
Core Data Utility Tutorial
Cocoa > Data Management

2009-03-04

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Core Data Utility Tutorial 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Chapter 1 Overview of the Tutorial 9

Task Goal 9

Chapter 2 Creating the Project 11

Create a New Project 11
Create the project 11
Link the Core Data framework 11
Adopt Garbage Collection 11

What Happened? 12

Chapter 3 Creating the Managed Object Model 13

Specifying the Entity 13
Create the Managed Object Model 13

Create the Model Instance 13
Create the Entity 14
Add the Attributes 14
Add a Localization Dictionary 15

Instantiate a Managed Object Model 16
Build and Test 16
Complete Listing 16

Chapter 4 The Application Log Directory 19

The applicationLogDirectory Function 19
Update the main Function 20
Build and Test 20

Chapter 5 Creating the Core Data Stack 21

The managedObjectContext Function 21
Create the Context Instance 21
Set up the Persistent Store Coordinator and Store 22
Instantiate a Managed Object Context 22

3
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

Build and Test 23
Complete Listing 23

Chapter 6 The Custom Managed Object Class 25

Implementing the Managed Object Subclass 25
Create the Class Files 25
Implement the Accessor Methods 26
Dealing With nil Values 26
Implement the Initializer 27

Create an Instance of the Run Entity 27
Build and Test 28
Complete Listings 28

The Run Class 28
The main() Function 29

Chapter 7 Listing Previous Runs 31

Fetching Run Objects 31
Create and Execute the Fetch Request 31
Display the Results 31

Build and Test 32

Chapter 8 Complete Source Listings 33

main 33
The Run Class 37

Document Revision History 39

4
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 3 Creating the Managed Object Model 13

Table 3-1 Attributes for the Run entity 13
Listing 3-1 Complete listing of the managedObjectModel function 16

Chapter 5 Creating the Core Data Stack 21

Listing 5-1 Complete listing of the managedObjectContext function 23

Chapter 6 The Custom Managed Object Class 25

Listing 6-1 Complete listing of the declaration and implementation of the Run class 28
Listing 6-2 Listing of the main function 29

Chapter 8 Complete Source Listings 33

Listing 8-1 Complete listing of the main source file 33
Listing 8-2 Listing of the declaration of the Run class 37
Listing 8-3 Listing of the implementation of the Run class 37

5
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

6
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

This tutorial takes you through the steps of building a very basic Core Data–based command line utility. The
goal is to illustrate the creation of a Core Data application entirely in code.

The task goal of this tutorial is to create a low-level Core Data-based utility. It simply records the date on
which the utility is run, and its process ID, and prints the run history to the output. It shows the creation of
a Core Data application entirely in code, including all aspects of the Core Data stack, instantiation of managed
objects, and fetching—all without the distraction of a user interface—it even shows the creation of a model
in code.

Who Should Read This Document

You will find this tutorial useful if you are using the Core Data framework to create a utility that does not
have a user interface or if you want to gain a deeper understanding of the Core Data infrastructure.

Important: This tutorial is not intended for novice Cocoa developers. You must already be familiar with basic
Cocoa development tools and techniques. This document does not repeat fundamental Cocoa programming
concepts, nor does it provide explicit instructions for common operations in Xcode.

You should already be familiar with the fundamental Core Data architecture as described in Core Data Basics
in Core Data Programming Guide. This tutorial is intended to reinforce the ideas explained in that article.

Organization of This Document

“Overview of the Tutorial” (page 9) describes the utility you will create, and the task constraints.

“Creating the Project” (page 11) describes how you create a Foundation Tool project in Xcode, and how you
link in Core Data.

“Creating the Managed Object Model” (page 13) describes how you create the data model for the utility in
code.

“The Application Log Directory” (page 19) illustrates one way to identify and if necessary create a directory
in which to save the file for the utility’s persistent store.

“Creating the Core Data Stack” (page 21) describes how to create and configure the managed object context
and the persistent store coordinator in code.

“The Custom Managed Object Class” (page 25) specifies the Run entity and describes how to implement a
custom managed object class.

“Listing Previous Runs” (page 31) describes how to fetch Run instances from the persistent store.

Who Should Read This Document 7
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Data Utility Tutorial

“Complete Source Listings” (page 33) shows the complete source code for the project.

See Also

You may want to read these documents if you want a better understanding of Core Data or if you want to
use Core Data in a document–based application.

CoreData ProgrammingGuide describes functionality provided by the Core Data framework from a high-level
overview to in-depth descriptions.

NSPersistentDocumentCoreDataTutorial takes you through the steps of building a document–based application
that uses Core Data and Cocoa bindings.

8 See Also
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Core Data Utility Tutorial

This tutorial takes you through the steps of building a very basic Core Data–based command-line utility. The
goal is to illustrate the creation of a Core Data application entirely in code, including all aspects of the Core
Data stack, instantiation of managed objects, and fetching—all without the distraction of a user interface. It
even shows the creation of a model in code.

Task Goal

The task goal of this tutorial is to create a low-level Core Data–based utility. It simply records the date on
which the utility is run, records its process ID, and prints the run history to the output. The utility uses a single
entity, Run. The Run entity is very simple; it has only two attributes, the process ID and the date on which
the process was run.

Note that the emphasis in this tutorial is on illustrating low-level functionality in Core Data, not on compactness,
maintainability, or user friendliness. Although some explanation is given of what happens behind the scenes,
it does not give an in-depth analysis of the Core Data infrastructure.

Task Goal 9
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of the Tutorial

10 Task Goal
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of the Tutorial

This part of the tutorial guides you through creating the CDCLI project.

