Content

You can draw content for your layer, or better encapsulate setting the layer’s content image by creating a
delegate class that implements one of the following methods: displayLayer: or drawLayer:inContext:.

Implementing a delegate method to draw the content does not automatically cause the layer to draw using
that implementation. Instead, you must explicitly tell a layer instance to re-cache the content, either by
sending it a setNeedsDisplay or setNeedsDisplayInRect: message, or by setting its
needsDisplayOnBoundsChange property to YES.

Providing CALayer Content 33
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Providing Layer Content

Delegates that implement the displayLayer: method can determine which image should be displayed
for the specified layer, and then set that layer’s contents property accordingly. The example in
implementation of displayLayer: in “Layer Coordinate System” sets the contents property of theLayer
depending on the value of the state key. Subclassing is not required to store the state value, as the CALayer
instance acts as a key-value coding container.

Listing 5 Example implementation of the delegate method displayLayer:

- (void)displayLayer:(CALayer *)theLayer
{
 // check the value of the layer's state key
 if ([[theLayer valueForKey:@"state"] boolValue])
 {
 // display the yes image
 theLayer.contents=[someHelperObject loadStateYesImage];
 }
 else {
 // display the no image
 theLayer.contents=[someHelperObject loadStateNoImage];
 }
}

If you must draw the layer’s content rather than loading it from an image, you implement the
drawLayer:inContext: delegate method. The delegate is passed the layer for which content is required
and a CGContextRef to draw the content in.

The example in implementation of drawLayer:inContext:: in “Specifying a Layer’s Geometry” draws a
path in using the lineWidth key value returned by theLayer.

Listing 6 Example implementation of the delegate method drawLayer:inContext:

- (void)drawLayer:(CALayer *)theLayer
 inContext:(CGContextRef)theContext
{
 CGMutablePathRef thePath = CGPathCreateMutable();

 CGPathMoveToPoint(thePath,NULL,15.0f,15.f);
 CGPathAddCurveToPoint(thePath,
 NULL,
 15.f,250.0f,
 295.0f,250.0f,
 295.0f,15.0f);

 CGContextBeginPath(theContext);
 CGContextAddPath(theContext, thePath);

 CGContextSetLineWidth(theContext,
 [[theLayer valueForKey:@"lineWidth"] floatValue]);
 CGContextStrokePath(theContext);

 // release the path
 CFRelease(thePath);
}

34 Providing CALayer Content
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Providing Layer Content

Providing CALayer Content by Subclassing

Although often unnecessary, you can subclass CALayer and override the drawing and display methods
directly. This is typically done when your layer requires custom behavior that can’t be provided though
delegation.

A subclass can override the CALayer display method and set the layer’s contents to the appropriate image.
The example in “Transforming a Layer’s Geometry”provides the same functionality as the delegate
implementation of displayLayer: in “Layer Coordinate System.” The difference is that the subclass defines
state as instance property, rather than depending on the key-value coding container ability of CALayer.

Listing 7 Example override of the CALayer display method

- (void)display
{
 // check the value of the layer's state key
 if (self.state)
 {
 // display the yes image
 self.contents=[someHelperObject loadStateYesImage];
 }
 else {
 // display the no image
 self.contents=[someHelperObject loadStateNoImage];
 }
}

CALayer subclasses can draw the layer’s content into a graphics context by overriding drawInContext:.
The example in “Modifying the Transform Data Structure” produces the same content image as the delegate
implementation in “Specifying a Layer’s Geometry.” Again, the only difference in the implementation is that
lineWidth and lineColor are now declared as instance properties of the subclass.

Listing 8 Example override of the CALayer drawInContext: method

- (void)drawInContext:(CGContextRef)theContext
{
 CGMutablePathRef thePath = CGPathCreateMutable();

 CGPathMoveToPoint(thePath,NULL,15.0f,15.f);
 CGPathAddCurveToPoint(thePath,
 NULL,
 15.f,250.0f,
 295.0f,250.0f,
 295.0f,15.0f);

 CGContextBeginPath(theContext);
 CGContextAddPath(theContext, thePath);

 CGContextSetLineWidth(theContext,
 self.lineWidth);
 CGContextSetStrokeColorWithColor(theContext,
 self.lineColor);
 CGContextStrokePath(theContext);
 CFRelease(thePath);

Providing CALayer Content 35
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Providing Layer Content

}

Subclassing CALayer and implementing one of the drawing methods does not automatically cause drawing
to occur. You must explicitly cause the instance to re-cache the content, either by sending it a
setNeedsDisplay or setNeedsDisplayInRect: message, or by setting its
needsDisplayOnBoundsChange property to YES.

Positioning Content Within a Layer

The CALayer property contentsGravity allows you to position and scale the layer’s contents image
within the layer bounds. By default, the content image fills the layer’s bounds entirely, ignoring the natural
aspect ratio of the image.

Using the contentsGravity positioning constants you can specify that the image is placed along any of
the layer’s edges, in the layer’s corners, or centered within the layer’s bounds. “Specifying a Layer’s Geometry”
lists the positioning constants and their corresponding positions.

Table 7 Positioning constants for a layer’s contentsGravity property

DescriptionPosition constant

Positions the content image in the top left corner of the layer.kCAGravityTopLeft

Positions the content image horizontally centered along the top edge of the
layer.

kCAGravityTop

Positions the content image in the top right corner of the layer.kCAGravityTopRight

Positions the content image vertically centered on the left edge of the layer.kCAGravityLeft

Positions the content image at the center of the layer.kCAGravityCenter

Positions the content image vertically centered on the right edge of the layer.kCAGravityRight

Positions the content image in the bottom left corner of the layer.kCAGravityBottomLeft

Positions the content image centered along the bottom edge of the layer.kCAGravityBottom

Positions the content image in the top right corner of the layer.kCAGravityBottomRight

“Layer Coordinate System” shows the supported content positions and their corresponding constants.

36 Positioning Content Within a Layer
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Providing Layer Content

Figure 9 Position constants for a layer’s contentsGravity property

kCAGravityTopLeft

kCAGravityLeft

kCAGravityBottomLeft

layer bounds

kCAGravityTop

kCAGravityTopRight

kCAGravityRight

kCAGravityCenter

kCAGravityBottomRight

kCAGravityBottom

The content image can be scaled up, or down, by setting the contentsGravity property to one of the
gravity constants listed in “Transform Functions”

Table 8 Scaling constants for a layer’s contentsGravity property

DescriptionScaling constant

Resize the content image to completely fill the layer bounds, potentially
ignoring the natural aspect of the content. This is the default.

kCAGravityResize

Resize the content image to scale such that it is displayed as large as possible
within the layer bounds, yet still retains its natural aspect.

kCAGravityResizeAspect

“Transforming a Layer’s Geometry” illustrates how a square image is resized to fit within a rectangular layer
bounds using the resizing modes.

Figure 10 Scaling constants for a layer’s contentsGravity property

kCAGravityResizeAspect kCAGravityResize kCAGravityResizeAspectFill

layer bounds

Positioning Content Within a Layer 37
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Providing Layer Content

38 Positioning Content Within a Layer
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Providing Layer Content

Animation is a key element of today’s user interfaces. When using Core Animation animation is completely
automatic. There are no animation loops or timers. Your application is not responsible for frame by frame
drawing, or tracking the current state of your animation. The animation occurs automatically in a separate
thread, without further interaction with your application.

