
Cocoa Event-Handling Guide
Cocoa > Events & Other Input

2009-02-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Xcode are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 9

Organization of This Document 9
See Also 10

Chapter 1 Event Architecture 11

How an Event Enters a Cocoa Application 11
Event Dispatch 13

The Path of Mouse and Tablet Events 14
The Path of Key Events 15
Other Event Dispatching 17

Action Messages 18
Responders 19

First Responders 19
Next Responders 20

The Responder Chain 21
Responder Chain for Event Messages 21
Responder Chain for Action Messages 21
Other Uses 24

Chapter 2 Event Objects and Types 25

NSEvent Objects 25
Attributes of an Event Object 25
NSEvent Class Methods 26
Event Objects in Methods of Other Classes 26

Event Types 27
Mouse Events 27
Key Events 29
Tablet Events 29
Other Types of Events 33

Chapter 3 Event Handling Basics 35

Preparing a Custom View for Receiving Events 35
Implementing Action Methods 36
Getting the Location of an Event 39
Testing for Event Type and Modifier Flags 39
Responder-Related Tasks 41

Determining First-Responder Status 41
Setting the First Responder 41

3
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Chapter 4 Handling Mouse Events 45

Overview of Mouse Events 45
Handling Mouse Clicks 46
Handling Mouse Dragging Operations 48

The Three-Method Approach 49
The Mouse-Tracking Loop Approach 51
Filtering Out Key Events During Mouse-Tracking Operations 53

Chapter 5 Handling Key Events 57

Overview of Key Events 57
Overriding the keyDown: Method 58

Handling Keyboard Actions and Inserting Text 58
Specially Interpreting Keystrokes 61

Handling Key Equivalents 63
Keyboard Interface Control 63

Chapter 6 Using Tracking-Area Objects 67

Creating an NSTrackingArea Object 67
Managing a Tracking-Area Object 69
Responding to Mouse-Tracking Events 69
Managing Cursor-Update Events 70
Compatibility Issues 71

Chapter 7 Handling Tablet Events 73

Packaging of Tablet Events 73
Tablet Events and the Responder Chain 74

Text System Defaults and Key Bindings 75

Key Bindings 75
Key Bindings in Xcode 77

Standard Action Methods for Selecting and Editing 77
Selection Direction 78
Selection and insertion point 78
Marks 78
The kill buffer 78

Text System Defaults 78
NSMnemonicsWorkInText 78
NSRepeatCountBinding 79
NSQuotedKeystrokeBinding 79
NSTextShowsInvisibleCharacters) 79
NSTextShowsControlCharacters 79

4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

NSTextSelectionColor 79
NSMarkedTextAttribute and NSMarkedTextColor) 80
NSTextKillRingSize 80

Appendix A Mouse-Tracking and Cursor-Update Events 81

Handling Mouse-Tracking Events 81
Managing Cursor-Update Events 84

Document Revision History 85

5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Event Architecture 11

Figure 1-1 The event stream 11
Figure 1-2 The main event loop, with event source 12
Figure 1-3 Path of a mouse event 13
Figure 1-4 Path of a key event (character to insert) 14
Figure 1-5 Possible path of a key event 16
Figure 1-6 From event message to action message 18
Figure 1-7 The chain of next responders 20
Figure 1-8 Responder chain of a non-document-based application 22
Figure 1-9 Responder chain of a non-document application with an NSWindowController

object 23
Figure 1-10 Responder chain of a document-based application 24

Chapter 2 Event Objects and Types 25

Figure 2-1 Pointer A coming near the tablet, generating proximity event 32
Figure 2-2 Application receiving pointer events 32
Figure 2-3 Pointer B coming near the tablet, generating proximity event 33
Figure 2-4 Pointer A leaving the tablet surface, generating proximity event 33

Chapter 3 Event Handling Basics 35

Figure 3-1 Connecting an untargeted action in Interface Builder 37
Figure 3-2 Making a view a first responder—current view refuses to resign status 42
Figure 3-3 Making a view a first responder—new view becomes first responder 42
Listing 3-1 Simple implementation of an action method 37
Listing 3-2 Resetting target and action of sender—good implementation 38
Listing 3-3 Resetting target and action of sender—better implementation 38
Listing 3-4 Converting a mouse-dragged location to be in a view’s coordinate system 39
Listing 3-5 Testing for event type 39
Listing 3-6 Testing for modifier keys pressed—event method 40
Listing 3-7 Testing for modifier keys pressed—action method 40
Listing 3-8 Determining if a text field is first responder 41
Listing 3-9 Resigning and becoming first responder 42

Chapter 4 Handling Mouse Events 45

Table 4-1 Type constants and methods related to left-button mouse events 45
Listing 4-1 Simple handling of mouse click—changing view’s appearance 47
Listing 4-2 Simple handling of mouse click—sending an action message 47
Listing 4-3 Handling a mouse-down event—Sketch application 48

7
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Listing 4-4 Handling a mouse-dragging operation—three-method approach 50
Listing 4-5 Handling mouse-dragging in a mouse-tracking loop—simple example 51
Listing 4-6 Handling mouse-dragging in a mouse-tracking loop—complex example 52
Listing 4-7 Typical mouse-tracking loop 53
Listing 4-8 Typical mouse-tracking loop—with key events negated 53
Listing 4-9 Discarding key events during a dragging operation with the three-method approach

54

Chapter 5 Handling Key Events 57

Table 5-1 Keys used in keyboard interface control 64
Table 5-2 Some key-view loop methods 64
Listing 5-1 Using the input management system to interpret a key event 59
Listing 5-2 Handling arrow-key characters using the input management system 60
Listing 5-3 Some key constants defined by NSResponder 61
Listing 5-4 Handling arrow-key characters by interpreting the physical key 62
Listing 5-5 Manipulating the key-view loop 65

Chapter 6 Using Tracking-Area Objects 67

Listing 6-1 Initializing an NSTrackingArea instance 68
Listing 6-2 Resetting a tracking-area object 69
Listing 6-3 Handling mouse-entered, mouse-moved, and mouse-exited events 70
Listing 6-4 Handling a cursor-update event 71

Appendix A Mouse-Tracking and Cursor-Update Events 81

Listing A-1 Adding a tracking rectangle to a view region 81
Listing A-2 Handling mouse-entered, mouse-moved, and mouse-exited events 82
Listing A-3 Resetting a tracking rectangle 83
Listing A-4 Removing a tracking rectangle when a view is removed from its window 83
Listing A-5 Resetting a cursor rectangle 84

8
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

A primary responsibility of an event-driven application is to handle user events—that is, events generated
by devices such as mice, keyboards, and tablets. For most Cocoa applications, the Application Kit assumes
the largest share of this work. It ensures that events generated by the mouse, keyboard, and other devices
are routed to the objects best suited to handle them. It also implements dozens of user-interface objects
such as controls and text views to respond to events in expected ways—for example, by inserting typed text
or sending an action message. But often an application, especially an application with custom NSView,
NSWindow, or NSApplication objects, finds that it must handle some events itself.

Cocoa Event Handling Guide explains how to handle events of all types in a Cocoa application. It provides
conceptual background for the task-based chapters by describing the Cocoa architecture for dispatching
and handling events, and by giving an overview of NSEvent objects, which all event-handling code must
deal with. Reading this document will give you a solid foundation for handling events in your Cocoa
application. It is recommended that you read Cocoa Fundamentals Guide before reading this document.

Important: This is a preliminary version of this document. Although it has been reviewed for technical
accuracy, it is not final. Other chapters may be added and current chapters may be updated and expanded.

Organization of This Document

This document includes the following chapters:

 ■ “Event Architecture” (page 11) describes how events enter a Cocoa application, how they are dispatched
to view objects, and how they are handled, sometimes after traveling up a chain of responder objects.

 ■ “Event Objects and Types” (page 25) examines the Cocoa objects that represent events and surveys the
types of events a Cocoa application can receive.

 ■ “Event Handling Basics” (page 35) presents the fundamental tasks in event-handling code regardless of
event type.

 ■ “Handling Mouse Events” (page 45) describes how you can handle events arising from the user clicking
or dragging the mouse.

 ■ “Handling Key Events” (page 57) describes how you can handle events resulting from the user pressing
keys on a keyboard.

 ■ “Using Tracking-Area Objects” (page 67) explains how to use NSTrackingArea objects to manage
mouse tracking and cursor updates within regions of views.

 ■ “Handling Tablet Events” (page 73) describes how to handle events generated by moving and
manipulating a stylus over a tablet device.

 ■ “Text System Defaults and Key Bindings” (page 75) discusses the mechanism for binding key combinations
to action messages and describes various defaults that can be applied to Cocoa’s text system.

Organization of This Document 9
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The appendix “Using Tracking-Area Objects” (page 67) covers the legacy API for mouse tracking and cursor
updates. It explains how to set up tracking and cursor rectangles and handle the events that are subsequently
generated when users move the mouse cursor into those areas.

See Also

The following ADC Reference Library documents are conceptually related to Cocoa Event-Handling Guide:

 ■ Cocoa Fundamentals Guide (prerequisite reading)

 ■ View Programming Guide for Cocoa

 ■ Text Input Management

Because view objects often redraw themselves in response to events, it is also recommended that you peruse
Cocoa Drawing Guide.

The following sample code projects in the ADC Reference Library include illustrative event-handling code:

 ■ BoingX—mouse dragging, key events

 ■ CIAnnotation—mouse clicks, mouse dragging

 ■ Cocoa OpenGL—mouse clicks, key events

 ■ Color Sampler—mouse clicks, mouse dragging

 ■ Cropped Image—mouse clicks, mouse dragging

 ■ DragItemAround—mouse clicks, mouse dragging, keyboard actions

 ■ FunkyOverlayWindow—mouse tracking

 ■ ImageMapExample—mouse dragging, mouse tracking

 ■ People—key events

 ■ Sketch-112—mouse clicks, mouse dragging, key events, keyboard actions

The following sample code projects, which are installed in /Developer/Examples/AppKit, also contain
useful event-handling code:

 ■ Circle View—mouse clicks, mouse dragging

 ■ Clock Control—responder related, keyboard actions

 ■ Dot View—mouse clicks

 ■ Rulers—mouse dragging

 ■ Stickies—mouse clicks, mouse dragging

10 See Also
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

The path taken by an event to the object in a Cocoa application that finally handles it can be a complicated
one. This chapter traces the possible paths of events of various types and describes the mechanisms and
architectural designs for handling events in the Application Kit.

For further background, “The Core Application Architecture on Mac OS X“ in Cocoa Fundamentals Guide is
recommended reading.

How an Event Enters a Cocoa Application

An event is a low-level record of a user action that is usually routed to the application in which the action
occurred. A typical event in Mac OS X originates when the user manipulates an input device attached to a
computer system, such as a keyboard, mouse, or tablet stylus. When the user presses a key or clicks a button
or moves a stylus, the device detects the action and initiates a transfer of data to the device driver associated
with it. Through the I/O Kit, the device driver creates a low-level event, puts it in the window server's event
queue, and notifies the window server. The window server dispatches the event to the appropriate run-loop
port of the target process. From there the event is forwarded to the event-handling mechanism appropriate
to the application environment. Figure 1-1 depicts this event-delivery system.

Figure 1-1 The event stream

Kernel environment

Application Services

Core Services

Application environmentsCarbonCocoa

ApplicationApplication

Mouse Keyboard Tablet
& stylus

Window Server

I/O Kit

How an Event Enters a Cocoa Application 11
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Note: Applications normally receive events from the keyboard and mouse only when they are in the
foreground (that is, active). Although applications running in the background do not normally receive key
and mouse events, low-level mechanisms called event taps make it possible for a background application
to receive events and act upon them.

Before it dispatches an event to an application, the window server processes it in various ways; it time-stamps
it, annotates it with the associated window and process port, and possibly performs other tasks as well. As
an example, consider what happens when a user presses a key. The device driver translates the raw scan
code into a virtual key code which it then passes off (along with other information about the keypress) to
the window server in an event record. The window server has a translation facility that converts the virtual
key code into a Unicode character.

In Mac OS X, events are delivered as an asynchronous stream. This event stream proceeds “upward” (in an
architectural sense) through the various levels of the system—the hardware to the window server to the
Event Manager—until each event reaches its final destination: an application. As it passes through each
subsystem, an event may change structure but it still identifies a specific user action.

Note: Lower levels of the system trap and handle some events early in the event stream. These events are
never routed to a Cocoa application. These events are generated by reserved keys or key combinations, such
as the power and media-eject keys.

Every application has a mechanism specific to its environment for receiving events from the window server.
For a Cocoa application, that mechanism is called the main event loop. A run loop, which in Cocoa is an
NSRunLoop object, enables a process to receive input from various sources. By default, every thread in Mac
OS X has its own run loop, and the run loop of the main thread of a Cocoa application is called the main
event loop. What especially distinguishes the main event loop is an input source called the event source,
which is constructed when the global NSApplication object (NSApp) is initialized. The event source consists
of a port for receiving events from the window server and a FIFO queue—the event queue—for holding
those events until the application can process them, as shown in Figure 1-2.

Figure 1-2 The main event loop, with event source

Main run loop

Event source

event
Window server

event

Mach port
event
event
event

A Cocoa application is event driven: It fetches an event from the queue, dispatches it to an appropriate object,
and, after the event is handled, fetches the next event. With some exceptions (such as modal event loops)
an application continues in this pattern until the user quits it. The following section, “Event Dispatch,” describes
how an application fetches and dispatches events.

12 How an Event Enters a Cocoa Application
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Events delivered via the event source are not the only kinds of events that enter Cocoa applications. An
application can also respond to Apple events, high-level interprocess events typically sent by other processes
such as the Finder and Launch Services. For example, when users double-click an application icon to open
the application or double-click a document to open the document, an Apple event is sent to the target
application. An application also fetches Apple events from the queue but it does not convert them into
NSEvent objects. Instead an Apple event is handled directly by an event handler. When an application
launches, it automatically registers several event handlers for this purpose. For more on Apple events and
event handlers, see Apple Events Programming Guide.

Event Dispatch

In the main event loop, the application object (NSApp) continuously gets the next (topmost) event in the
event queue, converts it to an NSEvent object, and dispatches it toward its final destination. It performs this
fetching of events by invoking the nextEventMatchingMask:untilDate:inMode:dequeue: method in
a closed loop. When there are no events in the event queue, this method blocks, resuming only when there
are more events to process.

After fetching and converting an event, NSApp performs the first stage of event dispatching in the sendEvent:
method. In most cases NSApp merely forwards the event to the window in which the user action occurred
by invoking the sendEvent: method of that NSWindow object. The window object then dispatches most
events to the NSView object associated with the user action in an NSRespondermessage such as mouseDown:
or keyDown:. An event message includes as its sole argument an NSEvent object describing the event.

The object receiving an event message differs slightly by type of event. For mouse and tablet events, the
NSWindow object dispatches the event to the view over which the user pressed the mouse or stylus button.
It dispatches most key events to the first responder of the key window. Figure 1-3 and Figure 1-4 illustrate
these different general delivery paths. The destination view may decide not to handle the event, instead
passing it up the responder chain (see “The Responder Chain” (page 21)).

Figure 1-3 Path of a mouse event

NSWindow

sendEvent:

sendEvent:NSApp

Event Dispatch 13
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Figure 1-4 Path of a key event (character to insert)

NSWindow

Name

Phone

John

sendEvent:

sendEvent:NSApp

In the preceding paragraph you might have noticed the use of qualifiers such as “in most cases” and “usually.“
The delivery of an event (and especially a key event) in Cocoa can take many different paths depending on
the particular kind of the event. Some events, many of which are defined by the Application Kit (type
NSAppKitDefined), have to do with actions controlled by a window or the application object itself. Examples
of these events are those related to activating, deactivating, hiding, and showing the application. NSApp
filters out these events early in its dispatch routine and handles them itself.

The following sections describe the different paths of the events that can reach your view objects. For detailed
information on these event types, read “Event Objects and Types” (page 25).

The Path of Mouse and Tablet Events

As noted above, an NSWindow object in its sendEvent: method forwards mouse events to the view over
which the user action involving the mouse occurred. It identifies the view to receive the event by invoking
the NSView method hitTest:, which returns the lowest descendant that contains the cursor location of
the event (this is usually the topmost view displayed). The window object forwards the mouse event to this
view by sending it a mouse-related NSResponder message specific to its exact type, such as mouseDown:,
mouseDragged:, or rightMouseUp:, On (left) mouse-down events, the window object also asks the receiving
view whether it is willing to become first responder for subsequent key events and action messages.

A view object can receive mouse events of three general types: mouse clicks, mouse drags, and mouse
movements. Mouse-click events are further categorized—as specific NSEventType constants and
NSResponder methods—by mouse button (left, right, or other) and direction of click (up or down).
Mouse-dragged and mouse-up events are typically sent to the same view that received the most recent
mouse-down event. Mouse-moved events are sent to the first responder. Mouse-down, mouse-dragged,
mouse-up, and mouse-moved events can occur only in certain situations relative to other mouse events:

 ■ Each mouse-up event must be preceded by a mouse-down event.

 ■ Mouse-dragged events occur only between a mouse-down event and a mouse-up event.

 ■ Mouse-moved events do not occur between a mouse-down and a mouse-up event.

Mouse-down events are sent when a user presses the mouse button while the cursor is over a view object.
If the window containing the view is not the key window, the window becomes the key window and discards
the mouse-down event. However, a view can circumvent this default behavior by overriding the
acceptsFirstMouse: method of NSView to return YES.

14 Event Dispatch
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Views automatically receive mouse-clicked and mouse-dragged events, but because mouse-moved events
occur so often and can bog down the event queue, a view object must explicitly request its window to watch
for them using the NSWindow method setAcceptsMouseMovedEvents:. Tracking rectangles, described
in “Other Event Dispatching” (page 17), are a less expensive way of following the mouse’s location.

In its implementation of an NSRespondermouse-event method, a subclass of NSView can interpret a mouse
event as a cue to perform a certain action, such as sending a target-action message, selecting a graphic
element, redrawing itself at a different location, and so on. Each event method includes as its sole parameter
an NSEvent object from which the view can obtain information about the event. For example, the view can
use the locationInWindow to locate the mouse cursor’s hot spot in the coordinate system of the receiver’s
window. To convert it to the view’s coordinate system, use convertPoint:fromView: with a nil view
argument. From here, you can use mouse:inRect: to determine whether the click occurred in an interesting
area.

Tablet events take a path to delivery to a view that is similar to that for mouse events. The NSWindow object
representing the window in which the table event occurred forwards the event to the view under the cursor.
However, there are two kinds of tablet events, proximity events and pointer events. The former are generally
native tablet events (of type NSTabletProximity) generated when the stylus moves into and out of
proximity to the tablet. Tablet pointer events occur between proximity-entering and proximity-leaving tablet
events and indicate such things as stylus direction, pressure, and button click. Pointer events are generally
subtypes of mouse events. Refer to “Handling Tablet Events” (page 73) for more information.

For the paths taken by mouse-tracking and cursor-update events, see “Other Event Dispatching” (page 17).

The Path of Key Events

Processing keyboard input is by far the most complex part of event dispatch. The Application Kit goes to
great lengths to ease this process for you, and in fact handling the key events that get to your custom objects
is fairly straightforward. However, a lot happens to those events on their way from the hardware to the
responder chain. Of particular interest are the types of key events that arrive in a Cocoa application as NSEvent
objects and the order and way these types of events are handled.

A Cocoa application evaluates each key event to determine what kind of key event it is and then handles in
an appropriate way. The path a key event can take before it is handled can be quite long. Figure 1-5 shows
these potential paths.

