
Distributed Objects Programming Topics
Cocoa > Interapplication Communication

2007-06-06

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, Mac,
Mac OS, and Objective-C are trademarks of
Apple Inc., registered in the United States and
other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Distributed Objects 7

Limitations 7
Organization of This Document 7

About Distributed Objects 9

Distributed Objects Architecture 11

Connections and Proxies 13

NSConnection 13
NSProxy and Subclasses 14

NSDistantObject 15
NSProtocolChecker 15

Ports and Name Servers 17

NSPorts and Subclasses 17
NSMachPort 17
NSMessagePort 17
NSSocketPort 18

NSPortNameServer and Subclasses 18
NSMachBootstrapServer 18
NSMessagePortNameServer 18
NSSocketPortNameServer 18

Message Encapsulation 19

NSInvocation 19
NSMethodSignature 19
NSPortCoder 19
NSPortMessage 20
NSDistantObjectRequest 20

3
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Vending an Object 21

Getting a Vended Object 23

Configuring a Connection 25

Handling Connection Errors 27

Authenticating Connections 29

Making Substitutions During Message Encoding 31

Using NSInvocation 33

Saving NSInvocation Objects for Later Use 34
Using NSInvocation Objects with Timers 34

Document Revision History 35

4
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Figures

Distributed Objects Architecture 11

Figure 1 Sending a message to a vended object 11

Connections and Proxies 13

Figure 1 NSConnection objects between a server and two client processes 13
Figure 2 NSConnection objects between a server and two client threads 14
Figure 3 NSConnection objects between two threads 14

5
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

6
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

The Objective-C runtime supports an interprocess messaging solution called “distributed objects.” This
mechanism enables a Cocoa application to call an object in a different Cocoa application (or a different thread
in the same application). The applications can even be running on different computers on a network.

This programming topic describes the Cocoa classes that form the distributed objects system.

Limitations

Cocoa’s distributed objects system is available only to Objective-C applications.

Organization of This Document

The Objective-C language support for distributed objects is described in detail in the “Remote Messaging”
section of The Runtime System in The Objective-C 2.0 Programming Language. You should be familiar with it
before reading this topic. This topic extends that discussion by describing the Cocoa classes used to implement
distributed objects.

The classes are divided into the following categories:

 ■ "Distributed Objects Architecture" (page 11)

 ■ "Connections and Proxies" (page 13)

 ■ "Ports and Name Servers" (page 17)

 ■ "Message Encapsulation" (page 19)

More detailed discussion and examples of how to use distributed objects are covered in the following tasks:

 ■ "Vending an Object" (page 21)

 ■ "Getting a Vended Object" (page 23)

 ■ "Configuring a Connection" (page 25)

 ■ "Handling Connection Errors" (page 27)

 ■ "Authenticating Connections" (page 29)

 ■ "Making Substitutions During Message Encoding" (page 31)

 ■ "Using NSInvocation" (page 33)

Limitations 7
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Introduction to Distributed Objects

8 Organization of This Document
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Introduction to Distributed Objects

Cocoa’s distributed objects architecture enables objects in different threads or tasks, perhaps on different
machines, to transparently send messages to each other. While there are many ways for threads and tasks
to communicate with one another, distributed objects hides the mechanism behind the standard Objective-C
messaging mechanism. The syntax of local and remote messages are identical.

Remote messages can be sent synchronously or asynchronously. When sending a synchronous message, the
sender waits for a reply, blocking its execution, just like a local message. When sending an asynchronous
message, the sender continues executing without waiting for a reply; any response from the remote object
is ignored.

Distributed objects can be used to divide a complex task into separate code paths that run independently,
but can still cooperate as if they were running together. For example, an application can be divided into a
graphical front end and a computational back end. The front end can accept all user input and tell the back
end to perform various actions. The back end can handle the “heavy lifting” and inform the front end when
it can update the user interface with the results. Because the front and back ends run independently, the
front end can continue interacting with the user while the back end is busy.

Distributed objects can also be used to implement distributed computing, or parallel processing. If a large
job is split into many smaller jobs that are distributed on a multiprocessor machine or on multiple machines,
you can harness the combined computational power of all the processors to complete the job. Distributed
objects simplifies the application architecture and the communication between its distributed parts.

Cocoa allows distributed objects to communicate over Mach ports, message ports, and sockets. The first two
are restricted to communication on a single machine, but sockets can communicate over large networks,
including the internet.

Before an object can receive messages from other processes, it must allocate a communication port and
make it available to others. Cocoa provides access to name servers for each supported type of communication
port. An object can register its port with the appropriate name server to allow other processes to find it. In
the case of sockets, you can also publish the object’s socket as a Bonjour network service (see the Cocoa
Programming Topic Bonjour Overview). Other processes that want to communicate with this object can then
look up the object’s communication port, requesting it by name, and attach distributed object connections
to it.

