
Error Handling Programming Guide For Cocoa
Cocoa > Design Guidelines

2009-03-04



Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, eMac,
Mac, Mac OS, Macintosh, and Objective-C are
trademarks of Apple Inc., registered in the
United States and other countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction to Error Handling Programming Guide For Cocoa 7

Organization of This Document 7
See Also 8

Chapter 1 Error Objects, Domains, and Codes 9

Why Have Error Objects? 9
Error Domains 9
Error Codes 10
The User Info Dictionary 12

Localized Error Information 12
The Recovery Attempter 14
Underlying Error 14
Domain-Specific Keys 14

Chapter 2 Error Responders and Error Recovery 15

The Error-Responder Chain 15
Error Customization 17
Error Recovery 18

Chapter 3 Using and Creating Error Objects 21

Handling Error Objects Returned From Methods 21
Displaying Information From Error Objects 23
Creating and Returning NSError Objects 24

A Note on Errors and Exceptions 25

Chapter 4 Handling Received Errors 27

Passing Errors Up the Error-Responder Chain 27
Customizing an Error Object 28

Chapter 5 Recovering From Errors 31

Document Revision History 35

Index 37

3
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.



4
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS



Figures, Tables, and Listings

Chapter 1 Error Objects, Domains, and Codes 9

Figure 1-1 The localized strings of an NSError object 13
Table 1-1 Header files for error codes in major domains 10
Table 1-2 10
Listing 1-1 Part of the POSIX error-code declarations (errno.h) 11
Listing 1-2 Testing for particular error codes in a specific domain 11

Chapter 2 Error Responders and Error Recovery 15

Figure 2-1 The error-responder chain—part one 16
Figure 2-2 The error-responder chain — part two 16
Figure 2-3 Error-responder chain for document-based applications 17
Figure 2-4 Error-responder chain for non-document applications with window controllers

17
Figure 2-5 Error-responder chain for simple (non-document) applications 17

Chapter 3 Using and Creating Error Objects 21

Listing 3-1 Handling an NSError object returned from a Cocoa method 21
Listing 3-2 Displaying a document-modal error alert 23
Listing 3-3 Modal delegate handling the user response 23
Listing 3-4 Directly displaying an error alert dialog 24
Listing 3-5 Implementing a method that returns an NSError object 24

Chapter 4 Handling Received Errors 27

Listing 4-1 Handling an error passed up the error-responder chain 27
Listing 4-2 Customizing an NSError object 28

Chapter 5 Recovering From Errors 31

Listing 5-1 Preparing for error recovery 31
Listing 5-2 Recovering from the error and informing the modal delegate 32
Listing 5-3 Modal delegate responding to recovery attempter 33

5
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.



6
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS



Every program must deal with errors as they occur at runtime. The program, for example, might not be able
to open a file, or perhaps it cannot parse an XML document. Often errors such as these require the program
to inform the user about them. And perhaps the program can attempt to get around the problem causing
the error.

Cocoa offers developers programmatic tools for these tasks: the NSError class in Foundation and new methods
and mechanisms in the Application Kit to support error handling in applications. An NSError object encapsulates
information specific to an error, including the domain (subsystem) originating the error and the localized
strings to present in an error alert. With an application there is also an architecture allowing the various
objects in an application to refine the information in an error object and perhaps to recover from the error.
This document describes this API and architecture and explains how to use them.

Important:  Although the NSError class was introduced in Mac OS X v10.3, several methods have been added
to the class and to the Application Kit in Mac OS X v10.4 to support error handling as described in this
document.

Organization of This Document

Error Handling Programming Guide for Cocoa has the following articles:

 ■ “Error Objects, Domains, and Codes” (page 9) describes the attributes of an NSError object, particularly
its domain and error code, and discusses the possible contents of an error object’s “user info” dictionary,
including localized message strings and underlying errors.

 ■ “Error Responders and Error Recovery” (page 15) describes the Application Kit architecture for passing
error objects up a chain of objects in an application, giving each object a chance to customize the error
before it is presented. It also discusses the role of the recovery attempter, an object designated to attempt
a recovery from an error if the user requests it.

 ■ “Using and Creating Error Objects” (page 21) explains how to evaluate an error, how to display an error
message using an NSError object, and how to implement methods that return an NSError object by
reference.

 ■ “Handling Received Errors” (page 27) discusses how, in the chain of error-responder objects, you handle
a received error and customize it.

 ■ “Recovering From Errors” (page 31) explains the procedure for attempting a user-requested recovery
from an error.

Organization of This Document 7
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Error Handling Programming
Guide For Cocoa



See Also

“Error Handling in the Document Architecture" in Document-Based Applications Overview offers valuable
advice for subclasses that override methods with a by-reference NSError parameter.

“Types of Dialogs and When to Use Them” in Apple Human Interface Guidelines in the Apple Human Interface
Guidelines offers advice on the form and content of alerts. You should consult these guidelines before
composing your error messages. Also take a look at the following conceptual documents on areas of Cocoa
programming related to error handling and the presentation of error messages:

 ■ Assertions and Logging

 ■ Dialogs and Special Panels (alerts)

 ■ Sheet Programming Topics for Cocoa

Exception Programming Topics for Cocoa discusses how to raise and handle exceptions. Exception Handling
in The Objective-C 2.0 Programming Language describes the compiler directives @try, @catch, @throw, and
@finally, which are used in exception handling.

8 See Also
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Error Handling Programming Guide For Cocoa



Cocoa programs use NSError objects to convey information about runtime errors that users need to be
informed about. In most cases, a program displays this error information in a dialog or sheet. But it may also
interpret the information and either ask the user to attempt to recover from the error or attempt to correct
the error on its own.

The core attributes of an NSError object—or, simply, an error object—are an error domain, a domain-specific
error code, and a “user info” dictionary containing objects related to the error, most significantly description
and recovery strings. This chapter explains the reason for error objects, describes their attributes, and discusses
how you use them in Cocoa code.

Why Have Error Objects?

Because they are objects, instances of the NSError class have several advantages over simple error codes and
error strings. They encapsulate several pieces of error information at once, including localized error strings
of various kinds. NSError objects can also be archived and copied, and they can be passed around in an
application and modified. And although NSError is not an abstract class (and thus can be used directly) you
can extend the NSError class through subclassing.

Because of the notion of layered error domains, NSError objects can embed errors from underlying subsystems
and thus provide more detailed and nuanced information about an error. Error objects also provide a
mechanism for error recovery by holding a reference to an object designated as the recovery attempter for
the error.

