
Font Handling
Cocoa > Text & Fonts

2008-02-08

Apple Inc.
© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Cocoa, and
Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Font Handling 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Creating a Font Object 9

Getting Font Metrics 11

Querying Aqua Font Variations 13

Characters and Glyphs 15

Calculating Glyph Layout 17

Sequential glyph layout 17
Overstruck glyph layout 17
Stacked glyph layout 18

3
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Special Glyphs 19

Recording the Font in a Selection 21

Initiating Font Changes 23

Creating a Font Manager 25

Responding to Font Changes 27

Converting Fonts Manually 29

Examining Fonts 31

Customizing the Font Conversion System 33

Document Revision History 35

Index 37

4
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Figures and Tables

Getting Font Metrics 11

Figure 1 Font metrics 11
Table 1 Font metrics and related NSFont methods 11

Converting Fonts Manually 29

Table 1 Font conversion methods 29

5
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

6
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Font Handling discusses fonts, the font management system, and the user interface to allow the user to
interact with available fonts.

Who Should Read This Document

You should read this document if you need to understand how the text system manages font objects, how
the font manager works, and how to modify that behavior. If your application allows users to manipulate
fonts, for example, especially if it goes beyond default Cocoa behavior, then you should read this document.

To understand the information in this programming topic, you should understand generally the text system’s
capabilities and architecture, and you should understand basic Cocoa programming conventions.

Organization of This Document

These articles discuss working with NSFont objects:

 ■ “Creating a Font Object” (page 9) describes the methods you use to create font objects.

 ■ “Getting Font Metrics” (page 11) describes font metrics and correlates them with the methods you use
to retrieve that information.

 ■ “Querying Aqua Font Variations” (page 13) lists the methods you use to retrieve the standard fonts used
in the Aqua user interface.

 ■ “Characters and Glyphs” (page 15) defines and differentiates characters and glyphs and explains how
the text system converts character strings into glyphs for display.

 ■ “Calculating Glyph Layout” (page 17) describes the sequential, overstruck, and stacked methods of laying
out glyphs.

 ■ “Special Glyphs” (page 19) describes null glyphs and control glyphs.

These articles discuss working with the font manager:

 ■ “Recording the Font in a Selection” (page 21) explains how an object that enables the user to select
fonts should interact with the font manager.

 ■ “Initiating Font Changes” (page 23) describes the font-changing action methods of the font manager.

 ■ “Creating a Font Manager” (page 25) explains how to set up a font manager object programmatically.

 ■ “Responding to Font Changes” (page 27) explains how a text object should respond to a font-changing
message from the font manager.

Who Should Read This Document 7
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Introduction to Font Handling

 ■ “Converting Fonts Manually” (page 29) describes the NSFontManager methods you use to convert the
traits and characteristics of a font.

 ■ “Examining Fonts” (page 31) describes the methods applications can use to retrieve information about
font availability and characteristics.

 ■ “Customizing the Font Conversion System” (page 33) discusses adding custom controls to the Font
panel, subclassing NSFontManager and NSFontPanel, and using your own Font menu.

See Also

For further reading, refer to the following documents:

 ■ Font Panel explains how the Font panel interacts with the text system.

 ■ Attributed Strings Programming Guide describes NSAttributedString objects, which manage sets of
attributes, such as font and kerning, that are associated with character strings or individual characters.

 ■ Text Layout Programming Guide for Cocoa describes how the Cocoa text system converts strings of text
characters, font information, and page specifications into lines of glyphs placed at specific locations on
a page, suitable for display and printing.

For related reference information, see the following documents:

 ■ NSFont

 ■ NSFontManager

 ■ NSFontPanel

8 See Also
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Introduction to Font Handling

You don’t create font objects using the alloc and init methods (or with constructors in Java), instead, you
use either fontWithName:matrix: or fontWithName:size: to look up an available font and alter its
size or matrix to your needs. These methods check for an existing font object with the specified characteristics,
returning it if there is one. Otherwise, they look up the font data requested and create the appropriate object.