Event Dispatch 15
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Figure 1-5 Possible path of a key event

Send
same message to

menus

Send
performKeyEquivalent:

down view hierarchy of
key window

Insert as
character in

view

Yes

Yes

Yes

Object
responds?

NSApp
gets

key event

Key
action?

Send to key
NSWindow

to control focus in
key loop

Send
action message to

first responder

Forward to key
NSWindow via
sendEvent:

NSWindow sends
to first responder

(view)

No

No

No

No

Key
equivalent?

Key
interface
control?

The following list describes in detail the possible paths for key events, in the order in which an application
evaluates each key event;

1. Key equivalents. A key equivalent is a key or key combination (usually a key modified by the Command
key) that is bound typically to some menu item or control object in the application. Pressing the key
combination simulates the action of clicking the control or choosing the menu item.

The application object handles key equivalents by going down the view hierarchy in the key window,
sending each object a performKeyEquivalent: message until an object returns YES. If the message
isn’t handled by an object in the view hierarchy, NSApp then sends it to the menus in the menu bar.
Some Cocoa classes, such as NSButton, NSMenu, NSMatrix, and NSSavePanel provide default
implementations.

For more information, see “Handling Key Equivalents” (page 63).

16 Event Dispatch
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

2. Keyboard interface control. A keyboard interface control event manipulates the input focus among
objects in a user interface. In the key window, NSWindow interprets certain keys as commands to move
control to a different interface object, to simulate a mouse click on it, and so on. For example, pressing
the Tab key moves input focus to the next object; Shift-Tab reverses the direction; pressing the space
bar simulates a click on a button. The order of interface objects controlled through this mechanism is
specified by a key view loop. You can set up the key view loop in Interface Builder and you can manipulate
the key view loop programmatically through the setNextKeyView: and nextKeyView methods of
NSView.

For more information, see “Keyboard Interface Control” (page 63).

3. Keyboard action. Unlike the action messages that controls send to their targets (see “Action
Messages” (page 18)), keyboard actions are commands (represented by methods defined by the
NSResponder class) that are per-view functional interpretations of physical keystrokes (as identified by
the constant returned by the characters method of NSEvent). In other words, keyboard actions are
bound to physical keys through the key bindings mechanism described in “Text System Defaults and
Key Bindings” (page 75). For example, pageDown:, moveToBeginningOfLine:, and capitalizeWord:
are methods invoked by keyboard actions when the bound key is pressed. Such actions are sent to the
first responder, and the methods handling these actions can be implemented in that view or in a superview
further up the responder chain.

See “Overriding the keyDown: Method” (page 58) for more information about the handling of keyboard
actions.

4. Character (or characters) for insertion as text.

If the application object processes a key event and it turns out not to be a key equivalent or a key interface
control event, it then sends it to the key window in a sendEvent: message. The window object invokes the
keyDown: method in the first responder, from whence the key event travels up the responder chain until it
is handled. At this point, the key event can be either one or more Unicode character to be inserted into a
view’s displayed text , a key or key combination to be specially interpreted, or a keyboard-action event.

See “Handling Key Events” (page 57) for more information about how key events are dispatched and handled.

Other Event Dispatching

An NSWindow object monitors tracking-rectangle events and dispatches these events directly to the owning
object in mouseEntered: and mouseExited: messages. The owner is specified in the second parameter
of the NSTrackingArea method initWithRect:options:owner:userInfo: and the NSView
methodaddTrackingRect:owner:userData:assumeInside:. “Using Tracking-Area Objects” (page 67)
describes how to set up tracking rectangles and handle the related events.

Periodic events (type NSPeriodic) are generated by the application at a specified frequency and placed in
the event queue. However, unlike most other types of events, periodic events aren’t dispatched using the
sendEvent: mechanism of NSApplication and NSWindow. Instead the object registering for the periodic
events typically retrieves them in a modal event loop using the
nextEventMatchingMask:untilDate:inMode:dequeue: method. See “Other Types of Events” (page
33) for more information about periodic events.

Event Dispatch 17
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Action Messages

The discussion so far has focused on event messages: messages arising from an device-related event such
as a mouse click or a keypress. The Application Kit sends an event message of the appropriate form—for
example, mouseDown: and keyDown:—to an NSResponder object for handling.

But NSResponder objects are also expected to handle another kind of message: action messages. Actions
are commands that objects, usually NSControl or NSMenu objects, give to the application object to dispatch
as messages to a particular target or to any target that’s willing to respond to them. The methods invoked
by action messages have a specific signature: a single parameter holding a reference to the object initiating
the action message; by convention, the name of this parameter is sender. For example,

- (void)moveToEndOfLine:(id)sender; // from NSResponder.h

Event and action methods are dispatched in different ways, by different methods. Nearly all events enter an
application from the window server and are dispatched automatically by the sendEvent: method of
NSApplication. Action messages, on the other hand, are dispatched by the sendAction:to:from:
method of the global application object (NSApp) to their proper destinations.

Note: A major difference between event messages and action messages is the different paths they can
possibly take up the responder chain. See “The Responder Chain” (page 21) for details.

As illustrated in Figure 1-6, action messages are generally sent as a secondary effect of an event message.
When a user clicks a control object such as a button, two event messages (mouseDown: and mouseUp:) are
sent as a result. The control and its associated cell handle the mouseUp: message (in part) by sending the
application object a sendAction:to:from: message. The first argument is the selector identifying the
action method to invoke. The second is the intended recipient of the message, called the target, which can
be nil. The final argument is usually the object invoking sendAction:to:from:, thus indicating which
object initiated the action message. The target of an action message can send messages back to sender to
get further information. A similar sequence occurs for menus and menu items. For more on the architecture
of controls and cells (and menus and menu items) see “The Core Application Architecture on Mac OS X“ in
Cocoa Fundamentals Guide.

Figure 1-6 From event message to action message

aCell
action=restoreDefaults:
target:controller

mouseUp: restoreDefaults:Restore Defaults aControl controller

The target of an action message is handled by the Application Kit in a special way. If the intended target isn’t
nil, the action is simply sent directly to that object; this is called a targeted action message. In the case of
an untargeted action message (that is, the target parameter is nil), sendAction:to:from: searches up
the full responder chain (starting with the first responder) for an object that implements the action method
specified. If it finds one, it sends the message to that object with the initiator of the action message as the

18 Action Messages
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

sole argument. The receiver of the action message can then query the sender for additional information. You
can find the recipient of an untargeted action message without actually sending the message using
targetForAction:.

Event messages form a well-known set, so NSResponder provides declarations and default implementations
for all of them. Most action messages, however, are defined by custom classes and can’t be predicted. However,
NSResponder does declare a number of keyboard action methods, such as pageDown:,
moveToBeginningOfDocument:, and cancelOperation:. These action methods are typically bound to
specific keys using the key-bindings mechanism and are meant to perform cursor movement, text operations,
and similar operations.

A more general mechanism of action-message dispatch is provided by the NSResponder method
tryToPerform:with:. This method checks the receiver to see if it responds to the selector provided, if so
invoking the message. If not, it sends tryToPerform:with: to its next responder. NSWindow and
NSApplication override this method to include their delegates, but they don’t link individual responder
chains in the way that the sendAction:to:from: method does. Similar to tryToPerform:with: is
doCommandBySelector:, which takes a method selector and tries to find a responder that implements it.
If none is found, the method causes the hardware to beep.

Warning: Although NSResponder declares a number of action messages, it doesn’t actually implement
them. You should never send an action message directly to a responder object of an unknown class.
Always use the NSApplication method sendAction:to:from:, the NSResponder methods
tryToPerform:with: or doCommandBySelector:, or check that the target responds using the
NSObject method respondsToSelector:.

Responders

A responder is an object that can receive events, either directly or through the responder chain, by virtue of
its inheritance from the NSResponder class. NSApplication, NSWindow, NSDrawer, NSWindowController,
NSView and the many descendants of these classes in the Application Kit inherit from NSResponder. This
class defines the programmatic interface for the reception of event messages and many action messages. It
also defines the general structure of responder behavior. Within the responder chain there is a first responder
and a sequence of next responders

For more on the responder chain, see “The Responder Chain” (page 21). Cocoa Fundamentals Guide also
contains an overview of responders and the responder chain in “The Core Application Architecture on Mac
OS X.“

First Responders

A first responder is typically a user-interface object that the user selects or activates with the mouse or
keyboard. It is usually the first object in a responder chain to receive an event or action message. An NSWindow
object’s first responder is initially itself; however, you can set, programmatically and in Interface Builder, the
object that is made first responder when the window is first placed on-screen.

When an NSWindow object receives a mouse-down event, it automatically tries to make the NSView object
under the event the first responder. It does so by asking the view whether it wants to become first responder,
using the acceptsFirstResponder method defined by this class. This method returns NO by default;

Responders 19
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

responder subclasses that need to be first responder must override it to return YES. The
acceptsFirstResponder method is also invoked when the user changes the first responder through the
keyboard interface control feature.

You can programmatically change the first responder by sending makeFirstResponder: to an NSWindow
object. This message initiates a kind of protocol in which one object loses its first responder status and another
gains it. See “Setting the First Responder” (page 41) for further information.

An NSPanel object presents a variation of first-responder behavior that permits panels to present a user
interface that doesn’t take away key focus from the main window. If the panel object representing an inactive
window and returning YES from becomesKeyOnlyIfNeeded receives a mouse-down event, it attempts to
make the view object under the mouse pointer the first responder, but only if that object returns YES in
acceptsFirstResponder and needsPanelToBecomeKey.

Mouse-moved events (type NSMouseMoved) are always sent to the first responder, not to the view under
the mouse.

Next Responders

Every responder object has a built-in capability for getting the next responder up the responder chain. The
nextResponder method, which returns this object, is the essential mechanism of the responder chain.
Figure 1-7 shows the sequence of next responders.

Figure 1-7 The chain of next responders

nextResponder
aView

nextResponder
anotherView

keyDown:

nextResponder

implements
 keyDown:

aWindow

keyDown:

keyDown:

A view’s next responder is always its superview—most of the responder chain, in fact, comprises the views
from a window’s first responder up to its content view. When you create a window or add subviews to existing
views, either programmatically or in Interface Builder, the Application Kit automatically hooks up the next
responders in the responder chain. The addSubview: method of NSView automatically sets the receiver as

20 Responders
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

the new subview’s superview. You should never send setNextResponder: to an NSView object. You can
safely add responders to the top end of a window’s responder chain—the NSWindow object itself if it has no
delegate or, if it has a delegate, after the delegate.

The Responder Chain

The responder chain is a linked series of responder objects to which an event or action message is applied.
When a given responder object doesn’t handle a particular message, the object passes the message to its
successor in the chain (that is, its next responder). This allows responder objects to delegate responsibility
for handling the message to other, typically higher-level objects. The Application Kit automatically constructs
the responder chain as described below, but you can insert custom objects into parts of it using the
NSResponder method setNextResponder: and you can examine it (or traverse it) with nextResponder.

An application can contain any number of responder chains, but only one is active at any given time. The
responder chain is different for event messages and action messages, as described in the following sections.

Responder Chain for Event Messages

Nearly all event messages apply to a single window’s responder chain—the window in which the associated
user event occurred. The default responder chain for event messages begins with the view that the NSWindow
object first delivers the message to. The default responder chain for a key event message begins with the
first responder in a window; the default responder chain for a mouse or tablet event begins with the view
on which the user event occurred. From there the event, if not handled, proceeds up the view hierarchy to
the NSWindow object representing the window itself. The first responder is typically the “selected” view object
within the window, and its next responder is its containing view (also called its superview), and so on up to
the NSWindow object. If an NSWindowController object is managing the window, it becomes the final next
responder. You can insert other responders between NSView objects and even above the NSWindow object
near the top of the chain. These inserted responders receive both event and action messages. If no object is
found to handle the event, the last responder in the chain invokes noResponderFor:, which for a key-down
event simply beeps. Event-handling objects (subclasses of NSWindow and NSView) can override this method
to perform additional steps as needed.

Responder Chain for Action Messages

For action messages, the Application Kit constructs a more elaborate responder chain that varies according
to two factors:

 ■ Whether the application is based on the document architecture and, if it isn't, whether it uses
NSWindowController objects for its windows

 ■ Whether the application is currently displaying a key window as well as a main window

Action messages have a more elaborate responder chain than do event messages because actions require
a more flexible runtime mechanism for determining their targets. They are not restricted to a single window,
as are event messages.

The Responder Chain 21
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

The simplest case is an active non-document-based window that has no associated panel or secondary
window displayed—in other words, a main window that is also the key window. In this case, the responder
chain is the following:

1. The main window’s first responder and the successive responder objects up the view hierarchy

2. The main window itself

3. The main window’s delegate (which need not inherit from NSResponder)

4. The application object, NSApp

5. The application object’s delegate (which need not inherit from NSResponder)

This chain is shown graphically in Figure 1-8.

Figure 1-8 Responder chain of a non-document-based application

First
responder

View
hierarchy

NSApp

NSWindow

App
delegate

Window
delegate

As this sequence indicates, the NSWindow object and the NSApplication object give their delegates a
chance to handle action messages as though they were responders, even though a delegate isn’t formally
in the responder chain (that is, a nextResponder message to a window or application object doesn’t return
the delegate).

When an application is displaying both a main window and a key window, the responder chains of both
windows can be involved in an action message. As explained in "Window Layering and Types of Windows,"
the main window is the frontmost document or application window. Often main windows also have key
status, meaning they are the current focus of user input. But a main window can have a secondary window
or panel associated with it, such as the Find panel or a Info window showing details of a selection in the
document window. When this secondary window is the focus of user input, then it is the key window.

When an application has a main window and a separate key window displayed, the responder chain of the
key window gets first crack at action messages, and the responder chain of the main window follows. The
full responder chain comprises these responders and delegates:

1. The key window’s first responder and the successive responder objects up the view hierarchy

2. The key window itself

3. The key window’s delegate (which need not inherit from NSResponder)

4. The main window’s first responder and the successive responder objects up the view hierarchy

5. The main window itself

6. The main window’s delegate (which need not inherit from NSResponder)

22 The Responder Chain
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

7. The application object, NSApp

8. The application object’s delegate (which need not inherit from NSResponder)

As you can see, the responder chains for the key window and the main window are identical with the global
application object and its delegate being the responders at the end of the main window's responder chain.
This design is true for the responder chains of the other kinds of applications: those based on the document
architecture and those that use an NSWindowController object for window management. In the latter
case, the default main-window responder chain consists of the following responders and delegates:

1. The main window’s first responder and the successive responder objects up the view hierarchy

2. The main window itself

3. The main window’s delegate

4. The window's NSWindowController object (which inherits from NSResponder)

5. The application object, NSApp

6. The application object's delegate

Figure 1-9 shows the responder chain of non-document-based application that uses an NSWindowController
object.

Figure 1-9 Responder chain of a non-document application with an NSWindowController object

NSWindowController

First
responder

View
hierarchy NSWindow NSWindow

delegate

NSApp App
delegate

For document-based applications, the default responder chain for the main window consists of the following
responders and delegates:

1. The main window’s first responder and the successive responder objects up the view hierarchy

2. The main window itself

3. The main window’s delegate.

4. The window's NSWindowController object (which inherits from NSResponder)

5. The NSDocument object (if different from the main window’s delegate)

6. The application object, NSApp

7. The application object's delegate

The Responder Chain 23
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

8. The application's document controller (an NSDocumentController object, which does not inherit from
NSResponder)

Figure 1-10 shows the responder chain of a document-based application.

Figure 1-10 Responder chain of a document-based application

NSDocument

NSWindowControllerFirst
responder

View
hierarchy NSWindow NSWindow

delegate

NSDocumentControllerNSApp App
delegate

Other Uses

The responder chain is used by three other mechanisms in the Application Kit:

 ■ Automatic menu enabling: In automatically enabling and disabling a menu item with a nil target, an
NSMenu searches different responder chains depending on whether the menu object represents the
application menu or a context menu. For the application menu, NSMenu consults the full responder
chain—that is, first key, then main window—to find an object that implements the menu item’s action
method and (if it implements it) returns YES from validateMenuItem:. For a context menu, the search
is restricted to the responder chain of the window in which the context menu was displayed, starting
with the associated view.

For more on automatic menu enabling, see “Enabling Menu Items".

 ■ Services eligibility: Similarly, the Services facility passes validRequestorForSendType:returnType:
messages along the full responder chain to check for objects that are eligible for services offered by
other applications.

For further information, see System Services.

 ■ Error presentation: The Application Kit uses a modified version of the responder chain for error handling
and error presentation, centered upon the NSResponder methods
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: and
presentError:.

For more information on the error-responder chain, see Error Handling Programming Guide For Cocoa.

24 The Responder Chain
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Event Architecture

Almost all events in a Cocoa application are represented by objects of the NSEvent class. (Exceptions include
Apple events, notifications, and similar items.) Each NSEvent object more narrowly represents a particular
type of event, each with its own requirements for handling. The following sections describe the characteristics
of an NSEvent object and the possible event types.

NSEvent Objects

An NSEvent object—or, simply, an event object—contains pertinent information about an input action such
as a mouse click or a key press. It stores such details as where the mouse was located or which character was
typed. As described in “How an Event Enters a Cocoa Application” (page 11), the window server associates
each user action with a window and reports the event (in a lower-level form) to the application that created
the window. The application temporarily places each event in a buffer called the event queue. When the
application is ready to process an event, the application object (NSApp) takes one from the queue (usually
the topmost one in the queue) and converts it to an NSEvent object before dispatching it to the appropriate
objects in an application.

Responder objects of an application receive the currently dispatched event object through the parameter
of an event method declared by the NSResponder class (such as mouseDown:). In addition, other methods
of the Application Kit let any object retrieve the current event or fetch the next event (or next event of a
specific type) from the event queue. See “Event Objects in Methods of Other Classes” (page 26) for more
information about these methods.

Attributes of an Event Object

An NSEvent object is largely a read-only repository of information related to a specific event. Most methods
of the NSEvent class are accessor methods for getting the values of event attributes. (NSEvent has no
corresponding “setter” accessor methods, although you can specify certain attributes when creating an event
object using various class factory methods.) An object such as a responder typically uses the accessor methods
to get the details of an event and thus know how to handle it.

Some NSEvent attributes (and their corresponding accessor methods) are common to all types of events
while others are specific to certain types of events. For example, the clickCount method pertains only to
mouse events and the characters method pertains only to key events. Tablet events have a number of
accessor methods that apply only to them. Some of the more important accessor methods of NSEvent are
the following:

type
The type of event; see “Event Types” (page 27).

NSEvent Objects 25
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

window
The NSWindow object representing the window in which the event occurred. With windowNumber
you can also obtain the number assigned by the window server to the window. Most but not all events
are associated with a window; when no window is associated, window returns nil.

locationInWindow
The location of the event within the window’s base coordinate system.

modifierFlags
An indication of which modifier keys (Command, Control, Shift, and so on) the user held down while
the event occurred.

characters
The Unicode characters generated by a key event. You can also use charactersIgnoringModifiers
to obtain the key-event characters minus those generated by modifier keys.

timestamp
The time the event occurred (in seconds since system startup).

clickCount
For mouse events within a certain time threshold, the number of clicks associated with a particular
event. (This enables the detection of double- or triple-clicking.)

