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Font Handling discusses fonts, the font management system, and the user interface to allow the user to
interact with available fonts.

Who Should Read This Document

You should read this document if you need to understand how the text system manages font objects, how
the font manager works, and how to modify that behavior. If your application allows users to manipulate
fonts, for example, especially if it goes beyond default Cocoa behavior, then you should read this document.

To understand the information in this programming topic, you should understand generally the text system’s
capabilities and architecture, and you should understand basic Cocoa programming conventions.

Organization of This Document

These articles discuss working with NSFont objects:

 ■ “Creating a Font Object” (page 9) describes the methods you use to create font objects.

 ■ “Getting Font Metrics” (page 11) describes font metrics and correlates them with the methods you use
to retrieve that information.

 ■ “Querying Aqua Font Variations” (page 13) lists the methods you use to retrieve the standard fonts used
in the Aqua user interface.

 ■ “Characters and Glyphs” (page 15) defines and differentiates characters and glyphs and explains how
the text system converts character strings into glyphs for display.

 ■ “Calculating Glyph Layout” (page 17) describes the sequential, overstruck, and stacked methods of laying
out glyphs.

 ■ “Special Glyphs” (page 19) describes null glyphs and control glyphs.

These articles discuss working with the font manager:

 ■ “Recording the Font in a Selection” (page 21) explains how an object that enables the user to select
fonts should interact with the font manager.

 ■ “Initiating Font Changes” (page 23) describes the font-changing action methods of the font manager.

 ■ “Creating a Font Manager” (page 25) explains how to set up a font manager object programmatically.

 ■ “Responding to Font Changes” (page 27) explains how a text object should respond to a font-changing
message from the font manager.

Who Should Read This Document 7
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 ■ “Converting Fonts Manually” (page 29) describes the NSFontManager methods you use to convert the
traits and characteristics of a font.

 ■ “Examining Fonts” (page 31) describes the methods applications can use to retrieve information about
font availability and characteristics.

 ■ “Customizing the Font Conversion System” (page 33) discusses adding custom controls to the Font
panel, subclassing NSFontManager and NSFontPanel, and using your own Font menu.

See Also

For further reading, refer to the following documents:

 ■ Font Panel explains how the Font panel interacts with the text system.

 ■ Attributed Strings Programming Guide describes NSAttributedString objects, which manage sets of
attributes, such as font and kerning, that are associated with character strings or individual characters.

 ■ Text Layout Programming Guide for Cocoa describes how the Cocoa text system converts strings of text
characters, font information, and page specifications into lines of glyphs placed at specific locations on
a page, suitable for display and printing.

For related reference information, see the following documents:

 ■ NSFont

 ■ NSFontManager

 ■ NSFontPanel
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You don’t create font objects using the alloc and init methods (or with constructors in Java), instead, you
use either fontWithName:matrix: or  fontWithName:size: to look up an available font and alter its
size or matrix to your needs. These methods check for an existing font object with the specified characteristics,
returning it if there is one. Otherwise, they look up the font data requested and create the appropriate object.

NSFont also defines a number of methods for specifying standard system fonts, such as systemFontOfSize:,
userFontOfSize:, and messageFontOfSize:. To request the default size for these standard fonts, pass
0 or a negative number as the font size. The standard system font methods are listed in “Querying Aqua Font
Variations” (page 13).
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NSFont defines a number of methods for accessing a font’s metrics information, when that information is
available. Methods such as boundingRectForGlyph:, boundingRectForFont, xHeight, and so on, all
correspond to standard font metrics information. Figure 1 shows how the font metrics apply to glyph
dimensions, and Table 1 lists the method names that correlate with the metrics. See the various method
descriptions for more specific information.

Figure 1 Font metrics
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Table 1 Font metrics and related NSFont methods

MethodsFont metric

advancementForGlyph:, maximumAdvancementAdvancement

xHeightX-height

ascenderAscent

boundingRectForFont, boundingRectForGlyph:Bounding rectangle

capHeightCap height

defaultLineHeightForFont, pointSize, labelFontSize,
smallSystemFontSize,systemFontSize,systemFontSizeForControlSize:

Line height

descenderDescent
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MethodsFont metric

italicAngleItalic angle
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Using the methods of NSFont, you can query all of the Aqua font variations. To request the default font size
for the standard fonts, you can either explicitly pass in default sizes (obtained from class methods such as
systemFontSize and labelFontSize), or pass in 0 or a negative value.

