
Cocoa Application Tutorial Using Bindings
Cocoa > Design Guidelines

2007-07-10

Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Developing Cocoa Applications Using Bindings: A Tutorial 7

Chapter 1 Creating the Project and Interface 9

Create a New Project 9
Build the User Interface 11

Chapter 2 Creating the Model 13

Create the Models 13

Chapter 3 Creating an Object Controller 15

Add a Controller 15
Establish the Model-Controller Relationship 15

Chapter 4 Binding Views to Controllers 19

Binding the Views to the Controller 19

Chapter 5 Running the Application 21

Build and Run 21

Document Revision History 23

3
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

4
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

Chapter 1 Creating the Project and Interface 9

Figure 1-1 Select the Cocoa Application project type 10
Figure 1-2 Controllers palette 10
Figure 1-3 Bindings pane 11
Figure 1-4 Final Currency Converter application 12
Figure 1-5 Adding numeric formatters to the text fields 12

Chapter 3 Creating an Object Controller 15

Figure 3-1 Create an instance of NSObjectController 15
Figure 3-2 Connect the controller’s content outlet 16
Figure 3-3 Attributes pane for the NSObjectController instance 17
Figure 3-4 Attributes pane for the NSObjectController instance with keys 17

Chapter 4 Binding Views to Controllers 19

Figure 4-1 Bindings pane for Exchange Rate text field 19
Figure 4-2 Value binding for Exchange Rate text field with settings 20

5
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

6
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

FIGURES

This tutorial takes you through the steps of building the familiar Currency Converter application using Cocoa
bindings. You might already be familiar with the Currency Converter example, which is the basis for Cocoa
Application Tutorial. This article does not repeat fundamental Cocoa programming concepts and does not
provide explicit instructions for common operations (such as applying number formatters to user interface
objects).

7
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Developing Cocoa
Applications Using Bindings: A Tutorial

8
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Developing Cocoa Applications Using Bindings: A Tutorial

This part of the tutorial guides you through building the Currency Converter application and in the process
teaches you the steps essential to building a Cocoa application using Cocoa bindings.

Create a New Project

Although the application you’ll build in this tutorial is too simple to demonstrate the full power of Cocoa
bindings, its simplicity will help you immediately grasp the potential of Cocoa bindings.

Cocoa bindings is integrated into the Cocoa framework, so any Cocoa application can use it. The Currency
Converter application you’ll build is a Cocoa document-based application. Follow these steps to create the
initial project:

1. Launch the Xcode application, located in /Developer/Applications.

2. Choose New Project from the File menu.

3. Select Cocoa Application in the Xcode Project Assistant, and click Next (as shown in Figure 1-1).

4. Enter the project name (for example, enter “CurrencyConverter”) and a destination folder for the project.

5. After creating the project, open MainMenu.nib in Interface Builder by double-clicking its icon in the
project Resources folder.

Create a New Project 9
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Project and Interface

Figure 1-1 Select the Cocoa Application project type

Interface Builder contains a palette—called Controllers, shown in Figure 1-2 —that contains the bindings
controllers you can drag to your nibs.

Figure 1-2 Controllers palette

The Bindings pane in the inspector allows you to view the bindings for a selected object. The contents of
the Bindings pane changes depending on the object selected in Interface Builder. Figure 1-3 shows the pane
when the nib file’s main window is selected.

10 Create a New Project
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Project and Interface

Figure 1-3 Bindings pane

Build the User Interface

It’s common to begin developing a Cocoa application by prototyping the application’s user interface. Cocoa
bindings complements this development approach by helping you build more full-featured prototypes than
ever before.

The final Currency Converter user interface for this tutorial is shown in Figure 1-4. Based on the value of the
Exchange Rate and Dollars to Convert fields, the application computes and updates the value displayed in
the Amount in Other Currency field.

Notice that unlike the traditional Currency Converter, the application doesn’t include a Convert button.
Rather, it uses the infrastructure of Cocoa bindings to automatically perform the conversion without requiring
the user to click a button.

Build the User Interface 11
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Project and Interface

Figure 1-4 Final Currency Converter application

Follow these steps to build this user interface:

1. Set the title of the application window to Currency Converter.

2. Drag three text fields and three labels from the Text palette.

3. Change the three labels to “Exchange Rate”, “Dollars to Convert”, and “Amount in Other Currency”.

4. Arrange the objects and change their labels to match Figure 1-4 (page 12).

5. Add a numeric formatter to each of the text fields, as shown in Figure 1-5.

Figure 1-5 Adding numeric formatters to the text fields

12 Build the User Interface
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Creating the Project and Interface

Create the Models

Next you need to implement your application’s model objects. The Currency Converter application solves a
simple problem in a well-defined problem space, so the requirements of its model objects are rather simple:
Based on the user’s input into the Exchange Rate and Dollars to Convert text fields, compute a value
representing the amount in the other currency.