NSEvent Class Methods

Though you rarely need do so, you can create an event object from scratch and either insert it into the event
queue for distribution or send it directly to its destination in an event message. The NSEvent class includes
class methods for creating event objects of a specific type; for example, for creating a mouse-type event
object, you can use the class
methodmouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:clickCount:pressure:.
You add event objects to the event queue by invoking the NSWindow method postEvent:atStart: or
the identically named method of the NSApplication class.

Another NSEvent class method, mouseLocation, returns the current location of the mouse. It differs in a
few important respects from the instance method locationInWindow. Being a class method, it doesn’t
require an event object to send the message to; it returns the location in screen coordinates rather than base
(window) coordinates; and it returns the current mouse location, which might be different from that of the
current or any pending mouse event.

Event Objects in Methods of Other Classes

NSEvent objects are scattered throughout the Application Kit. For example, the classes NSCell, NSCursor,
NSClipView, NSMenu, NSSlider, and NSTableView all have methods with event objects as return values
or parameters. However, a few Application Kit methods that deal with event objects are particularly important.

Although most events are distributed automatically through the responder chain, sometimes an object needs
to retrieve events explicitly—for example, while mouse tracking. Both NSWindow and NSApplication define
the method nextEventMatchingMask:untilDate:inMode:dequeue:, which allows an object to retrieve
events of specific types from the event queue.

NSApplication and NSWindow also both define the currentEvent method, which fetches the last event
object retrieved from the event queue. These methods are a great convenience because they enable any
object in an application to learn about the event currently being handled in the main event loop.

26 NSEvent Objects
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

Finally, both NSWindow and NSApplication define the sendEvent:method. The implementations of these
methods are critical for event dispatch. Because these methods are funnel points for events in an application,
you may override them in certain circumstances to learn about events earlier in the event stream or to
augment or modify the native event-dispatch behavior. “Event Dispatch” talks about the role played by the
sendEvent: methods.

Event Types

The type method of NSEvent returns an NSEventType value that identifies the sort of event. The type of
an event determines to a large extent how it is to be handled. The different types of events fall into six groups:

 ■ Mouse events

 ■ key events

 ■ Tracking-rectangle and cursor-update events

 ■ Tablet events

 ■ Periodic events

 ■ Other events

Some of these groups comprise several NSEventType constants, others only one. Some event types might
have subtypes, which are described in the following sections. NSEventType constants are declared in
NSEvent.h.

The NSApplication and NSWindow methods that allow you to selectively fetch and discard events from
the event queue—nextEventMatchingMask:untilDate:inMode:dequeue: and
discardEventsMatchingMask:beforeEvent:—take one or more event-type mask constants in the first
parameter. These constants are also declared in NSEvent.h.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and by changes in the position
of the mouse cursor on the screen. They fall into two subcategories, one related to mouse clicks and
movements and the other related to mouse tracking and cursor updates.

Events Related to Mouse Clicks and Movements

The larger category of mouse events includes those where the mouse button is pressed or released and
where the mouse is moved without being tracked. It consists of the following mouse-event types
corresponding to the specified user actions:

NSLeftMouseDown, NSLeftMouseUp, NSRightMouseDown, NSRightMouseUp, NSOtherMouseDown,
NSOtherMouseUp

The user clicked a mouse button. Constants with “MouseDown” in their names mean the user pressed
the button; “MouseUp” means the user released it. If the mouse has just one button, only left mouse
events are generated. By sending a clickCount message to the event, you can determine whether
the mouse event was a single click, double click, and so on. A mouse with more than two buttons
can generate the “OtherMouse” events.

Event Types 27
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

NSLeftMouseDragged, NSRightMouseDragged, NSOtherMouseDragged
The user dragged the mouse. More specifically, the user moved the mouse while pressing one or
more buttons. NSLeftMouseDragged events are generated when the mouse is moved with its left
mouse button down or with both buttons down, NSRightMouseDragged events are generated when
the mouse is moved with just the right button down, and NSOtherMouseDragged when the device
has more than two buttons. A mouse with a single button generates only left mouse-dragged events.
A series of mouse-dragged events is always preceded by a mouse-down event and followed by a
mouse-up event.

NSMouseMoved
The user moved the mouse without holding down either mouse button. Mouse-moved events are
normally not tracked, as they quickly flood the event queue; use the NSWindow method
setAcceptsMouseMovedEvents: to turn on tracking of mouse movements.

NSScrollWheel
The user manipulated the mouse’s scroll wheel. Use the NSEvent methods deltaX, deltaY, and
deltaZ to find out how much it moved. If the mouse has no scroll wheel, this event is never generated.

Note: Beginning with Mac OS X v10.5, NSScrollWheel events are sent to the window under the mouse,
whether the window is active or inactive. In earlier versions of the operating system, scroll-wheel events are
sent to the window under the mouse only if that window has key focus (with the exception of utility windows,
which receive those events even if they are inactive).

Mouse-dragged and mouse-moved events are generated repeatedly as long as the user keeps moving the
mouse. If the mouse is stationary, neither type of event is generated until the mouse moves again.

Important: The Application Kit does not provide any default handling of events generated by the third
button of a three-button mouse (typesNSOtherMouseDown,NSOtherMouseDragged, andNSOtherMouseUp).

See “Handling Mouse Events” (page 45) for more information on mouse events.

Mouse Tracking Events

Because following the mouse’s movements precisely is an expensive operation, the Application Kit provides
a less intensive mechanism for tracking the location of the mouse. It does this by allowing the application
to define regions of a window, called tracking rectangles, that generate events when the cursor enters or
leaves them. The event types are NSMouseEntered and NSMouseExited and they’re generated when the
application has asked the window server to set a tracking rectangle in a window, typically by using
NSTrackingArea objects or the NSViewmethod addTrackingRect:owner:userData:assumeInside:.
A window can have any number of tracking rectangles; the NSEvent method trackingNumber identifies
the rectangle that triggered the event.

A special kind of tracking event is the NSCursorUpdate event. This type is used to implement the
cursor-rectangle mechanism of the NSView class. An NSCursorUpdate event is generated when the cursor
has crossed the boundary of a predefined rectangular area. NSApplication typically handles
NSCursorUpdate events and does not dispatch them.

See “Using Tracking-Area Objects” (page 67) for more information.

28 Event Types
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

Key Events

Among the most common events sent to an application are direct reports of the user’s keyboard actions,
identified by these NSEventType constants:

NSKeyDown
The user generated a character or characters by pressing a key.

NSKeyUp
The user released a key. This event is always preceded by a NSKeyDown event.

NSFlagsChanged
The user pressed or released a modifier key, or turned Caps Lock on or off.

Of these, key-down events are the most useful to an application. When the type of an event is NSKeyDown,
the next step is typically to get the characters generated by the key-down using the characters method.

Key-up events are used less frequently since they follow almost automatically when there’s been a key-down
event. And because the NSEvent modifierFlags method returns the state of the modifier keys regardless
of the type of event, applications normally don’t need to receive flags-changed events; they’re useful only
for applications that have to keep track of the state of these keys at all times.

Some key presses generate key events that do not represent characters to be inserted as text. Instead they
represent key equivalents, keyboard interface control commands, or keyboard actions. Key equivalents and
keyboard interface control commands are typically handled by the application object and do not invoke the
NSResponder method associated with NSKeyDown events, keyDown:. See “The Path of Key Events” (page
15) for more information.

For more information on key events, see “Handling Key Events” (page 57).

Tablet Events

Tablet devices generate low-level events that a Cocoa application receives as NSEvent objects. The following
sections describe tablet devices, the characteristics of tablet events, and how the Application Kit supports
tablet events.

Important: Tablet events are available in Mac OS X v10.4 and later versions of the operating system.

Overview of Tablet Devices

A tablet with a stylus is an input device that generates more accurate and detailed data than does a mouse.
It enables a user to draw, write, or make selections by manipulating the stylus over a surface (the tablet); an
application can then capture and process those movements, reflecting them in its user interface. The tablet
is generally a USB device connected to a computer system and the stylus is a wireless transducer. A signal is
sent from the tablet to the transducer, which then sends a signal back to the tablet. The tablet uses this signal
to determine the position of the transducer on the tablet. The stylus actually can be any pointing device,
such as a pen, an airbrush, or even a puck.

Event Types 29
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

In addition to the stylus location at any given moment, a stylus transducer can report many other pieces of
data, such as the tilt of a pen, the rotation of a puck, and the pressure applied to the stylus. Pressure is
particularly important because, with just this small piece of data, a user can tell an application to vary the
thickness of a line being drawn, or its opacity, or its color. Some stylus devices also have buttons that can
furnish an application with additional information.

Mac OS X supports tablet devices from several manufacturers. Some of these tablets can respond to multiple
pointing devices on their surfaces at the same time.

Types of Tablet Events

There are two types of tablet events in the Application Kit: proximity events and pointer events. The following
sections describe what they are, how they are related to each other, and the sequence of proximity and
pointer events in a typical tablet session.

Proximity Events

A proximity event is an event that a tablet device generates when a pointing transducer (for example, a
stylus) comes near or moves away from the tablet surface. It indicates the start or the end of a related series
of pointer events (a session). A proximity event is an NSEvent object of type NSTabletProximity. An
application can determine whether a tablet-pointer session is beginning or ending by sending
isEnteringProximity to the event object.

The main purpose of a proximity event is to provide an application with a set of identifiers for associating
items of tablet hardware—entire tablet devices or individual transducers—with the current pointing session.
A proximity tablet event can also furnish an application with information about the capabilities of a specific
device.

A proximity-type tablet event carries with it a set of identifiers and device attributes that an application can
fetch with accessor methods. These include the following:

 ■ Device ID—The main identifier of a tablet device, used to associate pointer-type events with proximity
events. All tablet pointer events in a session have the same device ID.

Accessor: deviceID

 ■ Pointing devices—To help an application distinguish among pointing devices, you can ask a proximity
event for the device’s serial number, its type (for example, pen or eraser), and, for tablets that support
multiple concurrent pointing devices, its device ID.

Accessors: pointingDeviceSerialNumber, pointingDeviceType, pointingDeviceID

 ■ Tablets—You can ask a proximity event for a tablet’s identifier (which is its USB model number) and, if
there are multiple tablets connected to a system, its system tablet ID.

Accessors: tabletID, systemTabletID

 ■ Vendor information—An NSEvent object with a proximity type may contain an identifier of the vendor
and an identifier of a pointing device within a vendor’s selection of devices.

Accessors: vendorID, vendorPointingDeviceType

 ■ Capabilities—A bit mask whose set bits indicate the capabilities of a tablet device. It is vendor-specific.

Accessor: capabilityMask

30 Event Types
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

Generally, when an application receives a proximity event, it stores the device ID and any other identifier
that is needed to distinguish among various items of tablet hardware involved in the session. It then refers
to these identifiers when handling pointer events to ensure it is processing the right events. An application
can also extract device information from proximity events (for example, tablet capabilities or pointer type)
and use this information to configure how it deals with pointer events.

Pointer Events

A pointer event is an event that a tablet device generates after a stylus has entered proximity of the tablet.
It indicates a change in the state of the transducer. For example, if the user moves a stylus transducer over
the surface of the tablet or increases pressure or tilts the pointing device, a pointer event is generated. A
pointer event is an NSEvent object of type NSTabletPoint or an object representing a mouse-down,
mouse-dragged, or mouse-up event with a subtype of NSTabletPointEventSubtype.

Applications generally use pointer events for drawing or user-interface manipulation. Although you can
obtain the absolute three-dimensional coordinates of the current pointer location, these coordinates are in
full tablet resolution and require you to scale them to the screen location. It is much simpler to use the
NSEvent instance method locationInWindow or the class method mouseLocation.

In addition to pointer location, the information obtainable from pointer events include the following:

 ■ Pressure, as a value between 0.0 and 1.0; you might use the pressure attribute to set the opacity of a
color.

Accessor: pressure

 ■ Rotation, in degrees; you might use the rotation attribute to simulate a calligraphy pen.

Accessor: rotation

 ■ Tilt, an NSPoint structure, with both axes ranging from -1 to 1; you might use the tilt attribute to supply
different colors, depending on the angle and direction of tilt.

Accessor: tilt

 ■ Tangential pressure, as a value between -1.0 and 1.0 (only on certain devices).

Accessor: tangentialPressure

 ■ Button number of transducer pressed.

Accessor: buttonMask

 ■ Vendor-defined data.

Accessor: vendorDefined

Sequence of Tablet Events

A tablet proximity event signals the start of a series of related tablet pointer event and a subsequent proximity
event signals the end of the series. These two proximity events thus provide a kind of frame for processing
the pointer events in a session. The first proximity event is generated when a pointing device comes near a
tablet surface; the second is generated when the same pointing device leaves the proximity of the tablet.

Event Types 31
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

Note: You can determine whether a proximity event is for a pointing device entering proximity or leaving
proximity by sending the event object an isEnteringProximity message.

The sequence of proximity and pointer events have special significance to the application handling the tablet
events. A tablet event generated by a pointing device that comes near the tablet lets the tablet application
know that it should store identifiers and set configuration variables for the upcoming tablet session. The
application processes the pointer events until it receivers the second proximity event, which tells it that those
identifiers and configurations are no longer operative. A tablet session is thus a sequence of pointer events
that are associated with a specific pair of proximity events.

The relationship between proximity and pointer events is simple and clear as long as only one pointing
device is in play. But there can be multiple pointing devices on a tablet surface at one time, or more than
one tablet devices can be connected to a system. In this case the application must store the identifiers it
receivers in all initial proximity events and use those identifiers to differentiate among various series of pointer
events.

Take, for example, a tablet device that supports multiple pointing device on the tablet surface at one time.
One pointing device might be a stylus for line drawing; another pointing device might apply an airbrush
painting effect. As Figure 2-1 illustrates, a proximity event is generated with the drawing stylus comes close
to the tablet surface.

Figure 2-1 Pointer A coming near the tablet, generating proximity event

Proximity event
Application

When handling this proximity event, the application stores the device ID of the tablet device, the device ID
of the pointing device, and perhaps also the serial number of the pointing device and its type. Until it receives
the next proximity event with these same identifiers, it processes all pointer events it receives for the pointing
device—in this case, drawing lines (Figure 2-2).

Figure 2-2 Application receiving pointer events

Pointer events
Application

32 Event Types
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

Now the airbrush pointing device moves onto the surface of the tablet, generating another proximity event
(Figure 2-3). Because this event carries with it different identifiers, the application knows its not the terminating
proximity event for the first tablet session. Instead it announces an impending series of pointer events for
another pointing device. So the application stores the identifiers and configuration information for this
session.

Figure 2-3 Pointer B coming near the tablet, generating proximity event

Pointer events

Proximity event

Application

For a period, the tablet application is processing two different series of pointer events, using the stored
identifiers to distinguish between the two. Then, as depicted in Figure 2-4, the drawing pointing device
moves away from the tablet surface. This action generates a proximity event. The application examines the
event and sees that the identifiers for the pointing device are the same as what it initially stored for the
line-drawing device. It nullifies the stored identifiers, bringing to a close the initial series of pointer events.

Figure 2-4 Pointer A leaving the tablet surface, generating proximity event

Proximity event

Pointer events

Application

Other Types of Events

The Application Kit defines several minor event types. Some of these are rarely used, but they are available
if you ever find need for them.

A periodic event (type NSPeriodic) simply notifies an application that a certain time interval has elapsed.
Periodic events are particularly useful in situations where input events aren’t generated but you want them
to be. For example, when the user holds the mouse down over a scroll button but doesn’t move it, no events
are generated after the mouse-down event. The Application Kit’s scrolling mechanism then starts and uses
a stream of periodic events to keep the document scrolling at a reasonable pace until the user releases the
mouse. When a mouse-up event occurs, the scrolling mechanism terminates the periodic event stream.

Event Types 33
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

You use theNSEvent class methodstartPeriodicEventsAfterDelay:withPeriod: to generate periodic
events and have them placed in the event queue at a certain frequency. When you no longer need them,
turn off the flow of periodic events by invoking stopPeriodicEvents. Unlike key and mouse events, periodic
events aren’t dispatched to a window object. The application must retrieve them explicitly using the
NSApplicationmethod nextEventMatchingMask:untilDate:inMode:dequeue:, typically in a modal
loop. An application can have only one stream of periodic events active for each thread. You use periodic
events instead of timers because NSPeriodic events are delivered along with other events; this makes for
a responder object to look for periodic events along with mouse-up and mouse-dragged events. such as is
done (for example) during scrolling.

The remaining event types—NSAppKitDefined, NSSystemDefined, and NSApplicationDefined—are
less structured, containing only generic subtype and data fields. Of these three miscellaneous event types,
only NSApplicationDefined is of real use to application programs. It allows the application to generate
custom events and insert them into the event queue. Each such event can have a subtype and two additional
codes to differentiate it from others. The NSEvent method
otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:subtype:data1:data2:
creates one of these events, and the subtype, data1, and data2 methods return the information specific
to these events.

34 Event Types
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Event Objects and Types

Some tasks found in event-handling code are common to events of more than one type. The following
sections describe these basic event-handling tasks. Some of the information presented in this chapter is
discussed at length, but using different examples, in the “Creating a Custom View“ chapter of ViewProgramming
Guide for Cocoa.

Preparing a Custom View for Receiving Events

Although any type of responder object can handle events, NSView objects are by far the most common
recipient of events. They are typically the first objects to respond to both mouse events and key events, often
changing their appearance in reaction to those events. Many Application Kit classes are implemented to
handle events, but by itself NSView does not. When you create your own custom view and you want it to
respond to events, you have to add event-handling capabilities to it.

The bare-minimum steps required for this are few:

 ■ If your custom view should be first responder for key events or action messages, override
acceptsFirstResponder.

 ■ Implement one or more NSResponder methods to handle events of particular types.

 ■ If your view is to handle action messages passed to it via the responder chain, implement the appropriate
action methods.

A view that is first responder accepts key events and action messages before other objects in a window. It
also typically takes part in the key loop (see “Keyboard Interface Control” (page 63)). By default, view objects
refuse first-responder status by returning NO in acceptsFirstResponder. If you want your custom view
to respond to key events and actions, your class must override this method to return YES:

- (BOOL)acceptsFirstResponder {
 return YES;
}

Note: A view that becomes first responder in order to respond to key events or action messages should
reflect this status by drawing a focus ring around itself. The focus ring indicates that the object is the current
first responder for key events.

The second item in the list above—overriding an NSResponder method to handle an event—is of course a
large subject and what most remaining chapters in this document are about. But there are a few basic
guidelines to consider for event messages:

 ■ If necessary, examine the passed-in NSEvent object to verify that it’s an event you handle and, if so, find
out how to handle it.

Preparing a Custom View for Receiving Events 35
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

Call the appropriate NSEvent methods to help make this determination. For example, you might see
which modifier keys were pressed (modifierFlags), find out whether a mouse-down event is a double-
or triple-click (clickCount), or, for key events, get the associated characters (characters and
charactersIgnoringModifiers).

 ■ If your implementation of an NSResponder method such as mouseDown: completely handles an event
it should not invoke the superclass implementation of that method.

NSView inherits the NSResponder implementations of the methods for handling mouse events; in these
methods, NSResponder simply passes the message up the responder chain. One of these objects in the
responder chain can implement a method in a way that ensures your custom view won’t see subsequent
related mouse events. Because of this, custom NSView objects should not invoke super in their
implementations ofNSRespondermouse-event-handling methods such asmouseDown:,mouseDragged:
and mouseUp: unless it is known that the inherited implementation provides some needed functionality.