For Objective-C, use the following method invocations:

Objective-C methodsFont

[NSFont systemFontOfSize:[NSFont systemFontSize]]System font

[NSFont boldSystemFontOfSize:[NSFont systemFontSize]]Emphasized system font

[NSFont systemFontOfSize:[NSFont smallSystemFontSize]]Small system font

[NSFont boldSystemFontOfSize:[NSFont smallSystemFontSize]]Emphasized small system font

[NSFont systemFontSizeForControlSize: NSMiniControlSize]Mini system font

[NSFont boldSystemFontOfSize:[NSFont
systemFontSizeForControlSize: NSMiniControlSize]]

Emphasized mini system font

[NSFont userFontOfSize:-1.0]Application font

[NSFont userFixedPitchFontOfSize:-1.0]Application fixed-pitch font

[NSFont labelFontOfSize:[NSFont labelFontSize]]Label Font

The equivalent Java invocations are as follows:

Java methodsFont

NSFont.systemFontOfSize(-1.0)System font

NSFont.boldSystemFontOfSize(-1.0)Emphasized system font

NSFont.systemFontOfSize(NSFont.smallSystemFontSize())Small system font

NSFont.boldSystemFontOfSize(NSFont.smallSystemFontSize())Emphasized small system font

NSFont.systemFontSizeForControlSize(-1.0)Mini system font

NSFont.boldSystemFontOfSize(NSFont.systemFontSizeForControlSize(-1.0))Emphasized mini system font

NSFont.userFontOfSize(-1.0)Application font

NSFont.userFixedPitchFontOfSize(-1.0)Application fixed-pitch font
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Java methodsFont

NSFont.labelFontOfSize(-1.0)Label font

14
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Characters are conceptual entities that correspond to units of written language. Examples of characters
include the letters of the Roman alphabet, the Kanji ideographs used in Japanese, and symbols that indicate
mathematical operations. Characters are represented as numbers in a computer’s memory or on disk, and a
character encoding defines the mapping between a numerical value and a specific character. For example,
the ASCII and Unicode character encodings both assign the value 97 (decimal) to the character “a”. The Cocoa
text system uses the Unicode character encoding internally, although it can read and write other encodings
on disk.

You can think of a glyph as the rendered image of a character. The words of this sentence are made visible
through glyphs. A collection of glyphs that share certain graphic qualities is called a font.

The difference between a character and a glyph isn’t immediately apparent in English since there’s typically
a one-to-one mapping between the two. But, in some Indic languages, for example, a single character can
map to more than one glyph. And, in many languages, two or more characters may be needed to specify a
single glyph.

To take a simple example, the glyph “ö” can be the result of two characters, one representing the base
character “o” and the other representing the diacritical mark “¨”. A user of a word processor can press an
arrow key one time to move the insertion point from one side of the “ö” glyph to the other; however, the
current position in the character stream must be incremented by two to account for the two characters that
make up the single glyph.

Thus, the text system must manage two related but different streams of data: the stream of characters (and
their attributes) and the stream of glyphs that are derived from these characters. The NSTextStorage object
stores the attributed characters, and the NSLayoutManager object stores the derived glyphs. Finding the
correspondence between these two streams is the responsibility of the layout manager.

For a given glyph, the layout manager can find the corresponding character or characters in the character
stream. Similarly, for a given character, the layout manager can locate the associated glyph or glyphs. For
example, when a user selects a range of text, the layout manager must determine which range of characters
corresponds to the selection.

When characters are deleted, some glyphs may have to be redrawn. For example, if the user deletes the
characters “ee” from the word “feel”, the “f” and “l” can be represented by the “fl” ligature rather than the
two glyphs “f” and “l”. The NSLayoutManager object directs a glyph generator object to generate new glyphs
as needed. Once the glyphs are regenerated, the text must be laid out and displayed. Working with the
NSTextContainer object and other objects of the text system, the layout manager determines where each
glyph appears in the NSTextView. Finally, the text view renders the text.