For details on how the Objective-C language and runtime enables distributed objects, see the “Remote
Messaging” section of The Runtime System in The Objective-C 2.0 Programming Language.

9
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

About Distributed Objects

10
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

About Distributed Objects

Distributed objects operates by having the server process “vend,” or make public, an object to which other
client processes can connect. Once a connection is made, the client process invokes one of the vended
object’s methods as if the object existed in the client process—the syntax does not change. Cocoa and the
Objective-C runtime system handles the necessary transmission of data between the processes.

Figure 1 (page 11) shows many of the objects involved in the distributed objects system and how a message
is passed from the client process to the server process. The process goes as follows.

Figure 1 Sending a message to a vended object

Client process Server process

Objective-C message

NSDistantObject Vended object

Encoded data

NSInvocation Objective-C
message

NSPortMessage NSPortMessage

NSConnection NSConnection

NSPort NSPort

The server process vends an object by attaching it to an NSConnection object which contains an NSPort
object. The port can be registered with an NSPortNameServer object to allow easy access by clients wanting
to use the vended object. The vended object can be either the real object that implements the methods
being provided or an NSProtocolChecker proxy object which filters methods based on a protocol before
passing methods to the real object.

The client process attaches to the vended object by connecting its own NSConnection object to the server’s
NSPort object(possibly obtained from a port name server) and requesting a proxy of the vended object. The
proxy object is an instance of NSDistantObject. The client then treats the NSDistantObject object as
the real object, sending messages normally.

When the client process sends a message to the NSDistantObject object, the proxy captures the Objective-C
message in the form of an NSInvocation object and forwards it to its NSConnection object. The
NSConnection object encodes the NSInvocation into an NSPortMessage object, using an NSPortCoder
object, and passes it to an NSPort object connected to an NSPort object in the server process. The client’s
port sends the encoded data to the server’s port which decodes the data back into an NSPortMessage
object. The port message is then sent to the NSConnection object which converts it into an NSInvocation

11
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Distributed Objects Architecture

object, using an NSPortCoder object. The invocation is finally dispatched as an Objective-C message sent
to the vended object. Any return value from the object is passed back through the connection and returned
transparently to the client process.

If the vended object is an instance of NSProtocolChecker, it tests if the Objective-C message it received
conforms to a particular protocol implemented by the real object. If the message is in the protocol, the
protocol checker forwards the message to the real object. Otherwise, an exception is raised and returned to
the client process.

The client process blocks while the message is dispatched to the server and waits for the remote method
request to finish execution, either by returning (with or without a value) or raising an exception. For methods
without a return value, the method can be declared with the oneway keyword to indicate that the message
should be sent asynchronously. The client does not block in that case and continues running once the message
is sent.

12
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Distributed Objects Architecture

This section describes the highest level components of the distributed objects system: the object that manages
the communication (NSConnection) and the two proxy objects that stand in for the vended object
(NSDistantObject and NSProtocolChecker).

NSConnection

NSConnection objects manage communication between objects in different threads or tasks, on a single
host or over the network. They form the backbone of the distributed objects mechanism, and normally
operate in the background. You use NSConnection API explicitly when making an object available to other
applications, when accessing such a vended object, and when altering default communication parameters;
the rest of the time you simply interact with the distributed objects themselves.

NSConnection objects work in pairs, one in each communicating application or thread. A server application
has an NSConnection object for every client application connected to it, as shown in Figure 1 (page 13)
(the connection labeled s is used to form new connections, as described in "Vending an Object" (page 21)
and "Getting a Vended Object" (page 23)). The circles represent NSConnection objects, and the labels
indicate the application itself and the application it is connected to. For example, in s/a the s stands for the
server and the a stands for client A. If a link is formed between clients A and B in this example, two new
NSConnection objects get created: a/b and b/a.

Figure 1 NSConnection objects between a server and two client processes

Server

Client A

Client B

a/s

b/s

s/a

s/b

s

Under normal circumstances, all distributed objects passed between applications are tied through one pair
of NSConnection objects. NSConnection objects cannot be shared by separate threads, though, so for
multithreaded applications a separate NSConnection object must be created for each thread. This is shown
in Figure 2 (page 14).

NSConnection 13
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Connections and Proxies

Figure 2 NSConnection objects between a server and two client threads

Client A

a1/s

a2/s

Thread 1

Thread 2

Server

s/a1

s/a2

s

Finally, an application can use distributed objects between its own threads to make sending messages
thread-safe. This is useful for coordinating work with the Application Kit, for example. Figure 3 (page 14)
shows how the NSConnection objects are connected. (Note that every thread has its own default
NSConnection object with which it can vend a single object.) See Communicating With Distributed Objects
for more details.

Figure 3 NSConnection objects between two threads

a1/a2

a2/a1

Thread 1

Thread 2

NSProxy and Subclasses

NSProxy is an abstract superclass defining an API for objects that act as stand-ins for other objects or for
objects that don’t exist yet. Typically, a message to a proxy is forwarded to the real object, or causes the
proxy to load (or transform itself into) the real object. Subclasses of NSProxy can be used to implement
transparent distributed messaging (for example, NSDistantObject) or for lazy instantiation of objects that
are expensive to create.