 ■ If you do not handle the event, pass it on up the responder chain. Although you can directly forward
the message to the next responder, it’s generally better to forward the message to your superclass. If
your superclass doesn’t handle the event, it forwards the message to its superclass, and so on, until
NSResponder is reached. By default NSResponder passes all event messages up the responder chain.
For example, instead of this:

- (void)mouseDown:(NSEvent *)theEvent {
 // determine if I handle theEvent
 // if not...
 [[self nextResponder] mouseDown:theEvent];
}

do this:

- (void)mouseDown:(NSEvent *)theEvent {
 // determine if I handle theEvent
 // if not...
 [super mouseDown:theEvent];
}

 ■ If your subclass needs to handle particular events some of the time—only some typed characters,
perhaps—then it must override the event method to handle the cases it’s interested in and to invoke
the superclass implementation otherwise. This allows a superclass to catch the cases it’s interested in,
and ultimately allows the event to continue on its way along the responder chain if it isn’t handled.

 ■ If you deliberately want to bypass the superclass implementation of an NSResponder method—say
your superclass is NSForm—and yet pass an event up the responder chain, resend the message to [self
nextResponder].

Implementing Action Methods

Action messages are typically sent by NSMenuItem objects or by NSControl objects. The latter objects
usually work together with one or more NSCell objects. The cell object stores a method selector identifying
the action message to be sent and a reference to the target object. (A menu item encapsulates its own action
and target data.) When a menu item or control object is clicked or otherwise manipulated, it gets the action
selector and target object—in the control’s case, from one of its cells—and sends the message to the target.

36 Implementing Action Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

Note: For more on the target-action mechanism and action methods, see the appropriate sections in
“Communicating With Objects" and “The Core Application Architecture on Mac OS X“ in Cocoa Fundamentals
Guide. Also, for information about untargeted action messages and the path they take up the responder
chain, see “Action Messages” (page 18) and “Responder Chain for Action Messages” (page 21).

You can set the action selector and target programmatically using, respectively, the methods setAction:
and setTarget: (declared by NSActionCell, NSMenuItem, and other classes). However, you typically
specify these in Interface Builder. In this application, you connect a control object to another object (the
target) in the nib file by Control-dragging from the control object to the target and then selecting the action
method of the target to invoke. If you want the action message to be untargeted, you can either set the
target to nil programmatically or, in Interface Builder, make a connection between the menu item or control
and the First Responder icon in the nib file window, as shown in Figure 3-1.

Figure 3-1 Connecting an untargeted action in Interface Builder

From Interface Builder you can generate a header file and implementation file for your Xcode project that
include a declaration and skeletal implementation, respectively, for each action method defined for a class.
These Interface Builder–defined methods have a return “value” of IBAction, which acts as a tag to indicated
that the target-action connection is archived in a nib file. You can also add the declarations and skeletal
implementations of action methods yourself; in this case, the return type is void.) The remaining required
part of the signature is a single parameter typed as id and named (by convention) sender.

Listing 3-1 illustrates a straightforward implementation of an action method that toggles a clock’s AM-PM
indicator when a user clicks a button.

Listing 3-1 Simple implementation of an action method

- (IBAction)toggleAmPm:(id)sender {
 [self incrementHour:12 andMinute: 0];
}

Implementing Action Methods 37
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

Action methods, unlike NSResponder event methods, don’t have default implementations, so responder
subclasses shouldn’t blindly forward action messages to super. The passing of action messages up the
responder chain in the Application Kit is predicated merely on whether an object responds to the method,
unlike with the passing of event messages. Of course, if you know that a superclass does in fact implement
the method, you can pass it on up from your subclass, but otherwise don’t.

An important feature of action messages is that you can send messages back to sender to get further
information or associated data. For example, the menu items in a given menu might have represented objects
assigned to them; for example, a menu item with a title of “Red” might have a represented object that is an
NSColor object. You can access this object by sending representedObject to sender.

You can take the messaging-back feature of action methods one step further by using it to dynamically
change sender’s target, action, title, and similar attributes. Here is a simple test case: You want to control a
progress indicator (an NSProgressIndicator object) with a single button; one click of the button starts
the indicator and changes the button’s title to “Stop”, and then the next click stops the indicator and changes
the title to back to “Start”. Listing 3-2 shows one way to do this.

Listing 3-2 Resetting target and action of sender—good implementation

- (IBAction)controlIndicator:(id)sender
{
 [[sender cell] setTarget:indicator]; // indicator is NSProgressIndicator
 if ([[sender title] isEqualToString:@"Start"]) {
 [[sender cell] setAction:@selector(startAnimation:)];
 [sender setTitle:@"Stop"];
 } else {
 [[sender cell] setAction:@selector(stopAnimation:)];
 [sender setTitle:@"Start"];
 }
 [[sender cell] performClick:self];
 // set target and action back to what they were
 [[sender cell] setAction:@selector(controlIndicator:)];
 [[sender cell] setTarget:self];
}

However, this implementation requires that the target and action information be set back to what they were
after the redirected action message is sent via performClick:. You could simplify this implementation by
invoking directly sendAction:to:from:, the method used by the application object (NSApp) to dispatch
action messages (see Listing 3-3).

Listing 3-3 Resetting target and action of sender—better implementation

- (IBAction)controlIndicator:(id)sender
{
 SEL theSelector;
 if ([[sender title] isEqualToString:@"Start"]) {
 theSelector = @selector(startAnimation:);
 [sender setTitle:@"Stop"];
 } else {
 theSelector = @selector(stopAnimation:);
 [sender setTitle:@"Start"];
 }
 [NSApp sendAction:theSelector to:indicator from:sender];
}

38 Implementing Action Methods
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

In keyboard action messages, an action method is invoked as a result of a particular key-press being interpreted
through the key bindings mechanism. Because such messages are so closely connected to specific key events,
the implementation of the action method can get the event by sending currentEvent to NSApp and then
query the NSEvent object for details. Listing 3-7 (page 40) gives an example of this technique. See “The
Path of Key Events” (page 15) for a summary of keyboard action messages; also see “Key Bindings” (page
75) for a description of that mechanism.

Getting the Location of an Event

You can get the location of a mouse or tablet-pointer event by sending locationInWindow to an NSEvent
object. But, as the name of the method denotes, this location (an NSPoint structure) is in the base coordinate
system of a window, not in the coordinate system of the view that typically handles the event. Therefore a
view must convert the point to its own coordinate system using the method convertPoint:fromView:,
as shown in Listing 3-4.

Listing 3-4 Converting a mouse-dragged location to be in a view’s coordinate system

- (void)mouseDragged:(NSEvent *)event {
 NSPoint eventLocation = [event locationInWindow];
 center = [self convertPoint:eventLocation fromView:nil];
 [self setNeedsDisplay:YES];
}

The second parameter of convertPoint:fromView: is nil to indicate that the conversion is from the
window’s base coordinate system.

Keep in mind that the locationInWindow method is not appropriate for key events, periodic events, or
any other type of event other than mouse and tablet-pointer events.

Testing for Event Type and Modifier Flags

On occasion you might need to discover the type of an event. However, you do not need to do this within
an event-handling method of NSResponder because the type of the event is apparent from the method
name: rightMouseDragged:, keyDown:, tabletProximity:, and so on. But from elsewhere in an
application you can always obtain the currently handled event by sending currentEvent to NSApp. To find
out what type of event this is, send type to the NSEvent object and then compare the returned value with
one of the NSEventType constants. Listing 3-5 gives an example of this.

Listing 3-5 Testing for event type

NSEvent *currentEvent = [NSApp currentEvent];
NSPoint mousePoint = [controlView convertPoint: [currentEvent locationInWindow]
 fromView:nil];
switch ([currentEvent type]) {
 case NSLeftMouseDown:
 case NSLeftMouseDragged:
 [self doSomethingWithEvent:currentEvent];
 break;
 default:

Getting the Location of an Event 39
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

 // If we find anything other than a mouse down or dragged we are done.
 return YES;
}

A common test performed in event-handling methods is finding out whether specific modifier keys were
pressed at the same moment as a keypress, mouse click, or similar user action. The modifier key usually
imparts special significance to the event. The code example in Listing 3-6 shows an implementation of
mouseDown: that determines whether the Command key was pressed while the mouse was clicked. If it was,
it rotates the receiver (a view) 90 degrees. The identification of modifier keys requires the event handler to
send modifierFlags to the passed-in event object and then perform a bitwise-AND operation on the
returned value using one or more of the modifier mask constants declared in NSEvent.h.

Listing 3-6 Testing for modifier keys pressed—event method

- (void)mouseDown:(NSEvent *)theEvent {

 // if Command-click rotate 90 degrees
 if ([theEvent modifierFlags] & NSCommandKeyMask) {
 [self setFrameRotation:[self frameRotation]+90.0];
 [self setNeedsDisplay:YES];
 }
}

You can test an event object to find out if any from a set of modifier keys was pressed by performing a
bitwise-OR with the modifier-mask constants, as in Listing 3-7. (Note also that this example shows the use
of the currentEvent method in a keyboard action method.)

Listing 3-7 Testing for modifier keys pressed—action method

- (void)moveLeft:(id)sender {
 // Use left arrow to decrement the time. If a shift key is down, use a big
 step size.
 BOOL shiftKeyDown = ([[NSApp currentEvent] modifierFlags] &
 (NSShiftKeyMask | NSAlphaShiftKeyMask)) !=0;
 [self incrementHour:0 andMinute:-(shiftKeyDown ? 15 : 1)];
}

Further, you can look for certain modifier-key combinations by linking the individual modifier-key tests
together with the logical AND operator (&&). For example, if the example method in Listing 3-6 (page 40)
were to look for Command-Shift-click rather than Command-click, the complete test would be the following:

 if (([theEvent modifierFlags] & NSCommandKeyMask) &&
 ([theEvent modifierFlags] & NSShiftKeyMask))

In addition to testing an NSEvent object for individual event types, you can also restrict the events fetched
from the event queue to specified types. You can perform this filtering of event types in the
nextEventMatchingMask:untilDate:inMode:dequeue: method (NSApplication and NSWindow) or
the nextEventMatchingMask: method of NSWindow. The second parameter of all these methods takes
one or more of the event-type mask constants declared in NSEvent.h—for example
NSLeftMouseDraggedMask, NSFlagsChangedMask, and NSTabletProximityMask. You can either specify
these constants individually or perform a bitwise-OR on them.

Because the nextEventMatchingMask:untilDate:inMode:dequeue:method is used almost exclusively
in closed loops for processing a related series of mouse events, the use of it is described in “Handling Mouse
Events” (page 45).

40 Testing for Event Type and Modifier Flags
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

Responder-Related Tasks

The following sections describe tasks related to the first-responder status of objects.

Determining First-Responder Status

Usually an NSResponder object can always determine if it's currently the first responder by asking its window
(or itself, if it's an NSWindow object) for the first responder and then comparing itself to that object. You ask
an NSWindow object for the first responder by sending it a firstRespondermessage. For an NSView object,
this comparison would look like the following bit of code:

if ([[self window] firstResponder] == self) {
 // do something based upon first-responder status
}

A complication of this simple scenario occurs with text fields. When a text field has input focus, it is not the
first responder. Instead, the field editor for the window is the first responder; if you send firstResponder
to the NSWindow object, an NSTextView object (the field editor) is what is returned. To determine if a given
NSTextField is currently active, retrieve the first responder from the window and find out it is an NSTextView
object and if its delegate is equal to the NSTextField object. Listing 3-8 shows how you might do this.

Listing 3-8 Determining if a text field is first responder

if ([[[self window] firstResponder] isKindOfClass:[NSTextView class]] &&
 [window fieldEditor:NO forObject:nil] != nil) {
 NSTextField *field = [[[self window] firstResponder] delegate];
 if (field == self) {
 // do something based upon first-responder status
 }
}

The control that a field editor is editing is always the current delegate of the field editor, so (as the example
shows) you can obtain the text field by asking for the field editor's delegate. For more on the field editor,
see "Text Fields, Text Views, and the Field Editor."

Setting the First Responder

You can programmatically change the first responder by sending makeFirstResponder: to an NSWindow
object; the argument of this message must be a responder object (that is, an object that inherits from
NSResponder). This message initiates a kind of protocol in which one object loses its first responder status
and another gains it.

1. makeFirstResponder: always asks the current first responder if it is ready to resign its status by sending
it resignFirstResponder.

2. If the current first responder returns NO when sent this message, makeFirstResponder: fails and
likewise returns NO.

A view object or other responder may decline to resign first responder status for many reasons, such as
when an action is incomplete.

Responder-Related Tasks 41
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

3. If the current first responder returns YES to resignFirstResponder, then the new first responder is
sent a becomeFirstResponder message to inform it that it can be the first responder.

4. This object can return NO to reject the assignment, in which case the NSWindow itself becomes the first
responder.

Figure 3-2 and Figure 3-3 illustrate two possible outcomes of this protocol.

Figure 3-2 Making a view a first responder—current view refuses to resign status

No

viewOneaWindow viewTwo

resignFirstResponder

No

makeFirstResponder

Figure 3-3 Making a view a first responder—new view becomes first responder

Yes

viewOneaWindow viewTwo

makeFirstResponder
resignFirstResponder

becomeFirstResponder

Yes

Yes

Listing 3-9 shows a custom NSCell class (in this case a subclass of NSActionCell) implementing
resignFirstResponder and becomeFirstResponder to manipulate the keyboard focus ring of its
superclass.

Listing 3-9 Resigning and becoming first responder

- (BOOL)becomeFirstResponder {
 BOOL okToChange = [super becomeFirstResponder];
 if (okToChange) [self setKeyboardFocusRingNeedsDisplayInRect: [self bounds]];
 return okToChange;
}

- (BOOL)resignFirstResponder {
 BOOL okToChange = [super resignFirstResponder];
 if (okToChange) [self setKeyboardFocusRingNeedsDisplayInRect: [self bounds]];
 return okToChange;
}

You can also set the initial first responder for a window—that is, the first responder set when the window is
first placed onscreen. You can set the initial first responder programmatically by sending
setInitialFirstResponder: to an NSWindow object. You can also set it when you create a user interface
in Interface Builder. To do this, complete the following steps.

42 Responder-Related Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

1. Control-drag from the window icon in the nib file window to an NSView object in the user interface.

2. In the Connections pane of the inspector, select the initialFirstResponder outlet and click Connect.

After awakeFromNib is called for all objects in a nib file, NSWindow makes the first responder whatever was
set as initial first responder in the nib file. Note that you should not send setInitialFirstResponder:
to an NSWindow object in awakeFromNib and expect the message to be effective.

Responder-Related Tasks 43
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

44 Responder-Related Tasks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Event Handling Basics

Mouse events are one of the two most frequent kinds of events handled by an application (the other kind
being, of course, key events). Mouse clicks—which involve a user pressing and then releasing a mouse
button—generally indicate selection, but what the selection means is left up to the object responding to
the event. For example, a mouse click could tell the responding object to alter its appearance and then send
an action message. Mouse drags generally indicate that the receiving view should move itself or a drawn
object within its bounds. The following sections describe how you might handle mouse-down, mouse-up,
and mouse-drag events.

Note: This chapter discusses those mouse events that an NSWindow object delivers to its views through the
event-dispatch mechanism: mouse-down, mouse-up, mouse-dragged, and (to a lesser degree) mouse-moved
events. It does not describe how to handle mouse-entered and mouse-exited events, which (possibly along
with mouse-moved events) are used in mouse tracking. See “Using Tracking-Area Objects” (page 67) for
information on this subject.

Overview of Mouse Events

Before going into the “how to” of mouse-event handling, let’s review some central facts about mouse events
discussed in “Event Architecture” (page 11), “Event Objects and Types” (page 25), and “Event Handling
Basics” (page 35):

 ■ Mouse events are dispatched by an NSWindow object to the NSView object over which the event occurred.

 ■ Subsequent key events are dispatched to that view object if it accepts first responder status.

 ■ If the user clicks a view that isn’t in the key window, by default the window is brought forward and made
key, but the mouse event is not dispatched.

 ■ Mouse events are of various event types related to the mouse button pressed (left, right, other) and the
nature of the action on the mouse button. Each event type is, in turn, related to an NSRespondermethod,
as Table 4-1 shows for left-button mouse events.

Table 4-1 Type constants and methods related to left-button mouse events

Mouse-event method invoked
(left mouse button)

Event type (left mouse
button)

Action

mouseDown:NSLeftMouseDownPress down the button

mouseDragged:NSLeftMouseDraggedMove the mouse while pressing the
button

mouseUp:NSLeftMouseUpRelease the button

Overview of Mouse Events 45
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

Mouse-event method invoked
(left mouse button)

Event type (left mouse
button)

Action

mouseMoved:NSMouseMovedMove the mouse without pressing
any button

Note: Because mouse-moved events occur so frequently that they can quickly flood the event-dispatch
machinery, an NSWindow object by default does not receive them from the global NSApplication
object. However, you can specifically request these events by sending the NSWindow object an
setAcceptsMouseMovedEvents: message with an argument of YES.

Right-mouse events are defined by the Application Kit to open contextual menus, but you can override
this behavior if necessary (in, for example, rightMouseDown:). The Application Kit does not define any
default behavior for third (“other”) mouse buttons.

 ■ The general sequence of mouse events is: mouse-down, mouse-dragged (multiple), mouse-up.

If dispatch of them is turned on, mouse-moved events may only occur between a mouse-up and the
next mouse-down. They do not occur between a mouse-down and the subsequent mouse-up.

 ■ Mouse events (as NSEvent objects) can have subtypes. Currently, these subtypes are restricted to tablet
events (particularly tablet-pointer events) but more subtypes could be added in the future. (See “Tablet
Events” (page 29) for more information.)

Handling Mouse Clicks

One of the earliest things to consider in handling mouse-down events is whether the receiving NSView object
should become the first responder, which means that it will be the first candidate for subsequent key events
and action messages. Views that handle graphic elements that the user can select—drawing shapes or text,
for example—should typically accept first responder status on a mouse-down event by overriding the
acceptsFirstResponder method to return YES, as discussed in “Preparing a Custom View for Receiving
Events” (page 35).

By default, a mouse-down event in a window that isn’t the key window simply brings the window forward
and makes it key; the event isn’t sent to the NSView object over which the mouse click occurs. The NSView
can claim an initial mouse-down event, however, by overriding acceptsFirstMouse: to return YES. The
argument of this method is the mouse-down event that occurred in the non-key window, which the view
object can examine to determine whether it wants to receive the mouse event and potentially become first
responder. You want the default behavior of this method in, for example, a control that affects the selected
object in a window. However, in certain cases it’s appropriate to override this behavior, such as for controls
that should receive mouseDown: messages even when the window is inactive. Examples of controls that
support this click-through behavior are the title-bar buttons of a window.

In your implementation of an NSResponder mouse-event method, often the first thing you might do is
examine the passed-in NSEvent object to decide if this is an event you want to handle. If it is an event that
you handle, then you may need to extract information from the NSEvent object to help you handle it.
Specifically, you can get the following information from the NSEvent object:

46 Handling Mouse Clicks
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

 ■ Get the location of the mouse event in base coordinates (locationInWindow) and then convert this
location to the receiving view’s coordinate system; see “Getting the Location of an Event” (page 39) for
details.

 ■ See if any modifier keys were pressed when the mouse button was clicked (modifierFlags); this
procedure is described in “Testing for Event Type and Modifier Flags” (page 39). An application may
define modifier keys to change the significance of a mouse event.

 ■ Find out how many mouse clicks occurred in quick succession (clickCount); multiple mouse clicks are
conceptually treated as a single mouse-down event within a narrow time threshold (although they arrive
in a series of mouseDown: messages). As with modifier keys, a double- or triple-click can change the
significance of a mouse event for an application. (See Listing 4-3 (page 48) for an example.)