This chapter provides an overview of the animation classes, and describes how to create both implicit and
explicit animations.

Animation Classes and Timing

Core Animation provides an expressive set of animation classes you can use in your application:

 ■ CABasicAnimation provides simple interpolation between values for a layer property.

 ■ CAKeyframeAnimation provides support for key frame animation. You specify the key path of the layer
property to be animated, an array of values that represent the value at each stage of the animation, as
well as arrays of key frame times and timing functions. As the animation runs, each value is set in turn
using the specified interpolation.

 ■ CATransition provides a transition effect that affects the entire layer's content. It fades, pushes, or
reveals layer content when animating. The stock transition effects can be extended by providing your
own custom Core Image filters.

 ■ CAAnimationGroup allows an array of animation objects to be grouped together and run concurrently.

In addition to specifying the type of animation to perform, you must also specify the duration of the animation,
the pacing (how the interpolated values are distributed across the duration), if the animation is to repeat
and how many times, whether it should automatically reverse when each cycle is completed, and its visual
state when the animation is completed. The animation classes and the CAMediaTiming protocol provides
all this functionality and more.

CAAnimation and its subclasses and the timing protocols are shared by both Core Animation and the Cocoa
Animation Proxy functionality. The classes are described in detail in Animation Types and Timing Programming
Guide.

Implicit Animation

Core Animation’s implicit animation model assumes that all changes to animatable layer properties should
be gradual and asynchronous. Dynamically animated scenes can be achieved without ever explicitly animating
layers. Changing the value of an animatable layer property causes the layer to implicitly animate the change
from the old value to the new value. While an animation is in-flight, setting a new target value causes the
animation transition to the new target value from its current state.

Animation Classes and Timing 39
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animation

Listing 1 shows how simple it is to trigger an implicit animation that animates a layer from its current position
to a new position.

Listing 1 Implicitly animating a layer’s position property

// assume that the layer is current positioned at (100.0,100.0)
theLayer.position=CGPointMake(500.0,500.0);

You can implicitly animate a single layer property at a time, or many. You can also implicitly animate several
layers simultaneously. The code in Listing 2 causes four implicit animations to occur simultaneously.

Listing 2 Implicitly animating multiple properties of multiple layers

// animate theLayer's opacity to 0 while moving it
// further away in the layer
theLayer.opacity=0.0;
theLayer.zPosition=-100;

// animate anotherLayer's opacity to 1
// while moving it closer in the layer
anotherLayer.opacity=1.0;
anotherLayer.zPosition=100.0;

Implicit animations use the duration specified in the default animation for the property, unless the duration
has been overridden in an implicit or explicit transaction. See “Overriding the Duration of Implied
Animations” (page 48) for more information.

Explicit Animation

Core Animation also supports an explicit animation model. The explicit animation model requires that you
create an animation object, and set start and end values. An explicit animation won’t start until you apply
the animation to a layer. The code fragment in Listing 3 creates an explicit animation that transitions a layer’s
opacity from fully opaque to fully transparent, and back over a 3 second duration. The animation doesn’t
begin until it is added to the layer.

Listing 3 Explicit animation

CABasicAnimation *theAnimation;

theAnimation=[CABasicAnimation animationWithKeyPath:@"opacity"];
theAnimation.duration=3.0;
theAnimation.repeatCount=2;
theAnimation.autoreverses=YES;
theAnimation.fromValue=[NSNumber numberWithFloat:1.0];
theAnimation.toValue=[NSNumber numberWithFloat:0.0];
[theLayer addAnimation:theAnimation forKey:@"animateOpacity"];

Explicit animations are especially useful when creating animations that run continuously. Listing 4 shows
how to create an explicit animation that applies a CoreImage bloom filter to a layer, animating its intensity.
This causes the “selection layer” to pulse, drawing the user’s attention.

40 Explicit Animation
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animation

Listing 4 Continuous explicit animation example

// The selection layer will pulse continuously.
// This is accomplished by setting a bloom filter on the layer

// create the filter and set its default values
CIFilter *filter = [CIFilter filterWithName:@"CIBloom"];
[filter setDefaults];
[filter setValue:[NSNumber numberWithFloat:5.0] forKey:@"inputRadius"];

// name the filter so we can use the keypath to animate the inputIntensity
// attribute of the filter
[filter setName:@"pulseFilter"];

// set the filter to the selection layer's filters
[selectionLayer setFilters:[NSArray arrayWithObject:filter]];

// create the animation that will handle the pulsing.
CABasicAnimation* pulseAnimation = [CABasicAnimation animation];

// the attribute we want to animate is the inputIntensity
// of the pulseFilter
pulseAnimation.keyPath = @"filters.pulseFilter.inputIntensity";

// we want it to animate from the value 0 to 1
pulseAnimation.fromValue = [NSNumber numberWithFloat: 0.0];
pulseAnimation.toValue = [NSNumber numberWithFloat: 1.5];

// over a one second duration, and run an infinite
// number of times
pulseAnimation.duration = 1.0;
pulseAnimation.repeatCount = 1e100f;

// we want it to fade on, and fade off, so it needs to
// automatically autoreverse.. this causes the intensity
// input to go from 0 to 1 to 0
pulseAnimation.autoreverses = YES;

// use a timing curve of easy in, easy out..
pulseAnimation.timingFunction = [CAMediaTimingFunction functionWithName:
kCAMediaTimingFunctionEaseInEaseOut];

// add the animation to the selection layer. This causes
// it to begin animating. We'll use pulseAnimation as the
// animation key name
[selectionLayer addAnimation:pulseAnimation forKey:@"pulseAnimation"];

Starting and Stopping Explicit Animations

You start an explicit animation by sending a addAnimation:forKey: message to the target layer, passing
the animation and an identifier as parameters. Once added to the target layer the explicit animation will run
until the animation completes, or it is removed from the layer. The identifier used to add an animation to a
layer is also used to stop it by invoking removeAnimationForKey:. You can stop all animations for a layer
by sending the layer a removeAllAnimations message.

Starting and Stopping Explicit Animations 41
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animation

42 Starting and Stopping Explicit Animations
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animation

Layer actions are triggered in response to: layers being inserted and removed from the layer-tree, the value
of layer properties being modified, or explicit application requests. Typically, action triggers result in an
animation being displayed.

What are Actions?

An action object is an object that responds to an action identifier via the CAAction protocol. Action identifiers
are named using standard dot-separated key paths. A layer is responsible for mapping action identifiers to
the appropriate action object. When the action object for the identifier is located that object is sent the
message defined by the CAAction protocol.

The CALayer class provides default action objects–instances of CAAnimation, a CAActionprotocol compliant
class–for all animatable layer properties. CALayer also defines the following action triggers that are not
linked directly to properties, as well as the action identifiers in Table 1.

Table 1 Action triggers and their corresponding identifiers

Action identifierTrigger

The action identifier constant kCAOnOrderIn.A layer is inserted into a visible layer-tree, or the hidden
property is set to NO.