Because an NSLayoutManager object is central to the operation of the text system, it also serves as the
repository of information shared by various components of the system. For more information about
NSLayoutManager, refer to its reference documentation and to Text Layout Programming Guide for Cocoa.
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The Cocoa text system handles many complex aspects of laying out glyphs. If you need to calculate layout
for your own purposes, you can use methods defined by NSFont. There are three basic kinds of glyph layout,
although Java supports only overstruck:

 ■ Sequential, for running text

 ■ Overstruck, for diacritics and other nonspacing marks

 ■ Stacked, for certain non-Western scripts.

Sequential glyph layout

Sequential glyph layout is supported by the methodpositionOfGlyph:precededByGlyph:isNominal:,
which is available only in Objective-C. This method calculates the position of a glyph relative to glyph
preceding it, using the glyph’s width and kerning information if they’re available. This is the most
straightforward kind of glyph layout.

Overstruck glyph layout

Overstruck glyph layout is the most complex, as it requires detailed information about placement of many
kinds of modifying marks. Generally, you have two characters:

 ■ A base glyph, which may be a character such as “a”

 ■ A nonspacing mark, which may be a diacritical mark such as an acute accent (‘) or a cedilla (¸)

Cocoa gives you methods for combining the two characters, depending on whether the combination is a
common one that the font has metrics for or whether the combination is an unusual one that you need to
create on the fly. Try these methods in the following order, to get the best result:

 ■ In Objective-C, to see if the font has metrics placing the nonspacing mark directly over the base glyph,
use the method positionOfGlyph:struckOverGlyph:metricsExist: and check the value returned
in the metricsExist argument.

 ■ In Objective-C, to see if the font has metrics for placing the nonspacing mark over the base glyph’s
bounding rectangle, use the method positionOfGlyph:struckOverRect:metricsExist: and
check the value returned in the metricsExist argument. Use the method boundingRectForGlyph:
to get the bounding rect for the base glyph. Note that NSFont always sets metricsExist to NO and
that this method is useful only if you’re using a subclass of NSFont that overrides this method.

Sequential glyph layout 17
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 ■ To place the nonspacing mark over the base glyph in a legible but not necessarily pleasing manner, use
the method positionOfGlyph:forCharacter:struckOverRect:
(positionOfGlyphForCharacterStruckOverRect in Java). This method handles all the common
nonspacing marks, such as an acute accent, tilde, or cedilla, for Latin script. Use the method
boundingRectForGlyph: (boundingRectForGlyph in Java) to get the bounding rectangle for the
base glyph.

 ■ To place a nonspacing mark over a base glyph of another font, also use the method
positionOfGlyph:forCharacter:struckOverRect:
(positionOfGlyphForCharacterStruckOverRect in Java). Use the method
boundingRectForGlyph: (boundingRectForGlyph in Java) to get the bounding rectangle for the
base glyph.

In Objective-C, if you need to place several nonspacing marks with respect to a base glyph, use the method
positionsForCompositeSequence:numberOfGlyphs:pointArray:. This method accepts a C array
containing the base glyph followed by all of its nonspacing marks and calculates the positions for as many
as of the marks as it can. To place the marks that this method can’t handle, use the methods described above.

Stacked glyph layout

Stacked glyph layout is supported by the method
positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:, which is
available only in Objective-C. Stacked glyphs often have special compressed forms, which standard font
metrics don’t account for. NSFont’s implementation of this method simply abuts the bounding rectangles
of the two glyphs for approximate layout of the individual glyphs. Subclasses of NSFont can override this
method to access any extra metrics information for more sophisticated layout of stacked glyphs.

18 Stacked glyph layout
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NSFont defines two special glyphs. NullGlyph indicates no glyph at all and is useful in some layout methods
for calculating information that isn’t relative to another glyph. For example in Objective-C, with
positionOfGlyph:precededByGlyph:isNominal:, you can specify NSNullGlyph as the first argument
to get the nominal advancement of the preceding glyph.

The other special glyph is ControlGlyph, which the text system maps onto control functions such as linefeed
and tab. This glyph has no graphic representation and has no inherent advancement of its own. Instead, the
text system examines the control character underlying the glyph to determine what kind of special layout it
needs to perform.

19
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Any object that records fonts that the user can change should tell the font manager what the font of its
selection is whenever it becomes the first responder and whenever its selection changes while it’s the first
responder. The object does so by sending the shared font manager a setSelectedFont message. It should
pass in the first font of the selection, along with a flag indicating whether there’s more than one font.