Error Domains

For largely historical reasons, errors codes in Mac OS X are segregated into domains. For example, Carbon
error codes, which are typed as OSStatus, have their origin in versions of the Macintosh operating system
predating Mac OS X. On the other hand, POSIX error codes derive from the various POSIX-conforming “flavors”
of UNIX, such as BSD. The Foundation framework declares in NSError.h the following string constants for
the four major error domains:

NSMachErrorDomain

NSPOSIXErrorDomain

NSOSStatusErrorDomain

NSCocoaErrorDomain

The above sequence of domain constants indicates the general layering of the domains, with the Mach error
domain at the lowest layer. You get the domain of an error by sending an NSError object a domain message.

Why Have Error Objects? 9
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Error Objects, Domains, and Codes



In addition to the four major domains, there are error domains that are specific to frameworks or even to
groups of classes or individual classes. For example, the Web Kit framework has its own domain for errors in
its Objective-C implementation, WebKitErrorDomain. Within the Foundation framework, the URL classes
have their own error domain (NSURLErrorDomain) as do the XML classes (NSXMLParserErrorDomain).
The NSStream class itself defines two error domains, one for SSL errors and the other for SOCKS errors.

The Cocoa error domain (NSCocoaErrorDomain) includes all error codes for the Cocoa frameworks—except,
of course, for error codes in class-specific domains of those frameworks. These frameworks include not only
Foundation and Application Kit, but Core Data and potentially other Objective-C frameworks. (Error domains
within the Cocoa frameworks that are separate from the Cocoa error domain were defined before the latter
was introduced.)

Domains serve several useful purposes. They give Cocoa programs a way to identify the Mac OS X subsystem
that is detecting an error. They also help to prevent collisions between error codes from different subsystems
with the same numeric value. In addition, domains allow for a causal relationship between error codes based
on the layering of subsystems; for example, an error in the NSOSStatusErrorDomainmay have an underlying
error in the NSMachErrorDomain.

You can create your own error domains and error codes for use in your own frameworks, or even in your
own applications. It is recommended that the string constant for the domain be of the form
com.company.framework_or_app.ErrorDomain.

Error Codes

An error code identifies a particular error in a particular domain. It is a signed integer assigned as the value
of a program symbol. You get the error code by sending an NSError object a code message. As listed in Table
1-1, error codes are declared and documented in one or more header files for each major domain.

Table 1-1 Header files for error codes in major domains

Header fileDomain

/usr/include/mach/kern_return.hMach

/usr/include/sys/errno.hPOSIX

/System/Library/Frameworks/CoreServices.framework/Frameworks/CarbonCore.framework/Headers/MacErrors.hCarbon (OSStatus)

See Table 1-2.Cocoa

Table 1-2 lists the frameworks and header files where error codes in the Cocoa domain are currently declared.

Table 1-2

DescriptionFramework/Header

Generic Foundation error codes<Foundation/FoundationErrors.h>

Generic Application Kit error codes<AppKit/AppKitErrors.h>

Core Data error codes<CoreData/CoreDataErrors.h>

10 Error Codes
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Error Objects, Domains, and Codes



To give an idea of how you might test for and act upon errors, let’s say you want to test for underlying POSIX
errors during an operation that writes to a file. (Underlying errors are explained in “Underlying Error” (page
14).) If you consulted the POSIX error codes declared in /usr/include/sys/errno.h, you would see a list
similar to Listing 1-1.

Listing 1-1 Part of the POSIX error-code declarations (errno.h)

#define EPERM       1       /* Operation not permitted */
#define ENOENT      2       /* No such file or directory */
#define ESRCH       3       /* No such process */
#define EINTR       4       /* Interrupted system call */
#define EIO         5       /* Input/output error */
#define ENXIO       6       /* Device not configured */
#define E2BIG       7       /* Argument list too long */
#define ENOEXEC     8       /* Exec format error */
#define EBADF       9       /* Bad file descriptor */
#define ECHILD      10      /* No child processes */
#define EDEADLK     11      /* Resource deadlock avoided */
                            /* 11 was EAGAIN */
#define ENOMEM      12      /* Cannot allocate memory */
#define EACCES      13      /* Permission denied */
#define EFAULT      14      /* Bad address *#H

You could choose the error conditions you want to test for and use them in code similar to that in Listing
1-2.

Listing 1-2 Testing for particular error codes in a specific domain

// underError is underlying-error object of a Cocoa-domain error
if ( [[underError domain] isEqualToString:NSPOSIXErrorDomain] ) {
        switch([underError code]) {
            case EIO:
            {
                // handle POSIX I/O error
            }
            case EACCES:
            {
                // handle POSIX permissions error
            {
        // etc.
        }
}

You may declare you own error codes for use by your own applications or frameworks, but the error codes
should belong to your own domain. You should never add error codes to an existing domain that you do
not “own.”

Error Codes 11
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Error Objects, Domains, and Codes



The User Info Dictionary

Every NSError object has a “user info” dictionary to hold error information beyond domain and code. You
access this dictionary by sending a userInfomessage to an NSError object. The advantage of a NSDictionary
over another kind of container object is that it is flexible; it can even carry custom information about an error.
But all user info dictionaries contain (or can contain) several predefined string and object values related to
an error.

Localized Error Information

An important role for NSError objects is to contain error information that programs can display in an alert
dialog or sheet. This information is usually stored in the user info dictionary as strings in several categories:
description, failure reason, recovery suggestion, and recovery options. (See Figure 1-1 (page 13) for the
placement of these strings on an alert.) When you create an NSError object, you should insert localized strings
into the dictionary, unless you want to compute them lazily.

Note:  Don’t expect the user info dictionary of every error object to contain localized strings. A subclass of
NSError, for example, could override localizedDescription to compose these strings on-the-fly from the
error domain, code, and context instead of storing them.

You can usually access the localized information associated with an NSError object in one of two ways. You
can send objectForKey: to the user info dictionary, specifying the appropriate key. Or you can send a
equivalent message to the NSError object. However, you should send the message rather than use the
dictionary key to access a localized string. The error object might not store the string in the dictionary, instead
choosing to compose it dynamically. The dictionary is designed to be a fallback mechanism, not the sole
repository of error strings. Use the dictionary keys instead to store your own strings in the user info dictionary.

The following summaries include both the dictionary key and the method used to access the localized string:

Error description
The main description of the error, appearing in a larger, bold type face. It often includes the failure
reason. If no error description is present in the user info dictionary, NSError either constructs one from
the error domain and code or (when the domain is well-known , such as NSCocoaErrorDomain),
attempts to fetch a suitable string from a function or method within that domain. .

User info key: NSLocalizedDescriptionKey

Method: localizedDescription (never returns nil)

Failure reason
A brief sentence that explains the reason why the error occurred. It is typically part of the error
description. Methods such as presentError: do not automatically display the failure reason because
it is already included in the error description. The failure reason is for clients that only want to display
the reason for the failure.