 ■ If the interval between mouse clicks is important, you can send timestamp to the NSEvent object and
record the moment each event occurred.

 ■ If the change in position of the mouse between subsequent events is important, you can find out the
delta values for the x-coordinate and y-coordinate using, respectively, deltaX and deltaY.

Many view objects in the Application Kit (such as controls and menu items) change their appearance in
response to mouse-down events, sometimes only until the subsequent mouse-up event. Doing this provides
visual confirmation to the user that their action is effective or that the clicked object is now selected. Listing
4-1 shows a simple example of this.

Listing 4-1 Simple handling of mouse click—changing view’s appearance

- (void)mouseDown:(NSEvent *)theEvent {
 [self setFrameColor:[NSColor redColor]];
 [self setNeedsDisplay:YES];
}

- (void)mouseUp:(NSEvent *)theEvent {
 [self setFrameColor:[NSColor greenColor]];
 [self setNeedsDisplay:YES];
}

- (void)drawRect:(NSRect)rect {
 [[self frameColor] set];
 NSRectFill(rect);
}

But many view objects, particularly controls and cells, do more than simply change their appearance in
response to mouse clicks. One common paradigm is for the clicked view to send an action message to a
target object (where both action and target are settable properties of the view). As shown in Listing 4-2, the
view typically sends the message on mouseUp: rather than mouseDown:, thus giving users an opportunity
to change their minds mid-click.

Listing 4-2 Simple handling of mouse click—sending an action message

- (void)mouseDown:(NSEvent *)theEvent {
 [self setFrameColor:[NSColor redColor]];
 [self setNeedsDisplay:YES];
}

- (void)mouseUp:(NSEvent *)theEvent {
 [self setFrameColor:[NSColor greenColor]];
 [self setNeedsDisplay:YES];

Handling Mouse Clicks 47
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

 [NSApp sendAction:[self action] to:[self target] from:self];
}

- (SEL)action {return action; }

- (void)setAction:(SEL)newAction {
 action = newAction;
}

- (id)target { return target; }

- (void)setTarget:(id)newTarget {
 target = newTarget;
}

Listing 4-3 gives a more complex, real-world example. (It’s from the example project for the Sketch application.)
This implementation of mouseDown: determines if users double-clicked a graphical object and, if they did,
enables the editing of that object. Otherwise, if a palette object is selected, it creates an instance of that
object at the location of the mouse click.

Listing 4-3 Handling a mouse-down event—Sketch application

- (void)mouseDown:(NSEvent *)theEvent {
 Class theClass = [[SKTToolPaletteController sharedToolPaletteController]
currentGraphicClass];
 if ([self editingGraphic]) {
 [self endEditing];
 }
 if ([theEvent clickCount] > 1) {
 NSPoint curPoint = [self convertPoint:[theEvent locationInWindow]
fromView:nil];
 SKTGraphic *graphic = [self graphicUnderPoint:curPoint];
 if (graphic && [graphic isEditable]) {
 [self startEditingGraphic:graphic withEvent:theEvent];
 return;
 }
 }
 if (theClass) {
 [self clearSelection];
 [self createGraphicOfClass:theClass withEvent:theEvent];
 } else {
 [self selectAndTrackMouseWithEvent:theEvent];
 }
}

The classes of the Application Kit that implement controls manage this target-action behavior for you.

Handling Mouse Dragging Operations

Mouse-down and mouse-up events, which are the events associated with mouse clicks, are not the only
types of mouse events dispatched in an application. Views can also receive mouse-dragged events when a
user moves a mouse while pressing down a mouse button. A view typically interprets mouse-dragged events

48 Handling Mouse Dragging Operations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

as commands to move itself by altering its frame location or to move a region within its bounds by redrawing
it. However, other interpretations of mouse-dragged events are possible; for example, a view could respond
to mouse-dragged events by magnifying the region that the mouse pointer is dragged over.

With the Application Kit you can take one of two general approaches when handling mouse-dragged events.
The first approach is overriding the three NSResponder methods mouseDown:, mouseDragged:, and
mouseUp: (for left mouse-button operations). For each dragging sequence, the Application Kit sends a
mouseDown: message to a responder object, then sends one or more mouseDragged: messages, and ends
the sequence with a mouseUp: message. “The Three-Method Approach” (page 49) describes this approach.

The other approach treats the mouse events in a dragging sequence as a single event, from mouse down,
through dragging, to mouse up. To do this, the responder object must usually short-circuit the application’s
normal event loop by entering a event-tracking loop to filter and process only mouse events of interest. For
example, an NSButton object highlights itself upon a mouse-down event, then follows the mouse location
during dragging, highlighting when the mouse is inside and unhighlighting when the mouse is outside. If
the mouse is inside on the mouse-up event, the button object sends its action message. This approach is
described in “The Mouse-Tracking Loop Approach” (page 51).

Both of these approaches have their advantages and drawbacks. Establishing a event-tracking loop gives
you greater control over the way other events interact with your application during a dragging operation.
However, the application’s main thread is unable to process any other requests during an event-tracking
loop and timers might not fire as expected. The mouse-tracking approach is more efficient because it typically
requires less code and allows all dragging variables to be local. However, the class implementing it becomes
more difficult to extend without the subclass reimplementing all the dragging code.

Implementing the individual mouseDown:, mouseDragged:, and mouseUp:methods is often a better design
choice when writing an event-driven application. Each of the methods have a clearly defined scope, which
often leads to clearer code. This approach also makes it much easier for subclasses to override behavior for
handling mouse-down, mouse-dragged, and mouse-up events. However, this technique can require more
code and instance variables.

The Three-Method Approach

To handle a mouse-dragging operation, you can override the three NSResponder methods that mark the
discrete stages of a mouse-dragging operation: mouseDown:, mouseDragged:, and mouseUp: (or, for
right-mouse dragging,rightMouseDown:,rightMouseDragged:, andrightMouseUp:). A mouse-dragging
sequence consists of one mouseDown:message, followed by (typically) multiple mouseDragged:messages,
and a concluding mouseUp: message.

The subclass implementing these methods often has to declare instance variables to hold the changing
values or states of various things between successive events. These things could be geometric entities such
as rectangles or points (corresponding to view frames or regions within views) or they could be simple
Boolean values indicating, for example, that an object is selected. In the mouseDown: method, the view
generally initializes any dragging-related instance variables; in the mouseDragged: method it might update
those instance variables or check them prior to performing an action; and in the mouseUp: method, it often
resets those instance variables to their initial values.

Because mouse-dragging operations often redraw an object in the incrementally changing locations where
users drag that object, implementations of the three mouse-dragging methods usually need to find the
location of each mouse event in the view’s coordinate system. As explained in “Getting the Location of an
Event” (page 39), this requires the view to send locationInWindow to the passed-in NSEvent object and
then use the convertPoint:fromView: method to convert the resulting location to the local coordinate

Handling Mouse Dragging Operations 49
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

system. When changes in location or geometry require the view to redraw itself or a portion of itself, the
view marks the areas needing display using the setNeedsDisplay: or setNeedsDisplayInRect:method
and the view is later asked to redraw itself (in drawRect:) through the auto-display mechanism (assuming
that mechanism is not turned off).

Listing 4-4 illustrates the use of dragging-related instance variables, getting the mouse location in local
coordinates (and testing whether that location is in a specific region), and marking that region of the receiving
view for redisplay.

Listing 4-4 Handling a mouse-dragging operation—three-method approach

- (void)mouseDown:(NSEvent *)theEvent {
 // mouseInCloseBox and trackingCloseBoxHit are instance variables
 if (mouseInCloseBox = NSPointInRect([self convertPoint:[theEvent
locationInWindow] fromView:nil], closeBox)) {
 trackingCloseBoxHit = YES;
 [self setNeedsDisplayInRect:closeBox];
 }
 else if ([theEvent clickCount] > 1) {
 [[self window] miniaturize:self];
 return;
 }
}

- (void)mouseDragged:(NSEvent *)theEvent {
 NSPoint windowOrigin;
 NSWindow *window = [self window];

 if (trackingCloseBoxHit) {
 mouseInCloseBox = NSPointInRect([self convertPoint:[theEvent
locationInWindow] fromView:nil], closeBox);
 [self setNeedsDisplayInRect:closeBox];
 return;
 }

 windowOrigin = [window frame].origin;

 [window setFrameOrigin:NSMakePoint(windowOrigin.x + [theEvent deltaX],
windowOrigin.y - [theEvent deltaY])];
}

- (void)mouseUp:(NSEvent *)theEvent {
 if (NSPointInRect([self convertPoint:[theEvent locationInWindow]
fromView:nil], closeBox)) {
 [self tryToCloseWindow];
 return;
 }
 trackingCloseBoxHit = NO;
 [self setNeedsDisplayInRect:closeBox];
}

50 Handling Mouse Dragging Operations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

The Mouse-Tracking Loop Approach

The mouse-tracking technique for handling mouse-dragging operations is applied in a single method, usually
(but not not necessarily) in mouseDown:. The implementing responder object first declares and possibly
initializes one or more local variables to use within the loop. Often one of these variables holds a value, often
Boolean, that is used to control the loop. When some condition is met, typically the receipt of a mouse-up
event, the variable value is changed; when this variable is tested next time through the loop, control exits
the loop.

The central method of a mouse-tracking loop is the NSApplication method
nextEventMatchingMask:untilDate:inMode:dequeue: and the NSWindowmethod of the same name.
These methods fetch events from the event queue that are of the types specified by one or more type-mask
constants; for mouse-dragging, these constants are typically NSLeftMouseDraggedMask and
NSLeftMouseUpMask. Events of other types are left in the queue. (The run-loop mode parameter of both
nextEventMatchingMask:untilDate:inMode:dequeue: methods should be
NSEventTrackingRunLoopMode.)

After receiving a mouse-down event, fetch subsequent mouse events within the loop using
nextEventMatchingMask:untilDate:inMode:dequeue:. Process NSLeftMouseDragged events as you
would process them in the mouseDragged: method (described in “The Three-Method Approach” (page
49)); similarly, handle NSLeftMouseUp events as you would handle them in mouseUp:. Usually mouse-up
events indicate that execution control should break out of the loop.

The mouseDown: method template in Listing 4-5 shows one possible kind of modal event loop.

Listing 4-5 Handling mouse-dragging in a mouse-tracking loop—simple example

- (void)mouseDown:(NSEvent *)theEvent {
 BOOL keepOn = YES;
 BOOL isInside = YES;
 NSPoint mouseLoc;

 while (keepOn) {
 theEvent = [[self window] nextEventMatchingMask: NSLeftMouseUpMask |
 NSLeftMouseDraggedMask];
 mouseLoc = [self convertPoint:[theEvent locationInWindow] fromView:nil];
 isInside = [self mouse:mouseLoc inRect:[self bounds]];

 switch ([theEvent type]) {
 case NSLeftMouseDragged:
 [self highlight:isInside];
 break;
 case NSLeftMouseUp:
 if (isInside) [self doSomethingSignificant];
 [self highlight:NO];
 keepOn = NO;
 break;
 default:
 /* Ignore any other kind of event. */
 break;
 }

 };

 return;

Handling Mouse Dragging Operations 51
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

}

This loop converts the mouse location and checks whether it’s inside the receiver. It highlights itself using
the fictional highlight:method and, on receiving a mouse-up event, it invokes doSomethingSignificant
to perform an important action. Instead of merely highlighting, a custom NSView object might move a
selected object, draw a graphic image according to the mouse’s location, and so on.

Listing 4-6 is a slightly more complicated example that includes the use of an autorelease pool and testing
for a modifier key.

Listing 4-6 Handling mouse-dragging in a mouse-tracking loop—complex example

- (void)mouseDown:(NSEvent *)theEvent
{
 if ([theEvent modifierFlags] & NSAlternateKeyMask) {
 BOOL dragActive = YES;
 NSPoint location = [renderView convertPoint:[theEvent
locationInWindow] fromView:nil];
 NSAutoreleasePool *myPool = nil;
 NSEvent* event = NULL;
 NSWindow *targetWindow = [renderView window];

 myPool = [[NSAutoreleasePool alloc] init];
 while (dragActive) {
 event = [targetWindow nextEventMatchingMask:(NSLeftMouseDraggedMask
 | NSLeftMouseUpMask)
 untilDate:[NSDate distantFuture]
 inMode:NSEventTrackingRunLoopMode
 dequeue:YES];
 if(!event)
 continue;
 location = [renderView convertPoint:[event locationInWindow]
fromView:nil];
 switch ([event type]) {
 case NSLeftMouseDragged:
 annotationPeel = (location.x * 2.0 / [renderView
bounds].size.width);
 [imageLayer showLens:(annotationPeel <= 0.0)];
 [peelOffFilter setValue:[NSNumber
numberWithFloat:annotationPeel] forKey:@"inputTime"];
 [self refresh];
 break;

 case NSLeftMouseUp:
 dragActive = NO;
 break;

 default:
 break;
 }
 }
 [myPool release];
 } else {
 // other tasks handled here......
 }
}

52 Handling Mouse Dragging Operations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

A mouse-tracking loop is driven only as long as the user actually moves the mouse. It won’t work, for example,
to cause continual scrolling if the user presses the mouse button but never moves the mouse itself. For this,
your loop should start a periodic event stream using the NSEvent class method
startPeriodicEventsAfterDelay:withPeriod:, and addNSPeriodicMask to the mask bit-field passed
to nextEventMatchingMask:. In the switch statement the implementing view object can then check for
events of type NSPeriodic and take whatever action it needs to—scrolling a document view or moving a
step in an animation, for example. If you need to check the mouse location during a periodic event, you can
use the NSWindow method mouseLocationOutsideOfEventStream.

Filtering Out Key Events During Mouse-Tracking Operations

A potential problem with mouse-tracking code is the user pressing a key combination that is a command,
such as Command-z (undo), while a tracking operation is underway. Because your mouse-tracking code
(either in the three-method approach or a mouse-tracking loop) isn’t looking for that key event, the code
might not know how to handle that key command or could handle it wrongly, with unwelcome consequences.

The problem here with a mouse-tracking loop might not be readily apparent because, after all, the
nextEventMatchingMask:untilDate:inMode:dequeue: loop ensures only mouse-tracking events are
delivered. Why would key events be a problem? Consider the code in Listing 4-7. While this mouse-tracking
loop is active, let’s say the user issues some key-equivalent commands.

Listing 4-7 Typical mouse-tracking loop

- (void)mouseDown:(NSEvent *)theEvent {
 NSPoint pos;

 while ((theEvent = [[self window] nextEventMatchingMask:
 NSLeftMouseUpMask | NSLeftMouseDraggedMask])) {

 NSPoint pos = [self convertPoint:[theEvent locationInWindow]
 fromView:nil];

 if ([theEvent type] == NSLeftMouseUp)
 break;

 // Do some other processing...
 }
}

What happens after the mouse-tracking loop concludes? After the user lets go of the mouse button, the
application handles all of the pending commands corresponding to the mnemonics the user pressed during
the loop. The effects of this delayed handling are are probably undesirable. You can guard against this by
filtering the event stream for key events and then explicitly ignoring them. Listing 4-8 shows how you can
modify the code above to accomplish this (new code in italics).

Listing 4-8 Typical mouse-tracking loop—with key events negated

- (void)mouseDown:(NSEvent *)theEvent {
 NSPoint pos;

 while ((theEvent = [[self window] nextEventMatchingMask:
 NSLeftMouseUpMask | NSLeftMouseDraggedMask | NSKeyDownMask])) {

 NSPoint pos = [self convertPoint:[theEvent locationInWindow]

Handling Mouse Dragging Operations 53
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

 fromView:nil];

 if ([theEvent type] == NSLeftMouseUp)
 break;

 else if ([theEvent type] == NSKeyDown) {
 NSBeep();
 continue;

}

 // Do some other processing...
 }
}

For dragging operations handled with the three-method approach, the situation with simultaneous mouse
and key events is a bit different. In this case, the AppKit processes keyboard events as it normally does during
tracking. If the user presses a command mnemonic, even while a tracking operation is going on, the application
object dispatches the corresponding messages to its targets. So if, for example, in a drawing application the
user drags a blue circle they just created and then (perhaps accidentally) presses Command-x (cut) while the
mouse button is still down, the code handling the cut operation is going to run, deleting the object the user
was dragging.

The solution to this problem involves a few steps:

 ■ Declare a Boolean instance variable that reflects when a dragging operation is underway.

 ■ Set this variable to YES in mouseDown: and reset it to NO in mouseUp:.

 ■ Override performKeyEquivalent: to check the value of the instance variable and, if a dragging
operation is occurring, to discard the key event.

Listing 4-9 shows the implementation code for this (isBeingManipulated is the Boolean instance variable).

Listing 4-9 Discarding key events during a dragging operation with the three-method approach

@implementation MyView

- (BOOL)performKeyEquivalent:(NSEvent *)anEvent
{
 if (isBeingManipulated) {
 if ([anEvent type] == NSKeyDown) // Can get NSKeyUp here too
 NSBeep ();
 return YES; // Claim we handled it
 }

 return NO;
}

- (void)mouseDown:(NSEvent *)anEvent
{
 isBeingManipulated = YES;
 // other code goes here...
}

- (void)mouseUp:(NSEvent *)anEvent
{
 isBeingManipulated = NO;
 // other code goes here ...

54 Handling Mouse Dragging Operations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

}

@end

This solution to the problem is simplified and is intended for general illustration. In a real application you
might want to check the event type, conditionally set the isBeingManipulated variable, and selectively
handle key equivalents.

Handling Mouse Dragging Operations 55
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

56 Handling Mouse Dragging Operations
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Handling Mouse Events

A Mac OS X system generates key events when a user presses a key on a keyboard or presses several keys
simultaneously. When more than one key is pressed, one or more of those keys modifies the significance of
the “main” key that is pressed. The most commonly used modifier keys are the Command, Control, Option
(Alt), and Shift keys. In certain contexts and combinations, key presses represent commands to the operating
system or the frontmost application and not characters to be inserted into text.

This chapter discusses how you handle key events, particularly key-down events.

Overview of Key Events

The salient facts about key events, as presented in “Key Events” (page 29) and “The Path of Key Events” (page
15), are the following:

 ■ Key events are of three specific types (NSEventType), each of which is associated with an NSResponder
method:

Event methodEvent-type constant

keyDown:NSKeyDown

keyUp:NSKeyUp

flagsChanged:NSFlagsChanged

The flagsChanged: method can be useful for detecting the pressing of modifier keys without any
other key being pressed simultaneously. For example, if the user presses the Option key by itself, your
responder object can detect this in its implementation of flagsChanged:.

 ■ Most key events—that is, those representing characters to be inserted as text—are dispatched by the
NSWindow object associated with the key window to the first responder.

 ■ If the first responder does not handle the event, it passes the event up the responder chain (see “The
Responder Chain” (page 21)).

 ■ The delivery path of a key event varies according to whether the event represents a character, a key
equivalent, a keyboard action, or a keyboard interface control command. The global application object
(NSApp) first looks for key equivalents and then keyboard interface control commands and handles them
specially (see “The Path of Key Events” (page 15) for details). If the event is neither of these, it dispatches
it to the NSWindow object representing the key window, which in turn dispatches the event to the first
responder in a keyDown: message.

 ■ The responder object determines what the key event represents and handles it appropriately. At this
point, the key event could represent any one of the following things:

Overview of Key Events 57
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

 ❏ A keyboard action, which is a key or key combination bound to an action-message selector in a key
bindings dictionary (see “Key Bindings” (page 75)).