Create a New Project

Core Data is integrated into the Cocoa framework, so any Cocoa or Foundation application can use it. The
CDCLI program you’ll build is Foundation Tool that uses Core Data and garbage collection.

Create the project

Follow these steps to create the initial project:

1. Choose New Project from the File menu.

2. Select Foundation Tool in Xcode’s project Assistant window (from the Command Line Utility section),
and click the Next button.

3. Enter the project name (for example, “CDCLI”) and a destination folder for the project.

Note: The source file created by the Assistant that contains the main function is hereafter referred to as “the
main source file.”

Link the Core Data framework

1. Link the Core Data framework to the project.

In Xcode, you can double-click the CDCLI Target to open the Target Info pane. In the General tab you
can then add CoreData.framework to the list of Linked Libraries. See Files in Projects in Xcode Project
Management Guide for details.

2. Add an import statement to the main source file (#import <CoreData/CoreData.h>).

Adopt Garbage Collection

Remove the references to autorelease pools; add a function call to start the garbage collector; and change
the project build settings to use garbage collection:

1. In the main source file, remove the lines that create and drain the autorelease pool:

Create a New Project 11
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
[pool drain];

2. At the beginning of the main source file, add a function call to start the garbage collector:

objc_startCollectorThread();

3. In the project’s Build settings, change the garbage collection setting to Required (see “Enabling Garbage
Collection” in Garbage Collection Programming Guide).

What Happened?

You created a very simple Foundation Tool project and added the Core Data framework. There is no need
to use the Application Kit when using Core Data. It is not even necessary to use the Xcode data modeling
tool. In the next chapter you will create the model entirely in code. Using the modeling tool does, however,
typically save you a lot of time and effort.

12 What Happened?
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project

This chapter specifies the Run entity and shows you how to create the managed object model. Although it
is typically easiest to create the model in Xcode, in this tutorial you create the model entirely in code.

Xcode has a data modeling tool that you typically use to define the schema for your application (see Xcode
Tools for Core Data for full details). The Xcode data modeling tool is analogous to Interface Builder in that it
allows you to graphically create a complex collection of objects that are archived and at runtime are unarchived.
Creating a user interface without Interface Builder is possible, but can require a lot of effort. Similarly, even
a reasonably straightforward model requires a lot of code, so this tutorial only uses a single entity with two
simple attributes. For more about creating a model using Xcode, see Creating a Managed Object Model with
Xcode.

Specifying the Entity

The Run entity has two attributes, the process ID and the date on which the process was run. Neither attribute
is optional—that is, each must have a value if an instance is to be considered valid (and if you try to save an
instance without a value, you will get a validation error). The process ID has a default value of -1. In conjunction
with the validation rules, this ensures that the value is properly set at runtime. You must also specify the class
that will represent the entity in the utility—in this example you will use a custom class named “Run”.

Table 3-1 Attributes for the Run entity

Minimum ValueDefault ValueOptionalTypeName

NOdatedate

0-1NOintprocessID

Create the Managed Object Model

You could create the model in Xcode, put it in the application support directory, and load it at runtime using
NSManagedObjectModel’s initWithContentsOfURL:. This example, however, illustrates how to create
the model entirely in code.

Create the Model Instance

The first step is to create the managed object model instance itself, if necessary.

1. At the top of the main source file, before main add a declaration for the function NSManagedObjectModel
*managedObjectModel().

Specifying the Entity 13
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating the Managed Object Model

2. In the main source file, implement the managedObjectModel function. It declares a static variable for
the managed object model, and returns it immediately if it is not nil. If it is nil, create a new managed
object model, then return it as the function result.

NSManagedObjectModel *managedObjectModel() {

 static NSManagedObjectModel *mom = nil;

 if (mom != nil) {
 return mom;
 }

 mom = [[NSManagedObjectModel alloc] init];
 // implementation continues...
 return mom;
}

You should enter the code described in the following sections, “Create the Entity” (page 14) and “Add the
Attributes” (page 14), immediately before the return statement (where the comment states, “implementation
continues...”).

Create the Entity

The first step after creating the model itself, is to create the entity. You must set the name of the entity object
before you add it to the model.

1. Create the entity description object, set its name and managed object class name, and add it to the
model as follows:

NSEntityDescription *runEntity = [[NSEntityDescription alloc] init];
[runEntity setName:@"Run"];
[runEntity setManagedObjectClassName:@"Run"];
[mom setEntities:[NSArray arrayWithObject:runEntity]];

Add the Attributes

Attributes are represented by instances of NSAttributeDescription. You must create two instances—one
for the date, the other for the process ID—and set their characteristics appropriately. Both require a name
and a type, and neither is optional. The process ID has a default value of -1. You also need to create a predicate
for the process ID validation.

1. Create the date attribute description object as follows. Its type is NSDateAttributeType and it is not
optional.

NSAttributeDescription *dateAttribute = [[NSAttributeDescription alloc] init];

[dateAttribute setName:@"date"];
[dateAttribute setAttributeType:NSDateAttributeType];
[dateAttribute setOptional:NO];

14 Create the Managed Object Model
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating the Managed Object Model

2. Create the process ID attribute description object as follows. Its type is NSInteger32AttributeType,
it is not optional, and its default value is -1.