User info key: NSLocalizedFailureReasonErrorKey

Method: localizedFailureReason (can return nil)

12 The User Info Dictionary
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Error Objects, Domains, and Codes



Note:  An example can help to clarify the relationship between error description and failure reason. An error
object has an error description of “File could not be saved because the disk is full.” The accompanying failure
reason is “The disk is full.”

Recovery suggestion
A secondary sentence that ideally tells users what they can do to recover from the error. It appears
beneath the error description in a lighter type face. If the recovery suggestion refers to the buttons
of the error alert, it should use the same titles as specified for recovery options
(NSLocalizedRecoveryOptionsErrorKey). You may use this string as a purely informative message,
supplementing the error description and failure reason.

User info key: NSLocalizedRecoverySuggestionErrorKey

Method: localizedRecoverySuggestion (can return nil)

Recovery options
An array of titles (as strings) for the buttons of the error alert. By default, alert sheets and dialogs for
error messages have only the “OK” button for dismissing the alert. The first string in the array is the
title of the rightmost button, the next string is the title of the button just to the left of the first, and
so on. Note that if a recovery attempter is specified for the error object, the recovery-options array
should contain more than one string. The recovery attempter accesses the recovery options in order
to interpret user choices.

User info key: NSLocalizedRecoveryOptionsErrorKey

Method: localizedRecoveryOptions (if returns nil, implies a single “OK button)

Figure 1-1 The localized strings of an NSError object

Recovery options (default)

Recovery suggestion

Error description

Note:  Beginning with Mac OS X version 10.4, you can use the alertWithError:class method of NSAlert
as a convenience for creating NSAlert objects to use when displaying alert dialogs or sheets. The method
extracts the localized information from the passed-in NSError object for its message text, informative text,
and button titles. You may also use the presentError: message to display error alerts.

To internationalize your error strings, create a .strings file for each localization and place the file in an
appropriately named .lproj subdirectory of your bundle’s Resources directory. Then use one of the
NSLocalizedString macros to add localized strings to the user info dictionary of an NSError object. For
more on internationalization and string localization, see Internationalization Programming Topics.

The User Info Dictionary 13
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Error Objects, Domains, and Codes



Note:  For many error objects in the Cocoa error domain, the localization is performed on demand; in these
cases, the localized values are not stored in the user info dictionary.

The Recovery Attempter

An NSError object’s user info dictionary can also contain a recovery attempter. A recovery attempter is an
object that implements one or more methods of the NSErrorRecoveryAttempting informal protocol. In many
cases, this is the same object that creates the NSError object, but it can be any other object that may know
how to recover from a particular error.

If a recovery attempter has been specified for an NSError object, and multiple recovery options have also
been specified, when the error alert is displayed and the user selects a recovery option, the recovery attempter
is given a chance to recover from the error. You access the recovery attempter by sending
recoveryAttempter to the NSError object. You can add an recovery attempter to the user info dictionary
using the key NSRecoveryAttempterErrorKey.

For more on the recovery-attempter object and its role in error handling, see “Error Responders and Error
Recovery” (page 15).

Underlying Error

The user info dictionary can sometimes include another NSError object that represents an error in a subsystem
underlying the error represented by the containing NSError. You can query this underlying error object to
obtain more specific information about the cause of the error.

You access the underlying error object by using the NSUnderlyingErrorKey dictionary key.

Domain-Specific Keys

Many of the various error domains specify keys for accessing particular items of information from the user
info dictionary. This information supplements the other information in the error object. For example, the
Cocoa domain defines the keysNSStringEncodingErrorKey,NSURLErrorKey, andNSFilePathErrorKey.

Check the header files or documentation of error domains to find out what domain-specific keys they declare.

14 The User Info Dictionary
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Error Objects, Domains, and Codes



As “Why Have Error Objects?” (page 9) points out, NSError objects bring considerable advantages to Cocoa
programming. But the Cocoa frameworks also give NSError objects a prominent role to play in architectures
for error presentation and error recovery. These architectures enhance the usefulness of error objects. They
make it possible for Cocoa applications to present users with a richer and more customizable range of
messages, and to attempt recovery from errors as well as informing users of them.

Note:  The error-presentation and error-recovery architectures described in this chapter are new with Mac
OS X v10.4. Earlier versions of the operating system do not have these architectures.

The Error-Responder Chain

The Application Kit, largely through the NSResponder class, defines a mechanism known as the responder
chain by which events and action messages in an application are passed up the view hierarchy to windows
and eventually to the application object. The Application Kit defines a similar chain of objects for error
handling and presentation.

To initiate the journey of an NSError object up the error-responder chain, you can send one of two messages
to any object in the chain:

 ■ presentError: — for error messages displayed in application-modal alert dialogs

 ■ presentError:modalForWindow:delegate:didPresentSelector:contextInfo: — for error
messages displayed in document-modal alert sheets

Although these methods are declared by the NSResponder class, you may also send them to objects of the
NSDocument and NSDocumentController classes. (The NSResponder class is the superclass, of course, of the
NSView, NSWindow, NSApplication, and NSWindowController classes.)

The default behavior of both the presentError:... methods—except for the NSApplication
implementation—is to send willPresentError: to self before forwarding the presentError:..
message to the next object in the chain. Subclasses can implement the willPresentError: method to
inspect the passed-in NSError object and return a customized object. Subclasses might want to do this if they
know more than their superclass about the conditions giving rise to the error or if they know best how to
recover from it.

For the purposes of illustration, assume that a view object well down the view hierarchy receives the
presentError: message. As Figure 2-1 shows, it sends willPresentError: to self and then sends
presentError: to its superview, passing it any modified NSError object. The superviews of the originating
view do the same thing until finally the window’s content view sends the presentError: message to its
window object.

The Error-Responder Chain 15
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Error Responders and Error Recovery



Figure 2-1 The error-responder chain—part one

presentError:presentError:presentError:

SubclassSubclass Subclass

willPresentError: willPresentError: willPresentError:

WindowView Superview
presentError:

Error responder chain
In

h
er

it
an

ce

The presentError: message proceeds up the chain of error responders in this fashion until it reaches the
global application object, NSApp. As Figure 2-2 depicts, NSApp sends theapplication:willPresentError:
message to its delegate, giving it the same opportunity as the subclass objects in the chain to inspect the
error object and possibly modify it—but without the need for a custom subclass. When the delegate returns,
NSApp displays the error as (in this case) an alert dialog.

