
Dialogs and Special Panels
Cocoa > User Experience

2009-02-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Cocoa, Leopard,
Mac, Mac OS, and Objective-C are trademarks
of Apple Inc., registered in the United States
and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Dialogs and Special Panels 7

Organization of This Document 7

Types of Alerts 9

Displaying Alert Dialogs 11

Using the NSAlert Class 11
Using the Functional APIs 12

Customizing Alert Dialogs 13

Managing Accessory Views 13
Managing the Suppression Button 14

Displaying Alert Help 15

Document Revision History 17

3
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Figures and Listings

Types of Alerts 9

Figure 1 A standard alert with an application icon 9
Figure 2 A caution alert with the caution icon 9

Displaying Alert Dialogs 11

Listing 1 Creating and initializing the NSAlert object 11
Listing 2 Running the dialog and interpreting the result 11

Customizing Alert Dialogs 13

Listing 1 Displaying an alert with an accessory view and a suppression button 13

Displaying Alert Help 15

Listing 1 Setting the help button and delegate for an alert dialog 15
Listing 2 Implementing the delegate method for displaying alert help 15

5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

6
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

This topic describes alert dialogs and other special panels.

An alert notifies users about some event and, optionally, lets them choose how the application responds to
that event. Alerts come in two forms: as a free-floating dialog and as a sheet. An alert dialog is
application-modal and unattached to any window; it refers to a condition affecting the application as a whole.
An alert sheet is a dialog that is attached to a particular window (usually representing a document) and is
modal to that window. You can find additional information about alert sheets in the programming topic
Sheet Programming Topics for Cocoa.

The “Dialogs” in Apple Human Interface Guidelines chapter in Aqua Human Interface Guidelines also provides
information about the various kinds of alert dialogs and the conditions suited to their use.

Organization of This Document

This topic has the following tasks:

 ■ “Displaying Alert Dialogs” (page 11) describes how to display alert dialogs.

 ■ “Customizing Alert Dialogs” (page 13) discusses how to add accessory views and suppression buttons
to alert dialogs and manage them.

 ■ “Displaying Alert Help” (page 15) describes how to display help information related to alert dialogs.

And here’s where you can find information on other types of special panels:

 ■ Creating a Font Panel

 ■ Choosing Colors With Color Wells and Color Panels

 ■ Using a Save Panel

 ■ Using an Open Panel

 ■ Using a Print Panel

 ■ Using a Page Setup Panel

Organization of This Document 7
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Dialogs and Special Panels

8 Organization of This Document
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Dialogs and Special Panels

There are two types of alerts, standard and caution. Most alerts should be standard alerts, which display the
application icon of the current application, as shown in Figure 1.

Figure 1 A standard alert with an application icon

Use a caution alert only to warn the user when a possible side effect of the current task is the inadvertent
destruction of data. A caution alert displays a caution icon badged with application icon, as shown in Figure
2.

Figure 2 A caution alert with the caution icon

How you specify the alert type varies according to programmatic interface:

 ■ NSAlert. Send setAlertStyle: to an NSAlert object with an argument of NSWarningAlertStyle or
NSInformationalAlertStyle to specify a standard alert. Send the same message with an argument
of NSCriticalAlertStyle to specify a caution alert.

 ■ Functional API. Use the NSBeginAlertSheet function to display a standard alert and
NSBeginCriticalAlertSheet to display a caution alert.

Caution alerts should be used only as specified in the “Alerts” section of Apple Human Interface Guidelines.

9
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Types of Alerts

10
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Types of Alerts

Alert dialogs inform the user of an event and present buttons that let the user choose how to proceed. You
may implement alert dialogs by invoking methods of the NSAlert class and by calling special functions.

Important: The NSAlert class is available in Mac OS X version 10.3 and later.

Using the NSAlert API is the preferred approach if you are writing applications that run on Mac OS v10.3 (or
later). You thereby gain the advantages of an object-oriented model as well as additional features, such as
the ability to display help information related to the alert dialog.

Using the NSAlert Class

Using the NSAlert API to display an alert dialog involves three simple steps: creating and initializing an
NSAlert instance, running the dialog, and interpreting and acting on the user’s choice.

1. Create the NSAlert object though the standard Objective-C alloc-and-init procedure. Then send
the required NSAlert “setter” messages to initialize the alert. Listing 1 (page 11) gives an example of
this.

Listing 1 Creating and initializing the NSAlert object

NSAlert *alert = [[NSAlert alloc] init];
[alert addButtonWithTitle:@"OK"];
[alert addButtonWithTitle:@"Cancel"];
[alert setMessageText:@"Delete the record?"];
[alert setInformativeText:@"Deleted records cannot be restored."];
[alert setAlertStyle:NSWarningAlertStyle];

2. Invoke the runModal method on the NSAlert object.

3. Test the result return from runModal and proceed accordingly.

Listing 2 (page 11) illustrates the last two steps.