There are two subclasses of NSProxy defined by the distributed objects system. NSDistantObject represents
the vended object on the client system; it captures messages passed to it and forwards them using an
NSConnection object to the server process. An NSProtocolChecker object can be vended by the server
process instead of the real object to filter out any messages that do not conform to a particular protocol.
More details of each class are below.

14 NSProxy and Subclasses
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Connections and Proxies

NSDistantObject

NSDistantObject is a concrete subclass of NSProxy that defines proxies for objects in other applications
or threads. When an NSDistantObject object receives a message, in most cases it forwards the message
through its NSConnection object to the real object in another application, supplying the return value to
the sender of the message if one is forthcoming, and propagating any exception back to the invoker of the
method that raised it.

NSDistantObject adds two useful instance methods to those defined by NSProxy. connectionForProxy
returns the NSConnection object that handles the receiver. setProtocolForProxy: establishes the set
of methods the real object is known to respond to, saving the network traffic required to determine the
argument and return types the first time a particular selector is forwarded to the remote proxy. Setting a
protocol, though, does not prevent other methods from being sent; they just require network traffic to obtain
the method signature. To filter out methods not in the protocol, use an NSProtocolChecker instance as
the vended object.

There are two kinds of NSDistantObject: local proxies and remote proxies. A local proxy is created by an
NSConnection object the first time an object is sent to another application. It is used by the NSConnection
object for bookkeeping purposes and should be considered private. The local proxy is transmitted over the
network using the NSCoding protocol to create the remote proxy, which is the object that the other application
uses. NSDistantObject defines methods for an NSConnection object to create instances, but they are
intended only for subclasses to override—you should never invoke them directly. Use NSConnection’s
rootProxyForConnectionWithRegisteredName:host: method, which sets up all the required state
for an object-proxy pair.

NSProtocolChecker

When an object is vended, all of its methods become available to other processes. This may not be desired
when vending an object with many methods, only a few of which ought to be remotely accessible. The
NSProtocolChecker class (a concrete subclass of NSProxy) defines an object that restricts the messages
that can be sent to another object (referred to as the checker’s delegate).

A protocol checker acts as a kind of proxy; when it receives a message that is in its designated protocol, it
forwards the message to its target, and consequently appears to be the target object itself. However, when
it receives a message not in its protocol, it raises an NSInvalidArgumentException to indicate that the
message is not allowed, whether or not the target object implements the method.

Typically, an object that is to be distributed (yet must restrict messages) creates an NSProtocolChecker
object for itself and returns the checker rather than returning itself in response to any messages. The object
might also register the checker as the root object of an NSConnection.

The object should be careful about vending references to self—the protocol checker converts a return
value of self to indicate the checker rather than the object for any messages forwarded by the checker, but
direct references to the object (bypassing the checker) could be passed around by other objects.

NSProxy and Subclasses 15
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Connections and Proxies

16 NSProxy and Subclasses
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Connections and Proxies

Ports are the low-level communication channels that transmit and receive the raw data between threads
and processes. Ports can be assigned names and advertised to other processes through port name servers.
Each type of port has its own port name server.

NSPorts and Subclasses

An NSPort object represents a communication channel to or from another NSPort object, which typically
resides in a different thread or task. The distributed objects system uses NSPort objects to send
NSPortMessage objects back and forth. You should implement interapplication communication using
distributed objects whenever possible, and use NSPort objects directly only when necessary.

To receive incoming messages, NSPort objects must be added to an NSRunLoop as an input source.
NSConnection objects automatically add their receive port when initialized. See RunLoops for more information.

Subclasses of NSPort represent particular flavors of data transport from one process to another. The available
subclasses are NSMachPort, NSMessagePort, and NSSocketPort and each is described below.

Note that instances of port subclasses cannot be mixed on a particular communication channel. For example,
a client cannot connect to a server using NSMessagePort if the server only supports connections made with
NSSocketPort. Also, you cannot transfer instances of NSMessagePort in a message to another process
over a channel which is using NSSocketPort objects as its endpoints; you can only pass NSSocketPort
objects on such a channel. These restrictions apply to any subclasses of NSPort, not just NSMessagePort
and NSSocketPort. However, you are free to create other connections to a server using other subclasses
of NSPort (assuming the server supports multiple transports) and send instances of that other subclass on
that channel.

NSMachPort

NSMachPort is an object wrapper for a Mach port, the fundamental communication port in Mac OS X.
NSMachPort allows for local (on the same machine) communication only.

To use NSMachPort effectively you should be familiar with Mach ports, port access rights, and Mach messages.
See the Mach OS documentation for more information.

NSMessagePort

NSMessagePort is a system-independent implementation of NSPort for sending messages. NSMessagePort
allows for local (on the same machine) communication only.

