
Core Data Model Versioning and Data
Migration Programming Guide
Cocoa > Data Management

2008-02-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Tiger, and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Core Data Model Versioning and Data Migration Programming
Guide 7

Organization of This Document 7

Basic Concepts 9

Versioning 11

Concepts 11
Model Versions 13

Mapping Overview 17

Mapping Model Objects 17
Creating a Mapping Model in Xcode 17

The Migration Process 19

Overview 19
Requirements for the Migration Process 19
Custom Entity Migration Policies 20
Three-Stage Migration 20

Initiating the Migration Process 23

Initiating the Migration Process 23
The Default Migration Process 24

Customizing the Migration Process 27

Is Migration Necessary 27
Initializing a Migration Manager 28
Performing a Migration 28
Multiple Passes—Dealing With Large Datasets 29

Document Revision History 31

3
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

4
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Figures and Listings

Versioning 11

Figure 1 Recipes models “Version 1.0” 11
Figure 2 Recipes model “Version 1.1” 11
Figure 3 Recipes model “Version 2.0” 12
Figure 4 Initial version of the Core Recipes model 14
Figure 5 Version 2 of the Core Recipes model 15

Mapping Overview 17

Figure 1 Mapping model for versions 1-2 of the Core Recipes models 18

Initiating the Migration Process 23

Listing 1 Opening a store using automatic migration 24

Customizing the Migration Process 27

Listing 2 Checking whether migration is necessary 27
Listing 3 Initializing a Migration Manager 28
Listing 4 Performing a Migration 28

5
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

6
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

In Mac OS X v10.5, Core Data provides an architecture to support versioning of managed object models and
migration of data from one version to another.

You should read this document if you are an experienced Core Data developer and want to learn how to
support versioning in your application.

Important: This document assumes that you are familiar with the Core Data architecture and the fundamentals
of using Core Data. You should be able to identify the parts of the Core Data stack and understand the roles
of the model, the managed object context, and the persistent store coordinator. You need to know how to
create a managed object model, how to create and programmatically interact with parts of the Core Data
stack.

If you do not meet these requirements, you should first read the Core Data Programming Guide and related
materials. You are strongly encouraged also to work through the Core Data Utility Tutorial.

Organization of This Document

This document contains the following articles:

 ■ “Basic Concepts” (page 9) describes the fundamental ideas behind versioning and migration, and
outlines the support Core Data provides for these processes.

 ■ “Versioning” (page 11) describes what is meant by a “version” of a managed object model.

 ■ “Mapping Overview” (page 17) describes the mapping model.

 ■ “The Migration Process” (page 19) describes the process of migrating data, including the three stages
of migration.

 ■ “Initiating the Migration Process” (page 23) describes how you start the migration process, and how the
default migration process proceeds.

 ■ “Customizing the Migration Process” (page 27) describes how you can customize the migration
process—that is, how you programmatically determine whether migration is necessary; how you find
the correct source and destination models and the appropriate mapping model to initialize the migration
manager; and then how you perform the migration.

You only customize the migration process if you want to initiate migration yourself. You might do this
to, for example, search locations other than the application’s main bundle for models or to deal with
large data sets by performing the migration in several passes using different mapping models.

Organization of This Document 7
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Core Data Model Versioning
and Data Migration Programming Guide

8 Organization of This Document
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Core Data Model Versioning and Data Migration Programming Guide

This article describes some of the considerations involved in creating different versions of your application,
and discusses those aspects for which Core Data provides support.

Typically, as it evolves from one version to another there are numerous aspects of your application that
change: the classes you implement, the user interface, the file format, and so on. You need to be aware of
and in control of all these aspects; there is no API that solves the problems associated with all these—for
example Cocoa does not provide a means to automatically update your user interface if you add a new
attribute to an entity in your managed object model. Core Data does not solve all the issues of how you roll
out your application. It provides support for a small—but important and non-trivial—subset of the tasks you
must perform as your application evolves.