NSFont also defines a number of methods for specifying standard system fonts, such as systemFontOfSize:,
userFontOfSize:, and messageFontOfSize:. To request the default size for these standard fonts, pass
0 or a negative number as the font size. The standard system font methods are listed in “Querying Aqua Font
Variations” (page 13).

9
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating a Font Object

10
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating a Font Object

NSFont defines a number of methods for accessing a font’s metrics information, when that information is
available. Methods such as boundingRectForGlyph:, boundingRectForFont, xHeight, and so on, all
correspond to standard font metrics information. Figure 1 shows how the font metrics apply to glyph
dimensions, and Table 1 lists the method names that correlate with the metrics. See the various method
descriptions for more specific information.

Figure 1 Font metrics

Advancement

Ascent

Line
height

Cap
height

X-height

Descent
Baseline

Italic angleBounding
rectangle

Line gap (leading)

Origin

Table 1 Font metrics and related NSFont methods

MethodsFont metric

advancementForGlyph:, maximumAdvancementAdvancement

xHeightX-height

ascenderAscent

boundingRectForFont, boundingRectForGlyph:Bounding rectangle

capHeightCap height

defaultLineHeightForFont, pointSize, labelFontSize,
smallSystemFontSize,systemFontSize,systemFontSizeForControlSize:

Line height

descenderDescent

11
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Getting Font Metrics

MethodsFont metric

italicAngleItalic angle

12
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Getting Font Metrics

Using the methods of NSFont, you can query all of the Aqua font variations. To request the default font size
for the standard fonts, you can either explicitly pass in default sizes (obtained from class methods such as
systemFontSize and labelFontSize), or pass in 0 or a negative value.

For Objective-C, use the following method invocations:

Objective-C methodsFont

[NSFont systemFontOfSize:[NSFont systemFontSize]]System font

[NSFont boldSystemFontOfSize:[NSFont systemFontSize]]Emphasized system font

[NSFont systemFontOfSize:[NSFont smallSystemFontSize]]Small system font

[NSFont boldSystemFontOfSize:[NSFont smallSystemFontSize]]Emphasized small system font

[NSFont systemFontSizeForControlSize: NSMiniControlSize]Mini system font

[NSFont boldSystemFontOfSize:[NSFont
systemFontSizeForControlSize: NSMiniControlSize]]

Emphasized mini system font

[NSFont userFontOfSize:-1.0]Application font

[NSFont userFixedPitchFontOfSize:-1.0]Application fixed-pitch font

[NSFont labelFontOfSize:[NSFont labelFontSize]]Label Font

The equivalent Java invocations are as follows:

Java methodsFont

NSFont.systemFontOfSize(-1.0)System font

NSFont.boldSystemFontOfSize(-1.0)Emphasized system font

NSFont.systemFontOfSize(NSFont.smallSystemFontSize())Small system font

NSFont.boldSystemFontOfSize(NSFont.smallSystemFontSize())Emphasized small system font

NSFont.systemFontSizeForControlSize(-1.0)Mini system font

NSFont.boldSystemFontOfSize(NSFont.systemFontSizeForControlSize(-1.0))Emphasized mini system font

NSFont.userFontOfSize(-1.0)Application font

NSFont.userFixedPitchFontOfSize(-1.0)Application fixed-pitch font

13
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Querying Aqua Font Variations

Java methodsFont

NSFont.labelFontOfSize(-1.0)Label font

14
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Querying Aqua Font Variations

Characters are conceptual entities that correspond to units of written language. Examples of characters
include the letters of the Roman alphabet, the Kanji ideographs used in Japanese, and symbols that indicate
mathematical operations. Characters are represented as numbers in a computer’s memory or on disk, and a
character encoding defines the mapping between a numerical value and a specific character. For example,
the ASCII and Unicode character encodings both assign the value 97 (decimal) to the character “a”. The Cocoa
text system uses the Unicode character encoding internally, although it can read and write other encodings
on disk.