Listing 2 Running the dialog and interpreting the result

if ([alert runModal] == NSAlertFirstButtonReturn) {
 // OK clicked, delete the record
 [self deleteRecord:currentRec];
}
[alert release];

Using the NSAlert Class 11
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Displaying Alert Dialogs

The return code is an enum constant identifying the button on the dialog that the user clicked. The first
button added to the dialog (which, in left-to-right scripts, is the one closest to the right edge) is identified
by NSAlertFirstButtonReturn. The second button that is added appears just to the left of the first
and is identified by NSAlertSecondButtonReturn —and so forth for the third button.

Make sure that you release the NSAlert instance.

You can also create an NSAlert object directly from an NSError object using the alertWithError:
method. You can then modally run the alert, thereby presenting the error information to the user. The method
uses the localized description, recovery suggestion, and recovery options encapsulated by the NSError
object for the alert's message text, informative text, and button titles, respectively.

As a convenience for compatibility with the older functional API (see “Using the Functional APIs” (page 12)),
you can create NSAlert objects with the class factory method
alertWithMessageText:defaultButton:alternateButton:otherButton:informativeTextWithFormat:.
This method allows you to retain the earlier constants used to identify the button clicked. Here is an example
of how you might invoke this method (with the previous example in mind):

NSAlert *alert = [NSAlert alertWithMessageText:@"Delete the record?"
 defaultButton:@"OK" alternateButton:@"Cancel"
 otherButton:nil informativeTextWithFormat:
 @"Deleted records cannot be restored."];

Using the Functional APIs

You can also call functions to create and display alerts. There are three kinds of functions:

 ■ To create and run an alert panel, use NSRunAlertPanel, NSRunCriticalAlertPanel, or
NSRunInformationalAlertPanel.

 ■ To create and run an alert sheet, use NSBeginAlertSheet, NSBeginCriticalAlertSheet, or
NSBeginInformationalAlertSheet.

 ■ To create an alert panel, use NSGetAlertPanel, NSGetCriticalAlertPanel, or
NSGetInformationalAlertPanel.

12 Using the Functional APIs
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Displaying Alert Dialogs

Beginning with Mac OS X v10.5 (Leopard), NSAlert includes methods for displaying and managing accessory
views and managing the suppression check box. The following sections describe how to use these features.

Managing Accessory Views

An alert may have an accessory view, a view that contains controls and possibly other objects related to the
alert. For example, an alert could warn a user that the file they’re copying will replace an existing file of the
same name; it might have a checkbox for an accessory view that, if checked, results in the application saving
the existing file under a slightly different name (for example, buy appending “_save” to the filename).

You set an alert dialog’s accessory view using the setAccessoryView: method. You may create the view
programmatically, but a more common approach is to compose the view in Interface Builder. In the header
file for the custom class, declare an outlet for the accessory view, and then connect this outlet in Interface
Builder. By default, NSAlertpositions the accessory view below the alert’s informative text and the suppression
button (if any) and above the alert buttons, left-aligned with the informative text.

Listing 1 illustrates how to display an alert dialog that has both an accessory view and a suppression button,
and how to handle the user’s response in both cases. Comments call out lines that are of particular interest
to one or the other feature. (You can learn about suppression buttons in “Managing the Suppression
Button” (page 14).)

Listing 1 Displaying an alert with an accessory view and a suppression button

static BOOL runAgain = YES; // Suppression button: static var holds current value of
suppression button

- (void)showRecordDeleteAlert:(id)sender {
 if (runAgain == NO) // Suppression button: if user doesn't want to see alert, return
 return;
 NSAlert *alert = [[NSAlert alloc] init];
 [alert addButtonWithTitle:@"Delete"];
 [alert addButtonWithTitle:@"Extend"];
 [alert setMessageText:@"Delete the record?"];
 [alert setInformativeText:@"Deleted records cannot be restored.
 You may extend the valid-until date if you wish."];
 [alert setAlertStyle:NSWarningAlertStyle];
 [alert setShowsSuppressionButton:YES]; // Suppression button: show it
 [alert setAccessoryView:myView]; // Accessory view: "my" accessed via an outlet
connection
 NSInteger result = [alert runModal];

 if (result == NSAlertFirstButtonReturn) {
 // "Delete" clicked
 [self deleteRecord:currentRec];

Managing Accessory Views 13
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Customizing Alert Dialogs

 } else if (result == NSAlertSecondButtonReturn) { // Accessory view: handle
user-specified data
 // "Extend" clicked
 NSDate *chosenDate = [myDatePicker dateValue];
 if ([chosenDate laterDate:[NSDate date]] == chosenDate) {
 [self setValidDate:chosenDate ofRecord:currentRec];
 }
 }
 runAgain = (BOOL)![[alert suppressionButton] state]; // Suppression button: get
state of button
 [alert release];
}

If you want to customize the location of the accessory view, first call layout and then do any special
positioning and sizing of the accessory view prior to running the alert. This sequence overrides the default
behavior where NSAlert lazily lays out the accessory view just before showing the panel. You should call
layout only after you have finished configuring the alert with message, informative text, buttons, and, if
desired, suppression button. If you do any custom layouts, be advised that the default layout of the alert
could change in future releases.