Core Data stores are conceptually bound to the managed object model used to create them. Since a model
describes the structure of the data, changing a model will render it incompatible with (and so unable to
open) the stores it previously created. If you change your schema, you therefore need to migrate the data
in existing stores to new version. In general, managing all this yourself can be difficult.

Core Data provides support for model versioning, for mapping from one model to another, and for data
migration. Moreover, it provides an infrastructure to support the process of migration, allowing you to focus
on the details of conversion that are specific to your domain.

 ■ Model versioning allows you to specify and distinguish between different configurations of your schema.

Core Data also makes it easy to find the right model to open a given persistent store.

 ■ A mapping model parallels a managed object model, specifying how to transform objects in the source
into instances appropriate for the destination.

 ■ Data migration allows you to convert data from one model (schema) to another, using mappings.

Although Core Data makes versioning and migration easier than would typically otherwise be the case, it is
important to understand that these processes are still non-trivial in effect. You still need to carefully consider
the implications of releasing and supporting different versions of your application.

9
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Basic Concepts

10
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Basic Concepts

This article provides an overview of how versioning is supported in Core Data.

Concepts

There are two distinct views of versioning: your perspective as a developer, and Core Data’s perspective.
These may not always be the same—consider the following models.

Figure 1 Recipes models “Version 1.0”

Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients

Chef
 Attributes
name
training
 Relationships
recipes

Ingredient
 Attributes
amount
name
 Relationships
recipes

Figure 2 Recipes model “Version 1.1”

Recipe
 Attributes
cuisine
directions
name
 Relationships
chef
ingredients

Chef
 Attributes
name
training
 Relationships
recipes

Ingredient
 Attributes
amount
name
 Relationships
recipes

Recipe changes:
• Add validation rules
• Change User Info values
• Use custom class

Concepts 11
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Versioning

Figure 3 Recipes model “Version 2.0”

Recipe
 Attributes
directions
name
rating
 Relationships
chef
cuisines
ingredients

Chef
 Attributes
firstName
lastName
 Relationships
recipes

Ingredient
 Attributes
amount
name
 Relationships
recipe

Cuisine
 Attributes
name
 Relationships
recipes

As a developer, your perspective is typically that a version is denoted by an identifier—a string or number,
such as “9A218”, “2.0.7”, or “Version 1.1”. To support this view, managed object models have a set of identifiers
(see versionIdentifiers)—typically for a single model you provide a single string (the attribute itself is
a set so that if models are merged all the identifiers can be preserved). How the identifier should be interpreted
is up to you, whether it represents the version number of the application, the version that was committed
prior to going on vacation, or the last submission before it stopped working.

Core Data, on the other hand, treats these identifiers simply as “hints”. To understand why, recall that the
format of a persistent store is dependent upon the model used to create it, and that to open a persistent
store you must have a model that is compatible with that used to create it. Consider then what would happen
if you changed the model but not the identifier—for example, if you kept the identifier the same but removed
one entity and added two others. To Core Data, the change in the schema is significant, the fact that the
identifier did not change is irrelevant.

Core Data’s perspective on versioning is that it is only interested in features of the model that affect persistence.
This means that for two models to be compatible:

 ■ For each entity the following attributes must be equal: name, parent, isAbstract, and properties.

className, userInfo, and validation predicates are not compared.

 ■ For each property in each entity, the following attributes must be equal: name, isOptional,
isTransient, isReadOnly, for attributes attributeType, and for relationships destinationEntity,
minCount, maxCount, deleteRule, and inverseRelationship.

userInfo and validation predicates are not compared.

Notice that Core Data ignores any identifiers you set. In the examples above, Core Data treats version 1.0
(Figure 1 (page 11)) and 1.1 (Figure 2 (page 11)) as being compatible.