You can think of a glyph as the rendered image of a character. The words of this sentence are made visible
through glyphs. A collection of glyphs that share certain graphic qualities is called a font.

The difference between a character and a glyph isn’t immediately apparent in English since there’s typically
a one-to-one mapping between the two. But, in some Indic languages, for example, a single character can
map to more than one glyph. And, in many languages, two or more characters may be needed to specify a
single glyph.

To take a simple example, the glyph “ö” can be the result of two characters, one representing the base
character “o” and the other representing the diacritical mark “¨”. A user of a word processor can press an
arrow key one time to move the insertion point from one side of the “ö” glyph to the other; however, the
current position in the character stream must be incremented by two to account for the two characters that
make up the single glyph.

Thus, the text system must manage two related but different streams of data: the stream of characters (and
their attributes) and the stream of glyphs that are derived from these characters. The NSTextStorage object
stores the attributed characters, and the NSLayoutManager object stores the derived glyphs. Finding the
correspondence between these two streams is the responsibility of the layout manager.

For a given glyph, the layout manager can find the corresponding character or characters in the character
stream. Similarly, for a given character, the layout manager can locate the associated glyph or glyphs. For
example, when a user selects a range of text, the layout manager must determine which range of characters
corresponds to the selection.

When characters are deleted, some glyphs may have to be redrawn. For example, if the user deletes the
characters “ee” from the word “feel”, the “f” and “l” can be represented by the “fl” ligature rather than the
two glyphs “f” and “l”. The NSLayoutManager object directs a glyph generator object to generate new glyphs
as needed. Once the glyphs are regenerated, the text must be laid out and displayed. Working with the
NSTextContainer object and other objects of the text system, the layout manager determines where each
glyph appears in the NSTextView. Finally, the text view renders the text.

Because an NSLayoutManager object is central to the operation of the text system, it also serves as the
repository of information shared by various components of the system. For more information about
NSLayoutManager, refer to its reference documentation and to Text Layout Programming Guide for Cocoa.

15
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Characters and Glyphs

16
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Characters and Glyphs

The Cocoa text system handles many complex aspects of laying out glyphs. If you need to calculate layout
for your own purposes, you can use methods defined by NSFont. There are three basic kinds of glyph layout,
although Java supports only overstruck:

 ■ Sequential, for running text

 ■ Overstruck, for diacritics and other nonspacing marks

 ■ Stacked, for certain non-Western scripts.

Sequential glyph layout

Sequential glyph layout is supported by the methodpositionOfGlyph:precededByGlyph:isNominal:,
which is available only in Objective-C. This method calculates the position of a glyph relative to glyph
preceding it, using the glyph’s width and kerning information if they’re available. This is the most
straightforward kind of glyph layout.

Overstruck glyph layout

Overstruck glyph layout is the most complex, as it requires detailed information about placement of many
kinds of modifying marks. Generally, you have two characters:

 ■ A base glyph, which may be a character such as “a”

 ■ A nonspacing mark, which may be a diacritical mark such as an acute accent (‘) or a cedilla (¸)

Cocoa gives you methods for combining the two characters, depending on whether the combination is a
common one that the font has metrics for or whether the combination is an unusual one that you need to
create on the fly. Try these methods in the following order, to get the best result:

 ■ In Objective-C, to see if the font has metrics placing the nonspacing mark directly over the base glyph,
use the method positionOfGlyph:struckOverGlyph:metricsExist: and check the value returned
in the metricsExist argument.

 ■ In Objective-C, to see if the font has metrics for placing the nonspacing mark over the base glyph’s
bounding rectangle, use the method positionOfGlyph:struckOverRect:metricsExist: and
check the value returned in the metricsExist argument. Use the method boundingRectForGlyph:
to get the bounding rect for the base glyph. Note that NSFont always sets metricsExist to NO and
that this method is useful only if you’re using a subclass of NSFont that overrides this method.