NSPorts and Subclasses 17
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Ports and Name Servers

NSSocketPort

NSSocketPort is a system-independent implementation of NSPort for sending messages over a BSD socket
port. NSSocketPort allows for both local and remote communication, but may be more expensive than the
other ports for the local case.

NSPortNameServer and Subclasses

NSPortNameServer provides an object-oriented interface to the port registration service used by the
distributed objects system. NSConnection objects use it to contact each other and to distribute objects
over the network; you should rarely need to interact directly with an NSPortNameServer object .

You get an NSPortNameServer object by using the systemDefaultPortNameServer class method—never
allocate and initialize an instance directly. With the default server object you can register an NSPort object
under a given name, making it available on the network, and also unregister it so that it cannot be looked
up (although other applications that have already looked up the NSPort object can still use it until it becomes
invalid).

Each type of NSPort has its own NSPortNameServer subclass as described below.

NSMachBootstrapServer

This port name server takes and returns instances of NSMachPort.

Port removal functionality is not supported in NSMachBootstrapServer; if you want to cancel a service,
you have to destroy the port (invalidate the NSMachPort object given to registerPort:name:).

NSMessagePortNameServer

This port name server takes and returns instances of NSMessagePort.

Port removal functionality is not supported in NSMessagePortNameServer; if you want to cancel a service,
you have to destroy the port (invalidate the NSMessagePort object given to registerPort:name:).

NSSocketPortNameServer

This port name server takes and returns instances of NSSocketPort.

Port removal functionality is supported by the removePortForName:method and should be used to remove
invalid socket ports.

Unlike the other port name servers, NSSocketPortNameServer can operate over a network. By registering
your socket ports, you make them available to other computers on the network without hard-coding the
TCP port numbers. Clients just need to know the name of the host running the port name server (and the
name of the port).

18 NSPortNameServer and Subclasses
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Ports and Name Servers

This section describes the classes used by the distributed objects system to encapsulate messages passed
over a connection. Unless you are getting involved with the low-level details of distributed objects, you
should never need to use these classes directly. NSInvocation and NSMethodSignature, however, have
uses outside of distributed objects, so you may encounter them in other situations.

NSInvocation

An NSInvocation object is an Objective-C message rendered static, an action turned into an object.
NSInvocation objects are used to store and forward messages between objects and between applications,
primarily by NSTimer and the distributed objects system. An NSInvocation object contains all the elements
of an Objective-C message: a target, a selector, arguments, and the return value. Each of these elements can
be set directly, and the return value is set automatically when the invocation is dispatched.

An NSInvocation object can be repeatedly dispatched to different targets; its arguments can be modified
between dispatch for varying results; even its selector can be changed to another with the same method
signature (argument and return types). This makes it useful for repeating messages with many arguments
and variations; rather than retyping a slightly different expression for each message, you modify the
NSInvocation object as needed each time before dispatching it to a new target.

For examples of how NSInvocation is used, see "Using NSInvocation" (page 33).

NSMethodSignature

An NSMethodSignature object records type information for the arguments and return value of a method.
It is used to forward messages that the receiving object does not respond to—most notably in the case of
distributed objects. An NSMethodSignature object is typically created using NSObject's
methodSignatureForSelector: instance method. It is then used to create an NSInvocation object,
which is passed as the argument to a forwardInvocation:message to send the invocation on to whatever
other object can handle the message. In the default case, NSObject invokes doesNotRecognizeSelector:,
which raises an exception. For distributed objects, the NSInvocation object is encoded using the information
in the NSMethodSignature object and sent to the real object represented by the receiver of the message.

NSPortCoder

NSPortCoder is a concrete subclass of NSCoder used in the distributed objects system to transmit object
proxies (and sometimes objects themselves) between NSConnection objects. An NSPortCoder object is
always created and used by an NSConnection object; your code should never need to explicitly create or
use one.

NSInvocation 19
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Message Encapsulation

NSPortMessage

An NSPortMessage object defines a low level, operating-system independent type for interapplication (and
interthread) messages. NSPortMessage objects are used primarily by the distributed objects system. You
should implement interapplication communication using distributed objects whenever possible, and use
NSPortMessage objects only when necessary.

An NSPortMessage object has three major parts: the send and receive ports, which are NSPorts that link
the sender of the message to the receiver, and the components, which form the body of the message. The
components are held as an NSArray object containing NSData and NSPort objects. NSPortMessage’s
sendBeforeDate: message sends the components out through the send port; any replies to the message
arrive on the receive port. See the NSPort class specification for information on handling incoming messages.

An NSPortMessage object can be initialized with a pair of NSPort objects and an NSArray instance
containing components. An NSPortMessage object’s body can contain only NSPort objects or NSData
objects. In the distributed objects system the byte/character arrays are usually encoded NSInvocation
objects that are being forwarded from a proxy to the corresponding real object.