Rather than enumerating through all the relevant parts of a model, Core Data creates a 32 byte hash digest
of the components which it compares for equality (see versionHash (NSEntityDescription) and
versionHash (NSPropertyDescription)). These hashes are included in a store’s metadata so that Core
Data can quickly determine whether the store format matches that of the managed object model it may use
to try to open the store. (When you attempt to open a store using a given model, Core Data compares the
version hashes of each of the entities in the store with those of the entities in the model, and if all are the
same then the store is opened.) There is typically no reason for you to be interested in the value of a hash.

12 Concepts
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Versioning

There may, however, be some situations in which you have two versions of a model that Core Data would
normally treat as equivalent that you want to be recognized as being different. For example, you might
change the name of the class used to represent an entity, or more subtly you might keep the model the
same but change the internal format of an attribute such as a BLOB—this is irrelevant to Core Data, but it is
crucial for the integrity of your data. To support this, Core Data allows you to set a hash modifier for an entity
or property see versionHashModifier (NSEntityDescription) and versionHashModifier
(NSPropertyDescription).

In the examples above, if you wanted to force Core Data to recognize that “Version 1.0” (Figure 1 (page 11))
and “Version 1.1” (Figure 2 (page 11)) of your models are different, you could set (using
setVersionHashModifier:) an entity modifier for the Recipe entity in the second model to change the
version hash Core Data creates .

Model Versions

In Mac OS X v10.5, Core Data supports versioned managed object models. The Xcode file type is
.xcdatamodeld (instead of .xcdatamodel) which is a directory that groups versions of a model, each
represented by an individual .xcdatamodel file, and an Info.plist file that contains the version information.
Xcode allows you to specify the “current” version.

The versioned model has a new runtime format (.momd) that is a bundle containing individually compiled
.mom files. You load the .momdmodel just as you would a regular .mom file (using NSManagedObjectModel’s
initWithContentsOfURL:).

To create a versioned model, you start with a normal model such as that illustrated in Figure 4.

Model Versions 13
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Versioning

Figure 4 Initial version of the Core Recipes model

To add a version, you select the model in the Groups & Files pane, then select Design > Data Model > Add
Model Version. This creates a new directory with the same name as the selected model but with the extension
.xcdatamodeld, places the original model inside this directory, and makes a copy of the original model as
a peer. You can now select the new model and choose Design > Data Model > Set Current Version to denote
that it is the current version of the model. You edit the new model just as you would any other model (see
Figure 5).

14 Model Versions
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Versioning

Figure 5 Version 2 of the Core Recipes model

Model Versions 15
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Versioning

16 Model Versions
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Versioning

This article provides an overview of the mapping model.

In order to transform data from one version of a schema to another, you need a definition of how to perform
the transformation. In Core Data, this information is captured in a mapping model. A mapping model is a
collection of objects that specifies the transformations that are required to migrate part of a store from one
version of your model to another (for example, that one entity is renamed, an attribute is added to another,
and a third split into two).

You typically create a mapping model in Xcode. Much as the managed object model editor allows you to
graphically create the model, the mapping model editor allows you to customize the mappings between
the source and destination entities and properties.

Mapping Model Objects

Like a managed object model, a mapping model is a collection of objects. Mapping model classes parallel
the managed object model classes—there are mapping classes for a model, an entity, and a property
(NSMappingModel, NSEntityMapping, and NSPropertyMapping respectively).

 ■ An instance of NSEntityMapping specifies a source entity, a destination entity (the type of object to
create to correspond to the source object) and mapping type (add, remove, copy as is, or transform).

 ■ An instance of NSPropertyMapping specifies the name of the property in the source and in the
destination entity, and a value expression to create the value for the destination property.

The model does not contain instances of NSEntityMigrationPolicy or any of its subclasses, however
amongst other attributes instance of NSEntityMapping can specify the name of an entity migration policy
class (a subclass of NSEntityMigrationPolicy) to use to customize the migration. For more about entity
migration policy classes, see “Custom Entity Migration Policies ” (page 20).