Sequential glyph layout 17
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Calculating Glyph Layout

 ■ To place the nonspacing mark over the base glyph in a legible but not necessarily pleasing manner, use
the method positionOfGlyph:forCharacter:struckOverRect:
(positionOfGlyphForCharacterStruckOverRect in Java). This method handles all the common
nonspacing marks, such as an acute accent, tilde, or cedilla, for Latin script. Use the method
boundingRectForGlyph: (boundingRectForGlyph in Java) to get the bounding rectangle for the
base glyph.

 ■ To place a nonspacing mark over a base glyph of another font, also use the method
positionOfGlyph:forCharacter:struckOverRect:
(positionOfGlyphForCharacterStruckOverRect in Java). Use the method
boundingRectForGlyph: (boundingRectForGlyph in Java) to get the bounding rectangle for the
base glyph.

In Objective-C, if you need to place several nonspacing marks with respect to a base glyph, use the method
positionsForCompositeSequence:numberOfGlyphs:pointArray:. This method accepts a C array
containing the base glyph followed by all of its nonspacing marks and calculates the positions for as many
as of the marks as it can. To place the marks that this method can’t handle, use the methods described above.

Stacked glyph layout

Stacked glyph layout is supported by the method
positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:, which is
available only in Objective-C. Stacked glyphs often have special compressed forms, which standard font
metrics don’t account for. NSFont’s implementation of this method simply abuts the bounding rectangles
of the two glyphs for approximate layout of the individual glyphs. Subclasses of NSFont can override this
method to access any extra metrics information for more sophisticated layout of stacked glyphs.

18 Stacked glyph layout
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Calculating Glyph Layout

NSFont defines two special glyphs. NullGlyph indicates no glyph at all and is useful in some layout methods
for calculating information that isn’t relative to another glyph. For example in Objective-C, with
positionOfGlyph:precededByGlyph:isNominal:, you can specify NSNullGlyph as the first argument
to get the nominal advancement of the preceding glyph.

The other special glyph is ControlGlyph, which the text system maps onto control functions such as linefeed
and tab. This glyph has no graphic representation and has no inherent advancement of its own. Instead, the
text system examines the control character underlying the glyph to determine what kind of special layout it
needs to perform.

19
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Special Glyphs

20
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Special Glyphs

Any object that records fonts that the user can change should tell the font manager what the font of its
selection is whenever it becomes the first responder and whenever its selection changes while it’s the first
responder. The object does so by sending the shared font manager a setSelectedFont message. It should
pass in the first font of the selection, along with a flag indicating whether there’s more than one font.

The font manager uses this information to update the Font panel and Font menu to reflect the font in the
selection. For example, suppose the font is Helvetica Oblique 12.0 point. In this case, the Font panel selects
that font and displays its name; the Font menu changes its Italic command to Unitalic; if there’s no Bold
variant of Helvetica available, the Bold menu item is disabled; and so on.

If you need to draw text using PostScript operators such as show, it’s recommended that you set the current
font using NSFont’s set method, rather than the PostScript operators setfont or selectfont. This allows
the Application Kit printing mechanism to record the fonts used in the PostScript output. If you absolutely
must set the font using a PostScript operator, you can record the font with the Application Kit using the
NSFont static method useFont. See the description of that method for more information.

21
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Recording the Font in a Selection

22
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Recording the Font in a Selection

The user normally changes the font of the selection by manipulating the Font panel (also called the Fonts
window) and the Font menu. These objects initiate the intended change by sending an action message to
the font manager. There are four font-changing action methods:

addFontTrait

removeFontTrait

modifyFont

modifyFontViaPanel

The first three cause the font manager to query the sender of the message in order to determine which trait
to add or remove, or how to modify the font. The last causes the font manager to use the settings in the Font
panel to modify the font. The font manager records this information and uses it in later requests to convert
fonts, as described in “Responding to Font Changes” (page 27).

When the font manager receives an addFontTrait or removeFontTrait message, it queries the sender
with a tag message, interpreting the return value as a trait mask for use with convertFontToHaveTrait
or convertFontToNotHaveTrait, as described in “Converting Fonts Manually” (page 29). The Font menu
commands Italic and Bold, for example, have trait mask values of ItalicMask and BoldMask, respectively.
See the section “Constants” in the NSFontManager reference documentation for a list of trait mask values.

