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Instances of the NSCursor class manage the appearance of the cursor.

Organization of This Document

The following articles provide an introduction to cursors and their usage:

 ■ “About Cursors” (page 7) describes how cursors work.

 ■ “Setting the Current Cursor” (page 9) describes how to change the current cursor being displayed.
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Instances of the NSCursor class manage the appearance of the cursor. When you initialize a cursor—the
designated initializer is initWithImage:hotSpot:—you assign it an NSImage object and a point to be
the hot spot. The image is usually a small, opaque icon—for example, a pair of cross-hairs—surrounded by
transparent pixels. The pixels in the cursor image are mapped on a flipped coordinate system with the upper
left pixel being (0,0).

To determine exactly when the mouse is inside a particular cursor rectangle, the Application Kit tracks a
single pixel in the cursor image. This pixel is known as the hot spot, and you can reference it using the
hotSpot method. By definition, the location of the current cursor’s hot spot is the location of the mouse;
when the hot spot is inside a cursor rectangle, so is the mouse. The hot spot is useful not only for determining
which cursor is current, but for determining where a mouse click should have its effect.

An NSCursor object is immutable: you cannot change its hot spot or image after it’s created. Instead, use
initWithImage:hotSpot: to create a new one with the new settings.
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An application may use several cursor instances—for example, one that looks like an arrow and one that
looks like an I-beam. The instance that currently appears on the screen is called the “current cursor,” and is
referenced by the currentCursor class method. You can set the current cursor in several ways:

 ■ You can send a set message to the cursor.

 ■ You can manage cursors in a stack, using the push and popmethods of NSCursor. The stack’s top cursor
is the current cursor.

 ■ You can tell a cursor to become current when the mouse enters a region in a view known as the cursor
rectangle. The NSView class provides methods to support using cursor rectangles to change the cursor
image. For more information, see Cocoa Event-Handling Guide.

 ■ You can tell a cursor to set itself when the mouse exits a view’s cursor rectangle.

The cursor rectangle is a region inside an NSView that triggers a change in the current cursor. To create a
cursor rectangle, use the addCursorRect:cursor: method of NSView to associate a region of the view
with the cursor, as shown in the Objective-C example that follows. To make the association persistent, you
can call addCursorRect:cursor: from within an override of resetCursorRects method of NSView, as
described in Cocoa Event-Handling Guide.

[aView addCursorRect:aRect cursor:aCursor];
[aCursor setOnMouseEntered:YES];

Here is a Java version of the same operation:

aView.addCursorRect(aRect, aCursor);
aCursor.setOnMouseEntered(true);

This assignment means that when the mouse enters aRect, aCursor receives a mouseEntered: event
message, which the cursor uses to make itself the current cursor. However, before the cursor can acknowledge
the mouseEntered: message, you must invoke the cursor’s setOnMouseEntered: method. Alternatively,
you can set the cursor when the mouse leaves the cursor rectangle by invoking the setOnMouseExited:
method instead of setOnMouseEntered:. A cursor that sets itself upon leaving the cursor rectangle receives
a mouseExited: event message to instigate the change.

The Application Kit provides two ready-made cursors for commonly used cursor images. You can retrieve
these cursors by using the arrowCursor and IBeamCursor class methods. There is no NSCursor instance
for the wait cursor, because the system automatically displays it at the appropriate times.
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This table describes the changes to Cursor Management.

NotesDate

Updated information about cursor size and types. Replaced one article with a
more relevant article.

2008-03-11

Updated the table of contents to reflect all of the available articles.2006-03-08

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12
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