
Run Loops
(Legacy)

Cocoa > Events & Other Input

2008-10-15



Apple Inc.
© 2001, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction to Run Loops 5

Organization of This Document 5

Run Loops 7

Input Modes 9

Getting the Run Loop 11

Adding Input Sources 13

Running the Run Loop 15

Document Revision History 17

3
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.



4
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.



Important: The information in this document is superseded by the information in Threading Programming
Guide. For information about how to configure a run loop for your custom threads, see that document instead.

Organization of This Document

This programming topic contains the follow articles:

 ■ “Run Loops” (page 7) provides an overview of what a run loop is and how it operates.

 ■ “Input Modes” (page 9) describes how input modes are used by run loops to categorize input sources.

 ■ “Getting the Run Loop” (page 11) describes how to obtain the current run loop object.

 ■ “Adding Input Sources” (page 13) describes how to add input sources to a run loop.

 ■ “Running the Run Loop” (page 15) describes the ways you enter the run loop.

Organization of This Document 5
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Introduction to Run Loops



6 Organization of This Document
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Introduction to Run Loops



Event-driven applications receive their events in a run loop. A run loop monitors sources of input to the
application and dispatches control when sources become ready for processing. When processing is complete,
control passes back to the run loop which then waits for the next event. Possible events include mouse and
keyboard events from the window system, the arrival of data on ports, the firing of timers, and distributed
object requests.

The NSRunLoop class declares the programmatic interface to objects that manage input sources, the objects
from which the run loop receives information. There are two general types of input sources to a run loop:
asynchronous (input arrives at unpredictable intervals) and synchronous (input arrives at regular intervals).
NSPort objects represent asynchronous input sources, and NSTimer objects represent synchronous input
sources.

Besides managing input sources, NSRunLoop also provides support for delayed actions that are event-driven
rather than timer driven. NSWindow uses delayed actions to perform screen updates on dirty views.
NSNotificationQueue uses them to post notifications queued with the modes NSPostASAP and
NSPostWhenIdle. You can request a delayed action with the NSRunLoop method
performSelector:target:argument:order:modes:; the indicated method is then sent to the target
at the start of the next run loop.

In general, your application does not need to either create or explicitly manage NSRunLoop objects. Each
NSThread, including the application’s main thread, has an NSRunLoop object automatically created for it.
However, only the main thread in an application using the Application Kit automatically runs its run loop;
additional threads (or Foundation Kit tools) have to explicitly run the run loop themselves. To access the
current thread’s default run loop, use the NSRunLoop class method currentRunLoop.

When an NSRunLoop runs, it polls each of the sources for the input mode to determine if any need processing.
Only one is processed per loop. If no input sources are processed, NSRunLoop waits for input from the
operating system. The run loop waits until input arrives or a timeout—provided when starting the run loop—is
exceeded. At this point, the NSRunLoop may either return or it may continue, depending on which method
was used to run the loop.

7
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Run Loops



8
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Run Loops



Run loops can be run in different modes. A mode, which is identified by an arbitrary string, defines a collection
of input sources that is monitored while the run loop is in that mode. For example, you can have one mode
that runs while the application is idle, waiting for all types of events to process, and another that only listens
to a particular port, waiting for a response from a distributed object request. You do not want to handle
keyboard events in the latter case, since the application has not finished processing an earlier event which
caused the distributed object request to be made.

NSRunLoop defines this input mode:

DescriptionInput mode

Use this mode to deal with input sources other than NSConnections. This is
the most commonly used run loop mode.

NSDefaultRunLoopMode

In addition, NSConnection defines this mode:

DescriptionInput mode

Use this mode to indicate NSConnection objects waiting for replies. You rarely
need to use this mode.

NSConnectionReplyMode

And NSApplication defines these modes:

DescriptionInput mode

Use this mode when waiting for input from a modal panel, such as
NSSavePanel or NSOpenPanel.

NSModalPanelRunLoopMode

Use this mode for event tracking loops.NSEventTrackingRunLoopMode

You associate a list of input sources with each input mode. Sources are added with either the NSRunLoop
methods addPort:forMode: or addTimer:forMode: or one of the convenience methods provided by
NSConnection, NSPort, and NSTimer. Input sources can be added to multiple input modes.

