
Cursor Management
Cocoa > User Experience

2008-03-11

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and Objective-C
are trademarks of Apple Inc., registered in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Cursor Management 5

Organization of This Document 5

About Cursors 7

Setting the Current Cursor 9

Document Revision History 11

3
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

4
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Instances of the NSCursor class manage the appearance of the cursor.

Organization of This Document

The following articles provide an introduction to cursors and their usage:

 ■ “About Cursors” (page 7) describes how cursors work.

 ■ “Setting the Current Cursor” (page 9) describes how to change the current cursor being displayed.

Organization of This Document 5
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Cursor Management

6 Organization of This Document
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Cursor Management

Instances of the NSCursor class manage the appearance of the cursor. When you initialize a cursor—the
designated initializer is initWithImage:hotSpot:—you assign it an NSImage object and a point to be
the hot spot. The image is usually a small, opaque icon—for example, a pair of cross-hairs—surrounded by
transparent pixels. The pixels in the cursor image are mapped on a flipped coordinate system with the upper
left pixel being (0,0).

To determine exactly when the mouse is inside a particular cursor rectangle, the Application Kit tracks a
single pixel in the cursor image. This pixel is known as the hot spot, and you can reference it using the
hotSpot method. By definition, the location of the current cursor’s hot spot is the location of the mouse;
when the hot spot is inside a cursor rectangle, so is the mouse. The hot spot is useful not only for determining
which cursor is current, but for determining where a mouse click should have its effect.

An NSCursor object is immutable: you cannot change its hot spot or image after it’s created. Instead, use
initWithImage:hotSpot: to create a new one with the new settings.

7
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

About Cursors

8
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

About Cursors

An application may use several cursor instances—for example, one that looks like an arrow and one that
looks like an I-beam. The instance that currently appears on the screen is called the “current cursor,” and is
referenced by the currentCursor class method. You can set the current cursor in several ways:

 ■ You can send a set message to the cursor.

 ■ You can manage cursors in a stack, using the push and popmethods of NSCursor. The stack’s top cursor
is the current cursor.

 ■ You can tell a cursor to become current when the mouse enters a region in a view known as the cursor
rectangle. The NSView class provides methods to support using cursor rectangles to change the cursor
image. For more information, see Cocoa Event-Handling Guide.

 ■ You can tell a cursor to set itself when the mouse exits a view’s cursor rectangle.

The cursor rectangle is a region inside an NSView that triggers a change in the current cursor. To create a
cursor rectangle, use the addCursorRect:cursor: method of NSView to associate a region of the view
with the cursor, as shown in the Objective-C example that follows. To make the association persistent, you
can call addCursorRect:cursor: from within an override of resetCursorRects method of NSView, as
described in Cocoa Event-Handling Guide.

[aView addCursorRect:aRect cursor:aCursor];
[aCursor setOnMouseEntered:YES];

Here is a Java version of the same operation:

aView.addCursorRect(aRect, aCursor);
aCursor.setOnMouseEntered(true);

This assignment means that when the mouse enters aRect, aCursor receives a mouseEntered: event
message, which the cursor uses to make itself the current cursor. However, before the cursor can acknowledge
the mouseEntered: message, you must invoke the cursor’s setOnMouseEntered: method. Alternatively,
you can set the cursor when the mouse leaves the cursor rectangle by invoking the setOnMouseExited:
method instead of setOnMouseEntered:. A cursor that sets itself upon leaving the cursor rectangle receives
a mouseExited: event message to instigate the change.

The Application Kit provides two ready-made cursors for commonly used cursor images. You can retrieve
these cursors by using the arrowCursor and IBeamCursor class methods. There is no NSCursor instance
for the wait cursor, because the system automatically displays it at the appropriate times.

9
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Setting the Current Cursor

10
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Setting the Current Cursor

This table describes the changes to Cursor Management.

NotesDate

Updated information about cursor size and types. Replaced one article with a
more relevant article.

2008-03-11

Updated the table of contents to reflect all of the available articles.2006-03-08

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

11
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

12
2008-03-11 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Cursor Management
	Contents
	Introduction
	About Cursors
	Setting the Current Cursor
	Revision History