Figure 2-2 The error-responder chain — part two

presentError:

Subclass
instance

Delegate

willPresentError: application:willPresentError:

Object NSApp
presentError:

Error responder chain

Important:  Overriding the
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: method or
presentError: method is not recommended.

The exact sequence of objects in the error-responder chain varies according to the type of application. For
document-based applications, the error-responder chain includes document objects, window controllers,
and document controllers as well as views, windows, and NSApp (Figure 2-3).

16 The Error-Responder Chain
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Error Responders and Error Recovery



Figure 2-3 Error-responder chain for document-based applications

WindowView Superviews

Document
Document
controller NSApp

Window
controller

Some Cocoa applications are not document-based but still use one or more window controllers. Figure 2-4
shows the sequence of objects in this error-responder chain.

Figure 2-4 Error-responder chain for non-document applications with window controllers

Window

NSApp
Window

controller

View Superviews

Finally, simple Cocoa applications—those that are not document-based and that don’t use window
controllers—have an error-responder sequence as depicted in Figure 2-5.

Figure 2-5 Error-responder chain for simple (non-document) applications

Window

NSApp

View Superviews

Error Customization

As described in the preceding section, all along the error-responder chain custom subclasses of objects in
the chain are given the opportunity to inspect and customize an NSError object if they implement the
willPresentError:method. Near the end of the chain the application delegate has the same opportunity
in application:willPresentError:. What kind of tests and customizations can take place in these
methods?

Error Customization 17
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Error Responders and Error Recovery



In either method, you probably first want to determine what the error is. When doing this, test the NSError
object’s domain and error code against the constants that are probably related to the error condition. Do
not evaluate the description or recovery strings as these can vary, especially when they are localized. You
might also narrow down the cause of the error by using domain-specific keys to extract various pieces of
information from the user info dictionary.

Important:  You should always special-case test for the NSUserCancelledError error code (in the
NSCocoaErrorDomain). This code indicates that the user cancelled the operation (for example, by pressing
Command-period). In this case, you should not display any error dialog.

You might also want to find out if the error object has an underlying error; you can access this object from
the user info dictionary with the NSUnderlyingErrorKey key. If there is an underlying error, and this
object has a failure reason in its user info dictonary, you can append this localized string to the error description
to create a more informative description.

If you decide that you know how to recover from the error, you can add an object to the user info dictionary
as the recovery attempter. For a recovery attempter to be effective, it must satisfy the requirements summarized
in “Error Recovery” (page 18).

If you are customizing a received NSError object to have a custom error domain and error code, you may
choose to store the original error in the user info dictonary as an underlying error. Use the key
NSUnderlyingErrorKey for this purpose (or override the recoveryAttempter method).

You cannot modify a received NSError object because the class provides no setter methods and the user info
dictionary is immutable. When customizing an error, you must create a new NSError object, initializing with
new data plus data from the old error object that you want to carry over. See “Using and Creating Error
Objects” (page 21) for explicit instructions and examples.

Error Recovery

A recovery attempter is an object designated to attempt, upon user request, a recovery from a specific error.
For example, say that a program cannot save a file because it is locked. The recovery attempter could try to
unlock it first before overwriting it.

The error recovery mechanism is similar to the delegate design pattern in that a designated object —the
recovery attempter—is asked to respond to a user action. An NSError object can encapsulate a recovery
attempter and recovery options, which is an array of button titles to display in the error alert. Among the
button titles is one requesting error recovery. When an error alert is displayed and the user clicks a button,
the application sends a message to the recovery attempter, passing it the index of the button that was clicked.
If the the “recover” button was clicked, the recovery attempter tries to complete the operation in a way that
avoids the error or fixes the condition that gives rise to it. Finally, the recovery attempter informs either the
application object or the document-modal sheet delegate whether it was successful.

There are three requirements for error recovery to occur as a result of a user choice:

 ■ The recovery-attempter object must implement one of the NSErrorRecoveryAttempting informal protocol
methods:
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:
or attemptRecoveryFromError:optionIndex:, depending on whether the error alert is
document-modal (sheet) or application-modal (dialog), respectively.

18 Error Recovery
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Error Responders and Error Recovery



 ■ The recoveryAttemptermethod must return a suitable object. To ensure this, you can add the recovery
attempter to the user info dictionary as the value of NSRecoveryAttempterErrorKey , or you can
override the recoveryAttempter method.

 ■ The the localizedRecoveryOptions must return an array of button titles (including the title of the
button that requests error recovery). To ensure this, you can add the array to the user info dictionary as
the value of NSLoalizedRecoveryOptionsErrorKey , or you can override the
localizedRecoveryOptions method.

For the complete procedure for error recovery, including sample code, see “Recovering From Errors” (page
31).

Error Recovery 19
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Error Responders and Error Recovery



20 Error Recovery
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Error Responders and Error Recovery



The following sections describe how to deal with NSError objects returned from framework methods, how
to display error messages using error objects, how to create error objects, and how to implement methods
that return error objects by reference.

Handling Error Objects Returned From Methods

Beginning with Mac OS X v10.4, many methods in the Cocoa frameworks include as their last parameter an
indirect reference to an NSError object. Typically these are methods that create a document, write a file, load
a URL, access a resource, or perform a similar operation. For example, the following method declaration is
from the NSDocument class header file:

- (BOOL)writeToURL:(NSURL *)absoluteURL
    ofType:(NSString *)typeName
    error:(NSError **)outError;

If this method encounters an error in its implementation, it directly returns NO to indicate failure and indirectly
returns (if the client code requests it) an NSError object in the last parameter to describe the error. If you
want to evaluate the error, declare an NSError object variable before calling a method such as
writeToURL:ofType:error:. When you invoke the method, pass in a pointer to this variable. (If you are
not interested in the error, just pass NULL.) If the method directly returns nil or NO, inspect the NSError
object to determine the cause of the error or simply display an error alert. Listing 3-1 illustrates this approach.

Listing 3-1 Handling an NSError object returned from a Cocoa method

NSError *theError;
BOOL success = [myDoc writeToURL:[self docURL]
                    ofType:@"html"
                    error:&theError];
if (success == NO) {
    // maybe try to determine cause of error and recover first
    NSAlert *theAlert = [NSAlert alertWithError:theError];
    [theAlert runModal]; // ignore return value
}

Note:  Cocoa methods that indirectly return error objects in the Cocoa error domain are guaranteed to return
such objects if the method indicates failure by directly returning nil or NO.

This code fragment uses the returned NSError to display an error alert to the user immediately. Error objects
in the Cocoa domain are always localized and ready to present to users, so they can often be presented
without further evaluation. (The example in Listing 3-1 is just one of the several approaches you could take
for displaying errors; see the following section, “Displaying Information From Error Objects” (page 23), for
more on this topic).