The action identifier constant
kCAOnOrderOut.

A layer is removed from a visible layer-tree, or the hidden
property is set to YES.

The action identifier constant
kCATransition.

A layer replaces an existing layer in a visible layer tree using
replaceSublayer: with:.

Action Object Search Pattern

When an action trigger occurs, the layer’s actionForKey:method is invoked. This method returns an action
object that corresponds to the action identifier passed as the parameter, or nil if no action object exists.

When the CALayer implementation of actionForKey: is invoked for an identifier the following search
pattern is used:

1. If the layer has a delegate, and it implements the method actionForLayer:forKey: it is invoked,
passing the layer, and the action identifier as parameters. The delegate’s actionForLayer:forKey:
implementation should respond as follows:

 ■ Return an action object that corresponds to the action identifier.

What are Actions? 43
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Actions

 ■ Return nil if it doesn’t handle the action identifier.

 ■ Return NSNull if it doesn’t handle the action identifier and the search should be terminated.

2. The layer’s actions dictionary is searched for an object that corresponds to the action identifier.

3. The layer’s style property is searched for an actions dictionary that contains the identifier.

4. The layer’s class is sent a defaultActionForKey:message. It will return an action object corresponding
to the identifier, or nil if not found.

CAAction Protocol

The CAAction protocol defines how action objects are invoked. Classes that implement the CAAction
protocol have a method with the signature runActionForKey:object:arguments:.

When the action object receives the runActionForKey:object:arguments: message it is passed the
action identifier, the layer on which the action should occur, and an optional dictionary of parameters.

Typically, action objects are an instance of a CAAnimation subclass, which implements the CAAction protocol.
You can, however, return an instance of any class that implements the protocol. When that instance receives
the runActionForKey:object:arguments: message it should respond by performing its action.

When an instance of CAAnimation receives the runActionForKey:object:arguments: message it
responds by adding itself to the layer’s animations, causing the animation to run (see Listing 1 (page 44)).

Listing 1 runActionForKey:object:arguments: implementation that initiates an animation

- (void)runActionForKey:(NSString *)key
 object:(id)anObject
 arguments:(NSDictionary *)dict
{
 [(CALayer *)anObject addAnimation:self forKey:key];
}

Overriding an Implied Animation

You can provide a different implied animation for an action identifier by inserting an instance of CAAnimation
into the actions dictionary, into an actions dictionary in the style dictionary, by implementing the delegate
method actionForLayer:forKey:, or subclassing a layer class, overriding defaultActionForKey: and
returning the appropriate action object.

The example in Listing 2 replaces the default implied animation for the contents property using delegation.

Listing 2 Implied animation for the contents property

- (id<CAAction>)actionForLayer:(CALayer *)theLayer

44 CAAction Protocol
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Actions

 forKey:(NSString *)theKey
{
 CATransition *theAnimation=nil;

 if ([theKey isEqualToString:@"contents"])
 {

 theAnimation = [[CATransition alloc] init];
 theAnimation.duration = 1.0;
 theAnimation.timingFunction = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaseIn];
 theAnimation.type = kCATransitionPush;
 theAnimation.subtype = kCATransitionFromRight;
 }

 return theAnimation;
}

The example in Listing 3 (page 45) disables the default animation for the sublayers property using the
actions dictionary pattern.

Listing 3 Implied animation for the sublayers property

// get a mutable version of the current actions dictionary
NSMutableDictionary *customActions=[NSMutableDictionary
dictionaryWithDictionary:[theLayer actions]];

// add the new action for sublayers
[customActions setObject:[NSNull null] forKey:@"sublayers"];

// set theLayer actions to the updated dictionary
theLayer.actions=customActions;

Temporarily Disabling Actions

You can temporarily disable actions when modifying layer properties by using transactions. See “Temporarily
Disabling Layer Actions” (page 47) for more information.

Temporarily Disabling Actions 45
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Actions

46 Temporarily Disabling Actions
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Actions

Every modification to a layer is part of a transaction. CATransaction is the Core Animation class responsible
for batching multiple layer-tree modifications into atomic updates to the render tree.

This chapter describes the two types of transactions Core Animation supports: implicit transactions and
explicit transactions.

Implicit transactions

Implicit transactions are created automatically when the layer tree is modified by a thread without an active
transaction, and are committed automatically when the thread's run-loop next iterates.

The example in Listing 1 modifies a layer’s opacity, zPosition, and position properties, relying on the
implicit transaction to ensure that the resulting animations occur at the same time.

Listing 1 Animation using an implicit transaction

theLayer.opacity=0.0;
theLayer.zPosition=-200;
thelayer.position=CGPointMake(0.0,0.0);

Important: When modifying layer properties from threads that don’t have a runloop, you must use explicit
transactions.

Explicit Transactions

You create an explicit transaction by sending the CATransaction class a begin message before modifying
the layer tree, and a commit message afterwards. Explicit transactions are particularly useful when setting
the properties of many layers at the same time (for example, while laying out multiple layer), temporarily
disabling layer actions, or temporarily changing the duration of resulting implied animations.

Temporarily Disabling Layer Actions

You can temporarily disable layer actions when changing layer property values by setting the value of the
transaction’s kCATransactionDisableActions to true. Any changes made during the scope of that
transaction will not resulting in an animation occuring. Listing 2 shows an example that disables the fade
animation that occurs when removing aLayer from a visible layer-tree.

Implicit transactions 47
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Transactions

Listing 2 Temporarily disabling a layer’s actions

[CATransaction begin];
[CATransaction setValue:(id)kCFBooleanTrue
 forKey:kCATransactionDisableActions];
[aLayer removeFromSuperlayer];
[CATransaction commit];

Overriding the Duration of Implied Animations

You can temporarily alter the duration of animations that run in response to changing layer property values
by setting the value of the transaction’s kCATransactionAnimationDuration key to a new duration. Any
resulting animations in that transaction scope will use that duration rather than their own. Listing 3 shows
an example that causes an animation to occur over 10 seconds rather than the duration specified by the
zPosition and opacity animations..

Listing 3 Overriding the animation duration

[CATransaction begin];
[CATransaction setValue:[NSNumber numberWithFloat:10.0f]
 forKey:kCATransactionAnimationDuration];
theLayer.zPosition=200.0;
theLayer.opacity=0.0;
[CATransaction commit];

Although the above example shows the duration bracketed by an explicit transaction begin and commit,
you could omit those and use the implicit transaction instead.

Nesting Transactions

Explicit transactions can be nested, allowing you to disable actions for one part of an animation, or using
different durations for the implicit animations of properties that are modified. Only when the outer-most
transaction is committed will the animations occur.

Listing 4 shows an example of nesting two transactions. The outer transaction sets the implied animation
duration to 2 seconds and sets the layer’s position property. The inner transaction sets the implied animation
duration to 5 seconds and changes the layer’s opacity and zPosition.