NSAttributeDescription *idAttribute = [[NSAttributeDescription alloc] init];

[idAttribute setName:@"processID"];
[idAttribute setAttributeType:NSInteger32AttributeType];
[idAttribute setOptional:NO];
[idAttribute setDefaultValue:[NSNumber numberWithInteger:-1]];

3. Create the validation predicate for the process ID. The value of the attribute itself must be greater than
zero. The following code is equivalent to validationPredicate = [NSPredicate
predicateWithFormat:@"SELF > 0"], but this example continues the theme of illustrating the
long-hand form.

NSExpression *lhs = [NSExpression expressionForEvaluatedObject];
NSExpression *rhs = [NSExpression expressionForConstantValue:
 [NSNumber numberWithInteger:0]];

NSPredicate *validationPredicate = [NSComparisonPredicate
 predicateWithLeftExpression:lhs
 rightExpression:rhs
 modifier:NSDirectPredicateModifier
 type:NSGreaterThanPredicateOperatorType
 options:0];

4. Each validation predicate requires a corresponding error string. Typically the error string should be
appropriately localized. You can either provide a localized representation here (using, for example,
NSLocalizedString) or supply a localization dictionary for the model. The latter is shown in the next
section (“Add a Localization Dictionary” (page 15)). You provide the attribute description with an array
of predicates and an array of error strings. In this case, each array contains just a single object.

NSString *validationWarning = @"Process ID < 1";
[idAttribute setValidationPredicates:[NSArray arrayWithObject:validationPredicate]
 withValidationWarnings:[NSArray arrayWithObject:validationWarning]];

5. Finally, set the properties for the entity.

NSArray *properties = [NSArray arrayWithObjects: dateAttribute, idAttribute,
nil];
[runEntity setProperties:properties];

Add a Localization Dictionary

You can set a localization dictionary to provide localized string values for entities, properties, and error strings
related to the model. The key and value pattern is described in the API reference for
setLocalizationDictionary:. The string you use as the key for the error must be the same as that you
specified for the corresponding validation predicate.

NSMutableDictionary *localizationDictionary = [NSMutableDictionary dictionary];

[localizationDictionary setObject:@"Date" forKey:@"Property/date/Entity/Run"];
[localizationDictionary setObject:@"Process ID"
forKey:@"Property/processID/Entity/Run"];

Create the Managed Object Model 15
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating the Managed Object Model

[localizationDictionary setObject:@"Process ID must not be less than 1"
forKey:@"ErrorString/Process ID < 1"];

[mom setLocalizationDictionary:localizationDictionary];

Instantiate a Managed Object Model

So that you can test the implementation thus far, instantiate the managed object model and log its description
of the model.

1. In the main function, after the garbage collector is started, declare a variable of class
NSManagedObjectModel and assign its value to the result of invoking the managedObjectModel
function. Print the model description using NSLog.

NSManagedObjectModel *mom = managedObjectModel();
NSLog(@"The managed object model is defined as follows:\n%@", mom);

Build and Test

Build and run the utility. It should compile without warnings. The logged description of the model file should
contain the entity and attributes you defined. Note that at this stage the model has not yet been used, so
its isEditable state remains true.

Complete Listing

The complete listing of the managedObjectModel function is shown in Listing 3-1.

Listing 3-1 Complete listing of the managedObjectModel function

NSManagedObjectModel *managedObjectModel() {

 static NSManagedObjectModel *mom = nil;

 if (mom != nil) {
 return mom;
 }

 mom = [[NSManagedObjectModel alloc] init];

 NSEntityDescription *runEntity = [[NSEntityDescription alloc] init];
 [runEntity setName:@"Run"];
 [runEntity setManagedObjectClassName:@"Run"];
 [mom setEntities:[NSArray arrayWithObject:runEntity]];

 NSAttributeDescription *dateAttribute = [[NSAttributeDescription alloc]
init];

16 Instantiate a Managed Object Model
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating the Managed Object Model

 [dateAttribute setName:@"date"];
 [dateAttribute setAttributeType:NSDateAttributeType];
 [dateAttribute setOptional:NO];

 NSAttributeDescription *idAttribute = [[NSAttributeDescription alloc] init];

 [idAttribute setName:@"processID"];
 [idAttribute setAttributeType:NSInteger32AttributeType];
 [idAttribute setOptional:NO];
 [idAttribute setDefaultValue:[NSNumber numberWithInteger:-1]];

 NSExpression *lhs = [NSExpression expressionForEvaluatedObject];
 NSExpression *rhs = [NSExpression expressionForConstantValue:
 [NSNumber numberWithInteger:0]];

 NSPredicate *validationPredicate = [NSComparisonPredicate
 predicateWithLeftExpression:lhs
 rightExpression:rhs
 modifier:NSDirectPredicateModifier

type:NSGreaterThanPredicateOperatorType
 options:0];

 NSString *validationWarning = @"Process ID < 1";

 [idAttribute setValidationPredicates:[NSArray
arrayWithObject:validationPredicate]
 withValidationWarnings:[NSArray arrayWithObject:validationWarning]];

 NSArray *properties = [NSArray arrayWithObjects: dateAttribute, idAttribute,
 nil];
 [runEntity setProperties:properties];

 NSMutableDictionary *localizationDictionary = [NSMutableDictionary
dictionary];

 [localizationDictionary setObject:@"Date"
 forKey:@"Property/date/Entity/Run"];
 [localizationDictionary setObject:@"Process ID"
 forKey:@"Property/processID/Entity/Run"];
 [localizationDictionary setObject:@"Process ID must not be less than 1"
 forKey:@"ErrorString/Process ID < 1"];

 [mom setLocalizationDictionary:localizationDictionary];

 return mom;
}

Complete Listing 17
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating the Managed Object Model

18 Complete Listing
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating the Managed Object Model

The utility needs somewhere to save the file for the persistent store. This section illustrates one way to identify
and if necessary create an appropriate directory. Although it is a useful abstraction for the utility, this is not
directly relevant to Core Data, so no additional explanation is given.