An NSPortMessage object also maintains a message identifier, which can be used to indicate the class of a
message, such as an Objective-C method invocation, a connection request, an error, and so on. Use the
setMsgid: and msgid methods to access the identifier.

NSDistantObjectRequest

NSDistantObjectRequest objects are used by the Distributed Objects system to help handle invocations
between different processes. You should never create NSDistantObjectRequest objects directly. Unless
you are getting involved with the low-level details of Distributed Objects, there should never be a need to
access an NSDistantObjectRequest object. The distant object request for an incoming message is sent
to the connection’s delegate if it implements connection:handleRequest:.

20 NSPortMessage
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Message Encapsulation

To make an object available to other applications, set it up as the root object of an NSConnection object
and register the connection by name on the network. This code fragment vends serverObject, which is
assumed to have a valid value of an object to be vended:

/* Assume serverObject has a valid value of an object to be vended. */
NSConnection *theConnection;

theConnection = [NSConnection defaultConnection];
[theConnection setRootObject:serverObject];
if ([theConnection registerName:@"server"] == NO) {
 /* Handle error. */
}

This fragment takes advantage of the fact that every thread has a default NSConnection object, which can
be set up as a server. An NSConnection object can vend only one object, so the default NSConnection
object might not be available. In this case, you can create additional NSConnection objects to vend objects
with the usual alloc and init methods.

To advertise the connection to other threads and tasks, this fragment registers theConnection under the
name “server”. This causes the connection’s default receive port to be registered with the system’s default
port name server as returned by the NSPortNameServer class method systemDefaultPortNameServer.

An NSConnection object set up this way is called a named connection. A named connection rarely has a
channel to any other NSConnection object (in Figure 1 (page 13) and Figure 2 (page 14) the named
NSConnection objects are the circles labeled s). When a client contacts the server, a new pair of
NSConnection objects is created specifically to handle communication between the two.

An NSConnection object adds itself to the current NSRunLoop instance when it is initialized. In the main
thread of an application based on the Application Kit, the run loop is already running, so there is nothing
more to do to vend an object. In a secondary thread or an application that does not use the NSApplication
object, you have to start the run loop explicitly to capture incoming connection requests and messages. This
is usually as simple as getting the current thread’s NSRunLoop instance and sending it a run message:

[[NSRunLoop currentRunLoop] run];

See "Configuring a Connection" (page 25) for more information on setting NSConnection objects up to
handle requests.

21
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Vending an Object

22
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Vending an Object

An application gets a vended object by creating a proxy, or a stand-in, for that object in its own address
space. The proxy forwards messages sent to it through its NSConnection object back to the vended object.
An application can get a proxy for a vended object in two ways. First, the
rootProxyForConnectionWithRegisteredName:host: class method returns the proxy directly:

id theProxy;
theProxy = [[NSConnection
 rootProxyForConnectionWithRegisteredName:@"server"
 host:nil] retain];
[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

This message returns a proxy to the root object of the NSConnection object named “server”. The nil host
name indicates that only the local host is searched for a registered NSConnection object; you can specify
a specific host name to restrict the server to an identified host.

The invocation of setProtocolForProxy: informs the distributed objects system of the set of messages
that theProxy responds to. Normally, the first time a particular selector is forwarded by a proxy the
NSConnection object must confirm the argument and return types with the real object. This can add
significant overhead to distributed messages. Setting a protocol records this information so that no
confirmation is needed for the messages in the protocol, and only the message forwarding costs are incurred.

Another way to get a proxy is to get an NSConnection object to the server and then ask for the proxy of its
root object:

NSConnection *theConnection;
id theProxy;

theConnection = [NSConnection connectionWithRegisteredName:@"server"
 host:nil];
theProxy = [[theConnection rootProxy] retain];
[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

This is useful if you need to interact with the NSConnection object as well as the proxy. (However, note that
theConnection is not retained in this example.)

A named NSConnection object spawns a child NSConnection object to handle communication between
two applications (s spawning s/b and s/a in Figure 1 (page 13)). Though the child NSConnection object
does not have a name, it shares the root object and other configuration attributes of its parent, but not the
delegate. You should not register a child NSConnection object with a name or change its root object, but
you can change its other attributes, as described in "Configuring a Connection" (page 25).

By default, messages sent to a proxy object are forwarded over the connection synchronously; that is, the
sender waits for the message to be processed and a reply received from the remote object. This occurs even
for a method with a void return type, since the remote object can raise an exception that is passed back to
the sender. The local thread or application thus blocks until the message completes execution. To avoid this,
you can declare the method type as oneway void to cause asynchronous messaging. For more details, see
the “Remote Messaging” section of The Runtime System in The Objective-C 2.0 Programming Language.