 ❏ An application-specific command or action (one not using the key bindings dictionary)

 ❏ A character or characters to insert into text

See “Overriding the keyDown: Method” for more information.

 ■ As with key event messages, a keyboard action message is passed up the responder chain if the first
responder does not handle it.

Overriding the keyDown: Method

Most responder objects (such as custom views) handle key events by overriding the keyDown: method
declared by NSResponder. The object can handle the event in any way it sees fit. A text object typically
interprets the message as a request to insert text, while a drawing object might only be interested in a few
keys, such as Delete and the arrow keys as commands to delete and move selected items. As with mouse
events, a responder object often wants to query the passed-in NSEvent object to find out more about the
event and obtain the data it needs to handle it. Some of the more useful NSEvent methods for key events
are the following:

 ■ characters and charactersIgnoringModifiers—The responder can extract the Unicode character
data associated with the event and insert it as text or interpret it as commands. The
charactersIgnoringModifiers method ignores any modifier keystroke (except for Shift) when
returning the character data. Note that both method names are plural because a keystroke can produce
more than one character (for example, “à” is composed of ‘a’ and ‘`‘).

 ■ modifierFlags—Using this method the responder can determine if any modifier keys were pressed.

 ■ isARepeat—This method tells the responder whether the same key was pressed rapidly in succession.

Within an implementation of a keyDown: method, a responder can extract the character data contained by
the associated NSEvent object and insert it into displayed text; or it can interpret the character data as a key
or key combination that is either bound to a keyboard action or requests some application-specific behavior.
However, the Application Kit provides some convenient shortcuts for doing this, described below.

Handling Keyboard Actions and Inserting Text

Responder objects that deal with text, such as text views, have to be prepared to handle key events that can
either be characters to insert or keyboard actions. As noted in “The Path of Key Events” (page 15), keyboard
actions are a special kind of action message that depends on the key bindings mechanism, which binds
specific keystrokes (for example, Control-e) to specific commands related to the text (for example, move the
insertion point to the end of the current line). These commands are implemented in methods defined by
NSResponder to give per-view functional interpretations of those physical keystrokes.

58 Overriding the keyDown: Method
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

Note: Views that receive and edit text must conform to the NSTextInput protocol. Adopting this protocol
allows a custom view to interact properly with the text input management system. The Application Kit classes
NSText and NSTextView implement NSTextInput, so if you subclass these classes you get the protocol
conformance “for free.“

In handling a key event in keyDown:, a view object that expects to insert text first determines whether the
character or characters of the NSEvent object represent a keyboard action. If they do, it sends the associated
action message; if they don’t, it inserts the characters as text. Specifically, the view can do one of two things
in its implementation:

 ■ It can extract the event object’s characters using the characters method of NSEvent and interpret
these to see if they are associated with a known keyboard action. If they are, it invokes the appropriate
action method in itself or a superview. This approach is discouraged.

 ■ It can pass the event to Cocoa’s text input management system by invoking the NSResponder method
interpretKeyEvents:. The input management system checks the pressed key against entries in all
relevant key-binding dictionaries and, if there is a match, sends a doCommandBySelector: message
back to the view. Otherwise, it sends an insertText:message back to the view, and the view implements
this method to extract and display the text.

Listing 5-1 shows how the second approach might look in code.

Listing 5-1 Using the input management system to interpret a key event

- (void)keyDown:(NSEvent *)theEvent {
 [self interpretKeyEvents:[NSArray arrayWithObject:theEvent]];
}

// The following action methods are declared in NSResponder.h
- (void)insertTab:(id)sender {
 if ([[self window] firstResponder] == self) {
 [[self window] selectNextKeyView:self];
 }
}

- (void)insertBacktab:(id)sender {
 if ([[self window] firstResponder] == self) {
 [[self window] selectPreviousKeyView:self];
 }
}

- (void)insertText:(id)string {
 [super insertText:string]; // have superclass insert it
}

Note that this example includes an override of insertText: that simply invokes the superclass
implementation. This is done to clarify the role of the input manager but is not really necessary. The default
(NSResponder) implementation of doCommandBySelector: determines if the view responds to the
keyboard-action selector and, if the view does respond, it invokes the action method; if the view doesn’t
respond, doCommandBySelector: is sent to the next responder (and so on up the responder chain). Therefore,
a view should only implement the action methods corresponding to the actions that it wants to handle.
Another implication of input-manager behavior is that if the key-bindings dictionary matches a physical

Overriding the keyDown: Method 59
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

keystroke with a keyboard action, the responder object simply needs to override the associated action method
to handle that keystroke. For example, to handle the default binding of the Escape key, the responder would
override the cancelOperation: method of NSResponder.

A case in point of a superview handling a keyboard-action message initiated by a subview is the way the
NSScrollView object handles page-down commands. This scroll-view object is a compound object consisting
of a document view, a clip view (an NSClipView object) and a scroller (an NSScroller object). Because it
is the containing or coordinating object, the NSScrollView object is the superview of all other objects in
this grouping. Now say your custom view is the document view of the scroll view. If you implement keyDown:
to send interpretKeyEvents: to the input manager but do not implement the scrollPageDown: action
method, the document view will still be scrolled within the scroll view when the user presses the Page Down
key (or whatever key binding is in effect for that function). This happens because each next responder in the
responder chain is queried to see if it responds to scrollPageDown:. The NSScrollView class provides a
default implementation, so this implementation is invoked.

Applications other that those that deal with text can use the input management system to their benefit. For
example, a custom view in a drawing application might use arrow keys to "nudge” graphical objects precise
distances. In the standard key bindings dictionary the arrow keys are bound to the moveUp:, moveDown:,
moveLeft:, and moveRight: methods of NSResponder. So code similar to that shown in Listing 5-2 would
work to nudge the graphical objects around.

Listing 5-2 Handling arrow-key characters using the input management system

- (void)keyDown:(NSEvent *)theEvent {
 // Arrow keys are associated with the numeric keypad
 if ([theEvent modifierFlags] & NSNumericPadKeyMask) {
 [self interpretKeyEvents:[NSArray arrayWithObject:theEvent]];
 } else {
 [super keyDown:theEvent];
 }
}

-(IBAction)moveUp:(id)sender
{
 [self offsetLocationByX:0 andY: 10.0];
 [[self window] invalidateCursorRectsForView:self];
}

-(IBAction)moveDown:(id)sender
{
 [self offsetLocationByX:0 andY:-10.0];
 [[self window] invalidateCursorRectsForView:self];
}

-(IBAction)moveLeft:(id)sender
{
 [self offsetLocationByX:-10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
}

-(IBAction)moveRight:(id)sender
{
 [self offsetLocationByX:10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
}

60 Overriding the keyDown: Method
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

In most instances, the interpretKeyEvents: approach is preferable to the interpret-yourself approach.
This recommendation is particularly true for those custom views in applications such as word processors and
graphical editors that do the lion’s share of the work. The major factor favoring the use of the text input
management system is that, with it, you don’t need to hard-wire function to physical key. What if the user
is using a portable computer that is lacking a function key hard-wired by the application? The better, more
flexible approach is to specify alternative key bindings in a dictionary. Another advantage of the text input
management system is that it allows key events to be interpreted as text not directly available on the keyboard,
such as Kanji and some accented characters.

Note: For more information on key bindings and the text input system, see “Text System Defaults and Key
Bindings” (page 75).

Specially Interpreting Keystrokes

Although using the text input management system is advantageous, you can interpret physical keys yourself
in keyDown: and handle them in an application-specific way. The NSEvent class declares dozens of constants
that identify particular keys either by key symbol or key function; “Constants” in NSEvent Class Reference in
the reference documentation for that class describes these constants. Listing 5-3 shows a sampling.

Listing 5-3 Some key constants defined by NSResponder

enum {
 NSUpArrowFunctionKey = 0xF700,
 NSDownArrowFunctionKey = 0xF701,
 NSLeftArrowFunctionKey = 0xF702,
 NSRightArrowFunctionKey = 0xF703,
 NSF1FunctionKey = 0xF704,
 NSF2FunctionKey = 0xF705,
 NSF3FunctionKey = 0xF706,
 // other constants here
 NSUndoFunctionKey = 0xF743,
 NSRedoFunctionKey = 0xF744,
 NSFindFunctionKey = 0xF745,
 NSHelpFunctionKey = 0xF746,
 NSModeSwitchFunctionKey = 0xF747
};

Also, the text system defines constants representing commonly-used Unicode characters, such as tab, delete,
and carriage return. For a list of these constants, see “Constants” in NSText Class Reference.

In your implementation of keyDown: you can compare one of these constants to the character data of the
key-event object to determine if a certain key was pressed and then act accordingly. As you may recall, the
characters or charactersIgnoringModifiers methods return an NSString object for a key value
instead of a character because a keystroke might generate multiple characters. (In fact, these methods could
even return an empty string if a dead key—a key with no character mapped to it—is pressed.) If your
implementation of keyDown: is handling a single-character key value, such as an arrow key, you can examine
the length of the returned string and, if it is a single character, access that character using the NSString
method characterAtIndex: with an index of 0. Then test that character against one of the NSResponder
constants.

Listing 5-4 shows how you might perform the same graphical-object “nudging” as done in Listing 5-2 (page
60), but this time the responder object itself determines whether an arrow key was pressed.

Overriding the keyDown: Method 61
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

Listing 5-4 Handling arrow-key characters by interpreting the physical key

- (void)keyDown:(NSEvent *)theEvent {

 if ([theEvent modifierFlags] & NSNumericPadKeyMask) { // arrow keys have
this mask
 NSString *theArrow = [theEvent charactersIgnoringModifiers];
 unichar keyChar = 0;
 if ([theArrow length] == 0)
 return; // reject dead keys
 if ([theArrow length] == 1) {
 keyChar = [theArrow characterAtIndex:0];
 if (keyChar == NSLeftArrowFunctionKey) {
 [self offsetLocationByX:-10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
 return;
 }
 if (keyChar == NSRightArrowFunctionKey) {
 [self offsetLocationByX:10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
 return;
 }
 if (keyChar == NSUpArrowFunctionKey) {
 [self offsetLocationByX:0 andY: 10.0];
 [[self window] invalidateCursorRectsForView:self];
 return;
 }
 if (keyChar == NSDownArrowFunctionKey) {
 [self offsetLocationByX:0 andY:-10.0];
 [[self window] invalidateCursorRectsForView:self];
 return;
 }
 [super keyDown:theEvent];
 }
 }
 [super keyDown:theEvent];
}

You can also convert an NSResponder constant to a string object and then compare that object to the value
returned by characters or charactersIgnoringModifiers, as in this example:

 unichar la = NSLeftArrowFunctionKey;
 NSString *laStr = [[[NSString alloc] initWithCharacters:&la length:1]
autorelease];
 if ([theArrow isEqual:laStr]) {
 [self offsetLocationByX:-10.0 andY:0.0];
 [[self window] invalidateCursorRectsForView:self];
 return;
 }

However, this approach is more memory-intensive.

62 Overriding the keyDown: Method
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

Handling Key Equivalents

A key equivalent is a character bound to some view in a window. This binding causes that view to perform
a specified action when the user types that character, typically while pressing a modifier key (in most cases
the Command key). A key equivalent must be a character that can be typed with no modifier keys, or with
Shift only.

An application routes a key-equivalent event by sending it first down the view hierarchy of a window. The
global NSApplication object dispatches events it recognizes as potential key equivalents (based on the
presence of modifier flags) in its sendEvent: method. It sends a performKeyEquivalent: message to
the key NSWindow object. This object passes key equivalents down its view hierarchy by invoking the NSView
default implementation of performKeyEquivalent:, which forwards the message to each of its subviews
(including contextual and pop-up menus) until one responds YES; if none does, it returns NO. If no object in
the view hierarchy handles the key equivalent, NSApp then sends performKeyEquivalent: to the menus
in the menu bar. NSWindow subclasses are discouraged from overriding performKeyEquivalent:.

Note: Beginning with Mac OS X v10.5, if a key equivalent is not recognized, NSWindow sends it as an
NSKeyDown event to the first responder. This behavior enables custom key-binding entries with Command-key
modifiers. In addition, NSApplication sends a Control-key event to the key window via
performKeyEquivalent: before sending it as an NSKeyDown event through the responder chain. This
behavior allows more reliable use of Control-key events as menu key equivalents.

Some Cocoa classes, such as NSButton, NSMenu, NSMatrix, and NSSavePanel, provide default
implementations of performKeyEquivalent:. For example, you can set the Return key as the key equivalent
of an NSButton object and, when this key is pressed, the button acts as if it has been clicked. However,
subclasses of other Application Kit classes (including custom views) need to provide their own implementations
of performKeyEquivalent:. The implementation should extract the characters for a key equivalent from
the passed-in NSEvent object using the charactersIgnoringModifiersmethod and then examine them
to determine if they are a key equivalent it recognizes. It handles the key equivalent much as it would handle
a key event in keyDown: (see “Overriding the keyDown: Method” (page 58)). After handling the key equivalent,
the implementation should return YES. If it doesn’t handle the key equivalent, it should either invoke the
superclass implementation of performKeyEquivalent: or (if you know the superclass doesn’t handle the
key equivalent) return NO to indicate that the key equivalent should be passed further down the view hierarchy
or to the menus in the menu bar.

Keyboard Interface Control

The Cocoa event-dispatch architecture treats certain key events as commands to move control focus to a
different user-interface object in a window, to simulate a mouse click on an object, to dismiss modal windows,
and to make selections in objects that allow selections. This capability is called keyboard interface control.
Most of the user-interface objects involved in keyboard interface control are NSControl objects, but objects
that aren’t controls can participate as well. When an object has control focus, the Application Kit draws a
light-blue key-focus ring around the object’s border. If full keyboard access is enabled, the keys listed in Table
5-1 have the stated effect.

Handling Key Equivalents 63
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

Table 5-1 Keys used in keyboard interface control

EffectKey

Move to next key view.Tab

Move to previous key view.Shift-Tab

Select, as with mouse click in a check box (for example), or toggle state.
In selection lists, selects or deselects highlighted item.

Space

Move within compound view, such as NSForm objects.Arrow keys

Go to next (previous) key view from views where tab characters have other
significance (for example, NSTextView objects).

Control-Tab (Control-Shift-Tab)

Extend the selection, not affecting other selected items.Option or Shift

Some objects found on Interface Builder palettes do not participate in keyboard interface control, such as
NSImageView, WebView, and PDFView objects.

In addition to the key view loop, a window can have a default button cell, which uses the Return (or Enter)
key as its key equivalent. Programmatically, you can send setDefaultButtonCell: to an NSWindow object
to set this button cell; you can also set it in Interface Builder by setting a button cell’s key equivalent to ‘\r’
in the Attributes pane of the Get Info window. The default button cell draws itself as a focal element for
keyboard interface control unless another button cell is focused on. In this case, it temporarily draws itself
as normal and disables its key equivalent. The Escape key is another default key for a keyboard interface
control in a window; it immediately aborts a modal loop.

The user-interface objects that are connected together in a window make up the window’s key view loop.
A key view loop is a sequence of NSView objects connected to each other through their nextKeyView
property (the previousKeyView property when going in reverse direction). The last view in this sequence
“loops” back to the first view. By default, NSWindow assigns an initial first responder and constructs a key
view loop with the objects it finds. If you want greater control over the key view loop you should set it up
using Interface Builder. See the Help pages for Interface Builder for details of the procedure.

For its instances to participate in key-view loops, a custom view must return YES from
acceptsFirstResponder. By doing so, it affects the value returned by the canBecomeKeyView method.
The acceptsFirstResponder method controls whether a responder accepts first responder status when
its window asks it to (that is, when makeFirstResponder: is called with the responder as the parameter). The
canBecomeKeyView method controls whether the Application Kit allows tabbing to a view. It calls
acceptsFirstResponder, but it also checks for other information before determining the value to return,
such as whether the view is hidden and whether full keyboard access is on. The canBecomeKeyViewmethod
is rarely overridden while acceptsFirstResponder is frequently overridden.

The NSView and NSWindow classes define a number of methods for setting up and traversing the key view
loop programmatically. Table 5-2 lists some of the more useful ones.

Table 5-2 Some key-view loop methods

Returns the next and previous view objects in the key view
loop.

nextKeyView (NSView)

previousKeyView (NSView)

64 Keyboard Interface Control
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

Sets the next key view in the loop.setNextKeyView: (NSView)

Searches the view hierarchy for a candidate next (previous) key
view and, if it finds one, makes it the first responder.

selectNextKeyView: (NSWindow)

selectPreviousKeyView: (NSWindow)

Returns whether the receiver can become a key view.canBecomeKeyView (NSView)

Returns the closest view object in the key view loop that follows
the receiver and accepts first responder status.

nextValidKeyView (NSView)

previousValidKeyView (NSView)

The code in Listing 5-5 illustrates how one might use some of these methods to manipulate the key-view
loop.

Listing 5-5 Manipulating the key-view loop

- (void)textDidEndEditing:(NSNotification *)notification {
 NSTextView *text = [notification object];
 unsigned whyEnd = [[[notification userInfo] objectForKey:@"NSTextMovement"]
 unsignedIntValue];
 NSTextView *newKeyView = text;

 // Unscroll the previous text.
 [text scrollRangeToVisible:NSMakeRange(0, 0)];

 if (whyEnd == NSTabTextMovement) {
 newKeyView = (NSTextView *)[text nextKeyView];
 } else if (whyEnd == NSBacktabTextMovement) {
 newKeyView = (NSTextView *)[text previousKeyView];
 }

 // Set the new key view and select its whole contents.
 [[text window] makeFirstResponder:newKeyView];
 [newKeyView setSelectedRange:NSMakeRange(0, [[newKeyView textStorage]
length])];
}

Keyboard Interface Control 65
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

66 Keyboard Interface Control
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Handling Key Events

An instance of the NSTrackingArea class defines an area of a view that is responsive to the movements of
the mouse. When the mouse cursor enters this area, moves around in it, and leaves it, the Application Kit
sends (depending on the options specified) mouse-tracking, mouse-moved, and cursor-update messages to
a designated object.

Important: The NSTrackingArea class was introduced in Mac OS X v10.5. For a discussion of the API used
for mouse tracking and cursor updating in earlier releases, see the appendix “Using Tracking-Area
Objects” (page 67). Also see “Compatibility Issues” (page 71), below, for a discussion of the current behavior
of deprecated methods.

The Application Kit sends the mouse-tracking messages mouseEntered: and mouseExited: to an object
when the mouse cursor enters and exits a region of a window. Mouse tracking enables the view owning the
region to respond, for example, by drawing a highlight color or displaying a tool tip. The Application Kit also
sends mouseMoved: messages to the object if NSMouseMoved types of events are requested. Cursor-update
events are a special kind of mouse-tracking event that the Application Kit handles automatically. When the
mouse pointer enters a cursor rectangle, the Application Kit displays a cursor image appropriate to the type
of view under the rectangle; for example, when a mouse pointer enters a text view, an I-beam cursor is
displayed.

The sections in this chapter describe how to create NSTrackingArea objects, attach them to views, respond
to related events, and manage the objects when changes in view geometry occur.

Creating an NSTrackingArea Object

An NSTrackingArea object defines a region of a view that is sensitive to the movements of the mouse.
When the mouse enters, moves about, and exits that region, the Application Kit sends mouse-tracking,
mouse-moved, and cursor-update messages. The region is a rectangle specified in the local coordinate system
of its associated view. The recipient of the messages (the owner) is specified when the tracking-area object
is created; although the owner can be any object, it is often the view associated with the tracking-area object.