Listing 4 Nesting explicit transactions

[CATransaction begin]; // outer transaction

// change the animation duration to 2 seconds
[CATransaction setValue:[NSNumber numberWithFloat:2.0f]
 forKey:kCATransactionAnimationDuration];
// move the layer to a new position
theLayer.position = CGPointMake(0.0,0.0);

[CATransaction begin]; // inner transaction
// change the animation duration to 5 seconds
[CATransaction setValue:[NSNumber numberWithFloat:5.0f]
 forKey:kCATransactionAnimationDuration];

48 Explicit Transactions
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Transactions

// change the zPosition and opacity
theLayer.zPosition=200.0;
theLayer.opacity=0.0;

[CATransaction commit]; // inner transaction

[CATransaction commit]; // outer transaction

Explicit Transactions 49
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Transactions

50 Explicit Transactions
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Transactions

NSView provides the classic "struts and springs" model of repositioning views relative to their superlayer
when it resizes. While layers support this model, Core Animation on Mac OS X provides a more general layout
manager mechanism that allows developers to write their own layout managers. A custom layout manager
(which implements the CALayoutManager protocol) can be specified for a layer, which then assumes
responsibility for providing layout of the layer's sublayers.

This chapter describes the constraints layout manager and how to configure a set of constraints.

iPhone OS Note: The CALayer class in iPhone OS only supports the “struts and springs” positioning model,
it does not provide custom layout managers.

Constraints Layout Manager

Constraint-based layout allows you to specify the position and size of a layer using relationships between
itself its sibling layers or its superlayer. The relationships are represented by instances of the CAConstraint
class that are stored in an array in the sublayers’ constraints property.

Figure 1 shows the layout attributes you can use when specifying relationships.

Figure 1 Constraint layout manager attributes

kCAConstraintMaxY

kCAConstraintMinY

kCAConstraintMidY

kCAConstraintMinX

kCAConstraintMaxXkCAConstraintMidX

kCAConstraintWidth

kCAConstraintHeight

Constraints Layout Manager 51
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

When using constraints layout you first create an instance of CAConstraintsLayoutManager and set it as
the parent layer’s layout manager. You then create constraints for the the sublayers by instantiating
CAConstraint objects and adding them to the sublayer’s constraints using addConstraint:. Each
CAConstraint instance encapsulates one geometry relationship between two layers on the same axis.

Sibling layers are referenced by name, using the name property of a layer. The special name superlayer is
used to refer to the layer's superlayer.

A maximum of two relationships must be specified per axis. If you specify constraints for the left and right
edges of a layer, the width will vary. If you specify constraints for the left edge and the width, the right edge
of the layer will move relative to the superlayer’s frame. Often you’ll specify only a single edge constraint,
the layer’s size in the same axis will be used as the second relationship.

The example code in Listing 1 creates a layer, and then adds sublayers that are positioned using constraints.
Figure 2 shows the resulting layout.

Figure 2 Example constraints based layout

theLayer

layerA

layerB

Listing 1 Configuring a layer’s constraints

// create and set a constraint layout manager for theLayer
theLayer.layoutManager=[CAConstraintLayoutManager layoutManager];

CALayer *layerA = [CALayer layer];
layerA.name = @"layerA";

layerA.bounds = CGRectMake(0.0,0.0,100.0,25.0);
layerA.borderWidth = 2.0;

[layerA addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMidY
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidY]];

[layerA addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidX]];

[theLayer addSublayer:layerA];

52 Constraints Layout Manager
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

CALayer *layerB = [CALayer layer];
layerB.name = @"layerB";
layerB.borderWidth = 2.0;

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintWidth
 relativeTo:@"layerA"
 attribute:kCAConstraintWidth]];

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"layerA"
 attribute:kCAConstraintMidX]];

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMaxY
 relativeTo:@"layerA"
 attribute:kCAConstraintMinY
 offset:-10.0]];

[layerB addConstraint:[CAConstraint constraintWithAttribute:kCAConstraintMinY
 relativeTo:@"superlayer"
 attribute:kCAConstraintMinY
 offset:+10.0]];

[theLayer addSublayer:layerB];

Here’s what the code does:

1. Creates an instance of CAConstraintsLayoutManager and sets it as the layoutManager property
of theLayer.

2. Creates an instance of CALayer (layerA) and sets the layer’s name property to “layerA”.

3. The bounds of layerA is set to a (0.0,0.0,100.0,25.0).

4. Creates a CAConstraint object, and adds it as a constraint of layerA.

This constraint aligns the horizontal center of layerA with the horizontal center of the superlayer.

5. Creates a second CAConstraint object, and adds it as a constraint of layerA.

This constraint aligns the vertical center of layerA with the vertical center of the superlayer.

6. Adds layerA as a sublayer of theLayer.

7. Creates an instance of CALayer (layerB) and sets the layer’s name property to “layerB”.

8. Creates a CAConstraint object, and adds it as a constraint of layerA.

This constraint sets the width of layerB to the width of layerA.

9. Creates a second CAConstraint object, and adds it as a constraint of layerB.

This constraint sets the horizontal center of layerB to be the same as the horizontal center of layerA.

10. Creates a third CAConstraint object, and adds it as a constraint of layerB.

This constraint sets the top edge of layerB 10 points below the bottom edge of layerA.

Constraints Layout Manager 53
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

11. Creates a fourth CAConstraint object, and adds it as a constraint of layerB.

This constraint sets the bottom edge of layerB 10 points above the bottom edge of the superlayer.

Warning: It is possible to create constraints that result in circular references to the same attributes. In
cases where the layout is unable to be computed, the behavior is undefined.

54 Constraints Layout Manager
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Laying Out Core Animation Layers

The CAAnimation and CALayer classes extend the NSKeyValueCoding protocol adding default values for
keys, expanded wrapping conventions, and key path support for CGPoint, CGRect, CGSize, and
CATransform3D.

Key-Value Coding Compliant Container Classes

Both CALayer and CAAnimation are key-value coding compliant container classes, allowing you to set
values for arbitrary keys. That is, while the key “foo” is not a declared property of the CALayer class, however
you can still set a value for the key “foo” as follows:

[theLayer setValue:[NSNumber numberWithInteger:50] forKey:@"foo"];

You retrieve the value for the key “foo” using the following code:

fooValue=[theLayer valueForKey:@"foo"];

Mac OS X Note: On Mac OS X, the CALayer and CAAnimation classes support the NSCoding protocol and
will automatically archive any additional keys that you set for an instance of those classes.

Default Value Support

Core Animation adds a new convention to key value coding that allows a class to provide a default value
that is used when a class has no value set for that key. Both CALayer or CAAnimation support this convention
using the class method defaultValueForKey:.

To provide a default value for a key you create a subclass of the class and override defaultValueForKey:.
The subclass implementation examines the key parameter and then returns the appropriate default value.
Listing 1 shows an example implementation of defaultValueForKey: that provides a new default value
for the layer property masksToBounds.

Listing 1 Example implementation of defaultValueForKey:

+ (id)defaultValueForKey:(NSString *)key
{
 if ([key isEqualToString:@"masksToBounds"])
 return [NSNumber numberWithBool:YES];

 return [super defaultValueForKey:key];
}

Key-Value Coding Compliant Container Classes 55
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value
Coding

Wrapping Conventions

When using the key-value coding methods to access properties whose values are not objects the standard
key-value coding wrapping conventions support, the following wrapping conventions are used:

ClassC Type

NSValueCGPoint

NSValueCGSize

NSValueCGRect

NSAffineTransformCGAffineTransform

NSValueCATransform3D

Key Path Support for Structure Fields

CAAnimation provides support for accessing the fields of selected structures using key paths. This is useful
for specifying these structure fields as the key paths for animations, as well as setting and getting values
using setValue:forKeyPath: and valueForKeyPath:.