23
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Getting a Vended Object

24
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Getting a Vended Object

You can control some factors of distributed objects communication by configuring NSConnection objects.
You can set timeouts to limit the amount of time an NSConnection object waits on a remote message, set
the mode it awaits requests and responses on, and control how an NSConnection object manages multiple
remote messages. In addition to these parameter settings, you can change an NSConnection object’s
registered name or root object for dynamic alteration of your distributed application.

An NSConnection object uses two kinds of timeouts, one for outgoing messages and one for replies. An
outgoing network message may take some time to send. Once it goes out, there is usually a delay before
any return value arrives. If either of these operations exceeds its timeout, the NSConnection object raises
an NSPortTimeoutException. You can set the values for these timeouts with the setRequestTimeout:
and setReplyTimeout:messages, respectively. By default these timeouts are set to the maximum possible
value.

NSConnection objects that vend objects await new connection requests in NSDefaultRunLoopMode (as
defined by the NSRunLoop class). When an NSConnection object sends a remote message out, it awaits
the return value in NSConnectionReplyMode. You cannot change this mode, but you can use it to set up
NSTimer objects or other input mechanisms that need to be processed while awaiting replies to remote
messages. Use addRequestMode: to add input mechanisms for this mode.

Normally an NSConnection object forwards remote messages to their intended recipients as it receives
them. If your application returns to the run loop or uses distributed objects either directly or indirectly, it can
receive a remote message while it is already busy processing another. Suppose a server is processing a remote
message and sends a message to another application through distributed objects. If another application
sends a message to the server, its NSConnection object immediately forwards it to the intended recipient,
even though the server is also awaiting a reply on the outgoing message. This behavior can cause problems
if a remote message causes a lengthy change in the server application’s state that renders it inconsistent for
a time: Other remote messages may interfere with this state, either getting incorrect results or corrupting
the state of the server application. You can turn this behavior off with the
setIndependentConversationQueueing: method, so that only one remote message is allowed to be in
effect at any time within the NSConnection object’s thread. When independent conversation queueing is
turned on, the NSConnection object forwards incoming remote messages only when no other remote
messages are being handled in its thread. This only affects messages between objects, not requests for new
connections; new connections can be formed at any time.

Warning: Because independent conversation queueing causes remote messages to block where they
normally do not, it can cause deadlock to occur between applications. Use this method only when you
know the nature of the interaction between two applications. Specifically, note that multiple callbacks
between the client and server are not possible with independent conversation queueing.

One other way to configure a named NSConnection object is to change its name or root object. This
effectively changes the object that applications get using the techniques described in "Getting a Vended
Object" (page 23), but does not change the proxies that other applications have already received. You might
use this technique to field-upgrade a distributed application with an improved server object class. For example,
to install a new server process have the old one change its name, perhaps from “Analysis Server” to “Old
Analysis Server”. This hides it from clients attempting to establish new connections, but allows its root object

25
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Configuring a Connection

to serve existing connections (when those connections close, the old server process exits). In the meantime,
launch the new server which claims the name “Analysis Server” so that new requests for analyses contact
the updated object.

Note that for inter-host communication, you cannot use the default connection, default NSPort subclass,
or default port name server. You must use an NSPort subclass that supports inter-machine communication,
such as NSSocketPort. You might configure the server as shown in the following code fragment.

NSSocketPort *port = [[NSSocketPort alloc] init];
NSConnection *connection = [NSConnection connectionWithReceivePort:port
sendPort:nil];
[[NSSocketPortNameServer sharedInstance] registerPort:port name:@"doug"];

You would then configure the client as follows.

NSSocketPort *port = [[NSSocketPortNameServer sharedInstance] portForName:@"doug"
 host:@"*"];
NSConnection *connection = [NSConnection connectionWithReceivePort:nil
sendPort:port];

26
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Configuring a Connection

NSConnection objects make use of network resources that can become unavailable at any time, either
temporarily or permanently.

Due to heavy network traffic or a busy process, individual messages over a connection may get delayed or
lost, causing a timeout error. A timeout error can happen for an outgoing message, meaning the message
was never sent to its recipient, or for a reply to a message successfully sent, meaning either that the message
failed to reach its recipient or that the reply could not be delivered back to the original sender. NSConnection
raises an NSPortTimeoutException if after a preset time period either the outgoing message is not sent
or the reply message is not received. You set the durations for these timeouts with the NSConnection
instance methods setRequestTimeout: and setReplyTimeout:. An application can put an exception
handler in place for critical messages, and if an NSPortTimeoutException is raised it can send the message
again, check that the server (or client) is still running or take whatever other action it needs to recover.

In the extreme case, a connection may become permanently severed. When a process using distributed
objects crashes, for example, the objects in that process that have been vended to other applications simply
cease to exist. In such a case, the NSConnection objects handling those objects invalidate themselves and
post an NSConnectionDidDieNotification to any observers. This notification allows objects to clean up
their state as much as possible in the face of an error.