When you create an NSTrackingArea object you must specify one or more options. These options, which
are enumerated constants declared by the class, configure various aspects of tracking-area behavior. They
fall into three general categories:

 ■ The type of event message sent

You can request mouseEntered: and mouseExited: messages
(NSTrackingMouseEnteredAndExited); you can request mouseMoved: messages
(NSTrackingMouseMoved); and you can request cursorUpdate: messages
(NSTrackingCursorUpdate).

You are not limited to a single option from this set; you can perform a bitwise-OR operation to request
multiple types of messages.

Creating an NSTrackingArea Object 67
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Tracking-Area Objects

 ■ The active scope of tracking-area messages

You must specify one of the following options to request when the tracking area should actively generate
events:

 ❏ When the associated view is first responder (NSTrackingActiveWhenFirstResponder)

 ❏ When the associated view is in the key window (NSTrackingActiveInKeyWindow)

 ❏ When the associated view in in the active application (NSTrackingActiveInActiveApp)

 ❏ At all times regardless of application activation (NSTrackingActiveAlways)

 ■ Refinements of tracking-area behavior

You can request that the first message be sent when the mouse cursor first leaves the tracking area
(NSTrackingAssumeInside); you can request the tracking area to be the same as the visible rectangle
of the associated view (NSTrackingInVisibleRect); and you can request that mouse drags into and
out of the tracking area generate mouseEntered: and mouseExited: events
(NSTrackingEnabledDuringMouseDrag).

You are not limited to a single option from this set; you can perform a bitwise-OR operation to request
multiple refinements on behavior.

You initialize an allocated instance of NSTrackingArea with the
initWithRect:options:owner:userInfo:method. After creating the object, you must associate it with
a view by invoking the NSView method addTrackingArea:. You can create an NSTrackingArea instance
and add it to a view at any point because (unlike the mouse-tracking API in earlier releases), successful creation
does not depend on the view being added to a window. Listing 6-1 shows the creation and addition of an
NSTrackingArea instance in a custom view’s initWithFrame: method; in this case, the owning view is
requesting that the Application Kit send mouseEntered:, mouseExited: and mouseMoved: messages
whenever its window is the key window.

Listing 6-1 Initializing an NSTrackingArea instance

- (id)initWithFrame:(NSRect)frame {
 self = [super initWithFrame:frame];
 if (self) {
 trackingArea = [[NSTrackingArea alloc] initWithRect:eyeBox
 options: (NSTrackingMouseEnteredAndExited | NSTrackingMouseMoved |
 NSTrackingActiveInKeyWindow)
 owner:self userInfo:nil];
 [self addTrackingArea:trackingArea];
 }
 return self;
}

The last parameter of initWithRect:options:owner:userInfo: is a dictionary that you can use to pass
arbitrary data to the recipient of mouse-tracking and cursor-update messages. The receiving object can
access the dictionary by sending userData to the NSEvent object passed into the mouseEntered:,
mouseExited:, or cursorUpdate:method. Sending userDatamessages in mouseMoved:methods causes
an assertion failure. (In the example in Listing 6-1, the userInfo parameter is set to nil.)

68 Creating an NSTrackingArea Object
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Tracking-Area Objects

Tracking rectangle bounds are inclusive for the top and left edges, but not for the bottom and right edges.
Thus, if you have a unflipped view with a tracking rectangle covering its bounds, and the view’s frame has
the geometry frame.origin = (100, 100), frame.size = (200, 200), then the area for which the
tracking rectangle is active is frame.origin = (100, 101), frame.size = (199, 199), in frame
coordinates.

Managing a Tracking-Area Object

Because NSTrackingArea objects are owned by their views, the Application Kit can automatically recompute
the tracking-area regions when the view is added or removed from a window or when the view changes
position within its window. But in situations where the Application Kit cannot recompute an affected tracking
area (or areas), it sends updateTrackingAreas to the associated view, asking it to recompute and reset
the areas. One such situation is when a change in view location affects the view’s visible rectangle
(visibleRect)—unless the NSTrackingArea object for that view was created with the
NSTrackingInVisibleRect option, in which case the Application Kit handles the recomputation. Note
that the Application Kit sends updateTrackingAreas to every view whether it has a tracking area or not.

You can override the updateTrackingAreasmethod as shown in Listing 6-2 to remove the current tracking
areas from their views, release them, and then add new NSTrackingArea objects to the same views with
recomputed regions.

Listing 6-2 Resetting a tracking-area object

- (void)updateTrackingAreas {
 NSRect eyeBox;
 [self removeTrackingArea:trackingArea];
 [trackingArea release];
 eyeBox = [self resetEye];
 trackingArea = [[NSTrackingArea alloc] initWithRect:eyeBox
 options: (NSTrackingMouseEnteredAndExited | NSTrackingMouseMoved |
NSTrackingActiveInKeyWindow)
 owner:self userInfo:nil];
 [self addTrackingArea:trackingArea];
}

If your class is not a custom view class, you can register your class instance as an observer for the
notificationNSViewFrameDidChangeNotification and have it reestablish the tracking rectangles on
receiving the notification.

Responding to Mouse-Tracking Events

The owner of an NSTrackingArea object created with the NSTrackingMouseEnteredAndExited option
receives a mouseEntered:whenever the mouse cursor enters the region of a view defined by the tracking-area
object; subsequently, it receives a mouseExited: messages when the mouse leaves that region. If the
NSTrackingMouseMoved option is also specified for the tracking-area object, the owner also receives one
or more mouseMoved:messages between each mouseEntered: and mouseExited:message. You override
the corresponding NSResponder methods to handle these messages to perform such tasks as highlighting
the view, displaying a custom tool tip, or displaying related information in another view.

Managing a Tracking-Area Object 69
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Tracking-Area Objects

Important: The proper order of mouse-entered and mouse-exited events received by tracking-area objects
in an application cannot be guaranteed. For example, if you move the mouse cursor between from one
tracking area to another tracking area and back, the order of events (as messages) could be: mouseEntered:,
mouseEntered:, mouseExited:, mouseExited:.

The tracking code in Listing 6-2 is used in making an “eyeball” follow the movement of the mouse pointer
when it enters a tracking rectangle.

Listing 6-3 Handling mouse-entered, mouse-moved, and mouse-exited events

- (void)mouseEntered:(NSEvent *)theEvent {
 NSPoint eyeCenter = [self convertPoint:[theEvent locationInWindow]
fromView:nil];
 eyeBox = NSMakeRect((eyeCenter.x-10.0), (eyeCenter.y-10.0), 20.0, 20.0);
 [self setNeedsDisplayInRect:eyeBox];
 [self displayIfNeeded];
}

- (void)mouseMoved:(NSEvent *)theEvent {
 NSPoint eyeCenter = [self convertPoint:[theEvent locationInWindow]
fromView:nil];
 eyeBox = NSMakeRect((eyeCenter.x-10.0), (eyeCenter.y-10.0), 20.0, 20.0);
 [self setNeedsDisplayInRect:eyeBox];
 [self displayIfNeeded];
}

- (void)mouseExited:(NSEvent *)theEvent {
 [self resetEye];
 [self setNeedsDisplayInRect:eyeBox];
 [self displayIfNeeded];
}

Just as you can with mouse-down and mouse-up messages, you can query the passed-in NSEvent objects
to get information related to the event.

Managing Cursor-Update Events

One common use of NSTrackingArea objects is to change the cursor image over different types of views.
Text, for example, typically requires an I-beam cursor. Many Application Kit classes provide cursor images
appropriate to their view instances; you get this behavior “for free.“ However, you may want to specify a
specific (or different) cursor image for instances of your custom view subclasses.

You change the cursor image for your view in an override of the NSResponder method cursorUpdate:.
To receive this message, you must create an NSTrackingArea object by invoking the
initWithRect:options:owner:userInfo: initializer with an option of NSTrackingCursorUpdate
(along with any other desired options). Then add the created object to a view with
addTrackingRect:owner:userData:assumeInside:. Thereafter, the entry of the mouse into the tracking
area generates an NSCursorUpdate event; the NSWindow object handles this event by sending a
cursorUpdate: message to the owner of the tracking area (which is typically the view itself). The
implementation of cursorUpdate: should use the appropriate NSCursor methods to set a standard or
custom cursor image.

70 Managing Cursor-Update Events
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Tracking-Area Objects

Cursor rectangles may overlap or be completely nested, one within the other. Arbitration of cursor updates
follows the normal responder chain mechanism. The cursor rectangle of the view under the mouse cursor
first receives the cursorUpdate:message. It may either display a cursor or pass the message up the responder
chain, where a view with an overlapped cursor rectangle can then respond to the message.

Listing 6-4 shows an implementation of cursorUpdate: that sets the cursor of the view to a cross-hair
image. Note that it is not necessary to reset the cursor image back to what it was when the mouse exits the
tracking area. The Application Kit handles this automatically for you by sending a cursorUpdate: message
to the view over which the mouse cursor moves as it exits the cursor rectangle.

Listing 6-4 Handling a cursor-update event

-(void)cursorUpdate:(NSEvent *)theEvent
{
 [[NSCursor crosshairCursor] set];
}

If the responder owning the tracking-area object does not implement the cursorUpdate: method, the
default implementation forwards the message up the responder chain. If the responder implements
cursorUpdate: but decides not to handle the current event, it should invoke the superclass implementation
of cursorUpdate:.

As with any other kind of NSTrackingArea object, you might occasionally need to recompute and recreate
a tracking-area object used for cursor updates when the associated view has changes in its location or size.
See “Managing a Tracking-Area Object” (page 69) for more information.

Compatibility Issues

Beginning with Mac OS X v10.5, the NSTrackingArea class and the related NSView methods
addTrackingArea:, removeTrackingArea:, updateTrackingAreas, and trackingAreas replace the
following methods of NSView, which are deprecated but supported for compatibility:

addTrackingRect: owner:userData: assumeInside:

removeTrackingRect:

addCursorRect: cursor:

removeCursorRect: cursor:

discardCursorRects

resetCursorRects

The NSTrackingRectTag type, returned by the addTrackingRect:owner:userData:assumeInside:
and passed into the removeTrackingRect: methods, is also deprecated. Internally this type is treated the
same as NSTrackingArea *.

The underlying implementation for the deprecated methods is based on NSTrackingArea, resulting in the
following implications:

Compatibility Issues 71
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Tracking-Area Objects

 ■ An invocation of the addTrackingRect:owner:userData:assumeInside: method creates an
NSTrackingArea object with the options NSTrackingMouseEnteredAndExited and
NSTrackingActiveAlways set. It also includes the NSTrackingAssumeInside option if the last
parameter of the function is YES. After creating the object, it adds it to the receiver (addTrackingArea:)
and returns it as a tag.

 ■ The resetCursorRects method is invoked after updateTrackingAreas.

In addition, the following NSWindow cursor-related methods are deprecated, but maintained for compatibility:

discardCursorRects

invalidateCursorRectsForView:

resetCursorRects

72 Compatibility Issues
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Using Tracking-Area Objects

The following sections discuss issues related to the handling of tablet events.

Packaging of Tablet Events

Tablet device drivers package low-level events as either native tablet events or as mouse events, usually
depending on whether they are proximity events or pointer events. Proximity events are always native tablet
events. The Application Kit declares (in NSEvent.h) the following event-type constants for native tablet
events:

typedef enum _NSEventType {
 // ...
 NSTabletPoint = 23,
 NSTabletProximity = 24,
 // ...
} NSEventType;

Drivers almost always package tablet-pointer events as subtypes of mouse events. The Application Kit declares
the following constants for tablet subtypes of all event types related to mouse event (NSLeftMouseDown,
NSRightMouseUp, NSMouseMoved, and so on):

enum {
 NSMouseEventSubtype = NX_SUBTYPE_DEFAULT,
 NSTabletPointEventSubtype = NX_SUBTYPE_TABLET_POINT,
 NSTabletProximityEventSubtype = NX_SUBTYPE_TABLET_PROXIMITY
};

Under a few exceptional conditions drivers may package a low-level tablet-pointer event as a NSTabletPoint
event type instead of a mouse-event subtype. These include the following:

 ■ During the interval between a mouse-down (that is, stylus-down) and subsequent dragging events when,
for example, only pressure is changing.

 ■ When there are two concurrently active pointing devices, the one not moving the cursor generates
NSTabletPointevents.

 ■ If, for some reason, the tablet driver is told not to move the cursor, the driver packages tablet events in
native form.

For this reason, it is recommended that your code check for tablet-pointer events delivered both as native
event types and as mouse subtypes.

Packaging of Tablet Events 73
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Tablet Events

Tablet Events and the Responder Chain

Like any NSEvent object, tablet events are routed up the responder chain until they are handled. Responder
objects in an application (that is, objects that inherit from NSResponder) can override the appropriate
NSResponder methods and handle the NSEvent object that is passed to them in that method. Or they can
pass the event on to the next responder in the chain. (If you don’t override one of these method, the event
automatically goes to the next responder.

An application that intends to handle tablet events should override at least five NSResponder methods:

 ■ tabletProximity: and tabletPoint:

Implement these methods to handle native proximity and pointer tablet events.

 ■ mouseDown:, mouseDragged:, and mouseUp:

implement these methods to handle mouse events with a subtype of NSTabletPointEventSubtype
or NSTabletProximityEventSubtype.

A recommended approach is to funnel tablet events in these methods to two common handlers, one for
proximity events and the other for pointer events. If you have objects in your application that are not in the
responder chain and you want these objects to know about tablet events as they arrive, you could implement
your event-handler routine so that it posts a notification to all interested observers.

74 Tablet Events and the Responder Chain
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Handling Tablet Events

This document reveals some tips and tricks about various defaults you can use to customize the behavior of
Cocoa’s text system. It also describes how to customize the key bindings supported by the text system.

Heavy-duty subclassers may alter some or all of the text system's functionality, rendering some or all of these
features inactive. These notes do apply to Cocoa applications such as Xcode, Interface Builder, Text Edit, and
others which use the text system.

Key Bindings

The text system uses a generalized key-binding mechanism that is completely re-mappable by the user,
although defining custom key bindings dynamically (that is, while the application is running) is not supported.
Key bindings are specified in an dictionary file that must have an extension of .dict; the format of this file
should be an XML property list, but the text system can also understand old-style (NeXT era) property lists.
The standard key bindings are specified in
/System/Library/Frameworks/AppKit.framework/Resources/StandardKeyBinding.dict. These
standard bindings include a large number of Emacs-compatible control key bindings, all the various arrow
key bindings, bindings for making field editors and some keyboard UI work, and backstop bindings for many
function keys.

To customize bindings, you create a file named DefaultKeyBinding.dict in ~/Library/KeyBindings/
and specify bindings to augment or replace the standard bindings. You may use the standard bindings file
as a template. It is recommended that you use the Property List Editor application to edit a bindings dictionary.
You may use another application such as TextEdit or Xcode, but if you do you must ensure the encoding of
the saved file is UTF8.

Key bindings are key-value pairs with the key being a string that specifies a physical key and the value
identifying an action method to be invoked when the key is pressed. (Many of these action methods are
declared by NSResponder.) You can compose physical-key strings using the following elements:

 ■ The alphanumeric character that appears on a US keyboard. For example, "f" or ">". (As noted below,
some special characters are reserved for modifier flags.)

 ■ For a few keys, such as Escape, Tab, and backward Delete (BS), the octal number from the ASCII table
that identifies the key. For example, the octal number identifying the Escape key (sometimes used as a
modifier key) is \033.

 ■ An enum constant assigned a unique Unicode value that is used to identify a function key. These constants
are defined in NSEvent.h. Examples of these constants are NSF7FunctionKey, NSHomeFunctionKey,
and NSHelpFunctionKey.

 ■ One or more key modifiers, which must precede one of the other key-identifier elements. The following
special characters are used for modifier flags:

 ❏ “^” for Control

 ❏ “~” for Option

Key Bindings 75
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Text System Defaults and Key Bindings

 ❏ “$” for Shift

 ❏ “#” for numeric keypad

For example, the following string would identify the 0 (zero) key on the numeric keypad when the Control
key is pressed simultaneously: "^#0".

The text system supports the specification of multiple keystroke bindings through nested binding dictionaries.
For instance, Escape could be bound to cancel: or it could be bound to a whole dictionary which would
then contain bindings for the next keystroke after Escape.

The following sample binding files illustrate how you might customize bindings. The first one adds Option-key
bindings for some common Emacs behavior. This might be useful where the Option key bindings are not
standard. With these bindings it would be necessary to type “Control-Q, Option-f” in order to type a
florin character instead of moving forward a word. This sample also explicitly binds Escape to complete:.
(In Mac OS X, this is the default so this override changes nothing.)

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */

{
 /* Additional Emacs bindings */
 "~f" = "moveWordForward:";
 "~b" = "moveWordBackward:";
 "~<" = "moveToBeginningOfDocument:";
 "~>" = "moveToEndOfDocument:";
 "~v" = "pageUp:";
 "~d" = "deleteWordForward:";
 "~^h" = "deleteWordBackward:";
 "~\010" = "deleteWordBackward:"; /* Option-backspace */
 "~\177" = "deleteWordBackward:"; /* Option-delete */

 /* Escape should really be complete: */
 "\033" = "complete:"; /* Escape */
}

The following example shows how to have multi-keystroke bindings. It binds a number of Emacs meta
bindings using Escape as the meta key instead of the Option modifier. So Escape followed by the "f" key
meansmoveWordForward:here. This sample binds Escape-Escape tocomplete:. Note the nested dictionaries

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */
{
 /* Additional Emacs bindings */
 "\033" = {
 "\033" = "complete:"; /* ESC-ESC */
 "f" = "moveWordForward:"; /* ESC-f */
 "b" = "moveWordBackward:"; /* ESC-b */
 "<" = "moveToBeginningOfDocument:"; /* ESC-< */
 ">" = "moveToEndOfDocument:"; /* ESC-> */
 "v" = "pageUp:"; /* ESC-v */
 "d" = "deleteWordForward:"; /* ESC-d */
 "^h" = "deleteWordBackward:"; /* ESC-Ctrl-H */
 "\010" = "deleteWordBackward:"; /* ESC-backspace */
 "\177" = "deleteWordBackward:"; /* ESC-delete */
 };
}

76 Key Bindings
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Text System Defaults and Key Bindings

Once you have completed specifying key bindings, you must save the file and relaunch the application for
the bindings to take effect. With the right combination of key bindings and default settings, it should be
possible to tailor the text system to your preferences.

Key Bindings in Xcode

Xcode uses Application Kit's key binding mechanism as described above to define key bindings for its code
editor. These key-binding definitions are in
/Developer/Applications/Xcode.app/Contents/Resources/PBKeyBinding.dict. You may define
your own key bindings to supplement or replace these default Xcode bindings in a private dictionary of key
bindings, PBKeyBinding.dict in ~/Library/KeyBindings.

Xcode merges all key-binding dictionaries to create a composite dictionary. The order of merging is:

1. Text system's default dictionary

2. Text system's user dictionary

3. Xcode's default dictionary

4. Xcode's user dictionary

Because the merge processes replaces earlier bindings with later corresponding ones, the bindings in your
personal dictionary take precedence over the other bindings. The merge process affects bindings of multi-key
sequences, like the Control-X family of bindings, where the binding for the first key of the sequence is another
dictionary which contains the bindings for the subsequent keys in the sequence. If you want to add your
own Control-X binding to the existing bindings, first copy the Control-X dictionary from Xcode's
PBKeyBinding.dict file and add it to your own PBKeyBinding.dict file. Then modify the bindings as
needed.