When the font manager receives a modifyFont message, it queries the sender with a tag message and
interprets the return value as a particular kind of conversion to perform, via the various conversion methods
described in “Converting Fonts Manually” (page 29). For example, a button whose tag value is
SizeUpFontAction causes the font manager’s convertFont method to increase the size of the NSFont
passed as the argument. See the NSFontManager method modifyFont for a list of conversion tag values.

For modifyFontViaPanel, the font manager sends the application’s Font panel a panelConvertFont
message. The Font panel in turn uses the font manager to convert the font provided according to the user’s
choices. For example, if the user selects only the font family in the Font panel (perhaps Helvetica), then for
whatever fonts are provided to panelConvertFont, only the family is changed: Courier Medium 10.0 point
becomes Helvetica Medium 10.0 point, and Times Italic 12.0 point becomes Helvetica Oblique 12.0 point.

23
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Initiating Font Changes

24
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Initiating Font Changes

You normally set up a font manager and the Font menu using Interface Builder. However, you can also do
so programmatically by getting the shared font manager instance and having it create the standard Font
menu at runtime, as in this Objective-C example:

NSFontManager *fontManager = [NSFontManager sharedFontManager];
NSMenu *fontMenu = [fontManager fontMenu:YES];

You can then add the Font menu to your application’s menus. Once the Font menu is installed, your application
automatically gains the functionality of both the Font menu and the Font panel.

25
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating a Font Manager

26
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating a Font Manager

The font manager responds to a font-changing action method by sending a changeFont action message
up the responder chain. A text-bearing object that receives this message should have the font manager
convert the fonts in its selection by invoking convertFont for each font and using the NSFont object
returned. The convertFont method uses the information recorded by the font-changing action method,
such as addFontTrait, modifying the font provided appropriately. (There’s no way to explicitly set the
font-changing action or trait; instead, you use the methods described in “Converting Fonts Manually” (page
29).)

This simple Objective-C example assumes there’s only one font in the selection:

- (void)changeFont:(id)sender
{
 NSFont *oldFont = [self selectionFont];
 NSFont *newFont = [sender convertFont:oldFont];
 [self setSelectionFont:newFont];
 return;
}

Most text-bearing objects have to scan the selection for ranges with different fonts and invoke convertFont
for each one.

27
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Responding to Font Changes

28
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Responding to Font Changes

NSFontManager defines a number of methods for explicitly converting particular traits and characteristics
of a font. Table 1 lists these conversion methods.

Table 1 Font conversion methods

Java MethodsObjective-C Methods

convertFontToFaceconvertFont:toFace:

convertFontToFamilyconvertFont: toFamily:

convertFontToFamilyconvertFont: toHaveTrait:

convertFontToNotHaveTraitconvertFont: toNotHaveTrait:

convertFontToSizeconvertFont:toSize:

convertWeightconvertWeight: ofFont:

Each method returns a transformed version of the font provided, or the original font if it can’t be converted.
convertFont:toFace: and convertFont:toFamily: both alter the basic design of the font provided.
The first method requires a fully specified typeface name, such as “Times-Roman” or “Helvetica-BoldOblique”,
while the second expects only a family name, such as “Times” or “Helvetica”.

The convertFont:toHaveTrait: and convertFont:toNotHaveTrait:methods use trait masks to add
or remove a single trait such as Italic, Bold, Condensed, or Extended.

The convertFont:toSize: method returns a font of the requested size, with all other characteristics the
same as those of the original font.

The convertWeight:ofFont: method either increases or decreases the weight of the font provided,
according to a Boolean flag. Font weights are typically indicated by a series of names, which can vary from
font to font. Some go from Light to Medium to Bold, while others have Book, SemiBold, Bold, and Black. This
method offers a uniform way of incrementing and decrementing any font’s weight.