CATransform3D exposes the following fields:

DescriptionStructure Field

The rotation, in radians, in the x axis.rotation.x

The rotation, in radians, in the y axis.rotation.y

The rotation, in radians, in the z axis.rotation.z

The rotation, in radians, in the z axis. This is identical to setting the rotation.z field.rotation

Scale factor for the x axis.scale.x

Scale factor for the y axis.scale.y

Scale factor for the z axis.scale.z

Average of all three scale factors.scale

Translate in the x axis.translation.x

Translate in the y axis.translation.y

Translate in the z axis.translation.z

Translate in the x and y axis. Value is an NSSize or CGSize.translation

56 Wrapping Conventions
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value Coding

CGPoint exposes the following fields:

DescriptionStructure Field

The x component of the point.x

The y component of the point.y

CGSize exposes the following fields:

DescriptionStructure Field

The width component of the size.width

The height component of the size.height

CGRect exposes the following fields:

DescriptionStructure Field

The origin of the rectangle as a CGPoint.origin

The x component of the rectangle origin.origin.x

The y component of the rectangle origin.origin.y

The size of the rectangle as a CGSize.size

The width component of the rectangle size.size.width

The height component of the rectangle size.size.height

You can not specify a structure field key path using Objective-C 2.0 properties. This will not work:

 myLayer.transform.rotation.x=0;

Instead you must use setValue:forKeyPath: or valueForKeyPath: as shown below:

 [myLayer setValue:[NSNumber numberWithInt:0]
forKeyPath:@"transform.rotation.x"];

Key Path Support for Structure Fields 57
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value Coding

58 Key Path Support for Structure Fields
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Core Animation Extensions To Key-Value Coding

Regardless of the type of media a layer displays, a layer’s style properties are applied by the render-tree as
it composites layers.

This chapter describes the layer style properties and provides examples of their effect on an example layer.

Note: The layer style properties available on Mac OS X and iPhone OS differ and are noted below.

Geometry Properties

A layer’s geometry properties specify how it is displayed relative to its parent layer. The geometry also specifies
the radius used to round the layer corners (available only on Mac OS X) and a transform that is applied to
the layer and its sublayers.

Figure 1 shows the geometry of the example layer.

Figure 1 Layer geometry

The following CALayer properties specify a layer’s geometry:

 ■ frame

 ■ bounds

 ■ position

 ■ anchorPoint

 ■ cornerRadius

Geometry Properties 59
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

 ■ transform

 ■ zPosition

iPhone OS Note: iPhone OS does not support the cornerRadius property. To simulate the visual effect of
a corner radius you can draw the content using the appropriate clipping regions. You can override the hit
testing behavior of a layer and exclude touches as appropriate to emulate a geometry with a corner radius,
although this is rarely necessary in a touch-based user interface.

Background Properties

Next, the layer renders its background. You can define a color for the background as well as a Core Image
filter.

Figure 2 illustrates the sample layer with its backgroundColor set.

Figure 2 Layer with background color

The background filter is applied to the content behind the layer. For example, you may wish to apply a blur
filter as a background filter to make the layer content stand out better.

The following CALayer properties affect the display of a layer’s background:

 ■ backgroundColor

 ■ backgroundFilters

60 Background Properties
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

iPhone OS Note: While the CALayer class in iPhone OS exposes the backgroundFilters property, Core
Image is not available. The filters available for this property are currently undefined.

Layer Content

Next, if set, the content of the layer is rendered. The layer content can be created using the Quartz graphics
environment, OpenGL, QuickTime, or Quartz Composer.

Figure 4 shows the example layer with its content composited.

Figure 3 Layer displaying a content image

By default, the content of a layer is not clipped to its bounds and corner radius. The masksToBounds property
can be set to true to clip the layer content to those values.

The following CALayer properties affect the display of a layer’s content:

 ■ contents

 ■ contentsGravity

Sublayers Content

It is typical that a layer will have a hierarchy of child layers, its sublayers. These sublayers are rendered
recursively, relative to the parent layer's geometry. The parent layer’s sublayerTransform is applied to
each sublayer, relative to the parent layer’s anchor point.

Layer Content 61
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

Figure 4 Layer displaying the sublayers content

By default, a layer’s sublayers are not clipped to the layer’s bounds and corner radius. The masksToBounds
property can be set to true to clip the layer content to those values. The example layer’s maskToBounds
property is false; notice that the sublayer displaying the monitor and test pattern is partially outside of its
parent layer’s bounds.

The following CALayer properties affect the display of a layer’s sublayers:

 ■ sublayers

 ■ masksToBounds

 ■ sublayerTransform

Border Attributes

A layer can display an optional border using a specified color and width. Figure 5 shows the example layer
after applying a border.

Figure 5 Layer displaying the border attributes content

62 Border Attributes
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

The following CALayer properties affect the display of a layer’s borders:

 ■ borderColor

 ■ borderWidth

iPhone OS Note: As a performance consideration, iPhone OS does not support the borderColor and
borderWidth properties. Drawing a border for layer content is the responsibility of the developer.

Filters Property

An array of Core Image filters can be applied to the layer. These filters affect the layer's border, content, and
background. Figure 6 shows the example layer with the Core Image posterize filter applied.

Figure 6 Layer displaying the filters properties

The following CALayer property specifies a layers content filters:

 ■ filters

iPhone OS Note: While the CALayer class in iPhone OS exposes the filters property, Core Image is not
available. Currently the filters available for this property are undefined.

Shadow Properties

Optionally, a layer can display a shadow, specifying its opacity, color, offset, and blur radius. Figure 7 shows
the example layer with a red shadow applied.

Filters Property 63
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

Figure 7 Layer displaying the shadow properties

The following CALayer properties affect the display of a layer’s shadow:

 ■ shadowColor

 ■ shadowOffset

 ■ shadowOpacity

 ■ shadowRadius

iPhone OS Note: As a performance consideration, iPhone OS does not support the shadowColor,
shadowOffset, shadowOpacity, and shadowRadius properties.

Opacity Property

By setting the opacity of a layer, you can control the layer’s transparency. Figure 8 shows the example layer
with an opacity of 0.5.

Figure 8 Layer including the opacity property

64 Opacity Property
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

The following CALayer property specifies the opacity of a layer:

 ■ opacity

Composite Property

A layer’s compositing filter is used to combine the layer content with the layers behind it. By default, a layer
is composited using source-over. Figure 9 shows the example layer with a compositing filter applied.

Figure 9 Layer composited using the compositingFilter property

The following CALayer property specifies the composting filter for a layer:

 ■ compositingFilter

iPhone OS Note: While the CALayer class in iPhone OS exposes the compositingFilter property, Core
Image is not available. Currently the filters available for this property are undefined.

Mask Properties

Finally, you can specify a layer that will serve as a mask, further modifying how the rendered layer appears.
The opacity of the mask layer determines masking when the layer is composited. Figure 10 shows the example
layer composited with a mask layer.