The applicationLogDirectory Function

This section illustrates a simple means to identify and if necessary create a directory (in ~/Library/Logs—the
Logs directory in your home directory) in which to save the file for the persistent store.

In the main source file, before main declare a function, applicationLogDirectory(), that returns an
NSString object, then implement it as follows:

NSString *applicationLogDirectory() {
 NSString *LOG_DIRECTORY = @"CDCLI";
 static NSString *ald = nil;

 if (ald == nil) {
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSLibraryDirectory, NSUserDomainMask, YES);
 if ([paths count] == 1) {
 ald = [[paths objectAtIndex:0]
stringByAppendingPathComponent:@"Logs"];
 ald = [ald stringByAppendingPathComponent:LOG_DIRECTORY];
 NSFileManager *fileManager = [NSFileManager defaultManager];
 BOOL isDirectory = NO;
 if (![fileManager fileExistsAtPath:ald isDirectory:&isDirectory])
{
 if (![fileManager createDirectoryAtPath:ald attributes:nil]) {
 ald = nil;
 }
 }
 else {
 if (!isDirectory) {
 ald = nil;
 }
 }
 }
 }
 return ald;
}

The applicationLogDirectory Function 19
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

The Application Log Directory

Update the main Function

In the main function, after the invocation of the managedObjectModel function, invoke
applicationLogDirectory(), and ensure that it does not return nil. If it does, report an error and exit.

if (applicationLogDirectory() == nil) {
 NSLog(@"Could not find application log directory\nExiting...");
 exit(1);
}

Build and Test

Build and run the utility. It should compile without warnings. The application log directory should be created
correctly, and no errors should be logged.

20 Update the main Function
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

The Application Log Directory

This chapter shows you how to create and configure the Core Data stack, from the managed object context
to the underlying persistent store. Creating the context is easy—you simply have to allocate and initialize
an instance of NSManagedObjectContext. The more complex part is the remainder of the configuration.
You must create and configure a persistent store coordinator, and then set up the persistent stores.

The managed object context is responsible for managing the object graph. The task of managing the persistent
stores falls to the persistent store coordinator. Its job is to mediate between the managed object context or
contexts and the persistent store or stores. It presents a façade to the contexts, representing a collection of
stores as a single virtual store. In this example, the coordinator manages just a single store.

To add a store, you use the NSPersistentStoreCoordinator method
addPersistentStoreWithType:configuration:URL:options:error:. This returns an object
representing the new store, or nil if it cannot be created. (There is currently no public API to manipulate
store instances; they may be used, however, as arguments to other methods of
NSPersistentStoreCoordinator.) You must specify both the store’s location in the file system and its
type (this example does not make use of model configurations). In this example it is an XML store—because
its reasonably human-readable form facilitates testing. Note that the file name extension is not .xml. You
should avoid using generic file extensions—consider what would happen if all applications used the same
extension. . .

The managedObjectContext Function

The main purpose of the managedObjectContext function is to return a properly configured managed
object context. In this example, in order to do so you must also configure the remainder of the Core Data
stack.

Create the Context Instance

The first step is to create the managed object context instance itself, if necessary.

1. At the top of the main source file, before main add a declaration for the function
NSManagedObjectContext *managedObjectContext().

2. In the main source file, implement the managedObjectContext function. Declare a static variable for
the context. If the variable is not nil return it immediately. If it is nil, create a new context, then return
it as the function result.

NSManagedObjectContext *managedObjectContext()
{
 static NSManagedObjectContext *moc = nil;
 if (moc != nil) {
 return moc;
 }

The managedObjectContext Function 21
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating the Core Data Stack

 moc = [[NSManagedObjectContext alloc] init];

 // implementation continues...

 return moc;
}

Set up the Persistent Store Coordinator and Store

The second step is to create the persistent store coordinator and configure the persistent store.

1. Create a persistent store coordinator, then set the coordinator for the context.

NSPersistentStoreCoordinator *coordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel: managedObjectModel()];
[moc setPersistentStoreCoordinator: coordinator];

2. Create a new persistent store of the appropriate type. If for some reason the store cannot be created,
log an appropriate warning.

NSString *STORE_TYPE = NSXMLStoreType;
NSString *STORE_FILENAME = @"CDCLI.cdcli";

NSError *error;
NSURL *url = [NSURL fileURLWithPath:
 [applicationLogDirectory()
stringByAppendingPathComponent:STORE_FILENAME]];

NSPersistentStore *newStore = [coordinator addPersistentStoreWithType:STORE_TYPE
 configuration:nil
 URL:url
 options:nil
 error:&error];

if (newStore == nil) {
 NSLog(@"Store Configuration Failure\n%@",
 ([error localizedDescription] != nil) ?
 [error localizedDescription] : @"Unknown Error");
}

Instantiate a Managed Object Context

So that you can test the implementation thus far, instantiate the managed object context.

1. In the main function, after the line in which the description of the managed object model is logged,
declare a variable of type NSManagedObjectContext and assign its value to the result of invoking the
managedObjectContext function.

NSManagedObjectContext *moc = managedObjectContext();

22 The managedObjectContext Function
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating the Core Data Stack

Build and Test

Build and run the utility. It should compile without errors, although you should get a warning that the variable
moc is unused in the main function. When you run the utility, the managedObjectContext function should
not log any errors.