You create additional modes by specifying a new mode name when adding an input source to that mode.

9
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Input Modes



10
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Input Modes



When using an application built using the Application Kit, a run loop is created and run automatically. If you
need to access this run loop, use the NSRunLoop class method currentRunLoop.

Additional run loops are created for each additional NSThread and also can be accessed by invoking
currentRunLoop from each thread. These run loops do not have any input sources and are not running
when the thread begins. You must add input sources to them and start the run loop yourself.

Warning: The NSRunLoop class is generally not considered to be thread-safe and its methods should
only be called within the context of the current thread. You should never try to call the methods of an
NSRunLoop object running in a different thread, as doing so might cause unexpected results.

11
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Getting the Run Loop



12
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Getting the Run Loop



In most cases, input source objects add themselves to the current run loop as needed, but you can add them
manually to get greater control over their behavior.

The NSTimer class method scheduledTimerWithTimeInterval:invocation:repeats:, for example,
creates a new timer object and adds it to the NSDefaultRunLoopMode mode of the current run loop. If you
instead create the timer with timerWithTimeInterval:invocation:repeats:, you must add it manually
to the run loop with the NSRunLoop instance method addTimer:forMode:, which allows you to specify a
different mode.

NSPort objects are usually used as part of an NSConnection, which automatically adds its receive port to the
appropriate modes as needed. If you have a stand-alone port object, you can manually add it to the run loop
with the NSRunLoop method addPort:forMode:.

13
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Adding Input Sources



14
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Adding Input Sources



You have numerous ways in which to run the run loop. Using run, control is passed to the run loop until all
input sources in the NSDefaultRunLoopMode mode have been removed; if there are no input sources, the
run loop returns immediately:

[[NSRunLoop currentRunLoop] run];

To specify a time at which the run loop should stop processing events and return control, use runUntilDate::

[[NSRunLoop currentRunLoop] runUntilDate:aDate];

To specify a mode other than NSDefaultRunLoopMode, use runMode:beforeDate:. This method runs
the run loop only once; it returns either after it processes a single input source or the beforeDate date is
reached. To run any mode continuously, invoke runMode:beforeDate: in a loop with a date far in the
future:

while ( [[NSRunLoop currentRunLoop] runMode:NSModalPanelRunLoopMode
                beforeDate:[NSDate distantFuture]] );

The return value of runMode:beforeDate: indicates whether the run loop is still running; if the run loop
is empty (in other words, it has no input sources) runMode:beforeDate: returns NO and the while loop
exits.

Finally, to conditionalize the run loop so that you can define an exit condition, include a test in the loop
surrounding the runMode:beforeDate: invocation:

double resolution = 1.0;
BOOL endRunLoop = NO;
BOOL isRunning;
do {
    NSDate* next = [NSDate dateWithTimeIntervalSinceNow:resolution];
    isRunning = [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode
                beforeDate:next];
} while (isRunning && !endRunLoop);

In this snippet, the endRunLoop variable is the test condition indicating when to break out of the run loop.
It may be either a global variable or an instance variable that is set to YES from a run loop callout when it is
time to exit the run loop.

Note:  Regardless of the date you specify in runMode:beforeDate: and runUntilDate:, a run loop with
nothing to do (that is no sources from which to receive input) exits immediately. You must add the input
sources to the run loop mode before you start the run loop. Other parts of the system may add their own
sources to a particular run loop mode, but do not depend on this always being the case. Add an empty
NSPort to a run loop if you need to guarantee that it does not exit immediately

15
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Running the Run Loop



16
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Running the Run Loop



This table describes the changes to Run Loops.

NotesDate

This document is now replaced by the Threading Programming Guide.2008-10-15

Added a warning about NSRunLoop thread safety. Fixed minor bugs.2005-01-11

Corrected error in sample code in “Running the Run Loop” (page 15).2002-11-12

Revision history was added to existing topic.

17
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Document Revision History



18
Legacy Document  |  2008-10-15   |   © 2001, 2008 Apple Inc. All Rights Reserved.

Document Revision History


	Run Loops
	Contents
	Introduction
	Run Loops
	Input Modes
	Getting the Run Loop
	Adding Input Sources
	Running the Run Loop
	Revision History