The default implementation of font conversion is very conservative, making a change only if no other trait
or aspect is affected. For example, if you try to convert Helvetica Oblique 12.0 point by adding the Bold trait,
and only Helvetica Bold is available, the font isn’t converted. You can create a subclass of NSFontManager
and override the conversion methods to perform less conservative conversion, perhaps using Helvetica Bold
in this case and losing the Oblique trait.

In addition to the font-conversion methods, NSFontManager defines
fontWithFamily:traits:weight:size: to construct a font with a given set of characteristics. If you
don’t care to make a subclass of NSFontManager, you can use this method to perform approximate font
conversions yourself.

29
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Converting Fonts Manually

30
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Converting Fonts Manually

In addition to converting fonts, NSFontManager provides information on which fonts are available to the
application and on the characteristics of any given font. The availableFonts method returns an array of
the names of all fonts available. The availableFontNamesWithTraits: method filters the available fonts
based on a font trait mask.

There are three methods for examining individual fonts. The fontNamed:HasTraits:method returns true
if the font matches the trait mask provided. The traitsOfFont: method returns a trait mask for a given
font. The weightOfFont: method returns an approximate ranking of a font’s weight on a scale of 0–15,
where 0 is the lightest possible weight, 5 is Normal or Book weight, 9 is the equivalent of Bold, and 15 is the
heaviest possible (often called Black or Ultra Black).

31
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Examining Fonts

32
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Examining Fonts

In Objective-C only, if you need to customize the font conversion system by creating subclasses of
NSFontManager or NSFontPanel, you must inform the NSFontManager class of this change with a
setFontManagerFactory: or setFontPanelFactory: message, before either the shared font manager
or shared Font panel is created. These methods record your class as the one to instantiate the first time the
font manager or Font panel is requested. You may be able to avoid using subclasses if all you need is to add
some custom controls to the Font panel. In this case, you can invoke the NSFontPanel setAccessoryView:
method to add an NSView below its font browser.

In Java, to add some custom controls to the Font panel, invoke NSFontPanel’s setAccessoryView to add
an NSView below its font browser.

If you provide your own Font menu, you should register it with the font manager using the setFontMenu
method. The font manager is responsible for validating Font menu items and changing their titles and tags
according to the font of the selection. For example, when the selected font is Italic, the font manager changes
the Italic Font menu item to Unitalic and changes its tag to UnitalicMask. Your Font menu’s items should
use the appropriate action methods and tags. Here are some examples:

TagActionFont menu item

ItalicMaskaddFontTraitItalic

BoldMaskaddFontTraitBold

HeavierFontActionmodifyFontHeavier

SizeUpFontActionmodifyFontLarger

33
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Customizing the Font Conversion System

34
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Customizing the Font Conversion System

This table describes the changes to Font Handling.

NotesDate

Corrected typo in "Responding to Font Changes" code example.2008-02-08

Added “Characters and Glyphs” (page 15) article, removed “Drawing Text With
NSFonts” article, added references to related documents to introduction, and
made editorial revisions throughout.

2004-08-31

Rewrote introduction and added an index.2004-02-12

Fixed method names (Java and Objective-C names ran together), rewrote
introduction, and made minor edits.

2003-03-26

Revision history added to existing document.2002-11-12

35
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Document Revision History

36
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Document Revision History

A

addFontTrait method 23, 27
advancement of glyphs 11, 19
advancementForGlyph: method 11
Aqua standard fonts 9, 13
ascender method 11
ascent of fonts 11
availableFontNamesWithTraits: method 31
availableFonts method 31

B

base glyphs 17
boldSystemFontOfSize method (Java) 13
boldSystemFontOfSize: method 13
bounding rectangle of glyphs 11, 18
boundingRectForFont method 11
boundingRectForGlyph: method 11, 17, 18

