
Creating a Managed Object Model with Xcode
Tools > Xcode

2007-08-07

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 7

Organization of This Document 7
See Also 7

Chapter 1 Creating the Model File and the Entities 9

Creating the Model File 9
Adding Entities 10

Chapter 2 Adding Properties 13

Adding Attributes 13
Adding Relationships 14

Document Revision History 17

3
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

4
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 Creating the Model File and the Entities 9

Figure 1-1 Creating a new persistence model file 9
Figure 1-2 Empty persistence model file 10
Figure 1-3 Schema for task model 11
Figure 1-4 Adding an entity to a data model 11
Figure 1-5 Model with Employee and Department entities 12
Figure 1-6 Entity detail pane 12

Chapter 2 Adding Properties 13

Figure 2-1 Adding a property 13
Figure 2-2 Editing an attribute 14
Figure 2-3 The Employee entity’s department relationship 15
Figure 2-4 Department entity’s employees relationship 16
Figure 2-5 Employee’s directReports relationship 16

5
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

6
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

FIGURES

This document shows how to create a Core Data managed object model with Xcode.

A managed object model is an instance of the NSManagedObjectModel class. It describes a schema—a
collection of entities—that you use in your application. (If you do not understand the term "entity"—or the
related terms, "property," "attribute," and "relationship"—you should first read Core Data Basics and the
"Object Modeling" section in Cocoa Design Patterns.)

You should read this document to learn how to use the Xcode modeling tool to create a Core Data managed
object model. You should already be familiar with the basic architecture of Core Data as described in Core
Data Programming Guide; it is also helpful to have followed the tutorial in Core Data Utility Tutorial to
understand how you can create the managed object model programmatically. The data modeling tool itself
is described in Data Modeling for Core Data.

Organization of This Document

This document contains the following chapters:

1. “Creating the Model File” (page 9)

2. “Adding Properties” (page 13)

See Also

Core Data Programming Guide

Core Data Utility Tutorial

Model Object Implementation Guide

Organization of This Document 7
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

8 See Also
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

In this tutorial you create a new data model that models two entities—Employee and Department—and the
relationships between them. The model includes a number of constraints on the possible values that the
entities’ attributes and relationships can have. These constraints are automatically checked before any data
is saved to a persistent store.

The first task is to create the model file itself in Xcode; the second is to add the entities.

Creating the Model File

First create a new Cocoa-based project. If you create a Core Data based project, a data model is automatically
created for you and added to the project. If you choose a Cocoa Application or a Cocoa Document-based
Application, or if you have an existing project, then follow the next steps to add a data model to your project.

From the File menu choose New File and add a file of type Data Model (from the Design) list. Give the file a
suitable name and ensure that the file is added to your application target, as illustrated in Figure 1-1, and
press Next.

Figure 1-1 Creating a new persistence model file

Creating the Model File 9
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Model File and the Entities

On the following panel, do not select any groups or files, simply click Finish. You should now see a new data
model window like that shown in Figure 1-2.

Figure 1-2 Empty persistence model file

The window is split into a number of sections with different functions. The table views and buttons in the
top section allow you to add, delete, and edit entities and properties of entities. The area on the top right
serves as an inspector to allow you to examine and edit a selection in more detail. The bottom section presents
a graphical representation of the model. The features are described in more detail in Data Modeling for Core
Data in Xcode User Guide.

You can edit the model graphically if you prefer—this task illustrates use of the table views.

Adding Entities

The schema for the model to create is shown in Figure 1-3 (page 11).

10 Adding Entities
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Model File and the Entities

Figure 1-3 Schema for task model

1 department employees * 0..1 manager

* directReports

Department

name
budget

Employee

firstName
lastName
salary

You typically add and edit entities using the entities table view on the left of the browser pane, as illustrated
in Figure 1-4. Add a new entity called “Employee” as follows:

Figure 1-4 Adding an entity to a data model

1. Add a new entity to the model. In the entities table view, click the button with the plus sign. Alternatively,
in the Design menu choose Data Model > Add Entity. (When you have completed this step, you should
also notice that an node representing the Employee entity is added to the diagram view.)

2. In the table view, double click in the Entity cell in the newly-added row to select the entity name and
change it from “Entity” to “Employee.”

3. Tab to the Class cell and enter the text “Employee.”

4. Do not check the “Abstract” switch.

Add a Department entity by repeating steps 1-4, but using “Department” in place of “Employee.” Alternatively,
add a Department entity using the contextual menu in the diagram view. Note that you will still have to set
the class name in the browser. When you have finished, the entities table should look like that shown in
Figure 1-5.

Adding Entities 11
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Model File and the Entities

Figure 1-5 Model with Employee and Department entities

You have now defined two entities—Employee and Department—and importantly you have specified that
in your application these entities are represented by the Employee and Department classes respectively. (If
you want to test your model without creating custom classes for these entities, you must specify that the
entities are represented by NSManagedObject.) The entities are not specified as abstract—you want to
create instances of the corresponding classes in your application. To see more details about each entity, look
at the detail pane. Ensure that you have selected the General button in the segmented control to the top
right of the pane. This displays the entity detail pane, as illustrated in Figure 1-6.

Figure 1-6 Entity detail pane

Leave the remaining values at their default settings. There is no parent entity—the entities do not inherit
from any other entity. There is no need to add any user info keys, or to set up any configurations.

You can now add properties (attributes and relationships) to the entities. Note that the name of a property
must not be the same as any no-parameter method name of NSObject or NSManagedObject.

12 Adding Entities
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Model File and the Entities

The next task is to add properties to the entities. There are two sorts of property—attributes and relationships.
They share a number of features in common (in their implementation, NSAttributeDescription and
NSRelationshipDescription both inherit from NSPropertyDescription), but there are differences in
the way you configure them in the tool.