Managing the Suppression Button

Alert dialogs may include a suppression button, which is a checkbox with a default title (localized) of “Do
not show this message again.” (A checkbox is a type of button.) If the user selects the checkbox, the application
should not display the alert again during the current application session. The suppression button is a feature
intended to improve the user experience by allowing the application to suppress alerts about relatively trivial
matters. The application is responsible for determining whether an alert should be displayed based on the
user’s choice; in other words, suppression doesn’t happen automatically.

You add a suppression button to an alert dialog by sending the NSAlert object a
setShowsSuppressionButton: message with an argument of YES. Before running the alert dialog, you
can fetch the suppression button by calling suppressionButton and customize the button in certain ways.
For example, you could customize the default title using the following nested message expression:

[[alert suppressionButton] setTitle:@"My new button title."];

You can also call suppressionButton and then set the initial state of the button or fetch its current state
using the setState: and statemethods of NSButton. After an alert is dismissed, you use the latter method
to determine whether the user checked the suppression checkbox. The code example in Listing 1 (page 13)
illustrates a simple way—that is, the use of a static variable—to record the value of the suppression button
and later check it before running the alert dialog again. However, a more useful approach might be to store
the state of the suppression button in user defaults and later check it before showing the alert again.

By default, the suppression button is positioned below the informative text and above the accessory view
(if any) and the alert buttons; it is left-aligned with the informative text. However do not count on the
placement of this button, since it might change in the future. If you need a checkbox for purposes other than
alert suppression, it is recommended you create an accessory view that is, or contains, a checkbox.

14 Managing the Suppression Button
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Customizing Alert Dialogs

The NSAlert class includes several methods that enable you to display help information related to an alert
dialog or sheet. You can either use the application’s NSHelpManager object to find and display information
using the Help Viewer application, or you can provide your own means for displaying help information.

Important: The NSAlert class is available in Mac OS X version 10.3 and later.

An alert dialog or sheet advertises that help is available with a round question-mark button. You request the
display of this button by sending setShowsHelp: to the NSAlert object with an argument of YES. To actually
display the help, you have two options:

 ■ Specify a help anchor, which the NSHelpManager object can use to find the help text to display in Help
Viewer.

Specify the help anchor by invoking NSAlert’s setHelpAnchor: method.

 ■ Set a delegate for the NSAlert object and implement the delegate method alertShowHelp:. The
delegate is responsible for displaying help information related to the alert.

Listing 1 shows how you might initialize an NSAlert object for the second help option.

Listing 1 Setting the help button and delegate for an alert dialog

NSAlert *alert = [[NSAlert alloc] init];
// other initializations here ...
[alert setShowsHelp:YES];
[alert setDelegate:self];

Listing 2 illustrates an implementation of the NSAlert alertShowHelp: delegate method.

Listing 2 Implementing the delegate method for displaying alert help

- (BOOL)alertShowHelp:(NSAlert *)alert {
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Help"
ofType:@"html"];
 BOOL flag = [[NSWorkspace sharedWorkspace] openFile:path];
 return flag;
}

If your application has more than one alert dialog or sheet for which it displays help, it should test the NSAlert
object passed into this method to determine the help text to display. Always return YES unless the display
of help did not succeed.

15
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Displaying Alert Help

16
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Displaying Alert Help

This table describes the changes to Dialogs and Special Panels.

NotesDate

Updated for Mac OS X v10.5: added "Customizing Alert Dialogs," which describes
the suppression checkbox and accessory views.

2009-02-04

Updated for NSAlert, introduced in Mac OS X v. 10.3: added “Displaying Alert
Help” (page 15) and updated “Displaying Alert Dialogs” (page 11) (title changed
from “Using Alert Panels”). Also added definition of application-modal alert
dialogs (versus alert sheets) in introduction.

2003-08-01

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

17
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

18
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Dialogs and Special Panels
	Contents
	Figures and Listings
	Introduction
	Types of Alerts
	Displaying Alert Dialogs
	Using the NSAlert Class
	Using the Functional APIs

	Customizing Alert Dialogs
	Managing Accessory Views
	Managing the Suppression Button

	Displaying Alert Help
	Revision History