Creating a Mapping Model in Xcode

From the File menu, you select New File and in the New File pane select Design > Mapping Model. In the
following pane, you select the source and destination models. When you click Finish, Xcode creates a new
mapping model that contains as many default mappings as it can deduce from the source and destination.
For example, given the model files shown in Figure 4 (page 14) and Figure 5 (page 15), Xcode creates a
mapping model as shown in Figure 1.

Mapping Model Objects 17
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Mapping Overview

Figure 1 Mapping model for versions 1-2 of the Core Recipes models

Reserved words in custom value expressions: If you use a custom value expression, you must escape
reserved words such as SIZE, FIRST, and LAST using a # (for example, $source.#size).

18 Creating a Mapping Model in Xcode
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Mapping Overview

During migration, Core Data creates two stacks, one for the source store and one for the destination store.
Core Data then fetches objects from the source stack and inserts the appropriate corresponding objects into
the destination stack. Note that Core Data must re-create objects in the new stack.

Overview

Recall that stores are bound to their models. Migration is required when the model doesn't match the store.
There are two areas where you get default functionality and hooks for customizing the default behavior:

 ■ When detecting version skew and initializing the migration process.

 ■ When performing the migration process.

To perform the migration process requires two Core Data stacks—which are automatically created for
you—one for the source store, one for the destination store. The migration process is performed in 3 stages,
copying objects from one stack to another.

Requirements for the Migration Process

Migration of a persistent store is performed by an instance of NSMigrationManager. To migrate a store,
the migration manager requires several things:

 ■ The managed object model for the destination store.

This is the persistent store coordinator’s model.

 ■ A managed object model that it can use to open the existing store.

 ■ A mapping model that defines a transformation from the source (the store’s) model to the destination
model.

You can specify custom entity migration policy classes to customize the migration of individual entities. You
specify custom migration policy classes in the mapping model (note the “Custom Entity Policy Name” text
field in Figure 1 (page 18)).

Overview 19
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

The Migration Process

Custom Entity Migration Policies

If your new model simply adds properties or entities to your existing model, there may be no need to write
any custom code. If the transformation is more complex, however, you might need to create a subclass of
NSEntityMigrationPolicy to perform the transformation; for example:

 ■ If you have a Person entity that also includes address information that you want to split into a separate
Address entity, but you want to ensure uniqueness of each Address.

 ■ If you have an attribute that encodes data in a string format that you want to change to a binary
representation.

The methods you override in a custom migration policy correspond to the different phases of the migration
process—these are called out in the description of the process given in “Three-Stage Migration.”

Three-Stage Migration

The migration process itself is in three stages. It uses a copy of the source and destination models in which
the validation rules are disabled and the class of all entities is changed to NSManagedObject.

To perform the migration, Core Data sets up two stacks, one for the source store and one for the destination
store. Core Data then processes each entity mapping in the mapping model in turn. It fetches objects of the
current entity into the source stack, creates the corresponding objects in the destination stack, then recreates
relationships between destination objects in a second stage, before finally applying validation constraints
in the final stage.

Before a cycle starts, the entity migration policy responsible for the current entity is sent a
beginEntityMapping:manager:error:message. You can override this method to perform any initialization
the policy requires. The process then proceeds as follows:

1. Create destination instances based on source instances.

At the beginning of this phase, the entity migration policy is sent a
createDestinationInstancesForSourceInstance:entityMapping:manager:error:message;
at the end it is sent a endInstanceCreationForEntityMapping:manager:error: message.

In this stage, only attributes (not relationships) are set in the destination objects.

Instances of the source entity are fetched. For each instance, appropriate instances of the destination
entity are created (typically there is only one) and their attributes populated (for trivial cases, name =
$source.name). A record is kept of the instances per entity mapping since this may be useful in the
second stage.

2. Recreate relationships.

At the beginning of this phase, the entity migration policy is sent a
createRelationshipsForDestinationInstance:entityMapping:manager:error: message;
at the end it is sent a endRelationshipCreationForEntityMapping:manager:error: message.

For each entity mapping (in order), for each destination instance created in the first step any relationships
are recreated.

