
Dates and Times Programming Topics for
Cocoa
Cocoa > Data Management

2007-09-04

Apple Inc.
© 2002, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Monaco, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Dates and Times Programming Topics for Cocoa 5

Who Should Read This Document 5
Organization of This Document 5

Dates 7

Dates 7
Creating Date Objects 8
Basic Date Calculations 8

Calendars 11

Creating a Calendar 11
Calendrical Calculations 12

Using Time Zones 13

Converting Dates to Strings 15

String Representations of NSDate Objects 15
The Calendar Format 16
String Representations of NSCalendarDate Objects 17

Document Revision History 19

3
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

4
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

This topic describes how to handle dates and times.

Who Should Read This Document

You should read this document to learn how to create and use dates and times with Cocoa.

Organization of This Document

These articles describe dates, times, and calendars in Cocoa:

 ■ “Dates” (page 7)

 ■ “Calendars” (page 11)

 ■ “Using Time Zones” (page 13)

 ■ “Converting Dates to Strings” (page 15)

Who Should Read This Document 5
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Introduction to Dates and Times Programming
Topics for Cocoa

6 Organization of This Document
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Introduction to Dates and Times Programming Topics for Cocoa

This article describes the classes you use to represent dates in Cocoa, and the relationships between them.

Dates

Cocoa gives you two ways to represent dates and times.

 ■ A date object is useful for representing a date users don’t see. It has methods for creating dates, comparing
dates, and computing intervals. This is implemented by NSDate.

 ■ A Gregorian date object, a special type of date object, is useful for representing dates users do see. It
adds methods for converting dates to strings, converting strings to dates, and retrieving elements from
dates (such as hours, minutes, and the day of the week). This is implemented by NSCalendarDate in
Objective-C and by com.apple.cocoa.foundation.NSGregorianDate in Java.

All kinds of date objects are immutable since they represent a invariant point in time.

Like various other Foundation classes, NSDate enables you to obtain operating-system functionality (dates
and times) without depending on operating-system internals. It also provides a basis for the NSRunLoop and
NSTimer classes, which use concrete date objects to implement local event loops and timers.

“Date” as used here implies clock time as well. Dates store their times as the number of seconds relative to
an absolute reference time: the first instant of 1 January, 2001, Greenwich Mean Time (GMT). Dates before
then are stored as negative numbers; dates after then are stored as positive numbers. The standard unit of
time for date objects is a value typed as double in Java and NSTimeInterval in Objective-C and is expressed
as seconds. These types makes possible a wide and fine-grained range of date and time values, giving precision
within milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to the absolute reference date. The sole primitive
method of NSDate, timeIntervalSinceReferenceDate, provides the basis for all the other methods in
the NSDate interface. NSDate converts all date and time representations to and from NSTimeInterval
values that are relative to the absolute reference date. A positive interval relative to a date represents a point
in the future, a negative interval represents a time in the past.

You can use the time zone associated with a date to change how the date prints its time interval. The time
zone does not change how the time interval is stored. Because the value is stored independent of the time
zone, you can accurately compare Gregorian dates with any other date objects or use them to create other
date objects. It also means that you can track a date across different time zones; that is, you can create a new
Gregorian date with a different time zone to see how the particular date is represented in that time zone.

Mac OS X implements time according to the Network Time Protocol (NTP) standard, which is based on
Coordinated Universal Time. The current private implementations of NSDate follow the NTP standard.
However, they do not account for leap seconds and therefore are not synchronized with International Atomic
Time (the most accurate).

Dates 7
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dates

Creating Date Objects

If you want to store the current time, use the date class method
currentTimeIntervalSinceReferenceDate to create the date object. If you want to store some time
other than the current time, use one of the Java constructors or Objective-C dateWithTimeInterval...
methods.

The constructors or dateWithTimeInterval... methods create date objects relative to a particular time,
which the method name describes. You specify (in seconds) how much more recent or how much more in
the past you want your date object to be. To specify a date that occurs earlier than the method’s reference
date, use a negative number of seconds.