Standard Action Methods for Selecting and Editing

The NSResponder class declares method prototypes for a number of standard action methods, nearly all
related to manipulating selections and editing text. These methods are typically invoked through
doCommandBySelector: as a result of interpretation by the input manager. They fall into the following
general groups:

 ■ Selection movement and expansion

 ■ Text insertion

 ■ General deletion of elements

 ■ Modifying selected text

 ■ Scrolling a document

In most cases the intent of the action method is clear from its name. The individual method descriptions in
this specification also provide detailed information about what such a method should normally do. However,
a few general concepts apply to many of these methods, and are explained here.

Standard Action Methods for Selecting and Editing 77
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Text System Defaults and Key Bindings

Selection Direction

Some methods refer to spatial directions; left, right, up, down. These are meant to be taken literally, especially
in text. To accommodate writing systems with directionality different from Latin script, the terms forward,
beginning, backward, and end are used.

Selection and insertion point

Methods that refer to moving, deleting, or inserting imply that some elements in the responder are selected,
or that there’s a zero-length selection at some location (the insertion point). These two things must always
be treated consistently. For example, the insertText: method is defined as replacing the selection with
the text provided. The moveForwardAndModifySelection:method extends or contracts a selection, even
if the selection is merely an insertion point. When a selection is modified for the first time, it must always be
extended. So a moveForward... message extends the selection from its end, while a moveBackward...
message extends it from its beginning.

Marks

A number of action methods for editing text imitate the Emacs concepts of point (the insertion point), and
mark (an anchor for larger operations normally handled by selections in graphical interfaces). The setMark:
method establishes the mark at the current selection, which then remains in effect until the mark is changed
again. The selectToMark: method extends the selection to include the mark and all characters between
the selection and the mark.

The kill buffer

Also like Emacs, deletion methods affecting lines, paragraphs, and the mark implicitly place the deleted text
into a buffer, separate from the pasteboard, from which you can later retrieve it. Methods such as
deleteToBeginningOfLine: add text to this buffer, and yank: replaces the selection with the item in
the kill buffer.

Text System Defaults

NSMnemonicsWorkInText

Allowed value: "YES" or "NO".

This default controls whether the text system accepts key events with the Option key down. The default
value is NO. A value of YES means that any key event with the Option bit on will be passed up the responder
chain to eventually be treated as a mnemonic instead of being accepted by the text as textual input or a key
binding command. If this default is set to NO then the key events with the Option bit set will be passed
through the text system's normal key input sequence. This will allow any key bindings involving Option to
work (such as Emacs-style bindings like Option-f for word forward) and it allows typing of special international
and Symbol font characters.

78 Text System Defaults
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Text System Defaults and Key Bindings

NSRepeatCountBinding

Allowed value: Key-binding style string.

This default controls the numeric argument binding. The default is for numeric arguments not to be supported.
If you provide a binding for this default you enable the feature. This allows you to repeat a keyboard command
a given number of times. For instance “Control-U 10 Control-F” means move forward ten characters.

NSQuotedKeystrokeBinding

Allowed value: Key-binding style string.

This default controls the quote binding. The default is for this to be “^q” (that's Control-Q). This is the binding
that allows you to literally enter characters that would otherwise be interpreted as commands. For instance
“Control-Q Control-F” would insert a Control-F character into the document instead of performing the
command moveForward:.

NSTextShowsInvisibleCharacters)

Allowed value: "YES" or "NO".

The default controls whether a text object will by default show invisible characters like tab, space, and carriage
return using some visible glyph. By default it is NO. It only controls the default setting for NSLayoutManager
objects (which can be modified programmatically). In order for this to work, the rule book generating the
glyphs must support the feature. Currently our rule books do not support this feature, so currently this default
is not very useful.

NSTextShowsControlCharacters

Allowed value: "YES" or "NO".

The default controls whether a text object will by default show control characters visibly (usually by
representing Control-C as “^C” in the text). By default it is NO. It only controls the default setting for
NSLayoutManager objects (which can be modified programmatically). In order for this to work, the rule
book(s) generating the glyphs must support the feature. This feature carries a cost. It will increase the memory
needed for documents that contain control characters by quite a lot. Use it with care.

NSTextSelectionColor

Allowed value: Color object or specifier.

This default controls the background color of selected text. By default this is light gray. Defaults that accept
colors accept them in one of three ways. Either as an archived NSColor object, or as three RGB components,
or as a string that can be resolved to a factory selector on NSColor that will return the desired color (for
example, “redColor”). Note that NSTextField objects and other controls that use field editors to edit their text
control their own selection attributes to conform with the UI.

Text System Defaults 79
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Text System Defaults and Key Bindings

NSMarkedTextAttribute and NSMarkedTextColor)

Allowed value: Color object/specifier or "underline".

This default controls the way that marked text is displayed. The NSMarkedTextAttribute can be either
“Background” or “Underline”. If it is “Background” then NSMarkedTextColor indicates the background
color to use for marked text. If NSMarkedTextAttribute is “Underline”, NSMarkedTextColor indicates
the foreground color to use for marked text (the marked text will be drawn in the indicated color and
underlined). By default, marked text is drawn with a yellowish background color. Kit defaults that accept
colors accept them in one of three ways. Either as an archived NSColor object, or as three RGB components,
or as a string that can be resolved to a factory selector on NSColor that will return the desired color (for
example, “redColor”). If the NSMarkedTextAttribute default contains a color instead of one of the strings
“Background” or “Underline” then that color is used as the background color for marked text and the
NSMarkedTextColor attribute is ignored.

NSTextKillRingSize

Allowed value: Number string.

This default controls the size of the kill ring (as in Emacs Control-Y). The default value is 1 (not really a ring
at all, just a single buffer). If you set this to a value larger than one, you also need to rebind Control-Y to
yankAndSelect: instead of yank: for things to work properly (note that yankAndSelect: is not listed in
any headers). See “Key Bindings” (page 75) for more information about bindings.

80 Text System Defaults
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Text System Defaults and Key Bindings

Mouse-tracking messages are sent to an object when the mouse pointer (without a mouse button being
pressed) enters and exits a region of a window. This region is known as a tracking rectangle or tracking area.
Mouse tracking enables the view owning the region to respond, for example, by drawing a highlight color
or displaying a tool tip. Cursor-update events are a special kind of mouse-tracking event that the Application
Kit handles automatically. When the mouse pointer enters a cursor rectangle, the Application Kit displays a
cursor image appropriate to the type of view under the rectangle; for example, when a mouse pointer enters
a text view, an I-beam cursor is displayed instead.

The sections in this chapter describe how you set up tracking rectangles and respond to mouse-tracking
events. They also discuss how to specify and manage the rectangles for cursor-update events.

Handling Mouse-Tracking Events

A region of a view set up for tracking mouse movement is known as a tracking rectangle. When the mouse
cursor enters the tracking rectangle, the Application Kit sends mouse-entered events (type NSMouseEntered)
to the object owning the rectangle (which is not necessarily the view itself); when the cursor leaves the
rectangle, the Application Kit sends the object mouse-exited events (type NSMouseExited). These events
correspond to the mouseEntered: and mouseExited: methods, respectively, of NSResponder. Mouse
tracking can be useful for such tasks as displaying context-sensitive messages or highlighting graphic elements
under the cursor. An NSView object can have any number of tracking rectangles, which can overlap or be
nested one within the other; the NSEvent objects generated to represent mouse-tracking events include a
tag (accessed through the trackingNumber method) that identifies the rectangle associated with an event.

Important: The proper order of mouse-entered and mouse-exited events received by tracking rectangles
in an application cannot be guaranteed. For example, if you move the mouse cursor between from one
tracking rectangle to another tracking rectangle in a view and back, the order of events (as messages) could
be: mouseEntered:, mouseEntered:, mouseExited:, mouseExited:.

To create a tracking rectangle, send a addTrackingRect:owner:userData:assumeInside: message to
the NSView object associated with the rectangle, as shown in “Managing a Tracking-Area Object.” This method
registers an owner for the tracking rectangle, so that the owner receives the tracking-event messages. The
owner is typically the view object itself, but need not be. The method returns the tracking rectangle’s tag so
that you can store it for later reference in the event-handling methods mouseEntered: and mouseExited:.
To remove a tracking rectangle, use the removeTrackingRect: method, which takes as an argument the
tag of the tracking rectangle to remove.

Listing A-1 Adding a tracking rectangle to a view region

- (void)viewDidMoveToWindow {
 // trackingRect is an NSTrackingRectTag instance variable
 // eyeBox is a region of the view (instance variable)

Handling Mouse-Tracking Events 81
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Mouse-Tracking and Cursor-Update Events

 trackingRect = [self addTrackingRect:eyeBox owner:self userData:NULL
assumeInside:NO];
}

In the above example, the custom view adds the tracking rectangle in the viewDidMoveToWindow method
instead of initWithFrame:. Although NSView implements the
addTrackingRect:owner:userData:assumeInside: method, a view’s window maintains the list of
tracking rectangles. When a view’s initWithFrame: initializer is invoked, the view is not yet associated
with a window, so the tracking rectangle cannot yet be added to the window’s list. Thus the best place to
add tracking rectangles initially is in the viewDidMoveToWindow method.

Tracking rectangle bounds are inclusive for the top and left edges, but not for the bottom and right edges.
Thus, if you have a unflipped view with a tracking rectangle covering its bounds, and the view’s frame has
the geometry frame.origin = (100, 100), frame.size = (200, 200), then the area for which the
tracking rectangle is active is frame.origin = (100, 101), frame.size = (199, 199), in frame
coordinates.

Tracking rectangles can also be used to provide NSMouseMoved events to views in the mouseMoved:method.
For a view to receive NSMouseMoved events, however, two things must happen:

 ■ The view must be the first responder.

 ■ The view’s window must be sent a setAcceptsMouseMovedEvents: message with an argument of
YES.

As noted in “Event Objects and Types” (page 25) and “Handling Mouse Events” (page 45), an NSWindow
object by default does not receive NSMouseMoved events because they can easily flood the event queue. If
you only want to receive mouse-moved messages while the mouse is over your view, you should turn them
off again when a mouse-tracking session completes.

You typically send the setAcceptsMouseMovedEvents: message (with an argument of YES) in your
implementation of mouseEntered:. If you want to turn them off after a tracking session ends, you can send
the message again with an argument of NO in your implementation of mouseExited:. However, you should
also set the window state back to what it was before you turned on mouse-moved events to ensure that the
window does not stop receiving mouse-moved events if it wants them for other purposes.

The tracking code in Listing 6-2 is used in making an “eyeball” follow the movement of the mouse pointer
when it enters a tracking rectangle. Note that the mouseEntered: implementation uses the
wasAcceptingMouseEvents instance variable to capture the window’s current state as regards mouse-moved
events before these events are turned on for the current tracking session; later, in mouseExited:, the value
of this instance variable is used as the argument to setAcceptsMouseMovedEvents:, thereby resetting
window state.

Listing A-2 Handling mouse-entered, mouse-moved, and mouse-exited events

- (void)mouseEntered:(NSEvent *)theEvent {
 wasAcceptingMouseEvents = [[self window] acceptsMouseMovedEvents];
 [[self window] setAcceptsMouseMovedEvents:YES];
 [[self window] makeFirstResponder:self];
 NSPoint eyeCenter = [self convertPoint:[theEvent locationInWindow]
fromView:nil];
 eyeBox = NSMakeRect((eyeCenter.x-10.0), (eyeCenter.y-10.0), 20.0, 20.0);
 [self setNeedsDisplayInRect:eyeBox];
 [self displayIfNeeded];
}

82 Handling Mouse-Tracking Events
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Mouse-Tracking and Cursor-Update Events

- (void)mouseMoved:(NSEvent *)theEvent {
 NSPoint eyeCenter = [self convertPoint:[theEvent locationInWindow]
fromView:nil];
 eyeBox = NSMakeRect((eyeCenter.x-10.0), (eyeCenter.y-10.0), 20.0, 20.0);
 [self setNeedsDisplayInRect:eyeBox];
 [self displayIfNeeded];
}

- (void)mouseExited:(NSEvent *)theEvent {
 [[self window] setAcceptsMouseMovedEvents:wasAcceptingMouseEvents];
 [self resetEye];
 [self setNeedsDisplayInRect:eyeBox];
 [self displayIfNeeded];
}

Because tracking rectangles are maintained by NSWindow objects, a tracking rectangle is a static entity; it
doesn’t move or change its size when an NSView object does. If you use tracking rectangles, you should be
sure to remove and reestablish them when you change the frame rectangle of the view object that contains
them. If you’re creating a custom subclass of NSView, you can override the setFrame: and setBounds:
methods to do this, as shown in “Compatibility Issues.” If your class is not a custom view class, you can register
your class instance as an observer for the notificationNSViewFrameDidChangeNotification and have it
reestablish the tracking rectangles on receiving the notification.

Listing A-3 Resetting a tracking rectangle

- (void)setFrame:(NSRect)frame {
 [super setFrame:frame];
 [self removeTrackingRect:trackingRect];
 [self resetEye];
 trackingRect = [self addTrackingRect:eyeBox owner:self userData:NULL
assumeInside:NO];
}

- (void)setBounds:(NSRect)bounds {
 [super setBounds:bounds];
 [self removeTrackingRect:trackingRect];
 [self resetEye];
 trackingRect = [self addTrackingRect:eyeBox owner:self userData:NULL
assumeInside:NO];
}

You should also remove the tracking rectangle when your view is removed from its window, which can
happen either because the view is moved to a different window, or because the view is removed as part of
deallocation. One place to do this is the viewWillMoveToWindow: method, as shown in “Compatibility
Issues.”

Listing A-4 Removing a tracking rectangle when a view is removed from its window

- (void)viewWillMoveToWindow:(NSWindow *)newWindow {
 if ([self window] && trackingRect) {
 [self removeTrackingRect:trackingRect];
 }
}

Handling Mouse-Tracking Events 83
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Mouse-Tracking and Cursor-Update Events

Managing Cursor-Update Events

One common use of tracking rectangles is to change the cursor image over different types of graphic elements.
Text, for example, typically requires an I-beam cursor. Changing the cursor is such a common operation that
NSView defines several convenience methods to ease the process. A tracking rectangle generated by these
methods is called a cursor rectangle. The Application Kit itself assumes ownership of cursor rectangles, so
that when the user moves the mouse over the rectangle the cursor automatically changes to the appropriate
image. Unlike general tracking rectangles, cursor rectangles may not partially overlap. They may, however,
be completely nested, one within the other.

Because cursor rectangles need to be reset often as a view’s size and graphic elements change, NSView
defines a single method, resetCursorRects, that’s invoked any time its cursor rectangles need to be
reestablished. A concrete subclass overrides this method, invoking addCursorRect:cursor: for each cursor
rectangle it wishes to set (as illustrated in Listing A-5). Thereafter, the view’s cursor rectangles can be rebuilt
by invoking the NSWindow method invalidateCursorRectsForView:. Before resetCursorRects is
invoked, the owning view is automatically sent a disableCursorRects message to remove existing cursor
rectangles.

Listing 6-4 shows an implementation of resetCursorRects.

Listing A-5 Resetting a cursor rectangle

-(void)resetCursorRects
{
 [self addCursorRect:[self calculatedItemBounds] cursor:[NSCursor
openHandCursor]];

}

Although you can temporarily remove a single cursor rectangle with removeCursorRect:cursor:, you
should rarely need to do so. Whenever cursor rectangles need to be rebuilt, NSView invokes
resetCursorRects so that you can establish only the cursor rectangles needed. If you implement
resetCursorRects in this way, you can then simply modify the state this method uses to build its cursor
rectangles and then invoke the NSWindow method invalidateCursorRectsForView:.

An NSView object’s cursor rectangles are automatically reset whenever:

 ■ Its frame or bounds rectangle changes, whether by a setFrame... or setBounds... message or by
autoresizing.

 ■ Its window is resized. In this case all of the window’s view objects get their cursor rectangles reset.

 ■ It is moved in the view hierarchy.

 ■ It is scrolled in an NSScrollView or NSClipView object.

You can temporarily disable all the cursor rectangles in a window using the NSWindow method
disableCursorRects and enable them again with the enableCursorRects method. The
areCursorRectsEnabled method of NSWindow tells you whether they’re currently enabled.

84 Managing Cursor-Update Events
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Mouse-Tracking and Cursor-Update Events

This table describes the changes to Cocoa Event-Handling Guide.

NotesDate

Added Mac OS X v10.5 details about scroll-wheel events and key equivalents.2009-02-04

Added section on handling non-mouse events during tracking operations. Made
an assortment of small corrections.

2008-11-19

Added chapter on using NSTrackingArea objects (new in Mac OS X v10.5).
Clarified behavior of cursor-rect methods. Added note to "Text System Defaults
and Key Bindings" stating that defining custom key bindings dynamically is not
supported

2007-03-16

Made substantial changes as part of a major update and reorganization of Cocoa
documents related to event handling.

2006-07-24

85
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

86
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Cocoa Event-Handling Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Event Architecture
	How an Event Enters a Cocoa Application
	Event Dispatch
	The Path of Mouse and Tablet Events
	The Path of Key Events
	Other Event Dispatching

	Action Messages
	Responders
	First Responders
	Next Responders

	The Responder Chain
	Responder Chain for Event Messages
	Responder Chain for Action Messages
	Other Uses

	Event Objects and Types
	NSEvent Objects
	Attributes of an Event Object
	NSEvent Class Methods
	Event Objects in Methods of Other Classes

	Event Types
	Mouse Events
	Events Related to Mouse Clicks and Movements
	Mouse Tracking Events

	Key Events
	Tablet Events
	Overview of Tablet Devices
	Types of Tablet Events
	Proximity Events
	Pointer Events
	Sequence of Tablet Events

	Other Types of Events

	Event Handling Basics
	Preparing a Custom View for Receiving Events
	Implementing Action Methods
	Getting the Location of an Event
	Testing for Event Type and Modifier Flags
	Responder-Related Tasks
	Determining First-Responder Status
	Setting the First Responder

	Handling Mouse Events
	Overview of Mouse Events
	Handling Mouse Clicks
	Handling Mouse Dragging Operations
	The Three-Method Approach
	The Mouse-Tracking Loop Approach
	Filtering Out Key Events During Mouse-Tracking Operations

	Handling Key Events
	Overview of Key Events
	Overriding the keyDown: Method
	Handling Keyboard Actions and Inserting Text
	Specially Interpreting Keystrokes

	Handling Key Equivalents
	Keyboard Interface Control

	Using Tracking-Area Objects
	Creating an NSTrackingArea Object
	Managing a Tracking-Area Object
	Responding to Mouse-Tracking Events
	Managing Cursor-Update Events
	Compatibility Issues

	Handling Tablet Events
	Packaging of Tablet Events
	Tablet Events and the Responder Chain

	Text System Defaults and Key Bindings
	Key Bindings
	Key Bindings in Xcode

	Standard Action Methods for Selecting and Editing
	Selection Direction
	Selection and insertion point
	Marks
	The kill buffer

	Text System Defaults
	NSMnemonicsWorkInText
	NSRepeatCountBinding
	NSQuotedKeystrokeBinding
	NSTextShowsInvisibleCharacters)
	NSTextShowsControlCharacters
	NSTextSelectionColor
	NSMarkedTextAttribute and NSMarkedTextColor)
	NSTextKillRingSize

	Appendix A: Mouse-Tracking and Cursor-Update Events
	Handling Mouse-Tracking Events
	Managing Cursor-Update Events

	Revision History