Handling Error Objects Returned From Methods 21
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Using and Creating Error Objects



Instead of merely displaying an error message returned from a framework call, you could examine the NSError
object to determine if you can do something else:

 ■ You might be able to perform the operation again in a slightly different way that circumvents the
error—without notifying the user.

 ■ If you know how to recover from the error, but require the user’s approval, you could create a new version
of the error object that adds a recovery attempter to it (see “Recovering From Errors” (page 31)).

 ■ You might be able supplement the information in the error from the current programming context and
then create a new error object that contains this enriched information.

 ■ Send the error object up the error-responder chain so that other objects in the application can add to
it or try to recover from the error.

 ■ If you use the returned NSError as the basis of a new error object, either by adding a recovery attempter
or supplementary information, you can either:

 ❏ Display the message immediately.

 ❏ Pass the error on to the next error responder.

For more on customizing errors passed up the error-responder chain, see “Handling Received Errors” (page
27).

Important:  You should always special-case test for the NSUserCancelledError error code (in the
NSCocoaErrorDomain). This code indicates that the user cancelled the operation (for example, by pressing
Command-period). In this case, you should not display any error dialog.

When evaluating an NSError object, always use the object’s domain and error code as the bases of tests and
not the strings describing the error or how to recover from it. Strings are typically localized and are thus likely
to vary. With a few exceptions, pre-existing errors returned from Cocoa framework methods are always in
the NSCocoaErrorDomain domain; however, because there are exceptions you might want to test whether
the top-level error belongs to that domain. Error objects returned from Cocoa methods can often contain
underlying error objects representing errors returned by lower subsystems, such as the BSD layer
(NSPOSXIErrorDomain).

Of course, to make a successful evaluation of an error, you have to anticipate the errors that might be returned
from a method invocation. And you should ensure that your code deals adequately with new errors that
might be returned in the future.

22 Handling Error Objects Returned From Methods
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Using and Creating Error Objects



Note:  Some methods of the Cocoa frameworks can give you error objects in ways other than indirection.
For example, some methods of the NSXMLParser class, such as parser:validationErrorOccurred:,
pass an NSError object to the delegate if an fatal error has occurred. Other methods, such as streamError
of the NSStream class, return an NSError object directly. What you can do with the error object is the same
in all cases.

Displaying Information From Error Objects

There are several different ways to display the information in NSError objects. You could extract the localized
description (or failure reason), recovery suggestion, and the recovery options from the error object and use
them to initialize an NSAlert object with message text, informative text, and button titles. Although this
approach is the most painstaking, it does give you a large degree of control over the content and presentation
of the error alert.

Fortunately, the Application Kit provides a few shortcuts for displaying error alerts. The presentError: and
the presentError:modalForWindow:delegate:didPresentSelector:contextInfo: methods
permit you to originate an error alert that is eventually displayed by the application object, NSApp; the former
method requests an application-modal alert and the latter a document-modal alert. You must send either
of these present-error messages to an objects in the error-responder chain (see “The Error-Responder
Chain” (page 15)): a view object, a window object, an NSDocument object, an NSWindowController object,
an NSDocumentController object, or NSApp. (If you send the message to a view, it should ideally be a view
object associated in some way with the condition that produced the error.) Listing 3-2 illustrates how you
might invoke the document-modal
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: method.

Listing 3-2 Displaying a document-modal error alert

NSError *theError;
NSData *theData = [doc dataOfType:@"xml" error:&theError];
if (!theData && theError)
    [anyView presentError:theError
            modalForWindow:[doc windowForSheet]
            delegate:self
            didPresentSelector:
                @selector(didPresentErrorWithRecovery:contextInfo:)
            contextInfo:nil];

After the user dismisses the alert, NSApp invokes a method (identified in the didPresentSelector:
keyword) implemented by the modal delegate. As Listing 3-3 shows, the modal delegate in this method
checks whether the recovery-attempter object (if any) managed to recover from the error and responds
accordingly.

Listing 3-3 Modal delegate handling the user response

- (void)didPresentErrorWithRecovery:(BOOL)recover
            contextInfo:(void *)info {
    if (recover == NO) { // recovery did not succeed, or no recovery attempter
        // proceed accordingly
    }
}

Displaying Information From Error Objects 23
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Using and Creating Error Objects



For more on the recovery-attempter object, see “Recovering From Errors” (page 31).

Sometimes you might not want to send an error object up the error-responder chain to be displayed by
NSApp. You would rather show an error alert to the user immediately, and not have to construct it yourself.
The NSAlert class provides the alertWithError: method for this purpose.

Listing 3-4 Directly displaying an error alert dialog

NSAlert *theAlert = [NSAlert alertWithError:theError];
int button = [theAlert runModal];
if (button != NSAlertFirstButtonReturn) {
    // handle
}

Note:  The presentError: and
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: methods silently
ignore NSUserCancelledError errors in the NSCocoaErrorDomain domain.

Creating and Returning NSError Objects

You can declare and implement your own methods that indirectly return an NSError object. Methods that
are good candidates for NSError parameters are those that open and read files, load resources, parse formatted
text, and so on. In general, these methods should not indicate an error through the existence of an NSError
object. Instead, they should return NO or nil from the method to indicate that an error occurred. Return the
NSError object to describe the error.

If you are going to return an NSError object by reference in an implementation of such a method, you must
create the NSError object. You create an error object either by allocating it and then initializing it with the
initWithDomain:code:userInfo: method of NSError or by using the class factory method
errorWithDomain:code:userInfo: . As the keywords of both methods indicate, you must supply the
initializer with a domain (string constant), an error code (a signed integer), and a “user info” dictionary
containing descriptive and supporting information. (See “Error Objects, Domains, and Codes” (page 9) for
full descriptions of these data items.) You should ensure that all strings in the user info dictionary are localized.
If you create an NSError object with initWithDomain:code:userInfo:, you should send autorelease
to it before you return it to the caller.

Listing 3-5 is an example of a method that, for the purpose of illustration, calls the POSIX-layer open function
to open a file. If this function returns an error, the method creates an NSError object of the
NSPOSIXErrorDomain that is used as the underlying error of a custom error domain returned to the caller.