The Objective-C code fragment below defines two date objects. tomorrow is exactly 24 hours from the current
date and time, and yesterday is exactly 24 hours earlier than the current date and time.

NSTimeInterval secondsPerDay = 24 * 60 * 60;
NSDate *tomorrow = [NSDate
 dateWithTimeIntervalSinceNow:secondsPerDay];
NSDate *yesterday = [NSDate
 dateWithTimeIntervalSinceNow:-secondsPerDay];

To get new date objects with date-and-time values adjusted from existing date objects, use
addTimeInterval:.

NSTimeInterval secondsPerDay = 24 * 60 * 60;
NSDate *today = [NSDate date];
NSDate *tomorrow, yesterday;

tomorrow = [today addTimeInterval:secondsPerDay];
yesterday = [today addTimeInterval:-secondsPerDay];

Basic Date Calculations

To compare dates, use the isEqualToDate:, compare:, laterDate:, and earlierDate:methods. These
methods perform exact comparisons, which means they will detect subsecond differences between dates.
You might want to compare dates with a less fine granularity. For example, you might want to consider two
dates equal if they are within a minute of each other. If this is the case, use timeIntervalSinceDate: to
compare the two dates or use a Gregorian date instead (NSCalendarDate in Objective-C, NSGregorianDate
in Java). The following Objective-C code shows how to use timeIntervalSinceDate: to see if two dates
are within one minute (60 seconds) of each other.

if (fabs([date2 timeIntervalSinceDate:date1]) < 60) ...

To obtain the difference between a date object and another point in time, you can send a timeInterval...
message to the date object. For instance, timeIntervalSinceNow gives you the time, in seconds, between
the current time and the receiving date object.

8 Creating Date Objects
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dates

To retrieve conventional elements of an Gregorian date, use the …Of… methods. For example, dayOfWeek
returns a number that indicates the day of the week (0 is Sunday). The monthOfYear method returns a
number between 1 and 12 that indicates the month. If you are using Mac OS X v10.4 or later, you can use a
calendar object for more complicated calculations to determine, for example, how many weeks or months
there are between two dates—see “Calendars” (page 11).

Basic Date Calculations 9
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dates

10 Basic Date Calculations
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dates

Calendars encapsulate information about systems of reckoning time in which the beginning, length, and
divisions of a year are defined. They provide information about the calendar and support for calendrical
computations such as determining the range of a given calendrical unit and adding units to a given absolute
time. This article describes the basic features of the NSCalendar class.

In Mac OS X version 10.4 and later, the NSCalendar class provides an Objective-C implementation of calendars
for Cocoa. NSCalendar is closely associated with the NSDateComponents class, instances of which describe
the components required for calendrical computations.

In a calendar, day, week, weekday, month, and year numbers are generally 1-based, but there may be
calendar-specific exceptions. Ordinal numbers, where they occur, are 1-based. Some calendars represented
by this API may have to map their basic unit concepts into year/month/week/day/… nomenclature. For
example, a calendar composed of 4 quarters in a year instead of 12 months uses the “month” unit to represent
quarters. The particular values of the unit are defined by each calendar, and are not necessarily “consistent
with” or have a “correspondence with,” values for that unit in another calendar.

Creating a Calendar

You create a calendar object by specifying an identifier for the calendar you want. Mac OS X provides data
for several different calendars—Buddhist, Chinese, Gregorian, Hebrew, Islamic, and Japanese—specified by
constants in NSLocale. You can get the calendar for the user's preferred locale (or in general from any
NSLocale object) using the key NSLocaleCalendar, or most easily using the NSCalendar method
currentCalendar. The following code fragment shows how to create a calendar object for the Japanese
calendar, and for the current user:

NSCalendar *japaneseCalendar = [[NSCalendar alloc]
 initWithCalendarIdentifier:NSJapaneseCalendar];

NSCalendar *usersCalendar = [[NSCalendar alloc] initWithCalendarIdentifier:
 [[NSLocale currentLocale] objectForKey:NSLocaleCalendar]];

NSCalendar *currentCalendar = [NSCalendar currentCalendar];

Here, usersCalendar and currentCalendar are equal, although they are different objects.