20 Custom Entity Migration Policies
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

The Migration Process

3. Validate and save.

In this phase, the entity migration policy is sent a
performCustomValidationForEntityMapping:manager:error: message.

Validation rules in the destination model are applied to ensure data integrity and consistency, and then
the store is saved.

At the end of the cycle, the entity migration policy is sent an endEntityMapping:manager:error:message.
You can override this method to perform any clean-up the policy needs to do.

Note that Core Data cannot simply fetch objects into the source stack and insert them into the destination
stack, the objects must be re-created in the new stack. Core Data maintains “association tables” which tell it
which object in the destination store is the migrated version of which object in the source store, and vice-versa.
Moreover, because it doesn't have a means to flush the contexts it is working with, you may accumulate
many objects in the migration manager as the migration progresses. If this presents a significant memory
overhead and hence gives rise to performance problems, you can customize the process as described in
“Multiple Passes—Dealing With Large Datasets” (page 29).

Three-Stage Migration 21
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

The Migration Process

22 Three-Stage Migration
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

The Migration Process

This chapter describes how to initiate the migration process and how the default migration process works.
It does not describe customizing the migration process—this is described in “Customizing the Migration
Process” (page 27).

Initiating the Migration Process

When you initialize a persistent store coordinator, you assign to it a managed object model (see
initWithManagedObjectModel:); the coordinator uses that model to open persistent stores. You open a
persistent store using addPersistentStoreWithType:configuration:URL:options:error:. How
you use this method, however, depends on whether your application uses model versioning and on how
you choose to support migration—whether you choose to use the default migration process or custom
version skew detection and migration bootstrapping.

 ■ If your application does not support versioning, then you can simply use
addPersistentStoreWithType:configuration:URL:options:error: directly. If for some reason
the coordinator’s model is nevertheless not compatible with the store schema (that is, the version hashes
current model’s entities do not equal those in the store’s metadata), the coordinator detects this, generates
an error, and addPersistentStoreWithType:configuration:URL:options:error: returns NO.
You must deal with this error appropriately.

 ■ If your application does support versioning and you choose to use the default migration process, you
simply use addPersistentStoreWithType:configuration:URL:options:error: as described
in “The Default Migration Process” (page 24). The fundamental difference from the non-versioned
approach is that you instruct the coordinator to automatically migrate the store to the current model
version by adding an entry to the options dictionary where the key is
NSMigratePersistentStoresAutomaticallyOption and the value is an NSNumber object that
represents YES.

 ■ If your application does support versioning and you choose to use custom version skew detection and
migration bootstrapping, before opening a store you should check (using
isConfiguration:compatibleWithStoreMetadata:) whether its schema is compatible with the
coordinator’s model: if it is, you can use
addPersistentStoreWithType:configuration:URL:options:error: to open the store directly;
if it is not, you must migrate the store first then open it (again using
addPersistentStoreWithType:configuration:URL:options:error:).

Note that you could in effect use
addPersistentStoreWithType:configuration:URL:options:error: to check whether migration
is required, however this is a heavyweight operation and inefficient for this purpose.

It is important to realize that there are two orthogonal concepts:

1. You can execute custom code during the migration.

Initiating the Migration Process 23
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Initiating the Migration Process

2. You can have custom code for version skew detection and migration bootstrapping.

The migration policy classes allow you to customize the migration of entities and properties in a number of
ways, and these are typically all you need. You might, however, use custom skew detection and migration
bootstrapping so that you can take control of the migration process. For example, if you have very large
stores you could set up a migration manager with the two data models, and then use a series of mapping
models to migrate your data into your destination store (if you use the same destination URL for each
invocation, Core Data adds new objects to the existing store). This allows the framework (and you) to limit
the amount of data in memory during the conversion process.