Composite Property 65
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

Figure 10 Layer composited with the mask property

The following CALayer property specifies the mask for a layer:

 ■ mask

iPhone OS Note: As a performance consideration, iPhone OS does not support the mask property.

66 Mask Properties
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Layer Style Properties

The Core Animation Menu example displays a simple selection example using Core Animation layers to
generate and animate the user interface. In less than 100 lines of code, it demonstrates the following
capabilities and design patterns:

 ■ Hosting the root-layer of a layer hierarchy in a view.

 ■ Creating and inserting layers into a layer hierarchy.

 ■ Using a QCCompositionLayer to display Quartz Composer compositions as layer content.

 ■ Using an explicit animation that runs continuously.

 ■ Animating Core Image Filter inputs.

 ■ Implicitly animating the position of the selection item.

 ■ Handling key events through the MenuView instance that hosts the view.

This application makes heavy use of Core Image filters and Quartz Composer compositions and, as a result,
runs only on Mac OS X. The techniques illustrated for managing the layer hierarchy, implicit and explicit
animation, and event handling are common to both platforms.

The User Interface

The Core Animation Menu application provides a very basic user interface; the user can select a single item
in a menu. The user navigates the menu using the up and down arrows on the keyboard. As the selection
changes the selection indicator (the rounded white rectangle) animates smoothly to its new location. A
continuously animating bloom filter is set for the selection indicator causing it to subtly catch your attention.
The background is a Quartz Composer animation that runs continuously. Figure 1 shows the application’s
interface.

The User Interface 67
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

Figure 1 Core Animation Menu Interface

Examining the Nib File

Menu.nib is very straightforward. An instance of CustomView is dragged from the Interface Builder palette
and positioned in the window. It is resized such that it fills the entire window. The MenuView.h file is imported
into Interface Builder by dragging it to the Menu.nib window. The CustomView is then selected, and the
object type is changed to MenuView.

68 The User Interface
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

No other connections need to be made. When the nib file is loaded the window is unarchived and the
MenuView is as well. The MenuView class gets an awakeFromNib message and the layers are configured
there.

The Layer Hierarchy

The layer hierarchy, also referred to as the layer tree, of the Menu application is shown below.

Item1 (CATextLayer)

Item2 (CATextLayer)

Item3 (CATextLayer)

Item4 (CATextLayer)

Item5 (CATextLayer)

menuLayer (CALayer)

selectionLayer (CALayer)

rootLayer (QCComposerLayer)

The rootLayer is an instance of QCComposerLayer. As the root-layer this layer is the same size as the
MenuView instance, and remains that way as the window is resized.

The User Interface 69
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

The menusLayer is a sublayer of the rootLayer. It is an empty layer; it does not have anything set as its
contents property and none of its style properties are set. The menusLayer is simply used as a container
for the menu item layers. This approach allows the application to easily access a menu item sublayer by its
position in the menusLayers.sublayers array. The menusLayer is the same size as, and overlaps, the
rootLayer. This was done intentionally so that there was no need to convert between coordinate systems
when positioning the selectionLayer relative to the current menu item.

The Code

Having looked at the application's nib file and the overall design, you can now begin examining the
implementation of the MenuView class..

Examining MenuView.h

The MenuView class is a subclass of NSView and it declares four instance variables:

NSIndex selectedIndex — tracks the index that is currently selected.
CALayer *menusLayer —the Core Animation layer that contains the menus items as its sublayers.
CALayer *selectionLayer — the Core Animation layer that displays the selection indicator
NSArray *name — an array of names displayed as menu items

Note: Notice that Quartz/CoreAnimation.h is imported. The QuartzCore.framework must be added
to any project that uses Core Animation. Because this example uses Quartz Composer the MenuView
implementation also imports Quartz/Quartz.h, and the Quartz.framework is added to the project.

Listing 1 MenuView.h listing

#import <Cocoa/Cocoa.h>
#import <QuartzCore/CoreAnimation.h>

// the MenuView class is the view subclass that is inserted into
// the window. It hosts the rootLayer, and responds to events
@interface MenuView : NSView {

 // contains the selected menu item index
 NSInteger selectedIndex;

 // the layer that contains the menu item layers
 CALayer *menusLayer;

 // the layer that is used for the selection display
 CALayer *selectionLayer;

 // the array of menu item names
 NSArray *names;

}

70 The Code
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

-(void)awakeFromNib;
-(void)setupLayers;
-(void)changeSelectedIndex:(NSInteger)theSelectedIndex;
-(void)moveUp:(id)sender;
-(void)moveDown:(id)sender;
-(void)dealloc;

Examining MenuView.m

The MenuView class is the workhorse of this application. It responds when the view is loaded by the nib, sets
up the layers to be displayed, creates the animations, and handles the keys that move the selection.

The examination of the MenuView.m is split as follows:

 ■ Setting Up the MenuView

 ■ Setting Up the Layers

 ■ Animating the Selection Layer Movement

 ■ Responding to Key Events

 ■ Cleaning Up

Setting Up the MenuView

The awakeFromNib method is called when Menu.nib is loaded and unarchived. The view is expected to
complete its setup in awakeFromNib.

The MenuView implementation of awakeFromNib creates an array of strings, names, that are used to display
the menu items. It then calls the setupLayers method to setup the layers for the view.

- (void)awakeFromNib
{
 names=[[NSArray arrayWithObjects:@"Item 1",@"Item 2",
 @"Item 3",@"Item 4",@"Item 5",
 nil] retain];

 [self setupLayers];
}

Setting Up the Layers

The majority of the code in the Menu example resides in the setupLayersmethod. This method is responsible
for the following:

 ■ Creating and initializing rootLayer

 ■ Setting rootLayer as the hosted layer of the view

 ■ Creating and initializing the menusLayer

 ■ Creating and initializing the menu item layers

 ■ Adding the menu item positioning constraints

The Code 71
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

 ■ Layout the menusLayer

 ■ Creating the selectionLayer

 ■ Configuring the continuous animation of selectionLayer

 ■ Adding it to the layer tree of rootLayer

 ■ Setting the initial value of selectedIndex

First, the constants used to position and space the layers are defined.

-(void)setupLayers;
{
 CGFloat width=400.0;
 CGFloat height=50.0;
 CGFloat spacing=20.0;
 CGFloat fontSize=32.0;
 CGFloat initialOffset=100.0;

The view must be set as the first responder to allow it to initially handle the up and down arrow events.

[[self window] makeFirstResponder:self];

Create the rootLayer, The rootlayer is an instance of QCCompositionLayer that displays the
Background.qtz file which is located within the application bundle.

QCCompositionLayer* rootLayer;
rootLayer=[QCCompositionLayer compositionLayerWithFile:
 [[NSBundle mainBundle] pathForResource:@"Background"
 ofType:@"qtz"]];

The instance of MenuView is set as the layer-hosting view of rootLayer. The order of these two calls is
important. By first setting the layer to rootLayer and then setting setWantsLayer: to YES our layer is
used rather than the one that the view would create. This is the key difference between layer-hosting views
and layer-backed views.