Adding Attributes

When you add an attribute you must specify name and its type—for example, string, number, date, and so
on. In addition, you can specify a default value and constraints on values that a property can have—for
example the maximum or minimum values of a numeric value, a regular expression that a string value must
match, or the cardinality of a relationship. You can specify all these sorts of constraint in the model, and they
will be automatically applied when you try to save an instance at runtime. If you want to specify other
constraints on property values, or to enforce inter-property constraints, you must implement validation
methods in the custom class for the entity. For more details, see NSManagedObject.

You can now add attributes to the entities, as described by the following steps.

1. In the entity list, select the Employee entity.

2. Add a new attribute. In the properties pane, ensure that either the Show All Properties or the Show
Attributes item is selected from the “v” pop-up menu. Click the plus button to the lower left of the table
view, as illustrated in “Adding a property,” and choose Add Attribute from the pop-up menu. Alternatively,
in the Design menu choose Data Model > Add Attribute.

3. Select the new attribute in the table view. Use the detail pane to set the attributes of the employee’s
firstName attribute as follows: the attribute is neither optional nor transient; its type is String; there
are no constraints specified for Max Length or Reg. Ex; Min Length is 2; and there is no default value.
When you have finished the pane should look like that shown in “Editing an attribute.”

4. Follow steps 1-3 to add a lastName attribute to the Employee entity, and then a name attribute to the
Department entity.

Figure 2-1 Adding a property

Adding Attributes 13
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding Properties

Figure 2-2 Editing an attribute

Follow similar steps to add a salary attribute to the Employee entity and a budget attribute to the
Department entity. These differ from the name attributes in that they are numeric values. Set the type to
Decimal, and impose suitable constraints. Both have a minimum value of 0. Set for each whatever maximum
value you think is reasonable.

Adding Relationships

In Core Data, you should almost always model both sides of a relationship. Core Data relies on this information
so that it can ensure referential integrity. If you do not model both sides of a relationship, you must do
additional work yourself to ensure that your data is not corrupted. Modeling just one side of a relationship
is strongly discouraged.

For the current example, start by adding a “department” relationship from Employee to Department, as
described by the following steps.

1. In the entity list, select the Employee entity.

2. Add a new relationship. In the properties pane, ensure that either the Show All Properties or the Show
Relationships item is selected from the “v” pop-up menu. Click the plus button to the lower left of the
table view, as illustrated in “Adding a property,” and choose Add Relationship from the pop-up menu.
(Alternatively, either in the Design menu choose Data Model > Add Relationship, or—in the diagram
view—select the line tool, drag from the Employee node to the Department node.)

3. Select the new relationship in the table view. Use the Property view in the inspector to describe Employee’s
department relationship, as shown in “The Employee entity’s department relationship.” Note the
following:

 ■ The relationship name is department.

 ■ The destination is Department.

 ■ Max and Min Count are 1 (and not editable).

 ■ The relationship is not Optional, and not Transient.

 ■ The Inverse relationship is currently No Inverse Relationship—it has not yet been created.

14 Adding Relationships
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding Properties

 ■ The Delete Rule is Nullify—this means that if an Employee instance is deleted, it is removed from
the backwards relationship (once it is specified) from its Department instance.

Figure 2-3 The Employee entity’s department relationship

Also note that in the diagram view, an arrow is added that points from the Employee entity to the Department
entity.

Now follow these steps to add an employees relationship to the Department entity.

1. In the entity list, select the Department entity.

2. Add a new relationship. In the properties section, ensure that button is selected in the segmented control.
Click the plus button to the lower left of the table view, as illustrated in “Adding a property,” and choose
Add Relationship from the pop-up menu. Alternatively, in the Design menu choose Data Model > Add
Relationship.

3. Select the new relationship in the table view. Use the Property view in the inspector to describe the
department’s employees relationship, as shown in “Department entity’s employees relationship.” Note
the following:

 ■ The relationship name is employees.

 ■ The destination is Employee.

 ■ Min Count is 0 and Max Count is 999.

 ■ The relationship is Optional and not Transient.

 ■ The Inverse relationship is department.

 ■ The Delete Rule is Deny—this means that a Department cannot be deleted if it still has employees.

Adding Relationships 15
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding Properties

Figure 2-4 Department entity’s employees relationship

Now that you have added the Department to Employee relationship, you can specify the inverse relationship
for the Employee to Department relationship.

1. In the entity list, select the Employee entity.

2. In the properties table view, select the department relationship. Use the Property view in the inspector
to set the Inverse relationship to employees

You have fully specified the relationship between the Department and Employee entities. You can now
specify the reflexive relationship in the Employee entity to describe the relationship between a manager and
direct reports.

Follow the same steps as before to create two relationships from the Employee entity to itself—that is, the
destination entity is Employee. The manager relationship is a to-one relationship, the directReports
relationship is a to-many relationship. Both are optional, and the delete rule for both is Nullify. Remember
to specify the inverse relationship for both. When you have finished, the directReports relationship should
look like the image shown in “Employee’s directReports relationship.”

Figure 2-5 Employee’s directReports relationship

16 Adding Relationships
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Adding Properties

This table describes the changes to Creating a Managed Object Model with Xcode.

NotesDate

A new document that shows how to create a Core Data managed object model
using Xcode.

2007-08-07

17
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

18
2007-08-07 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Creating a Managed Object Model with Xcode
	Contents
	Figures
	Introduction
	Creating the Model File and the Entities
	Creating the Model File
	Adding Entities

	Adding Properties
	Adding Attributes
	Adding Relationships

	Revision History