Creating a Calendar 11
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Calendars

Calendrical Calculations

To do calendar arithmetic, you use NSDate objects in conjunction with a calendar. For example, to convert
between a decomposed date in one calendar and another calendar, you must first convert the decomposed
elements to a date using the first calendar, then decompose it using the second. NSDate provides the absolute
scale and epoch for dates and times, which can then be rendered into a particular calendar, for calendrical
computations or user display.

Two NSCalendar methods—dateFromComponents: and
dateByAddingComponents:toDate:options:—take as a parameter an NSDateComponents object that
describes the calendrical components required for the computation. You can provide as many components
as you need (or choose to). When there is incomplete information to compute an absolute time, default
values similar to 0 and 1 are usually chosen by a calendar, but this is a calendar-specific choice. If you provide
inconsistent information, calendar-specific disambiguation is performed (which may involve ignoring one
or more of the parameters).

The methods (components:fromDate: and components:fromDate:toDate:options:) take a bit mask
parameter that specifies which components to calculate when returning an NSDateComponents object. The
bit mask is composed of NSCalendarUnit constants. You can use
components:fromDate:toDate:options: to conveniently determine the temporal difference between
two dates in units other than seconds (which you could calculate with the NSDate method,
timeIntervalSinceDate:). The following code fragment shows how to get the approximate number of
months and days between two dates using a Gregorian calendar:

NSDate *startDate = ...;
NSDate *endDate = ...;

NSCalendar *gregorian = [[NSCalendar alloc]
 initWithCalendarIdentifier:NSGregorianCalendar];

unsigned int unitFlags = NSMonthCalendarUnit | NSDayCalendarUnit;

NSDateComponents *components = [gregorian components:unitFlags
 fromDate:startDate
 toDate:endDate options:0];
int months = [components month];
int days = [components day];

It is important to note that an instance of NSDateComponents is meaningless in itself; you need to know
what calendar it is interpreted against, and you need to know whether the values are absolute values of the
units, or quantities of the units. Note also that there are differences in the way that NSCalendar’s Gregorian
calendar (NSGregorianCalendar) andNSCalendarDate interpret components—for example,NSCalendar’s
Gregorian calendar’s week (interpreted using NSDateComponents’s weekday) starts with Sunday = 1, whereas
NSCalendarDate’s week (see dayOfWeek) starts with Sunday = 0.

12 Calendrical Calculations
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Calendars

NSTimeZone is an abstract class that defines the behavior of time zone objects. Time zone objects represent
geopolitical regions. Consequently, these objects have names for these regions. Time zone objects also
represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and an abbreviation
(such as “PST”).

NSTimeZone provides several methods to make time zone objects. In Java, you use the constructors. In
Objective-C, you use the class methods timeZoneWithName:, timeZoneWithAbbreviation:,
timeZoneForSecondsFromGMT:. The most flexible method is timeZoneWithName:. The name may be in
any of the formats understood by the system, for example "EST", "Etc/GMT-2",
"America/Argentina/Buenos_Aires", "Europe/Monaco", "US/Pacific", or "posixrules", as shown in the following
code fragment:

NSTimeZone *timeZoneEST = [NSTimeZone timeZoneWithName:@"EST"];
NSTimeZone *timeZoneBuenos_Aires =
 [NSTimeZone timeZoneWithName:@"America/Argentina/Buenos_Aires"];
NSTimeZone *timeZonePosix =
 [NSTimeZone timeZoneWithName:@"posixrules"];

If you use timeZoneWithAbbreviation:, you can use only abbreviations such as "EST". In the following
code fragment, timeZoneEST will be initialized correctly, whereas timeZoneUSPacific will be nil.