The font manager uses this information to update the Font panel and Font menu to reflect the font in the
selection. For example, suppose the font is Helvetica Oblique 12.0 point. In this case, the Font panel selects
that font and displays its name; the Font menu changes its Italic command to Unitalic; if there’s no Bold
variant of Helvetica available, the Bold menu item is disabled; and so on.

If you need to draw text using PostScript operators such as show, it’s recommended that you set the current
font using NSFont’s set method, rather than the PostScript operators setfont or selectfont. This allows
the Application Kit printing mechanism to record the fonts used in the PostScript output. If you absolutely
must set the font using a PostScript operator, you can record the font with the Application Kit using the
NSFont static method useFont. See the description of that method for more information.
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The user normally changes the font of the selection by manipulating the Font panel (also called the Fonts
window) and the Font menu. These objects initiate the intended change by sending an action message to
the font manager. There are four font-changing action methods:

addFontTrait

removeFontTrait

modifyFont

modifyFontViaPanel

The first three cause the font manager to query the sender of the message in order to determine which trait
to add or remove, or how to modify the font. The last causes the font manager to use the settings in the Font
panel to modify the font. The font manager records this information and uses it in later requests to convert
fonts, as described in “Responding to Font Changes” (page 27).

When the font manager receives an addFontTrait or removeFontTrait message, it queries the sender
with a tag message, interpreting the return value as a trait mask for use with convertFontToHaveTrait
or convertFontToNotHaveTrait, as described in “Converting Fonts Manually” (page 29). The Font menu
commands Italic and Bold, for example, have trait mask values of ItalicMask and BoldMask, respectively.
See the section “Constants” in the NSFontManager reference documentation for a list of trait mask values.

When the font manager receives a modifyFont message, it queries the sender with a tag message and
interprets the return value as a particular kind of conversion to perform, via the various conversion methods
described in “Converting Fonts Manually” (page 29). For example, a button whose tag value is
SizeUpFontAction causes the font manager’s convertFont method to increase the size of the NSFont
passed as the argument. See the NSFontManager method modifyFont for a list of conversion tag values.

For modifyFontViaPanel, the font manager sends the application’s Font panel a panelConvertFont
message. The Font panel in turn uses the font manager to convert the font provided according to the user’s
choices. For example, if the user selects only the font family in the Font panel (perhaps Helvetica), then for
whatever fonts are provided to panelConvertFont, only the family is changed: Courier Medium 10.0 point
becomes Helvetica Medium 10.0 point, and Times Italic 12.0 point becomes Helvetica Oblique 12.0 point.

23
2008-02-08   |   © 1997, 2008 Apple Inc. All Rights Reserved.

Initiating Font Changes



24
2008-02-08   |   © 1997, 2008 Apple Inc. All Rights Reserved.

Initiating Font Changes



You normally set up a font manager and the Font menu using Interface Builder. However, you can also do
so programmatically by getting the shared font manager instance and having it create the standard Font
menu at runtime, as in this Objective-C example:

NSFontManager *fontManager = [NSFontManager sharedFontManager];
NSMenu *fontMenu = [fontManager fontMenu:YES];

You can then add the Font menu to your application’s menus. Once the Font menu is installed, your application
automatically gains the functionality of both the Font menu and the Font panel.
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The font manager responds to a font-changing action method by sending a changeFont action message
up the responder chain. A text-bearing object that receives this message should have the font manager
convert the fonts in its selection by invoking convertFont for each font and using the NSFont object
returned. The convertFont method uses the information recorded by the font-changing action method,
such as addFontTrait, modifying the font provided appropriately. (There’s no way to explicitly set the
font-changing action or trait; instead, you use the methods described in “Converting Fonts Manually” (page
29).)

This simple Objective-C example assumes there’s only one font in the selection:

- (void)changeFont:(id)sender
{
    NSFont *oldFont = [self selectionFont];
    NSFont *newFont = [sender convertFont:oldFont];
    [self setSelectionFont:newFont];
    return;
}

Most text-bearing objects have to scan the selection for ranges with different fonts and invoke convertFont
for each one.
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NSFontManager defines a number of methods for explicitly converting particular traits and characteristics
of a font. Table 1 lists these conversion methods.