To register for the NSConnectionDidDieNotification, add an observer to the default
NSNotificationCenter:

[[NSNotificationCenter defaultCenter] addObserver:proxyUser
 selector:@selector(connectionDidDie:)
 name:NSConnectionDidDieNotification
 object:serverConnection];

The fragment above registers the proxyUser object to receive a connectionDidDie: message when the
serverConnection object in the application posts an NSConnectionDidDieNotification. This allows
it to release any proxies it holds and to handle the error as gracefully as possible. See Notification Programming
Topics for Cocoa for more information on notifications.

One limitation of NSConnectionDidDieNotification, however, is that an NSConnection object attached
to a remote NSSocketPort object (the send port) cannot detect when the remote port becomes invalid.
This is true even if the remote port is on the same machine. Therefore, an NSConnection object cannot post
an NSConnectionDidDieNotificationwhen the connection is lost. Instead, you must detect the timeout
error when the next message is sent and invalidate the NSSocketPort object yourself.

In the case of a client-server model wherein the server never messages the client, the server can accumulate
NSConnection and NSSocketPort objects when client applications quit without explicitly logging out
from the server. The server, therefore, does not realize that the connection can be closed and released,
resulting in memory leaks. One workaround for this situation involves the client vending an object to the
server, allowing the server to “ping”, or message, the client if the client has been silent for an excessive period
of time. If the client fails to respond, the server can assume the client is no longer alive and it can close the
connection.

27
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Handling Connection Errors

28
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Handling Connection Errors

An NSConnection object can be assigned a delegate, which has two possible responsibilities: approving
the formation of new connections, and authenticating messages that pass between NSConnection objects.

When a named NSConnection object is contacted by a client and forms a child NSConnection object to
communicate with that client, it sends connection:shouldMakeNewConnection: to its delegate first to
approve the new connection. If the delegate returns NO the connection is refused. This method is useful for
limiting the load on a server. It’s also useful for setting the delegate of a child NSConnection object (since
delegates are not shared automatically between parent and child).

Portable Distributed Objects adds message authentication to NSConnection’s API. Delegates in different
applications can cooperate to validate the messages passing between them by implementing
authenticationDataForComponents: and authenticateComponents:withData:. The first method
requests an authentication stamp for an outgoing message, which is used by the second method to check
the validity of the message when it is received.

authenticationDataForComponents: provides the packaged components for an outgoing network
message in the form of NSData and NSPort objects. The delegate should use only the NSData objects to
create the authentication stamp, by hashing the data, calculating a checksum, or some other method. The
stamp should be small enough not to adversely affect network performance. The delegate in the receiving
application receives an authenticateComponents:withData: message to confirm the message, and
should recalculate the stamp for the components and compare it with the stamp provided. If it returns YES
the message is forwarded; if it returns NO, an NSFailedAuthenticationException is raised and a message
is logged to the console.

29
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Authenticating Connections

30
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Authenticating Connections

Like its abstract superclass, NSCoder, NSPortCoder makes use of substitution methods that allow an object
to encode itself as an instance of another class or to replace another object for itself. An object may need to
offer a different replacement when being encoded specifically by an NSPortCoder object, however, so
instead of the generic classForCoder and replacementObjectForCoder: methods, NSPortCoder
invokes classForPortCoder and replacementObjectForPortCoder:. Their default implementations
in NSObject fall back to the generic methods, providing reasonable default behavior. (NSPortCoder does
not use a special substitution method for decoding; it simply uses awakeAfterUsingCoder: as NSCoder
does.)

The generic classForCoder method is most useful for mapping private subclass hierarchies through a
public superclass, which (for example) aids the stability of archives when subclasses are private or subject to
change. Since processes communicating at run time typically use the same version of a class library, this
mapping is often not needed in distributed objects communication. classForPortCoder allows an object
to bypass or override the generic classForCoder behavior, sending its real class (or simply a different one
from the generic case) to the communicating process or thread. If you implement a group of classes that use
the generic classForCoder method, you should also consider using classForPortCoder to handle the
special case of encoding with the distributed objects system.

The generic replacementObjectForCoder:method offers a standard way to substitute a different instance
at encoding time. replacementObjectForPortCoder: specifically allows for the substitution of proxies
over a distributed objects connection. The receiver of a replacementObjectForPortCoder:message can
ask the NSPortCoder instance whether it should be encoded bycopy or not, and return itself or a proxy as
appropriate. NSObject's implementation always returns a proxy, so subclasses that allow bycopy encoding
should override replacementObjectForPortCoder: to perform at least as this sample does:

- (id)replacementObjectForPortCoder:(NSPortCoder *)encoder
{
 if ([encoder isBycopy]) return self;
 return [super replacementObjectForPortCoder:encoder];
}

If the NSPortCoder object returns YES when sent an isBycopy message, this example method returns
self, which results in the receiver being sent an encodeWithCoder: message. If the NSPortCoder object
returns NO, this method invokes the superclass’s implementation, which typically returns an instance of
NSDistantObject.