To do this, the application’s model object needs to know about the values in the Dollars to Convert and
Exchange Rate fields. But unlike traditional Cocoa applications, you don’t need to write a special controller
class that mediates between the model and views. That is, Cocoa bindings eliminates the need to reference
a nib file’s user interface objects by IBOutlet, to manually extract values from them, and to manually set
values in them. Rather, Cocoa bindings uses a more abstract mechanism to get and set values in model
objects: key-value coding.

Any subclass of NSObject can be a model. You can use Interface Builder to create a subclass of NSObject
as follows:

1. Click Classes in the MainMenu.nib window.

2. Select NSObject and choose Classes > Subclass NSObject.

3. Change the name of the new class to “Converter”.

4. While the Converter class is selected in the MainMenu.nib window, choose Create Files for Converter
from the Classes menu.

All you need to do to make this class participate in Cocoa bindings is add the necessary instance variables
and accessor methods to the Converter class as follows:

1. Add the following declarations to Converter.h:

/* Converter */

#import <Cocoa/Cocoa.h>

@interface Converter : NSObject
{
 double dollarsToConvert;
 double exchangeRate;
}

- (double)amountInOtherCurrency;

@end

2. Add the following method implementation to Converter.m.

Create the Models 13
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Model

- (double)amountInOtherCurrency{
 return (double)(dollarsToConvert * exchangeRate);
}

As you can see from above code, the value of amountInOtherCurrency is derived, and simply setting the
values of dollarsToConvert: or exchangeRate: doesn’t recompute this value. So how do we trigger the
invocation of the amountInOtherCurrency method?

Cocoa bindings provides a class method you can use to trigger a change notification to update a dependent
key. For example, you can set up a dependency between changing the values of the dollarsToConvert
and exchangeRate keys to trigger an update of the value of the amountInOtherCurrency key. You typically
set up this dependency in the initialize class method belonging to the model class:

1. Implement the Converter +initialize method:

+ (void)initialize {
 [Converter setKeys:
 [NSArray arrayWithObjects:@"dollarsToConvert", @"exchangeRate", nil]
 triggerChangeNotificationsForDependentKey:@"amountInOtherCurrency"];
}

Finally, add your model, an instance of Converter, to the nib file:

1. Click the classes tab in the MainMenu.nib window in Interface Builder.

2. Select the Converter instance and choose Instantiate Converter from the Classes menu.

14 Create the Models
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Model

Add a Controller

To start using Cocoa bindings, you need to add a controller object to the nib file. This controller object is
associated with the application’s model object and provides data to the application’s view objects. As Figure
1-2 (page 10) shows, the Controller palette provides various controller objects, including NSObjectController,
NSArrayController, and NSUserDefaultsController. Each controller provides specialized functionality:
NSObjectController manages a single object, NSArrayController manages an array of objects, and
NSUserDefaultsController interacts with the user defaults database.

The Currency Converter application has a single model object, so NSObjectController is the appropriate
choice. You add an object controller as follows:

1. Drag NSObjectController from the Controller palette to the nib file window, which should then appear
as shown in Figure 3-1.

2. Optionally, rename the controller by double-clicking its label in the MainMenu.nibwindow, and entering
a new name. For this example, the object controller’s name is left unchanged.

Figure 3-1 Create an instance of NSObjectController

Establish the Model-Controller Relationship

Now that you’ve instantiated an object controller by dragging it from the Controller palette, you need to
associate it with a model object by specifying which model object it controls. You can connect the controller
to the model object, the instance of Converter you created above, as follows:

Add a Controller 15
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating an Object Controller

1. Control-drag a connection from the object controller to the Converter object in the MainMenu.nib
window.

2. Connect the controller’s content outlet, as Figure 3-2 shows.

Figure 3-2 Connect the controller’s content outlet

There are a number of ways to set a controller’s content, the easiest of which is to set its content outlet, as
you did here. When you set a controller’s content outlet to another object, you are telling the controller to
use the data that object provides and also to provide that object with data. You are telling the controller to
invoke key-value coding operations on the target of the content outlet. Controllers provide a two-way binding
between model and view objects by tying together the data represented by both so that changes to the
data in either object changes the data in the other object.

Now that you’ve instantiated a controller and associated it with the application’s model object, you need to
help the controller identify the keys in the model object with which it interacts. Simply setting a controller’s
content outlet to a model object does not provide the controller with enough information to know how
to access the data in the model object. The most important attributes of a controller are the model keys it
exposes to the views. These keys match the keys in the model class with which the controller is associated.
You expose model keys as follows:

1. Select the object controller in the nib file window and choose the Attributes pane in the inspector, as
shown in Figure 3-3.

2. Add three keys to the object controller by clicking the Add button: dollarsToConvert, exchangeRate,
and amountInOtherCurrency.

16 Establish the Model-Controller Relationship
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating an Object Controller

3. The pane in Figure 3-3 should now look like Figure 3-4.

Figure 3-3 Attributes pane for the NSObjectController instance

Figure 3-4 Attributes pane for the NSObjectController instance with keys

Establish the Model-Controller Relationship 17
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating an Object Controller

18 Establish the Model-Controller Relationship
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating an Object Controller

Binding the Views to the Controller

Now that you have connected the controller and the model, and exposed the desired model keys, you can
start binding user interface elements to the controller.

