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NSMatrix is a class used for creating groups of NSCells that work together in various ways.

Organization of This Document

This programming topic contains the following articles:

 ■ “About Matrices” (page 7) provides basic information about matrices

 ■ “Matrix Selection Modes” (page 9) describes how the cells in a matrix behave when the matrix is tracking
the mouse.

 ■ “Managing the Matrix’s Cells” (page 11) discusses how to add and remove cells programatically.

 ■ “Setting a Matrix’s Appearance” (page 13) discusses how to change the appearance of a matrix and its
cells.

See Also

If you want to group several elements visually, see the Boxes programming topic.
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NSMatrix is a class used for creating groups of NSCell objects (or simply, cells or cell objects) that work
together in various ways. It includes methods for arranging cells in rows and columns, either with or without
space between them. Cell objects in an NSMatrix are numbered by row and column, each starting with 0;
for example, the top left cell would be at (0, 0), and the cell that’s second down and third across would be
at (1, 2).

The cell objects that an NSMatrix contains are usually of a single subclass of NSCell, but they can be of
multiple subclasses of NSCell. The only restriction is that all cell objects must be the same size. An NSMatrix
object can be set up to create new cell objects by copying a prototype object, or by allocating and initializing
instances of a specific NSCell class. Cells created by or added to an NSMatrix are retained by the matrix.

An NSMatrix object (or, simply, matrix) adds to the target-action paradigm implemented by cell objects
(specifically, cells that inherit from NSActionCell) by maintaining its own target and action in addition to
the targets and actions of its cell objects. A matrix's target and action are used if one of its cells doesn't have
a target or action set. This design allows for common usage patterns, including the following:

 ■ If none of the cells of the NSMatrix object has either target or action set, the target and action of the
NSMatrix object is always used.

 ■ If only the actions of each of the cells is set, they share the target specified by their NSMatrix object,
but send different messages to it.

 ■ If only the targets of each of the cells is set, they all send the action message specified by the NSMatrix
object, but to different targets.

When the user double-clicks an NSMatrix object, it can dispatch a separate action message (the selector
for which is set via setDoubleAction:); this double-click action message is in addition to any cell's single-click
action message. The double-click action of an NSMatrix object is always sent to its target.
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Since users frequently press the mouse button while the cursor is within the NSMatrix and then drag the
mouse around, NSMatrix offers several methods that determine how it tracks the mouse. setMode: lets you
choose among four “selection modes” that broadly determine how the matrix tracks the mouse. The
setAllowsEmptySelection: and setSelectionByRect:methods let you refine how those modes work.

The setMode: method lets you choose one of these four modes:

 ■ NSTrackModeMatrix is the most basic mode of operation. In this mode the NSCells are asked to track
the mouse with trackMouse whenever the mouse is inside their bounds. No highlighting is performed.
An example of this mode might be a “graphic equalizer” NSMatrix of sliders, where moving the mouse
around causes the sliders to move under the mouse.

 ■ NSHighlightModeMatrix is a modification of NSTrackModeMatrix. In this mode, an NSCell is
highlighted before it’s asked to track the mouse, then unhighlighted when it’s done tracking. This is
useful for multiple unconnected NSCells that use highlighting to inform the user that they are being
tracked (like push-buttons and switches).

 ■ NSRadioModeMatrix is used when you want no more than one NSCell to be selected at a time. It can
be used to create a set of buttons of which one and only one is selected. (There’s also the option of
allowing no button to be selected.) Any time an NSCell is selected, the previously selected NSCell is
unselected. This is most commonly used with groups of radio buttons. You might also use it with a group
of push buttons that you want to behave like radio buttons.

 ■ NSListModeMatrix is the opposite of NSTrackModeMatrix. NSCells are highlighted, but don’t track
the mouse. This mode can be used to select a range of text values, for example. NSMatrix supports the
standard multiple-selection paradigms of dragging to select, using the Shift key to make continuous
selections, and using the Command key to make discontinuous selections. Browsers (as used, for instance,
by NSOpenPanel objects) use this mode.

setAllowsEmptySelection: has an effect only if the selection mode is NSRadioModeMatrix. It lets you
choose whether, in a group of radio buttons, it’s allowed for none of them to be on. For example, say the
user clicks on the one radio button in a matrix that’s on. If allowsEmptySelection is YES, that button turns
off and none of the radio buttons is on. If allowsEmptySelection is NO, the button remains on, and the
only way to turn it off is to click another button.

setSelectionByRect: sets whether the user can select a range of cells by dragging the mouse. If
isSelectionByRect is NO, dragging over a range selects only the last cell only. If isSelectionByRect is
YES, dragging over a range selects all the cells the user drags over.
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These methods dynamically add and remove columns:

 ■ To add a column of empty cells beyond the last column, use addColumn.

 ■ To add a column of filled cells beyond the last column, use addColumnWithCells:.

 ■ To insert a column of empty cells at a specified location, use insertColumn:.

 ■ To insert a column of filled cells at a specified location, use insertColumn:withCells:.

 ■ To remove a column of cells, use removeColumn:.

These methods dynamically add and remove rows:

 ■ To add a row of empty cells below the last row, use addRow.

 ■ To add a row of filled cells below the last row, use addRowWithCells:.

 ■ To insert a row of empty cells at a specified location, use insertRow:.

 ■ To insert a row of filled cells at a specified location, use insertRow:withCells:.

 ■ To remove a row of cells, use removeRow:.

This method creates individual cells:

 ■ To replace an specific cell with a new cell, use putCell:atRow:column:.

This method retrieves information about individual cells:

 ■ To get the frame of a specified cell, use cellFrameAtRow:column:.

These methods retrieve information about the matrix:

 ■ To get the numbers of rows and columns, use numberOfColumns and numberOfRows.

These methods locate particular cells:

 ■ To find a cell at a particular location, use cellAtRow:column:.

 ■ To find a cell with a particular tag, use cellWithTag:.

 ■ To get a list of all the cells, use cells.

These methods manage the selection:

 ■ To retrieve the current selection, use selectedCell or selectedCells.

 ■ To select a particular cell, use selectCellAtRow:column: or selectCellWithTag.
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 ■ To select a range of cells, use selectAll: or setSelectionFrom:to:anchor:highlight:.

 ■ To deselect cells, use deselectAllCells or deselectSelectedCell.

 ■ To retrieve the column and row number for the selection, use selectedColumn and selectedRow.

 ■ To select the text in a cell (for a matrix that contains text fields), use selectTextAtRow:column:.
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These methods control the sizes of the matrix’s cells:

 ■ To set the height and width of each cell, use setCellSize:.

 ■ To set the amount of space that surrounds each cell, use setIntercellSpacing:.

These methods control whether the matrix displays its background. If the matrix’s background isn’t displayed,
what’s behind it shows through. If the matrix shows its background but the cells don’t, the matrix’s background
shows through the cells.

 ■ To set whether the matrix draws its background, use setDrawsBackground:.

 ■ To set whether the matrix’s cells draw their backgrounds, use setDrawsCellBackground:.

These methods control the color of the matrix and its cells:

 ■ To set the background color of each cell, use setCellBackgroundColor:.

 ■ To set the background color of the space between each cell, use setBackgroundColor:.
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This table describes the changes to Matrix Programming Guide for Cocoa.

NotesDate

Clarified semantics of double-click actions.2006-11-07

Clarified interaction of NSMatrix action and target and those of its cells. Also
corrected an error about modifier keys used for selections.

2006-04-04

Fixed bug and changed title from "Matrices."2005-07-07

Reorganized Introduction. Corrected typos.2004-06-28

Revision history was added to existing topic.2002-11-12
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