[self setLayer:rootLayer];
[self setWantsLayer:YES];

Create the menusLayer, and set its bounds to those of rootLayer. Again, this is done to allow us to use
the same coordinate system for both the menusLayer sublayers and the selectedLayer. The menusLayer
is also retained, MenuView requires it when positioning the selectedLayer.

menusLayer=[[CALayer layer] retain];
menusLayer.frame=rootLayer.frame;

Specify that the sublayers of menusLayer will be laid out using the CAConstraintLayoutManager.
Constraints layout allows you to specify the location and size of layers relative to their sibling layers and
superlayer. The superlayer is configured to use the constraints manager, and individual CAContraint
instances are created and attached to each of the sublayers.

menusLayer.layoutManager=[CAConstraintLayoutManager layoutManager];

Add the menusLayer as a sublayer of the rootLayer.

[rootLayer addSublayer:menusLayer];

72 The Code
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

The next code fragment iterates over the items in the names array, creating a new CATextLayer for each
name and defines its position using constraints.

NSInteger i;
for (i=0;i<[names count];i++) {

Get the name at the index of the current iteration.

NSString *name=[names objectAtIndex:i];

Create a new CATextLayer instance called menuItemLayer. Set its string to the name of the menu item,
and specify that it should be displayed in white 32 point Lucida-Grande.

CATextLayer *menuItemLayer=[CATextLayer layer];
menuItemLayer.string=name;
menuItemLayer.font=@"Lucida-Grande";
menuItemLayer.fontSize=fontSize;
menuItemLayer.foregroundColor=CGColorCreateGenericRGB(1.0,1.0,1.0,1.0);

Note that the bounds of the menuItemLayer is never specified. When using CATextLayer instances the
constraints manager takes responsibility for setting the bounds and height of the layer.

The next step is to specify the constraints for the layout. First the vertical constraint is set relative to the top
edge of the superlayer. The top edge of menuItemLayer is offset by the initialOffset (defined earlier)
and by the spacing between items (also specified earlier) and the height (again specified earlier) is multiplied
by the index of the name. The final value is inverted because the layer coordinate system uses the bottom
left as its origin.

[menuItemLayer addConstraint:[CAConstraint
 constraintWithAttribute:kCAConstraintMaxY
 relativeTo:@"superlayer"
 attribute:kCAConstraintMaxY
 offset:-(i*height+spacing+initialOffset)]];

The second constraint simply causes the menuItemLayer object to be centered horizontally, relative to the
center of its superlayer.

[menuItemLayer addConstraint:[CAConstraint
 constraintWithAttribute:kCAConstraintMidX
 relativeTo:@"superlayer"
 attribute:kCAConstraintMidX]];

Each menuItemLayer is added to the menusLayer layer as a sublayer.

[menusLayer addSublayer:menuItemLayer];
} // end of for loop

Having configured all the menu item layers you must now force them to be laid out immediately. This is
necessary to ensure that the first placement of the selectionLayer is correct.

[menusLayer layoutIfNeeded];

Now the CALayer that is used as the selectionlayer is created and configured. The bounds is set to be
the width and height defined earlier. The layer is retained because we rely on it being available to MenuView
after the layer is added to the layer tree.

The Code 73
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

selectionLayer=[[CALayer layer] retain];
selectionLayer.bounds=CGRectMake(0.0,0.0,width,height);

The selectionLayer depends on the borderWidth, borderColor, and cornerRadius style properties
to provide its visual components. They are set to 2 points wide, a color of white, and a corner radius that
ensures that the ends of the selectionLayer are rounded completely.

selectionLayer.borderWidth=2.0;
selectionLayer.borderColor=CGColorCreateGenericRGB(1.0f,1.0f,1.0f,1.0f);
selectionLayer.cornerRadius=height/2;

As the selectionLayer is displayed it softly pulses every second. This is done using a CIBloom filter and
animating its inputIntensity between 0 (no intensity) and 1.5 (somewhat intense).

Create the filter, set its default values, and then specify the inputRadius is 5.0.

CIFilter *filter = [CIFilter filterWithName:@"CIBloom"];
[filter setDefaults];
[filter setValue:[NSNumber numberWithFloat:5.0] forKey:@"inputRadius"];

Core Animation extends the CIFilter class by adding the name property. The name property allows the
inputs of filters in the layer's filters array to be animated using a key path.

[filter setName:@"pulseFilter"];

Set the selectionLayer filters array so that it contains filter.

[selectionLayer setFilters:[NSArray arrayWithObject:filter]];

The pulse animation is an explicit animation that runs continuously. It is a subclass of CABasicAnimation
and, as such, must specify values for a keyPath, toValue, and fromValue.

CABasicAnimation* pulseAnimation = [CABasicAnimation animation];

Set the key path to be animated to filters.pulseFilter.inputIntensity. This is where the filter's
name property is used.

pulseAnimation.keyPath = @"filters.pulseFilter.inputIntensity";

Set the fromValue and toValue to 0 and 1.0 respectively. This gives a nice pulse effect.

pulseAnimation.fromValue = [NSNumber numberWithFloat: 0.0];
pulseAnimation.toValue = [NSNumber numberWithFloat: 1.0];

The animation is 1 second long, and it repeats indefinitely. When the animation reaches 1.5, it cycles back
to 0, and so on. The following code sets that up.

pulseAnimation.duration = 1.0;
pulseAnimation.repeatCount = 1e100f;
pulseAnimation.autoreverses = YES;

The timingFunction of an animation controls how the animation values are distributed over the course
of the animation duration. In this case we'll use an easeIn-easeOut animation. This causes the animation to
begin slowly, ramp up to speed, and then slow again before completing.

pulseAnimation.timingFunction = [CAMediaTimingFunction functionWithName:
 kCAMediaTimingFunctionEaseInEaseOut];

74 The Code
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

For an explicit animation to begin you must add it to the layer's animation collection. This is done using
addAnimation:forKey:. The key itself is used as an identifier for removing the animation later, if necessary.

[selectionLayer addAnimation:pulseAnimation forKey:@"pulseAnimation"];

Finally, now that setup is complete add the selectionLayer to the rootLayer.

[rootLayer addSublayer:selectionLayer];

Set the initial position of the selectionLayer and the initial selectedIndex to 0.

[self changeSelectedIndex:0];
// end of setupLayers

The setupLayers method is by far the longest and most complex in this application. However, by breaking
it down into the setup for each layer, it becomes much easier to understand.

Animating the Selection Layer Movement

The method changeSelectedIndex: is responsible for: setting selectedIndex to the new value, ensuring
that the new value of selectedIndex is within the range of the number of items in the menu items, and
positioning the selection layer relative to the menusLayer sublayer at the selectedIndex. This causes the
selection layer to animate to show that the new item is selected.