31
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Making Substitutions During Message
Encoding

32
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Making Substitutions During Message Encoding

Creating an NSInvocation object requires several steps. Consider this method of the custom class
MyCalendar:

– (BOOL)updateAppointmentsForDate:(NSDate *)aDate

updateAppointmentsForDate: takes an NSDate object as its only argument, and returns YES or NO
depending on whether the appointments could be updated without conflicts. The following code fragment
sets up an NSInvocation object for it:

SEL theSelector;
NSMethodSignature *aSignature;
NSInvocation *anInvocation;

theSelector = @selector(updateAppointmentsForDate:);
aSignature = [MyCalendar instanceMethodSignatureForSelector:theSelector];
anInvocation = [NSInvocation invocationWithMethodSignature:aSignature];
[anInvocation setSelector:theSelector];

The first two lines get the NSMethodSignature object for the updateAppointmentsForDate: method.
The last two lines actually create the NSInvocation object and set its selector. Note that the selector can
be set to any selector matching the signature of updateAppointmentsForDate:. Any of these methods
can be used with anInvocation:

– (BOOL)clearAppointmentsForDate:(NSDate *)aDate
– (BOOL)isAvailableOnDate:(NSDate *)aDate
– (BOOL)setMeetingTime:(NSDate *)aDate

Before being dispatched, anInvocation must have its target and arguments set:

MyCalendar *userDatebook; /* Assume this exists. */
NSDate *todaysDate; /* Assume this exists. */

[anInvocation setTarget:userDatebook];
[anInvocation setArgument:&todaysDate atIndex:2];

setArgument:atIndex: sets the specified argument to the value supplied. Every method has two hidden
arguments, the target and selector (whose indices are 0 and 1), so the first argument that needs to be
set is actually at index 2. In this case, todaysDate is the NSDate argument to
updateAppointmentsForDate:.

To dispatch the NSInvocation object, send an invoke or invokeWithTarget: message. invoke only
produces a result if the NSInvocation object has a target set. Once dispatched, the NSInvocation object
contains the return value of the message, which getReturnValue: produces:

BOOL result;

[anInvocation invoke];
[anInvocation getReturnValue:&result];

33
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Using NSInvocation

NSInvocation does not support invocations of methods with either variable numbers of arguments or
union arguments.

Saving NSInvocation Objects for Later Use

Because an NSInvocation object does not always need to retain its arguments, by default it does not do
so. This can cause object arguments as well as the target to become invalid if they are automatically released.
If you plan to cache an NSInvocation object or dispatch it repeatedly during the execution of your
application, you should send it a retainArguments message. This method retains the target and all object
arguments, and copies C strings so that they are not lost because another object frees them.

Using NSInvocation Objects with Timers

Suppose the NSInvocation object created above is being used in a time-management application that
allows multiple users to set appointments for others, such as group meetings. This application might allow
a user’s calendar to be automatically updated every few minutes, so that the user always knows what his
schedule looks like. Such automatic updating can be accomplished by setting up NSTimer objects with
NSInvocation objects.

Given the NSInvocation object above, this is as simple as invoking one NSTimer method:

[NSTimer scheduledTimerWithInterval:600
 invocation:anInvocation
 repeats:YES];

This line of code sets up an NSTimer object to dispatch anInvocation every 10 minutes (600 seconds).
Note that an NSTimer object always instructs its NSInvocation object to retain its arguments; thus, you
do not need to send retainArguments yourself. See TimerProgrammingTopics forCocoa for more information
on timers.

34 Saving NSInvocation Objects for Later Use
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Using NSInvocation

This table describes the changes to Distributed Objects Programming Topics.

NotesDate

Updated a link to "The Runtime System" article (in The Objective-C Programming
Language).

2007-06-06

Clarified configuration of NSConnection for inter-host communication.2006-02-07

Changed "Rendezvous" to "Bonjour."2005-04-29

"About Distributed Objects" (page 9) moved from the “Networking” topic.2003-04-15

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

35
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Document Revision History

36
2007-06-06 | © 2003, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Distributed Objects Programming Topics
	Contents
	Figures
	Introduction
	About Distributed Objects
	Distributed Objects Architecture
	Connections and Proxies
	NSConnection
	NSProxy and Subclasses
	NSDistantObject
	NSProtocolChecker

	Ports and Name Servers
	NSPorts and Subclasses
	NSMachPort
	NSMessagePort
	NSSocketPort

	NSPortNameServer and Subclasses
	NSMachBootstrapServer
	NSMessagePortNameServer
	NSSocketPortNameServer

	Message Encapsulation
	NSInvocation
	NSMethodSignature
	NSPortCoder
	NSPortMessage
	NSDistantObjectRequest

	Vending an Object
	Getting a Vended Object
	Configuring a Connection
	Handling Connection Errors
	Authenticating Connections
	Making Substitutions During Message Encoding
	Using NSInvocation
	Saving NSInvocation Objects for Later Use
	Using NSInvocation Objects with Timers

	Revision History