Complete Listing

The complete listing of the managedObjectContext function is shown in Listing 5-1.

Listing 5-1 Complete listing of the managedObjectContext function

NSManagedObjectContext *managedObjectContext()
{
 static NSManagedObjectContext *moc = nil;

 if (moc != nil) {
 return moc;
 }

 moc = [[NSManagedObjectContext alloc] init];

 NSPersistentStoreCoordinator *coordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel: managedObjectModel()];
 [moc setPersistentStoreCoordinator: coordinator];

 NSString *STORE_TYPE = NSXMLStoreType;
 NSString *STORE_FILENAME = @"CDCLI.cdcli";

 NSError *error;
 NSURL *url = [NSURL fileURLWithPath:
 [applicationLogDirectory()
stringByAppendingPathComponent:STORE_FILENAME]];

 NSPersistentStore *newStore = [coordinator
addPersistentStoreWithType:STORE_TYPE
 configuration:nil
 URL:url
 options:nil
 error:&error];

 if (newStore == nil) {
 NSLog(@"Store Configuration Failure\n%@",
 ([error localizedDescription] != nil) ?
 [error localizedDescription] : @"Unknown Error");
 }
 return moc;
}

Build and Test 23
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating the Core Data Stack

24 Complete Listing
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Creating the Core Data Stack

The managed object model for this tutorial specifies that the Run entity is represented by a custom class,
Run. This chapter shows how to implement the class that uses a scalar value to represent one of its attributes,
and how to define custom accessor methods and an initializer that is invoked only when a new instance is
first created.

Typically there is no need to add instance variables—it is usually better to let the Core Data framework
manage properties—for the purposes of illustration, however, in this example you will use a scalar value for
the process ID attribute. You must implement custom accessor methods for any attributes you choose to
represent using scalar values.

One drawback with using scalar instance variables is that there is no unambiguous way to represent a nil
value. The NSKeyValueCoding protocol defines a special method—setNilValueForKey:—that allows
you to specify what happens if an attempt is made to set a scalar value to nil.

There are a number of different situations in which you might want to initialize a managed object. You might
want to perform initialization every time an instance of a given class is created, in which case you can simply
override the designated initializer. You might also, though, want to perform different initialization whenever
an object is retrieved from a persistent store or—perhaps more commonly—only when an object is first
created. Core Data provides special methods to cater for both situations—awakeFromFetch and
awakeFromInsert respectively. This example illustrates the latter case: You want to record the date and
time when a new record is created and not update the value thereafter.

Implementing the Managed Object Subclass

Create the Class Files

The first step is to create the files for the new class. If you had a managed object model as a project resource,
you could use the New File assistant to create a managed object class from an entity in the model. In this
case, however, you do not, so create the files as you would for any other Objective-C class.

1. In Xcode, add a new Objective-C class file (.h and .m files) for the Run class.

2. In the Run.h file, set the class’s superclass to NSManagedObject, and declare properties for date,
primitiveDate, and processID (primitiveDate is used in awakeFromInsert—see “Implement
the Initializer” (page 27)). Add an instance variable of type NSInteger for the process ID.

@interface Run : NSManagedObject {
 NSInteger processID;
}
@property (retain) NSDate *date;
@property (retain) NSDate *primitiveDate;
@property NSInteger processID;
@end

Implementing the Managed Object Subclass 25
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

The Custom Managed Object Class

Implement the Accessor Methods

Core Data automatically implements accessors for managed object properties at runtime, so typically you
don’t have to implement them yourself. When you do, though, (such as for scalar attributes) you must invoke
the appropriate access and change notification methods. In the implementation block in the Run.m file, do
the following:

1. Core Data automatically implements accessors for the date attribute at runtime. To suppress compiler
warnings, though, declare the date properties as dynamic.

@dynamic date, primitiveDate;

2. Implement a get accessor for the process ID. You retrieve the value from the managed object’s instance
variable. You invoke the appropriate access notification methods to ensure that if the receiver is a fault,
the value is retrieved from the persistent store.

- (int)processID {
 [self willAccessValueForKey:@"processID"];
 NSInteger pid = processID;
 [self didAccessValueForKey:@"processID"];
 return pid;
}

3. Implement a set accessor for the process ID. You set the value of the managed object’s instance variable.
You must also invoke the appropriate change notification methods.

- (void)setProcessID:(int)newProcessID {
 [self willChangeValueForKey:@"processID"];
 processID = newProcessID;
 [self didChangeValueForKey:@"processID"];
}

Dealing With nil Values

If you represent an attribute using a scalar value, you need to specify what happens if the value is set to nil
using key-value coding. You do this with the setNilValueForKey: method. In this case, simply set the
process ID to 0.

1. Implement a setNilValueForKey: method. If the key is “processID” then set processID to 0.

- (void)setNilValueForKey:(NSString *)key {

 if ([key isEqualToString:@"processID"]) {
 self.processID = 0;
 }
 else {
 [super setNilValueForKey:key];
 }
}

26 Implementing the Managed Object Subclass
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

The Custom Managed Object Class

Implement the Initializer

NSManagedObject provides a special method—awakeFromInsert—that is invoked only when a new
managed object is first created (strictly, when it is inserted into the managed object context) and not when
it is subsequently fetched from a persistent store. You can use it here to record the date and time when a
new record is created (the value won’t then be updated when an object is fetched).