C

cap height of fonts 11
capHeight method 11
changeFont method 27
character encodings

defined 15
characters

defined 15
control glyphs 19
convertFont method 23, 27
convertFont:toFace: method 29
convertFont:toFamily: method 29
convertFont:toHaveTrait: method 29
convertFont:toNotHaveTrait: method 29
convertFont:toSize: method 29
convertFontToFace method 29
convertFontToFamily method 29

convertFontToHaveTrait method 23
convertFontToNotHaveTrait method 23, 29
convertFontToSize method 29
convertWeight method 29
convertWeight:ofFont: method 29

D

defaultLineHeightForFont method 11
descender method 11
descent of fonts 11
diacritical marks 17

F

first responder
font manager and 21

font manager
creating 25
font changes and 23, 27
recording fonts 21
subclassing 33

Font menu 21, 25, 33
font metrics 11, 17
font objects 9
Font panel

changing fonts and 23
relation to Font menu 25
updating 21

fontNamed:HasTraits: method 31
fonts

changing 23, 27
converting traits 29, 33
defined 15
examining 31
metrics of 11
recording 21, 23
standard system 9, 13

fontWithFamily:traits:weight:size: method 29

37
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

Index

fontWithName:matrix: method 9
fontWithName:size: method 9

G

glyph layout
overstruck 17
sequential 17
stacked 18

glyphs
control 19
defined 15
drawing of 15
null 19

I

Interface Builder
to set up font manager 25

italic angle of fonts 12
italicAngle method 12

L

labelFontOfSize method (Java) 14
labelFontOfSize: method 13
labelFontSize method 11
ligatures 15
line height of fonts 11

M

maximumAdvancement method 11
messageFontOfSize: method 9
metrics

font 11, 17
modifyFont method 23
modifyFontViaPanel method 23

N

nonspacing marks 17
NSFont class 13, 17
NSFontManager class 29, 31
NSLayoutManager class 15

NSTextStorage class 15
null glyphs 19

O

overstruck glyph layout 17

P

panelConvertFont method 23
pointSize method 11
positionOfGlyph:forCharacter:struckOverRect:

method 18
positionOfGlyph:precededByGlyph:isNominal:

method 17, 19
positionOfGlyph:struckOverGlyph:metricsExist:

method 17
positionOfGlyph:struckOverRect:metricsExist:

method 17
positionOfGlyph:withRelation:toBaseGlyph:

totalAdvancement:metricsExist: method 18
positionsForCompositeSequence:numberOfGlyphs:

pointArray: method 18
PostScript operators

drawing text using 21

R

removeFontTrait method 23

S

sequential glyph layout 17
setAccessoryView: method 33
setFontManagerFactory: method 33
setFontMenu method 33
setFontPanelFactory: method 33
setSelectedFont method 21
smallSystemFontSize method 11
smallSystemFontSize method (Java) 13
stacked glyph layout 18
system fonts 9, 13
systemFontOfSize method (Java) 13
systemFontOfSize: method 9, 13
systemFontSize method 11
systemFontSizeForControlSize method (Java) 13
systemFontSizeForControlSize: method 11, 13

38
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

T

traitsOfFont: method 31

U

Unicode
as used in the Cocoa text system 15

useFont method 21
userFixedPitchFontOfSize method (Java) 13
userFixedPitchFontOfSize: method 13
userFontOfSize method (Java) 13
userFontOfSize: method 9, 13

W

weightOfFont: method 31

X

x-height 11
xHeight method 11

39
2008-02-08 | © 1997, 2008 Apple Inc. All Rights Reserved.

	Font Handling
	Contents
	Figures and Tables
	Introduction
	Creating a Font Object
	Getting Font Metrics
	Querying Aqua Font Variations
	Characters and Glyphs
	Calculating Glyph Layout
	Sequential glyph layout
	Overstruck glyph layout
	Stacked glyph layout

	Special Glyphs
	Recording the Font in a Selection
	Initiating Font Changes
	Creating a Font Manager
	Responding to Font Changes
	Converting Fonts Manually
	Examining Fonts
	Customizing the Font Conversion System
	Revision History
	Index
	A
	B
	C
	D
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