Listing 3-5 Implementing a method that returns an NSError object

- (NSString *)fooFromPath:(NSString *)path error:(NSError **)anError {
    const char  *fileRep = [path fileSystemRepresentation];
    int fd = open(fileRep, O_RDWR|O_NONBLOCK, 0);
    if (fd == -1) {
        NSString *descrip;
        NSDictionary *uDict;
        int errCode;
        if (errno == ENOENT) {
                descrip = NSLocalizedString(@"No such file or directory at

24 Creating and Returning NSError Objects
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Using and Creating Error Objects



                        requested location", @"");
                errCode = MyCustomNoFileError;
        } else if (errno == EIO) {
            // continues for each possible POSIX error...
        }

        // Make underlyining error
        NSError *undError = [[[NSError alloc] initWithDomain:NSPOSIXErrorDomain
            code:errno userInfo:nil] autorelease];
        // Make and return custom domain error
        NSArray *objArray = [NSArray arrayWithObjects:descrip, undError, path, nil];
        NSArray *keyArray = [NSArray arrayWithObjects:NSLocalizedDescriptionKey,
            NSUnderlyingErrorKey, NSFilePathErrorKey, nil];
        NSDictionary *eDict = [NSDictionary dictionaryWithObjects:objArray
            forKeys:keyArray];
        if (anError != NULL)
            *anError = [[[NSError alloc] initWithDomain:MyCustomErrorDomain
                code:errCode userInfo:eDict] autorelease];
        return nil;
    }
    // ...

In this example, the returned error object includes in its user info dictionary the path that caused the error.

As the example in Listing 3-5 shows, you can use errors that originate from underlying subsystems as the
basis for error objects that you return to callers. You can use raised exceptions that your code handles in the
same way. An NSException object is compatible with an NSError object in that its attributes are a name, a
reason, and an user info dictionary. You can easily transfer information in the exception object over to the
error object.

A Note on Errors and Exceptions

It is important to keep in mind the difference between NSError objects and NSException objects, and when
to use one or the other in your code. They serve different purposes and should not be confused.

Exceptions (represented by NSException objects) are for programming errors, such as an array index that is
out of bounds or an invalid method argument. User-level errors (represented by NSError objects) are for
runtime errors, such as when a file cannot be found or a string in a certain encoding cannot be read. Conditions
giving rise to exceptions are due to programming errors; you should deal with these errors before you ship
a product. Runtime errors can always occur, and you should communicate these (via NSError objects) to the
user in as much detail as they require.

Although exceptions should ideally be taken care of before deployment, a shipped application can still
experience exceptions as a result of some truly exceptional situation such as “out of memory” or “boot volume
not available.” It is best to allow the highest level of the application—NSApp itself—to deal with these
situations.

Creating and Returning NSError Objects 25
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Using and Creating Error Objects



26 Creating and Returning NSError Objects
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Using and Creating Error Objects



When you send a presentError: or
presentError:modalForWindow:delegate:didPresentSelector:contextInfo:message to certain
eligible objects, the message travels up a sequence of objects in an application called the error-responder
chain (see “The Error-Responder Chain” (page 15)). The default implementation for most objects in this chain
is to send the willPresentError: method to self before sending the presentError: message to the
next object. The willPresentError:message gives instances of custom subclasses an opportunity to look
at the error object being passed up the chain and possibly customize it. When the error object reaches the
end of the chain, the global application object, NSApp, displays an error alert to users; but before NSApp
displays the error alert, it invokes the method application:willPresentError:, giving its delegate the
same opportunity.

The following sections discuss strategies for implementing the willPresentError: and
application:willPresentError: methods.

Passing Errors Up the Error-Responder Chain

If you have a subclass of NSDocument, NSDocumentController, NSWindowController, NSWindow, NSPanel,
or any view class, you can override the willPresentError:method to customize the presentation of errors.
This might be something you want an instance of your subclass to do if it knows more about the context of
a particular error than other objects in the application. Generally, an implementation of willPresentError:
examines the passed-in NSError object and if, for example, its localized description is insufficient, or if the
subclass knows how to recover from the error, it creates a new NSError object and returns it. In most cases,
the customized error object retains some information from the passed-in object.

An implementation of the willPresentError:method should always use the error domain and error code
as the basis for deciding whether to return a customized error object. Do not base the decision on the strings
in the user info dictionary for these can be localized and may vary between invocations. If your implementation
decides not to customize the error, don’t return the passed-in object directly; instead, send the
willPresentError: message to super. Listing 4-1 illustrates some of these strategies.

Listing 4-1 Handling an error passed up the error-responder chain

- (NSError *)willPresentError:(NSError *)error {
    if ([[error domain] isEqualToString:NSCocoaErrorDomain]) {

        switch([error code]) {
            case NSFileLockingError:
            case NSFileReadNoSuchFileError:
            { // private method of custom subclass
                return [self customizeError:error];
            }
            default:
                return [super willPresentError:error];
        }

Passing Errors Up the Error-Responder Chain 27
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Received Errors



    }
}

You don’t have to make a subclass in order to customize an NSError object for presentation. Instead, your
application delegate can implement theapplication:willPresentError:method. The same observations
and guidelines given for willPresentError: above apply to the implementation of
application:willPresentError:, except that you can return the original error object directly if you
decide not to customize it.

Customizing an Error Object

In the willPresentError: example in Listing 4-1 (page 27), a private method is invoked to customize the
error object. This is done to clarify the structure of the implementation. But if the customizing code was
in-line, it might look some like the willPresentError: implementation in Listing 4-2. This code checks if
the passed-in object has a failure reason and, if it does, it creates a more application-specific error description,
appending the failure reason. Then it creates a new NSError object with this different description.

Listing 4-2 Customizing an NSError object

- (NSError *)willPresentError:(NSError *)error {
    if ([[error domain] isEqualToString:NSCocoaErrorDomain]) {

        switch([error code]) {
            case NSFileLockingError:
            case NSFileReadNoSuchFileError:
            {
                NSString *locFailure = [error localizedFailureReason];
                if (locFailure) {
                    NSMutableDictionary *newUserInfo = [NSMutableDictionary
                        dictionaryWithCapacity:[[[error userInfo] allKeys] count]];
                    [newUserInfo setDictionary:[error userInfo]];
                    NSString *errorDesc = [NSString stringWithFormat:
                        NSLocalizedString(@"MyGreatApp cannot open the file. %@", @""),
                        locFailure];
                    [newUserInfo setObject:errorDesc
                        forKey:NSLocalizedDescriptionKey];
                    NSError *newError = [NSError errorWithDomain:[error domain]
                        code:[error code] userInfo:newUserInfo];
                    return newError;
                } else {
                    return [super willPresentError:error];
                }
            }
            default:
                return [super willPresentError:error];
        }
    }
}

In this example, the original error object is essentially cloned to make the new one. The new error object
contains a more specific error description and appends the failure reason to it.

28 Customizing an Error Object
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Received Errors



As noted in “Passing Errors Up the Error-Responder Chain” (page 27), there is no difference in implementing
willPresentError: and the delegate method application:willPresentError:, except that in the
latter method you can return the passed-in error object directly if you do not customize it.