The Default Migration Process

To open a store and perform migration (if necessary), you simply use
addPersistentStoreWithType:configuration:URL:options:error:and add to the options dictionary
an entry where the key is NSMigratePersistentStoresAutomaticallyOption and the value is an
NSNumber object that represents YES. Your code looks similar to the following example:

Listing 1 Opening a store using automatic migration

NSError *error = nil;
NSPersistentStoreCoordinator *psc = /* get a persistent store coordinator */ ;
NSURL *storeURL = /* the URL of a persistent store */ ;
NSDictionary *optionsDictionary =
 [NSDictionary dictionaryWithObject:[NSNumber numberWithBool:YES]
 forKey:NSMigratePersistentStoresAutomaticallyOption];

BOOL ok = [psc addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:storeURL
 options:optionsDictionary
 error:&error];

If the migration proceeds successfully, the existing store at storeURL is renamed with a “~” suffix before
any file extension and the migrated store saved to storeURL.

In its implementation of addPersistentStoreWithType:configuration:URL:options:error: Core
Data does the following:

1. Tries to find a managed object model that it can use to open the store.

Core Data searches through your application’s resources for and tests each in turn. If it cannot find a
suitable model, Core Data returns NO and a suitable error.

2. Tries to find a mapping model that maps from the managed object model for the existing store to that
in use by the persistent store coordinator.

Core Data searches through your application’s resources for available mapping models and tests each
in turn. If it cannot find a suitable mapping, Core Data returns NO and a suitable error.

Note that you must have created a suitable mapping model in order for this phase to succeed.

3. Creates instances of the migration policy objects required by the mapping model.

24 The Default Migration Process
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Initiating the Migration Process

Note that even if you use the default migration process you can customize the migration itself using custom
migration policy classes.

The Default Migration Process 25
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Initiating the Migration Process

26 The Default Migration Process
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Initiating the Migration Process

You only customize the migration process if you want to initiate migration yourself. You might do this to,
for example, search locations other than the application’s main bundle for models or to deal with large data
sets by performing the migration in several passes using different mapping models (see “Multiple
Passes—Dealing With Large Datasets” (page 29)).

Is Migration Necessary

Before you initiate a migration process, you should first determine whether it is necessary. You can check
with NSManagedObjectModel’s isConfiguration:compatibleWithStoreMetadata: as illustrated in
Listing 2 (page 27).

Listing 2 Checking whether migration is necessary

NSPersistentStoreCoordinator *psc = /* get a coordinator */ ;
NSString *sourceStoreType = /* type for the source store, or nil if not known
*/ ;
NSURL *sourceStoreURL = /* URL for the source store */ ;
NSError *error = nil;

NSDictionary *sourceMetadata =
 [NSPersistentStoreCoordinator metadataForPersistentStoreOfType:sourceStoreType
 URL:sourceStoreURL
 error:&error];

if (sourceMetadata == nil) {
 // deal with error
}

NSString *configuration = /* name of configuration, or nil */ ;
NSManagedObjectModel *destinationModel = [psc managedObjectModel];
BOOL pscCompatibile = [destinationModel
 isConfiguration:configuration
 compatibleWithStoreMetadata:sourceMetadata];

if (pscCompatibile) {
 // no need to migrate
}

Is Migration Necessary 27
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Customizing the Migration Process

Initializing a Migration Manager

You initialize a migration manager using initWithSourceModel:destinationModel:; you therefore first
need to find the appropriate model for the store. You get the model for the store using
NSManagedObjectModel’s mergedModelFromBundles:forStoreMetadata:. If this returns a suitable
model, you can create the migration manager as illustrated in Listing 3 (page 28) (this code fragment
continues from Listing 2 (page 27)).

Listing 3 Initializing a Migration Manager

NSArray *bundlesForSourceModel = /* an array of bundles, or nil for the main
bundle */ ;
NSManagedObjectModel *sourceModel =
 [NSManagedObjectModel mergedModelFromBundles:bundlesForSourceModel
 forStoreMetadata:sourceMetadata];

if (sourceModel == nil) {
 // deal with error
}

MyMigrationManager *migrationManager =
 [[MyMigrationManager alloc]
 initWithSourceModel:sourceModel
 destinationModel:destinationModel];

Performing a Migration

You migrate a store using NSMigrationManager’s
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:.
To use this method you need to marshal a number of parameters; most are straightforward, the only one
that requires some work is the discovery of the appropriate mapping model (which you can retrieve using
NSMappingModel’s mappingModelFromBundles:forSourceModel:destinationModel:method). This
is illustrated in Listing 4 (page 28) (a continuation of the example shown in Listing 3 (page 28)).