-(void)changeSelectedIndex:(NSInteger)theSelectedIndex
{
 selectedIndex=theSelectedIndex;

 if (selectedIndex == [names count]) selectedIndex=[names count]-1;
 if (selectedIndex < 0) selectedIndex=0;

 CALayer *theSelectedLayer=[[menusLayer sublayers]
objectAtIndex:selectedIndex];
 selectionLayer.position=theSelectedLayer.position;
};

Notice that all that is required to animate the selectionLayer is to simply assign a new value to its position
property. This is an example of implicit animation

Responding to Key Events

Because layers do not take part in the responder chain, or accept events, the MenuView that acts as the
layer-host for the layer tree must assume that role. The moveUp: and moveDown: messages are provided by
NSResponder, of which MenuView is a descendent. The moveUp: and moveDown: messages are invoked
when the up arrow and down arrows are pressed respectively. Using these methods allows the application
to respect any remapped arrow key functionally specified by the user. (And it's easier than implementing
keyDown:).

When the up arrow is pressed the selectedIndex value is de-incremented and updated by calling
changeSelectedIndex:.

-(void)moveUp:(id)sender
{
 [self changeSelectedIndex:selectedIndex-1];
}

The Code 75
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

When the down arrow is pressed the selectedIndex value is incremented and updated by calling
changeSelectedIndex:.

-(void)moveDown:(id)sender
{
 [self changeSelectedIndex:selectedIndex+1];

}

Cleaning Up

When the MenuView is released, we are responsible for cleaning up our instance variables. The menusLayer,
selectionLayer, and names are autoreleased in the dealloc implementation.

-(void)dealloc
{
 [menusLayer autorelease];
 [selectionLayer autorelease];
 [names autorelease];
 [super dealloc];
}

76 The Code
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Example: Core Animation Menu Application

CALayer Animatable Properties

The following CALayer class properties can be animated by Core Animation. See CALayer for more
information.

 ■ anchorPoint

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ backgroundColor

Uses the default implied CABasicAnimation described in Table 10 (page 79). (subproperties are
animated using a basic animation)

 ■ backgroundFilters

Uses the default implied CATransitionAnimation described in Table 11 (page 79). Sub-properties of
the filters are animated using the default implied CABasicAnimation described in Table 10 (page 79).

 ■ borderColor

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ borderWidth

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ bounds

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ compositingFilter

Uses the default implied CATransitionAnimation described in Table 11 (page 79). Sub-properties of
the filters are animated using the default implied CABasicAnimation described in Table 10 (page 79).

 ■ contents

 ■ contentsRect

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ cornerRadius

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ doubleSided

No default implied animation is set.

 ■ filters

Uses the default implied CABasicAnimation described in Table 10 (page 79). Sub-properties of the
filters are animated using the default implied CABasicAnimation described in Table 10 (page 79).

CALayer Animatable Properties 77
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animatable Properties

 ■ frame

The frame property itself is not animatable. You can achieve the same results by modifying the bounds
and position properties instead.

 ■ hidden

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ mask

Uses the default implied CABasicAnimation described in Table 10 (page 79). This property is available
only on Mac OS X.

 ■ masksToBounds

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ opacity

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ position

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ shadowColor

Uses the default implied CABasicAnimation described in Table 10 (page 79). This property is available
only on Mac OS X.

 ■ shadowOffset

Uses the default implied CABasicAnimation described in Table 10 (page 79). This property is available
only on Mac OS X.

 ■ shadowOpacity

Uses the default implied CABasicAnimation described in Table 10 (page 79). This property is available
only on Mac OS X.

 ■ shadowRadius

Uses the default implied CABasicAnimation described in Table 10 (page 79). This property is available
only on Mac OS X.

 ■ sublayers

Uses the default implied CATransitionAnimation described in Table 11 (page 79).

 ■ sublayerTransform

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ transform

Uses the default implied CABasicAnimation described in Table 10 (page 79).

 ■ zPosition

Uses the default implied CABasicAnimation described in Table 10 (page 79).

78 CALayer Animatable Properties
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animatable Properties

Table 10 Default Implied Basic Animation

ValueDescription

CABasicAnimationClass

.25 seconds, or the duration of the current transactionduration

Dependent on layer property typekeyPath

Table 11 Default Implied Transition

ValueDescription

CATransitionClass

.25 seconds, or the duration of the current transactionduration

Fade (kCATransitionFade)type

0.0startProgress

1.0endProgress

CIFilter Animatable Properties

Core Animation adds the following animatable properties to Core Image’s CIFilter class. See CIFilter for
more information. These properties are available only on Mac OS X.

 ■ name

 ■ enabled

CIFilter Animatable Properties 79
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animatable Properties

80 CIFilter Animatable Properties
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Animatable Properties

This table describes the changes to Core Animation Programming Guide.

NotesDate

Introduces iPhone SDK content to Mac OS X content. Corrects frame animation
capabilities.

2008-11-13

Corrected typos.2008-09-09

Updated for iPhone OS.2008-06-18

Corrected typos.2008-05-06

Corrected typos.2008-03-11

Corrected typos. Corrected RadiansToDegrees() calculation.2008-02-08

Corrected typos.2007-12-11

Added information on the presentation tree. Added example application
walkthough.

2007-10-31

New document that introduces the main components and services of Core
Animation.

Added “Key-Value Coding Additions” chapter.

Updated class names to reflect new Core Animation API prefix.

81
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

82
2008-11-13 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Core Animation Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	What Is Core Animation?
	Core Animation Classes
	Layer Classes
	Animation and Timing Classes
	Layout Manager Classes
	Transaction Management Classes

	Core Animation Rendering Architecture
	Layer Geometry and Transforms
	Layer Coordinate System
	Specifying a Layer’s Geometry
	Transforming a Layer’s Geometry
	Transform Functions
	Modifying the Transform Data Structure
	Modifying a Transform Using Key Paths

	Layer-Tree Hierarchy
	What Is a Layer-Tree Hierarchy?
	Displaying Layers in Views
	Adding and Removing Layers from a Hierarchy
	Repositioning and Resizing Layers
	Autoresizing Layers

	Clipping Sublayers

	Providing Layer Content
	Providing CALayer Content
	Setting the Contents Property
	Using a Delegate to Provide Content
	Providing CALayer Content by Subclassing

	Positioning Content Within a Layer

	Animation
	Animation Classes and Timing
	Implicit Animation
	Explicit Animation
	Starting and Stopping Explicit Animations

	Actions
	What are Actions?
	Action Object Search Pattern
	CAAction Protocol
	Overriding an Implied Animation
	Temporarily Disabling Actions

	Transactions
	Implicit transactions
	Explicit Transactions
	Temporarily Disabling Layer Actions
	Overriding the Duration of Implied Animations
	Nesting Transactions

	Laying Out Core Animation Layers
	Constraints Layout Manager

	Core Animation Extensions To Key-Value Coding
	Key-Value Coding Compliant Container Classes
	Default Value Support
	Wrapping Conventions
	Key Path Support for Structure Fields

	Layer Style Properties
	Geometry Properties
	Background Properties
	Layer Content
	Sublayers Content
	Border Attributes
	Filters Property
	Shadow Properties
	Opacity Property
	Composite Property
	Mask Properties

	Example: Core Animation Menu Application
	The User Interface
	Examining the Nib File
	The Layer Hierarchy

	The Code
	Examining MenuView.h
	Examining MenuView.m
	Setting Up the MenuView
	Setting Up the Layers
	Animating the Selection Layer Movement
	Responding to Key Events
	Cleaning Up

	: Animatable Properties
	CALayer Animatable Properties
	CIFilter Animatable Properties

	Revision History