1. Implement an awakeFromInsert method that sets the receiver’s date to the current date and time.

- (void) awakeFromInsert {
 [super awakeFromInsert];
 self.primitiveDate = [NSDate date];
}

You use the primitive accessor in awakeFromInsert to change to the date. The primitive accessors do not
emit KVO notifications that cause the change to be recorded as a separate undo event.

Create an Instance of the Run Entity

To create a new instance of a given entity and insert it into a managed object context, you usually use the
NSEntityDescription convenience method
insertNewObjectForEntityForName:inManagedObjectContext:. The advantage of using the
convenience method is that it’s convenient! In this case, though, you’ll perform the set-up operations yourself.
Given the new instance, you can set its process ID to the ID of the current process, then send the managed
object context a save message to commit the change to the persistent store.

1. In the main source file, import the header for the Run class.

#import "Run.h"

2. In the main function, after the invocation of the managedObjectContext() function, create a new
instance of the Run class. You must retrieve the Run entity description from the managed object model
so that you can tell the new managed object of what entity it is an instance.

NSEntityDescription *runEntity = [[mom entitiesByName] objectForKey:@"Run"];
Run *run = [[Run alloc] initWithEntity:runEntity
insertIntoManagedObjectContext:moc];

3. Get the process ID of the current process, and set the process ID of the Run object.

NSProcessInfo *processInfo = [NSProcessInfo processInfo];
run.processID = [processInfo processIdentifier];

4. Commit the changes to the persistent store by saving the managed object context. Check for any errors,
and exit if an error occurs.

NSError *error = nil;

if (![moc save: &error]) {
 NSLog(@"Error while saving\n%@",
 ([error localizedDescription] != nil) ? [error localizedDescription] :
 @"Unknown Error");

Create an Instance of the Run Entity 27
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

The Custom Managed Object Class

 exit(1);
}

Build and Test

Build and run the utility. It should compile without warnings. When you run the utility, it should not log any
errors. You should see a new file created in the application log directory. If you inspect the file, you should
see that it contains details of run objects.

Test some of the other features. Comment out the line that sets the Run object’s process ID. Build and run
the utility. What happens (recall that the default value for the process ID is -1)? Do you see the localized
error message (defined in “Add a Localization Dictionary” (page 15))? Use key-value coding to set the process
ID to nil. Build and run the utility. Again, what happens? And finally, comment out the setNilValueForKey:
method and test once more.

Complete Listings

The Run Class

A complete listing of the declaration and implementation of the Run class is shown in Listing 6-1.

Listing 6-1 Complete listing of the declaration and implementation of the Run class

@interface Run : NSManagedObject
{
 NSInteger processID;
}

@property (retain) NSDate *date;
@property (retain) NSDate *primitiveDate;
@property NSInteger processID;

@end

@implementation Run

@dynamic date, primitiveDate;

- (void) awakeFromInsert{
 // set date to now
 self.primitiveDate = [NSDate date];
}

- (int)processID {
 [self willAccessValueForKey:@"processID"];
 NSInteger pid = processID;
 [self didAccessValueForKey:@"processID"];

28 Build and Test
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

The Custom Managed Object Class

 return pid;
}

- (void)setProcessID:(int)newProcessID {
 [self willChangeValueForKey:@"processID"];
 processID = newProcessID;
 [self didChangeValueForKey:@"processID"];
}

- (void)setNilValueForKey:(NSString *)key {
 if ([key isEqualToString:@"processID"]) {
 self.processID = 0;
 }
 else {
 [super setNilValueForKey:key];
 }
}

@end

The main() Function

The main function is shown in Listing 6-2.

Listing 6-2 Listing of the main function

int main (int argc, const char * argv[]) {

 objc_startCollectorThread();

 NSManagedObjectModel *mom = managedObjectModel();
 NSLog(@"mom: %@", mom);

 if (applicationLogDirectory() == nil) {
 NSLog(@"Could not find application logs directory\nExiting...");
 exit(1);
 }

 NSManagedObjectContext *moc = managedObjectContext();

 NSEntityDescription *runEntity = [[mom entitiesByName] objectForKey:@"Run"];
 Run *run = [[Run alloc] initWithEntity:runEntity
insertIntoManagedObjectContext:moc];

 NSProcessInfo *processInfo = [NSProcessInfo processInfo];
 run.processID = [processInfo processIdentifier];

 NSError *error = nil;

 if (![moc save: &error]) {
 NSLog(@"Error while saving\n%@",
 ([error localizedDescription] != nil) ? [error localizedDescription]
 : @"Unknown Error");
 exit(1);

Complete Listings 29
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

The Custom Managed Object Class

 }

 // Implementation will continue...

 return 0;
}

30 Complete Listings
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

The Custom Managed Object Class

This section shows you how to fetch all the Run instances from the persistent store.

Fetching Run Objects

Create and Execute the Fetch Request

The first step is to create the fetch request. You want to fetch instances of the Run entity and order the results
by recency. You need to set the entity for the fetch request to be the Run entity, and create and set an
appropriate array of sort orderings. Finally, you perform the fetch by sending the managed object context
an executeFetchRequest:request error: message.

1. In the main function, immediately after the code you added in the previous chapter, create a new fetch
request and set the entity (recall that in the previous chapter you retrieved the Run entity description
to create the new instance of Run).

NSFetchRequest *request = [[NSFetchRequest alloc] init];
[request setEntity:runEntity];

2. Create a new sort descriptor to arrange the fetch results by recency. Set the sort descriptor for the
fetch—note that you must supply an array of sort descriptors.