NSTimeZone *timeZoneEST = [NSTimeZone timeZoneWithAbbreviation:@"EST"];
NSTimeZone *timeZoneUSPacific =
 [NSTimeZone timeZoneWithAbbreviation:@"US/Pacific"];
// timeZoneUSPacific = nil

For a complete list of time zone names and abbreviations known to the system, you can see the output of
CFTimeZoneCopyKnownNames, as shown in the following code fragment:

#import <CoreFoundation/CoreFoundation.h>

NSString *timeZoneInformation = (NSString *)CFTimeZoneCopyKnownNames();
NSLog(@"timeZoneInformation: %@", timeZoneInformation);

The class also permits you to set the default time zone within your application (setDefaultTimeZone:).
You can access this default time zone at any time with the defaultTimeZone class method, and with the
localTimeZone class method, you can get a relative time zone object that decodes itself to become the
default time zone for any locale in which it finds itself.

Some Gregorian date methods return date objects that are automatically bound to time zone objects. These
date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you specify
otherwise, objects returned from Gregorian date are bound to the default time zone for the current locale.

13
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Using Time Zones

14
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Using Time Zones

The first section, “String Representations of NSDate Objects” (page 15), describes some formatting methods
for NSDate. The last two sections, “The Calendar Format” (page 16) and “String Representations of
NSCalendarDate Objects” (page 17), describes methods for formatting NSCalendarDate.

Important: The preferred way to convert a date to a string, or a string to a date, is to use a date formatter,
as described in Data Formatting Programming Guide for Cocoa. For the sake of old code that was written
before date formatters were available, the Objective-C interfaces for NSDate and NSCalendarDate still
contain some methods for string conversions.

String Representations of NSDate Objects

To represent your date object as an NSString object, use the description... methods. The simplest
method, description, prints out the date in the format YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM
represents the time zone offset in hours and minutes from GMT. (Adding the offset to the specific time yields
the equivalent GMT.) To have a specific locale dictionary affect the representation of your NSDate object,
use descriptionWithLocale: instead of description. The following keys in the locale dictionary affect
NSDate objects:

DescriptionKey

Specifies how dates with times are printed. The default is to use full month
names and days with a 24 hour clock, as in “Sunday, January 01, 2001
23:00:00 Pacific Standard Time.”

NSTimeDateFormatString

Specifies how the morning and afternoon designations are printed. The
default is AM and PM.

NSAMPMDesignation

Specifies the names for the months.NSMonthNameArray

Specifies the abbreviations for the months.NSShortMonthNameArray

Specifies the names for the days of the week.NSWeekDayNameArray

Specifies the abbreviations for the days of the week.NSShortWeekDayNameArray

Note that NSDate’s implementation of the descriptionmethod uses NSCalendarDate. NSCalendarDate
does not model the transition from the Julian to the Gregorian calendar, so using NSDate’s description
method yields inaccurate results for dates earlier than October 1582. If you need to describe dates earlier
than the transition, you should use NSDateFormatter (as described in Data Formatting Programming Guide
for Cocoa).

String Representations of NSDate Objects 15
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Converting Dates to Strings

The Calendar Format

Each NSCalendarDate object has a calendar format associated with it. This format is a string that contains
date-conversion specifiers that are very similar to those used in the standard C library function strftime().
NSCalendarDate interprets dates that are represented as strings conforming to this format. You can set
the default format for an NSCalendarDate object at initialization time or using the setCalendarFormat:
method. Several methods allow you to specify formats other than the one bound to the object.

The date conversion specifiers cover a range of date conventions:

DescriptionConversion Specifier

a '%' character%%

abbreviated weekday name%a

full weekday name%A

abbreviated month name%b

full month name%B

shorthand for %X %x, the locale format for date and time%c

day of the month as a decimal number (01-31)%d

same as %d but does not print the leading 0 for days 1 through 9%e

milliseconds as a decimal number (000-999)%F

hour based on a 24-hour clock as a decimal number (00-23)%H

hour based on a 12-hour clock as a decimal number (01-12)%I

day of the year as a decimal number (001-366)%j

month as a decimal number (01-12)%m

minute as a decimal number (00-59)%M

AM/PM designation for the locale%p

second as a decimal number (00-59)%S

weekday as a decimal number (0-6), where Sunday is 0%w

date using the date representation for the locale%x

time using the time representation for the locale%X

year without century (00-99)%y

year with century (such as 1990)%Y

16 The Calendar Format
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Converting Dates to Strings

DescriptionConversion Specifier

time zone name (such as Pacific Daylight Time)%Z

time zone offset in hours and minutes from GMT (HHMM)%z

Note that most of the formats that specify numeric values pad the width of the value with 0s (for example,
%S represents 6 seconds as 06). You can suppress these 0s using a width specifier, just as you would with,
for example, printf, as illustrated by the following example.

NSCalendarDate *date = [NSCalendarDate dateWithYear:2006 month:2 day:2
 hour:2 minute:2 second:2
 timeZone:nil];
[date setCalendarFormat:@"%m (%1m), %d (%1d), %I (%1I), %j (%1j), %S (%1S)"];
NSLog(@"date: %@", date);

// Output: date: 02 (2), 02 (2), 02 (2), 033 (33), 02 (2)

String Representations of NSCalendarDate Objects

NSCalendarDate provides several description... methods for representing dates as strings. These
methods—description, descriptionWithLocale:, descriptionWithCalendarFormat:, and
descriptionWithCalendarFormat:locale:—take an implicit or explicit calendar format. The user’s
locale information affects the returned string. NSCalendarDate accesses the locale information as an
NSDictionary object. If you use descriptionWithLocale: or
descriptionWithCalendarFormat:locale:, you can specify a different locale dictionary. The following
keys in the locale dictionary affect NSCalendarDate:

DescriptionLocale Key

Specifies how dates with times are printed, affecting strings that use the
format specifiers %c, %X, or %x. The default is to use abbreviated months
and days with a 24 hour clock, as in “Sun Jan 01 23:00:00 +6 2001”.

NSTimeDateFormatString

Specifies how the morning and afternoon designations are printed,
affecting strings that use the %p format specifier. The default is AM and
PM.

NSAMPMDesignation

Specifies the names for the months, affecting strings that use the %B format
specifier.

NSMonthNameArray

Specifies the abbreviations for the months, affecting strings that use the
%b format specifier.

NSShortMonthNameArray

Specifies the names for the days of the week, affecting strings that use the
%A format specifier.

NSWeekDayNameArray

Specifies the abbreviations for the days of the week, affecting strings that
use the %a format specifier.

NSShortWeekDayNameArray

String Representations of NSCalendarDate Objects 17
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Converting Dates to Strings

If you subclass NSCalendarDate and override description, you should also override
descriptionWithLocale:. The stringWithFormat: method of NSString uses
descriptionWithLocale: instead of description when you use the %@ conversion specifier to print an
NSCalendarDate. That is, this message:

[NSString stringWithFormat:@"The current date and time are %@",
 [MyNSCalendarDateSubclass date]]

invokes descriptionWithLocale:.

18 String Representations of NSCalendarDate Objects
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Converting Dates to Strings

This table describes the changes to Dates and Times Programming Topics for Cocoa.

NotesDate

Enhanced discussion of calendrical calculations using NSDateComponents.2007-09-04

Added note regarding Julian and Gregorian calendars.2007-03-06

Corrected typographical errors. Added a note about the use of width specifiers
for calendar date format strings.

2006-05-23

Updated to include NSCalendar and NSDateFormatter changes introduced in
Mac OS X v10.4.

2006-02-07

Changed title from "Dates and Times." Corrected minor typographic error.2005-08-11

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

19
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Document Revision History

20
2007-09-04 | © 2002, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Dates and Times Programming Topics for Cocoa
	Contents
	Introduction
	Dates
	Dates
	Creating Date Objects
	Basic Date Calculations

	Calendars
	Creating a Calendar
	Calendrical Calculations

	Using Time Zones
	Converting Dates to Strings
	String Representations of NSDate Objects
	The Calendar Format
	String Representations of NSCalendarDate Objects

	Revision History