Note:  For another example of error-object customization, see Listing 5-1 (page 31) in “Recovering From
Errors” (page 31). In this case, the original object is changed to include recovery options, a recovery suggestion,
and a recovery-attempter object.

Customizing an Error Object 29
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Received Errors



30 Customizing an Error Object
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Received Errors



As described in “The Recovery Attempter” (page 14), an NSError object can have a designated recovery
attempter, an object that attempts to recover from the error if the user requests it. The error object holds a
reference to the recovery attempter in its user info dictionary, so if the error object is passed around within
an application, the recovery attempter stays with it. The user info dictionary must also contain recovery
options, an array of localized strings for button titles, one or more of which requests recovery. When the
error is presented in an alert and the user selects the recovery option, a message is sent to the recovery
attempter, requesting it to do its job.

Ideally, the recovery attempter should be an independent object that knows something about the conditions
of an error and how best to circumvent those conditions. An application could even have an object whose
role is to recover from errors of various kinds. A recovery attempter must implement at least one of the two
methods of the NSErrorRecoveryAttempting informal protocol:
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo: or
attemptRecoveryFromError:optionIndex:. It implements the former method for error alerts presented
document-modally, and the latter method for application-modal alerts.

You must also prepare an error object so that error recovery can take place. To do this, add three items to
the user info dictionary of the error object:

 ■ The recovery-attempter object under the key NSRecoveryAttempterErrorKey

 ■ The recovery options, an array of localized strings, under the key
NSLocalizedRecoveryOptionsErrorKey

 ■ A recovery-suggestion string, also localized, under the key
NSLocalizedRecoverySuggestionErrorKey. Although this property is not strictly required, an error
alert that offers recovery as an option should display this string. And if the string refers to particular
button titles, it should use the same titles in the recovery-options array.

For guidelines about error alerts, see Apple Human InterfaceGuidelines (section on dialogs in “Windows“).

Listing 5-1 illustrates a case involving the NSXMLDocument class. In this example, an NSDocument object
attempts to create an internal tree representing an XML document using the
initWithContentsOfURL:options:error: method of NSXMLDocument. If the attempt fails, the usual
cause is that the source XML is malformed—for example, there is a missing end tag for an element, or an
attribute value is not quoted. If the source XML is “tidied” first to fix the structural problems, it may be possible
to create the XML tree.

In the example in Listing 5-1 if the invocation of initWithContentsOfURL:options:error: returns an
error object by reference, the document object customizes the error object, adding (among other things) a
recovery-attempter object, localized recovery options, and a localized recovery suggestion to its user info
dictionary. Then it sends
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: to self.

Listing 5-1 Preparing for error recovery

- (BOOL)readFromURL:(NSURL *)furl ofType:(NSString *)type error:(NSError **)anError {
    NSError *err=nil;

31
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Recovering From Errors



    if (xmlDoc) {
        [xmlDoc release];
        xmlDoc = nil;
    }
    // xmlDoc is an NSXMLDocument instance variable
    xmlDoc = [[NSXMLDocument alloc] initWithContentsOfURL:furl
            options:NSXMLNodeOptionsNone error:&err];
    if (xmlDoc == nil && err) {
        NSString *newDesc = [[err localizedDescription] stringByAppendingString:
            ([err localizedFailureReason] ? [err localizedFailureReason] : @"")];
        NSMutableDictionary *newDict = [NSMutableDictionary dictionaryWithCapacity:4];
        [newDict setObject:newDesc forKey:NSLocalizedDescriptionKey];
        [newDict setObject:
            NSLocalizedString(@"Would you like to tidy the XML and try again?", @"")
            forKey:NSLocalizedRecoverySuggestionErrorKey];
        [newDict setObject:self forKey:NSRecoveryAttempterErrorKey];
        [newDict setObject:[NSArray arrayWithObjects:
            NSLocalizedString(@"Try Again", @""), NSLocalizedString(@"Cancel", @""),
            nil] forKey:NSLocalizedRecoveryOptionsErrorKey];
        [newDict setObject:furl forKey:NSURLErrorKey];
        NSError *newError = [[NSError alloc] initWithDomain:[err domain]
            code:[err code] userInfo:newDict];
        [self presentError:newError modalForWindow:[self windowForSheet]
            delegate:self
            didPresentSelector:@selector(didPresentErrorWithRecovery:contextInfo:)
            contextInfo:nil];
    }
// ...

Note that the document object also adds to the user info dictionary the URL identifying the source of XML.
The recovery attempter will use this URL when it attempts to create a tree representing the XML.

The error object is passed up the error-responder chain and NSApp displays it. When the user clicks any
button of the error alert, NSApp checks to see if the error object has both a recovery attempter and recovery
options. If both of these conditions are true, it invokes the method implemented by the recovery attempter
that corresponds to the mode of the alert (that is, document-modal or application-modal).

Listing 5-2 shows how the recovery attempter for the XML document implements the
attemptRecoveryFromError:optionIndex:delegate:didRecoverSelector:contextInfo:method.

Listing 5-2 Recovering from the error and informing the modal delegate

- (void)attemptRecoveryFromError:(NSError *)error
                     optionIndex:(unsigned int)recoveryOptionIndex
                        delegate:(id)delegate
              didRecoverSelector:(SEL)didRecoverSelector
                     contextInfo:(void *)contextInfo {

    BOOL success=NO;
    NSError *err=nil;
    NSInvocation *invoke = [NSInvocation invocationWithMethodSignature:[delegate 
methodSignatureForSelector:didRecoverSelector]];
    [invoke setSelector:didRecoverSelector];

    if (recoveryOptionIndex == 0) { // recovery requested
        xmlDoc = [[NSXMLDocument alloc] initWithContentsOfURL:[[error userInfo]
                objectForKey:NSURLErrorKey] options:NSXMLDocumentTidyXML error:&err];

32
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Recovering From Errors



        if (xmlDoc != nil) {
            success = YES;
        }
    }
    [invoke setArgument:(void *)&success atIndex:2];
    if (err)
        [invoke setArgument:&err atIndex:3];
    [invoke invokeWithTarget:delegate];
}

The key part of the above example is the test the recovery attempter makes to determine if the user clicked
the “Try Again” button: it checks the value of recoveryOptionIndex. If the user did click this button, the
recovery attempter invokes the initWithContentsOfURL:options:error:method again, this time with
the NSXMLDocumentTidyXML option. Then it creates and invokes an NSInvocation object, thereby sending
the required message to the modal delegate of the error alert. The invocation object includes the two
parameters required by the delegate’s selector: a Boolean indicating whether the recovery attempt succeeded
and a “context info” parameter which, in this case, contains any error object returned from the recovery
attempt.