Listing 4 Performing a Migration

NSArray *bundlesForMappingModel = /* an array of bundles, or nil for the main
bundle */ ;
NSError *error = nil;

NSMappingModel *mappingModel =
 [NSMappingModel
 mappingModelFromBundles:bundlesForMappingModel
 forSourceModel:sourceModel
 destinationModel:destinationModel];

if (mappingModel == nil) {
 // deal with the error
}

NSDictionary *sourceStoreOptions = /* options for the source store */ ;
NSURL *destinationStoreURL = /* URL for the destination store */ ;

28 Initializing a Migration Manager
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Customizing the Migration Process

NSString *destinationStoreType = /* type for the destination store */ ;
NSDictionary *destinationStoreOptions = /* options for the destination store */
 ;

BOOL ok = [migrationManager migrateStoreFromURL:sourceStoreURL
 type:sourceStoreType
 options:sourceStoreOptions
 withMappingModel:mappingModel
 toDestinationURL:destinationStoreURL
 destinationType:destinationStoreType
 destinationOptions:destinationStoreOptions
 error:&error];

Multiple Passes—Dealing With Large Datasets

The basic approach shown above is to have the migration manager take two models, and then iterate over
the steps (mappings) provided in a mapping model to move the data from one side to the next. Because
Core Data performs a "three stage" migration—where it creates all of the data first, and then relates the data
in a second stage—it must maintain “association tables" (which tell it which object in the destination store
is the migrated version of which object in the source store, and vice-versa). Further, because it doesn't have
a means to flush the contexts it is working with, it means you'll accumulate many objects in the migration
manager as the migration progresses.

In order to address this, the mapping model is given as a parameter of the
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:
call itself. What this means is that if you can segregate parts of your graph (as far as mappings are concerned)
and create them in separate mapping models, you could do the following:

1. Get the source and destination data models

2. Create a migration manager with them

3. Find all of your mapping models, and put them into an array (in some defined order, if necessary)

4. Loop through the array, and call
migrateStoreFromURL:type:options:withMappingModel:toDestinationURL:destinationType:destinationOptions:error:
with each of the mappings

This allows you to migrate "chunks" of data at a time, while not pulling in all of the data at once.

From a "tracking/showing progress” point of view, that basically just creates another layer to work from, so
you'd be able to determine percentage complete based on number of mapping models to iterate through
(and then further on the number of entity mappings in a model you've already gone through).

Multiple Passes—Dealing With Large Datasets 29
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Customizing the Migration Process

30 Multiple Passes—Dealing With Large Datasets
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Customizing the Migration Process

This table describes the changes to Core Data Model Versioning and Data Migration Programming Guide.

NotesDate

Added a note about migrating stores from Mac OS X v10.4 (Tiger).2008-02-08

New document that describes managed object model versioning and Core Data
migration.

2007-05-18

31
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

32
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Core Data Model Versioning and Data Migration Programming Guide
	Contents
	Figures and Listings
	Introduction
	Basic Concepts
	Versioning
	Concepts
	Model Versions

	Mapping Overview
	Mapping Model Objects
	Creating a Mapping Model in Xcode

	The Migration Process
	Overview
	Requirements for the Migration Process
	Custom Entity Migration Policies
	Three-Stage Migration

	Initiating the Migration Process
	Initiating the Migration Process
	The Default Migration Process

	Customizing the Migration Process
	Is Migration Necessary
	Initializing a Migration Manager
	Performing a Migration
	Multiple Passes—Dealing With Large Datasets

	Revision History