Table 1 Font conversion methods

Java MethodsObjective-C Methods

convertFontToFaceconvertFont:toFace:

convertFontToFamilyconvertFont: toFamily:

convertFontToFamilyconvertFont: toHaveTrait:

convertFontToNotHaveTraitconvertFont: toNotHaveTrait:

convertFontToSizeconvertFont:toSize:

convertWeightconvertWeight: ofFont:

Each method returns a transformed version of the font provided, or the original font if it can’t be converted.
convertFont:toFace: and convertFont:toFamily: both alter the basic design of the font provided.
The first method requires a fully specified typeface name, such as “Times-Roman” or “Helvetica-BoldOblique”,
while the second expects only a family name, such as “Times” or “Helvetica”.

The convertFont:toHaveTrait: and convertFont:toNotHaveTrait:methods use trait masks to add
or remove a single trait such as Italic, Bold, Condensed, or Extended.

The convertFont:toSize: method returns a font of the requested size, with all other characteristics the
same as those of the original font.

The convertWeight:ofFont: method either increases or decreases the weight of the font provided,
according to a Boolean flag. Font weights are typically indicated by a series of names, which can vary from
font to font. Some go from Light to Medium to Bold, while others have Book, SemiBold, Bold, and Black. This
method offers a uniform way of incrementing and decrementing any font’s weight.

The default implementation of font conversion is very conservative, making a change only if no other trait
or aspect is affected. For example, if you try to convert Helvetica Oblique 12.0 point by adding the Bold trait,
and only Helvetica Bold is available, the font isn’t converted. You can create a subclass of NSFontManager
and override the conversion methods to perform less conservative conversion, perhaps using Helvetica Bold
in this case and losing the Oblique trait.

In addition to the font-conversion methods, NSFontManager defines
fontWithFamily:traits:weight:size: to construct a font with a given set of characteristics. If you
don’t care to make a subclass of NSFontManager, you can use this method to perform approximate font
conversions yourself.
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In addition to converting fonts, NSFontManager provides information on which fonts are available to the
application and on the characteristics of any given font. The availableFonts method returns an array of
the names of all fonts available. The availableFontNamesWithTraits: method filters the available fonts
based on a font trait mask.

There are three methods for examining individual fonts. The fontNamed:HasTraits:method returns true
if the font matches the trait mask provided. The traitsOfFont: method returns a trait mask for a given
font. The weightOfFont: method returns an approximate ranking of a font’s weight on a scale of 0–15,
where 0 is the lightest possible weight, 5 is Normal or Book weight, 9 is the equivalent of Bold, and 15 is the
heaviest possible (often called Black or Ultra Black).
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In Objective-C only, if you need to customize the font conversion system by creating subclasses of
NSFontManager or NSFontPanel, you must inform the NSFontManager class of this change with a
setFontManagerFactory: or setFontPanelFactory: message, before either the shared font manager
or shared Font panel is created. These methods record your class as the one to instantiate the first time the
font manager or Font panel is requested. You may be able to avoid using subclasses if all you need is to add
some custom controls to the Font panel. In this case, you can invoke the NSFontPanel setAccessoryView:
method to add an NSView below its font browser.

In Java, to add some custom controls to the Font panel, invoke NSFontPanel’s setAccessoryView to add
an NSView below its font browser.

If you provide your own Font menu, you should register it with the font manager using the setFontMenu
method. The font manager is responsible for validating Font menu items and changing their titles and tags
according to the font of the selection. For example, when the selected font is Italic, the font manager changes
the Italic Font menu item to Unitalic and changes its tag to UnitalicMask. Your Font menu’s items should
use the appropriate action methods and tags. Here are some examples:

TagActionFont menu item

ItalicMaskaddFontTraitItalic

BoldMaskaddFontTraitBold

HeavierFontActionmodifyFontHeavier

SizeUpFontActionmodifyFontLarger
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This table describes the changes to Font Handling.

NotesDate

Corrected typo in "Responding to Font Changes" code example.2008-02-08

Added “Characters and Glyphs” (page 15) article, removed “Drawing Text With
NSFonts” article, added references to related documents to introduction, and
made editorial revisions throughout.

2004-08-31

Rewrote introduction and added an index.2004-02-12

Fixed method names (Java and Objective-C names ran together), rewrote
introduction, and made minor edits.

2003-03-26

Revision history added to existing document.2002-11-12
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