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"date" ascending:YES];
[request setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

3. Execute the fetch request by sending it to the managed object context. Recall that you declared an error
in the previous chapter. If there is an error, report it and exit.

error = nil;
NSArray *array = [moc executeFetchRequest:request error:&error];
if ((error != nil) || (array == nil))
{
 NSLog(@"Error while fetching\n%@",
 ([error localizedDescription] != nil) ? [error localizedDescription]
 : @"Unknown Error");
 exit(1);
}

Display the Results

Iterate through the array of fetched run objects and log the run information.

Fetching Run Objects 31
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Listing Previous Runs

1. Create a date formatter object to display the time information.

NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
[formatter setDateStyle:NSDateFormatterMediumStyle];
[formatter setTimeStyle:NSDateFormatterMediumStyle];

2. Print out the run history for the process.

NSLog(@"%@ run history:", [processInfo processName]);

for (run in array)
{
 NSLog(@"On %@ as process ID %d",
 [formatter stringForObjectValue:run.date],
 run.processID);
}

Build and Test

Build and run the utility. It should compile without warnings. When you run the utility, it should not log any
errors. It should properly display the run history.

32 Build and Test
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Listing Previous Runs

main

A complete listing of the main source file for the finished tutorial is shown in Listing 8-1.

Listing 8-1 Complete listing of the main source file

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

#import "Run.h"

NSManagedObjectModel *managedObjectModel();
NSString *applicationLogDirectory();
NSManagedObjectContext *managedObjectContext();

int main (int argc, const char * argv[])
{

 objc_startCollectorThread();

 NSManagedObjectModel *mom = managedObjectModel();
 NSLog(@"mom: %@", mom);

 if (applicationLogDirectory() == nil) {
 NSLog(@"Could not find application support directory\nExiting...");
 exit(1);
 }

 NSManagedObjectContext *moc = managedObjectContext();

 NSEntityDescription *runEntity = [[mom entitiesByName] objectForKey:@"Run"];
 Run *run = [[Run alloc] initWithEntity:runEntity
 insertIntoManagedObjectContext:moc];

 NSProcessInfo *processInfo = [NSProcessInfo processInfo];
 [run setProcessID:[processInfo processIdentifier]];

 NSError *error = nil;
 if (![managedObjectContext() save: &error]) {
 NSLog(@"Error while saving\n%@",
 ([error localizedDescription] != nil) ? [error localizedDescription]
 : @"Unknown Error");
 exit(1);
 }

 NSFetchRequest *request = [[NSFetchRequest alloc] init];

main 33
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Complete Source Listings

 [request setEntity:runEntity];

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"date" ascending:YES];

 [request setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 error = nil;
 NSArray *array = [moc executeFetchRequest:request error:&error];

 if ((error != nil) || (array == nil)) {
 NSLog(@"Error while fetching\n%@",
 ([error localizedDescription] != nil)
 ? [error localizedDescription] : @"Unknown Error");
 exit(1);
 }

 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterMediumStyle];
 [formatter setTimeStyle:NSDateFormatterMediumStyle];

 NSLog(@"%@ run history:", [processInfo processName]);
 for (run in array) {
 NSLog(@"On %@ as process ID %d",
 [formatter stringForObjectValue:run.date],
 run.processID);
 }

 return 0;
}

NSString *applicationLogDirectory() {
 NSString *LOG_DIRECTORY = @"CDCLI";
 static NSString *ald = nil;

 if (ald == nil) {
 NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSLibraryDirectory, NSUserDomainMask, YES);

 if ([paths count] == 1) {
 ald = [[paths objectAtIndex:0]
stringByAppendingPathComponent:@"Logs"];
 ald = [ald stringByAppendingPathComponent:LOG_DIRECTORY];
 NSFileManager *fileManager = [NSFileManager defaultManager];
 BOOL isDirectory = NO;

 if (![fileManager fileExistsAtPath:ald isDirectory:&isDirectory])
{
 if (![fileManager createDirectoryAtPath:ald attributes:nil]) {
 ald = nil;
 }
 }
 else {
 if (!isDirectory) {
 ald = nil;

34 main
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Complete Source Listings

 }
 }
 }
 }
 return ald;
}

NSManagedObjectModel *managedObjectModel() {

 static NSManagedObjectModel *mom = nil;

 if (mom != nil) {
 return mom;
 }

 mom = [[NSManagedObjectModel alloc] init];

 NSEntityDescription *runEntity = [[NSEntityDescription alloc] init];
 [runEntity setName:@"Run"];
 [runEntity setManagedObjectClassName:@"Run"];
 [mom setEntities:[NSArray arrayWithObject:runEntity]];

 NSAttributeDescription *dateAttribute;

 dateAttribute = [[NSAttributeDescription alloc] init];

 [dateAttribute setName:@"date"];
 [dateAttribute setAttributeType:NSDateAttributeType];
 [dateAttribute setOptional:NO];

 NSAttributeDescription *idAttribute;

 idAttribute = [[NSAttributeDescription alloc] init];

 [idAttribute setName:@"processID"];
 [idAttribute setAttributeType:NSInteger32AttributeType];
 [idAttribute setOptional:NO];
 [idAttribute setDefaultValue:[NSNumber numberWithInteger:-1]];

 NSExpression *lhs = [NSExpression expressionForEvaluatedObject];
 NSExpression *rhs = [NSExpression expressionForConstantValue:
 [NSNumber numberWithInteger:0]];

 NSPredicate *validationPredicate = [NSComparisonPredicate
 predicateWithLeftExpression:lhs
 rightExpression:rhs
 modifier:NSDirectPredicateModifier

type:NSGreaterThanPredicateOperatorType
 options:0];