To bind a user interface element, simply select it and display the Bindings pane in the inspector. Figure 4-1
shows the Bindings pane as it appears when you select the Exchange Rate text field.

Figure 4-1 Bindings pane for Exchange Rate text field

The Bindings pane organizes individual bindings into binding groups. Different user interface elements have
different sets of available bindings. The bindings available to a window, for example, differ in part from those
available to a text field.

Every binding provided by Cocoa bindings includes at least three aspects: Bind to, Controller Key, and Model
Key Path. The Bind to aspect identifies the controller to which the binding is attached. The Controller Key
aspect specifies the access point in the controller object that the binding uses to get and set data. The Model
Key Path aspect specifies the key path in the model object to which the binding applies.

In this example, you need to bind the text fields to the corresponding model keys. Follow these steps to bind
each text field:

Binding the Views to the Controller 19
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Binding Views to Controllers

1. Select the text field, display the Bindings pane in the inspector, and disclose the value binding.

2. Choose NSObjectController or whatever name was given to the controller from the Bind to menu.

3. Choose selection from the Controller Key menu.

4. Choose the appropriate model key from the Model Key Path menu as shown in Figure 4-2.

Figure 4-2 Value binding for Exchange Rate text field with settings

This concrete example should help you understand what the value binding’s configuration implies: The
content of the text field is bound to the value of the exchangeRate key, which Cocoa bindings finds on the
model object using key-value coding. Cocoa bindings knows to look for that key in the model object that is
bound to the content outlet of the controller specified by the Bind to aspect—in this example, the controller
is the NSObjectController instance you configured earlier, whose content outlet points to the Converter
object you instantiated in the nib file. The Controller Key aspect specifies the access point in the controller
on which the binding acts.

Array controllers, for example, manage an array of objects. In some contexts, such as when binding the
contents of a table view, you may want to access all the objects an array controller manages, which it provides
through its arrangedObjects controller key. In other contexts, such as when displaying the value of a cell
in the table row a user selected, you may be concerned with a single object in the array, which the array
controller provides through its selection controller key.

20 Binding the Views to the Controller
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Binding Views to Controllers

Build and Run

When you build and run the application and you should have a fully functional currency converter that
resembles Figure 1-4 (page 12).

Users enter data in the Dollars to Convert and Exchange Rate text fields, and when they leave either of those
fields, the views send messages to controller that cause Cocoa bindings to attempt to set the value of the
dollarsToConvert and exchangeRate instance variables and also to get the value of the
amountInOtherCurrency method because a dependency was established between these model keys in
“Creating the Model” (page 13).

So what is happening behind the scenes? In the running application, when a user enters data in the Dollars
to Convert text field, Cocoa bindings attempts to use that value to set the value of the data member to which
the text field’s value aspect is bound—the dollarsToConvert model key. It does this by invoking the
key-value coding accessor setValue:forKey:.

At exactly what point does Cocoa bindings invoke setValue:forKey:? It invokes it when the text field
sends an endEditing: message. If you configure the text field to continuously update its value by selecting
its value binding’s Continuously Updates Value option, setValue:forKey: is invoked each time the text
field receives a keystroke.

Since bindings are bidirectional, is it possible for each end of the binding (meaning the model and view) to
provide conflicting values? No, because when the text field sends an endEditing: message, key-value
coding takes over and invokes setValue:forKey:. When that operation finishes, key-value observing takes
over to display the value of the key to which the text field is bound. So, the value displayed in a bound user
interface object is ultimately resolved to the result of key-value observing operations.

Note that unlike the traditional Currency Converter application, you didn’t need to add any IBOutlets to the
application’s model class, manually get the values the user enters, or invoke setStringValue on any of the
user interface’s text fields to populate their values. All this kind of glue code is handled for you automatically
by Cocoa bindings.

Build and Run 21
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Running the Application

22 Build and Run
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Running the Application

This table describes the changes to Cocoa Application Tutorial Using Bindings.

NotesDate

Corrected minor typos.2007-07-10

Corrected figure titles in "Binding Views to Controllers".2007-02-08

Corrected value display in example. Updated for Xcode 2.4.2006-10-03

Corrected minor typos; changed title from "Developing Cocoa Applications
Using Bindings: A Tutorial."

2006-04-04

Corrected figure in “Binding the Views to the Controller” (page 19).2004-08-22

Clarified the description of the Controller palette and Bindings inspector in
“Creating the Project and Interface” (page 9).

Initial release.2004-04-22

23
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2007-07-10 | © 2004, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Cocoa Application Tutorial Using Bindings
	Contents
	Figures
	Introduction
	Creating the Project and Interface
	Create a New Project
	Build the User Interface

	Creating the Model
	Create the Models

	Creating an Object Controller
	Add a Controller
	Establish the Model-Controller Relationship

	Binding Views to Controllers
	Binding the Views to the Controller

	Running the Application
	Build and Run

	Revision History