Note:  The example in Listing 5-2 shows the use of NSInvocation to send a message. However, if you have a
reference to the modal delegate and know the name of the method it implements, you can send the message
directly.

When the modal delegate receives the message from the recovery attempter, as in Listing 5-3, it can respond
appropriately.

Listing 5-3 Modal delegate responding to recovery attempter

- (void)didPresentErrorWithRecovery:(BOOL)didRecover
            contextInfo:(void *)contextInfo {
NSError *theError = (NSError *)contextInfo;
    if (didRecover) {
        [tableView reloadData];
    } else if (theError && [theError isKindOfClass:[NSError class]]) {
        [NSAlert alertWithError:theError];
    }
}

33
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Recovering From Errors



34
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Recovering From Errors



This table describes the changes to Error Handling Programming Guide For Cocoa.

NotesDate

Corrected a link error.2009-03-04

Added link to "Error Handling in the Document Architecture" in Document-Based
Application Overview. Mentioned default behavior of presentError: with
NSCocoaErrorDomain/NSUserCancelledError errors. Provided related reference,
sample code, and documents.

2009-01-06

Corrected code in Listing 5-2 showing creation of NSInvocation object.2006-10-03

Corrected code listing illustrating error recovery and discussed
NSUserCancelledError code.

2006-04-04

New document that describes how to use NSError objects and related Application
Kit support when handling user-level errors.

2005-04-29

35
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



36
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



A

alertWithError: method 13, 24
application-modal alerts 18, 23, 31
application:willPresentError:method 16, 27–29
architectures

for error handling 15
attemptRecoveryFromError:optionIndex:method

18, 31
attemptRecoveryFromError:optionIndex:delegate:

didRecoverSelector:contextInfo:method 18,
31

B

button titles 13

C

Carbon error codes 9
Cocoa error domain 10, 21
code method 10
creating error objects 24, 25
customizing errors 17, 18, 28–29

D

displaying errors 21, 23, 24
document-based applications

and error presentation 16
document-modal alerts 18, 23, 31
domain method 9

E

error alerts 18, 21
application-modal 23
document-modal 23

error codes 10, 18, 24
error customization 15, 17–18
error description 12
error domains 9, 18, 24

reasons for 10
error evaluation 21, 27
error objects See NSError objects 21
error presentation 13, 23–24

architecture for 15, 17
error recovery 18–19, 31, 33
error-responder chain 15–17, 22, 23, 32

sequence of objects 16
errors

testing for 18
underlying 18

errorWithDomain:code:userInfo: method 24
evaluating errors 22

F

failure reason 12, 18

H

handling returned errors 21, 23

I

initWithDomain:code:userInfo: method 24

37
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

Index



L

localizedDescription method 12
localizedFailureReason method 12
localizedRecoveryOptions method 13, 19
localizedRecoverySuggestion method 13
localizing error strings 12, 13

M

methods
returning errors from 24, 25
with NSError parameters 21

modal delegate
of document-modal alerts 23, 33

N

NSAlert class 13
NSAlert objects

and error presentation 23
NSApp 16, 23, 27, 32
NSApplication class 15
NSCocoaErrorDomain constant 9
NSDictionary class 12
NSDocument class 15, 27
NSDocument objects 23
NSDocumentController class 15, 27
NSDocumentController objects 23
NSError class 9
NSError objects 21

and error recovery 31, 33
and the error-responder chain 27, 29
as method parameters 21–23
as parameters 24
creating 24–25
customizing 18
description 9–14
displaying 23, 24
evaluating 22
examining 22, 27
reasons for 9
versus exceptions 25

NSErrorRecoveryAttempting informal protocol 14, 18, 31
NSException objects 25
NSFilePathErrorKey constant 14
NSInvocation class 33
NSLoalizedRecoveryOptionsErrorKey constant 19
NSLocalizedDescriptionKey constant 12
NSLocalizedFailureReasonErrorKey constant 12

NSLocalizedRecoverSuggestionErrorKey constant
13

NSLocalizedRecoveryOptionsErrorKey constant
13, 31

NSLocalizedRecoverySuggestionErrorKey constant
31

NSLocalizedString macros 13
NSMachErrorDomain constant 9
NSOSStatusErrorDomain constant 9
NSPanel class 27
NSPOSIXErrorDomain constant 9, 24
NSRecoveryAttempterErrorKey constant 14, 19, 31
NSResponder class 15
NSStream class 23
NSStringEncodingErrorKey constant 14
NSUnderlyingErrorKey constant 14, 18
NSURLErrorDomain constant 10
NSURLErrorKey constant 14
NSUserCancelledError code 18, 22
NSView class 15
NSView objects 23
NSWindow class 15, 27
NSWindow objects 23
NSWindowController class 15, 27
NSWindowController objects 23
NSXMLDocument class 31
NSXMLParser class 23
NSXMLParserErrorDomain constant 10

O

objectForKey: method 12
OSStatus data type 9

P

parser:validationErrorOccurred: method 23
POSIX error codes 9
presentError: method 12, 13, 15, 23, 27
presentError:modalForWindow:delegate:

didPresentSelector:contextInfo:method 15,
23, 27

programming errors 25

R

received errors 27, 29
recovering from errors 18, 19, 31, 33
recovery attempter 14, 18, 19, 22, 23, 31–33

38
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

INDEX



recovery options 13, 31
recovery suggestion 13, 31
recoveryAttempter method 14, 19
runtime errors 25

S

streamError method 23

U

underlying errors 14, 18, 25
in Cocoa errors 22

user info dictionary 12, 24
and error recover 31
domain-specific keys 14

userInfo method 12

V

view classes 27

W

WebKitErrorDomain constant 10
willPresentError: method 15, 27–29

39
2009-03-04   |   © 2005, 2009 Apple Inc. All Rights Reserved.

INDEX


	Error Handling Programming Guide For Cocoa
	Contents
	Figures, Tables, and Listings
	Introduction
	Error Objects, Domains, and Codes
	Why Have Error Objects?
	Error Domains
	Error Codes
	The User Info Dictionary
	Localized Error Information
	The Recovery Attempter
	Underlying Error
	Domain-Specific Keys


	Error Responders and Error Recovery
	The Error-Responder Chain
	Error Customization
	Error Recovery

	Using and Creating Error Objects
	Handling Error Objects Returned From Methods
	Displaying Information From Error Objects
	Creating and Returning NSError Objects
	A Note on Errors and Exceptions


	Handling Received Errors
	Passing Errors Up the Error-Responder Chain
	Customizing an Error Object

	Recovering From Errors
	Revision History
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W