 NSString *validationWarning = @"Process ID < 1";

 [idAttribute setValidationPredicates:[NSArray
arrayWithObject:validationPredicate]

main 35
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Complete Source Listings

 withValidationWarnings:[NSArray arrayWithObject:validationWarning]];

 [runEntity setProperties:
 [NSArray arrayWithObjects: dateAttribute, idAttribute, nil]];

 NSMutableDictionary *localizationDictionary = [NSMutableDictionary
dictionary];

 [localizationDictionary setObject:@"Date"
 forKey:@"Property/date/Entity/Run"];
 [localizationDictionary setObject:@"Process ID"
 forKey:@"Property/processID/Entity/Run"];
 [localizationDictionary setObject:@"Process ID must not be less than 1"
 forKey:@"ErrorString/Process ID < 1"];

 [mom setLocalizationDictionary:localizationDictionary];

 return mom;
}

NSManagedObjectContext *managedObjectContext() {

 static NSManagedObjectContext *moc = nil;

 if (moc != nil) {
 return moc;
 }

 moc = [[NSManagedObjectContext alloc] init];

 NSPersistentStoreCoordinator *coordinator =
 [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel: managedObjectModel()];
 [moc setPersistentStoreCoordinator: coordinator];

 NSString *STORE_TYPE = NSXMLStoreType;
 NSString *STORE_FILENAME = @"CDCLI.cdcli";

 NSError *error;
 NSURL *url = [NSURL fileURLWithPath:
 [applicationLogDirectory()
stringByAppendingPathComponent:STORE_FILENAME]];

 NSPersistentStore *newStore = [coordinator
addPersistentStoreWithType:STORE_TYPE
 configuration:nil
 URL:url
 options:nil
 error:&error];

 if (newStore == nil) {
 NSLog(@"Store Configuration Failure\n%@",
 ([error localizedDescription] != nil) ?
 [error localizedDescription] : @"Unknown Error");
 }
 return moc;

36 main
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Complete Source Listings

}

The Run Class

Complete listings of the declaration and implementation of the Run class for the finished tutorial are shown
in Listing 8-2 and Listing 8-3 respectively.

Listing 8-2 Listing of the declaration of the Run class

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Run : NSManagedObject {
 NSInteger processID;
}

@property (retain) NSDate *date;
@property (retain) NSDate *primitiveDate;
@property NSInteger processID;

@end

Listing 8-3 Listing of the implementation of the Run class

#import "Run.h"

@implementation Run

@dynamic date, primitiveDate;

- (void) awakeFromInsert {
 // set date to now
 self.primitiveDate = [NSDate date];
}

- (int)processID {
 [self willAccessValueForKey:@"processID"];
 NSInteger pid = processID;
 [self didAccessValueForKey:@"processID"];
 return pid;
}

- (void)setProcessID:(int)newProcessID {
 [self willChangeValueForKey:@"processID"];
 processID = newProcessID;
 [self didChangeValueForKey:@"processID"];
}

- (void)setNilValueForKey:(NSString *)key {
 if ([key isEqualToString:@"processID"]) {
 self.processID = 0;

The Run Class 37
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Complete Source Listings

 }
 else {
 [super setNilValueForKey:key];
 }
}

@end

38 The Run Class
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

Complete Source Listings

This table describes the changes to Core Data Utility Tutorial.

NotesDate

Updated title to better reflect purpose.2009-03-04

Updated to use garbage collection.2008-11-19

Corrected implementation of applicationLogDirectory() in the complete source
listings.

2008-10-15

Updated for Mac OS X v10.5.2008-02-08

Corrected function name in final code listing.2006-11-07

Corrected typographical errors.2006-10-03

Added a warning about prerequisite requirements.2006-05-23

Fixed minor typographical errors.2006-04-04

Corrected minor errors in Complete Code Listing in "Creating the Managed
Object Model."

2005-12-06

Corrected leak in sample code complete listing.2005-11-09

Corrected use of NSCalendarDate as instance variable.2005-10-04

Corrected memory leak in the managedObjectContext function code example.2005-08-11

Corrected various minor typographical errors. Set application store location to
~/Library/Logs.

2005-07-07

New document that describes the creation of a low-level Core Data
command-line utility.

2005-04-29

39
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2009-03-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Core Data Utility Tutorial
	Contents
	Tables and Listings
	Introduction
	Overview of the Tutorial
	Task Goal

	Creating the Project
	Create a New Project
	Create the project
	Link the Core Data framework
	Adopt Garbage Collection

	What Happened?

	Creating the Managed Object Model
	Specifying the Entity
	Create the Managed Object Model
	Create the Model Instance
	Create the Entity
	Add the Attributes
	Add a Localization Dictionary

	Instantiate a Managed Object Model
	Build and Test
	Complete Listing

	The Application Log Directory
	The applicationLogDirectory Function
	Update the main Function
	Build and Test

	Creating the Core Data Stack
	The managedObjectContext Function
	Create the Context Instance
	Set up the Persistent Store Coordinator and Store
	Instantiate a Managed Object Context

	Build and Test
	Complete Listing

	The Custom Managed Object Class
	Implementing the Managed Object Subclass
	Create the Class Files
	Implement the Accessor Methods
	Dealing With nil Values
	Implement the Initializer

	Create an Instance of the Run Entity
	Build and Test
	Complete Listings
	The Run Class
	The main() Function

	Listing Previous Runs
	Fetching Run Objects
	Create and Execute the Fetch Request
	Display the Results

	Build and Test

	Complete Source Listings
	main
	The Run Class

	Revision History

