
Application Menu and Pop-up List
Programming Topics for Cocoa
Cocoa > User Experience

2007-06-26

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Application Menus and Pop-up Lists 7

Organization of This Document 7

How Menus Work 9

Menu Basics 9
Application Menus 10
Pop-Up Buttons and Pull-Down Lists 10
Contextual Menus 10

Using Menu Item States 13

Enabling Menu Items 15

Automatic Menu Enabling 15
Implementing validation 16
Choosing validateMenuItem: or validateUserInterfaceItem: 17

Manual Menu Enabling 17

Removing a Menu 19

Setting a Menu Item’s Key Equivalent 21

Managing Pop-Up Buttons and Pull-Down Lists 23

Pop-Up Buttons 23
Pull-Down Lists 23
Managing Pop-Up Button Items 24
Pop-Up Button Actions 24

Displaying a Contextual Menu 25

Views in Menu Items 27

Document Revision History 29

3
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

4
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Listings

Removing a Menu 19

Listing 1 Removing a menu from the menu bar 19

Displaying a Contextual Menu 25

Listing 1 Returning the default menu 25
Listing 2 Displaying a dynamically modified contextual menu 26
Listing 3 Displaying a contextual menu upon receiving a left-mouse event 26

5
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

6
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

This document describes how menus and popup lists work and how you can use them.

Organization of This Document

This programming topic contains the following articles:

 ■ “How Menus Work” (page 9) describes Cocoa’s classes for managing menus.

 ■ “Enabling Menu Items” (page 15) describes how to enable and disable menu items.

 ■ “Using Menu Item States” (page 13) describes how to check and uncheck a menu item by changing its
state.

 ■ “Removing a Menu” (page 19) describes how to programmatically remove a menu from the menu bar.

 ■ “Setting a Menu Item’s Key Equivalent” (page 21) describes how to assign a key equivalent to a menu
item.

 ■ “Managing Pop-Up Buttons and Pull-Down Lists” (page 23) describes how to work with pop-up buttons
and pull-down lists.

 ■ “Displaying a Contextual Menu” (page 25) describes how to display a contextual menu associated with
a view.

 ■ “Views in Menu Items” (page 27) describes how you can provide a menu item with a custom view.

Organization of This Document 7
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Introduction to Application Menus and
Pop-up Lists

8 Organization of This Document
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Introduction to Application Menus and Pop-up Lists

The classes NSMenu and NSMenuItem are the basis for all types of menus. An instance of NSMenu manages
a collection of menu items and draws them one beneath another. An instance of NSMenuItem represents a
menu item; it encapsulates all the information its NSMenu object needs to draw and manage it, but does no
drawing or event-handling itself. Generally, you use Interface Builder to create and modify any type of menu.
However, NSMenu and NSMenuItem provide you with methods to change your application's menus
dynamically.

Menu Basics

Cocoa gives you a core set of classes that handle menus no matter where they appear. Menus commonly
appear in various parts of the user interface:

 ■ The application’s menu bar. This is at the top of the screen.

 ■ A pop-up menu. This can appear anywhere in a window.

 ■ The status bar. This begins at the right side of the menu bar (to the left of Menu Extras and the menu
bar clock) and grows to the left as items are added to it.

 ■ Contextual menus. These appear when the user right-clicks or left-Control-clicks an item.

 ■ The Dock menu. A menu for each dock icon appears when the user right-clicks or left-Control-clicks the
icon, or when the user left-presses the mouse pointer on the icon.

The classes NSMenu and NSMenuItem are the basis for all types of menus. An instance of NSMenu manages
a collection of menu items and draws them one beneath another. An instance of NSMenuItem represents a
menu item; it encapsulates all the information its NSMenu object needs to draw and manage it, but does no
drawing or event-handling itself.

Menu views are capable of having one attached menu view at any given time. An attached menu view
displays the contents of a submenu and is typically positioned next to the menu item with which it is
associated.

NSMenuItem lets you set the titles, actions, targets, tags, images, enabled states, and similar attributes of
individual menu items, as well as to obtain the current values of these attributes. Whenever an attribute for
a menu item changes, it notifies its associated NSMenu with the itemChanged: method.

You typically use Interface Builder to create and modify any type of menu, so often there is no need to write any
code. However, NSMenu and NSMenuItem provide you with methods to change your application's menus
dynamically, in particular to allow you to enable and disable existing menu items (see “Enabling Menu
Items” (page 15)).

Menu Basics 9
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

How Menus Work

Application Menus

All of an application’s menus in the menu bar are owned by one NSMenu instance that’s created by the
application when it starts up. You can retrieve this main menu with the NSApplicationmethod mainMenu.

Application menus drop down from the menu bar when the user clicks in a menu’s title, and submenus
appear to the right or left of their menus, depending on the available screen space.

Pop-Up Buttons and Pull-Down Lists

Pop-up buttons are implemented by the NSPopUpButton class. You can choose from a pop-up list or a
pull-down list, with the setPullsDown: method:

 ■ A pop-up list lets the user choose one option among several and generally displays the option that was
last selected.

You should use a pop-up list to select items from a medium-sized set of options, approximately 5 to 12
items. Generally, smaller lists are better handled with a group of radio buttons; and larger lists, with a
scrolling list. However, if space is at a premium a pop-up list may be appropriate for other list sizes. For
example, a pop-up list displaying various zoom factors can easily fit next to a scroll bar at the bottom of
a window.

 ■ A pull-down list is generally used for selecting commands in a specific context.

An NSPopUpButton object contains an NSPopUpButtonCell object. The button contains the button’s data,
and the cell controls the button’s appearance. Generally, you’ll invoke methods on the NSPopUpButton
object, although most of the work is handled by the NSPopUpButtonCell instance. Most of NSPopUpButton‘s
methods are convenience methods which simply invoke the same method on the cell.

To implement its menu, the button cell contains an NSMenu object, which in turn contains several NSMenuItem
objects, one for each item in the menu. Avoid invoking methods on the NSMenu object directly, but instead
invoke methods on the NSPopUpButton instance, which may need to do some housekeeping before invoking
the appropriate methods on the menu. However, you can retrieve the menu with the NSPopUpButton
method menu. The NSPopUpButton methods you use most often are the methods that tell you which item
is selected.

Generally, you create an NSPopUpButtonwith Interface Builder. You can define the NSPopUpButton object’s
target and action, as well as the targets and actions of each item in the button’s list, programmatically or
through Interface Builder. For more details about how to use Interface Builder, see Interface BuilderUserGuide.

Contextual Menus

You can attach a contextual menu to any NSView object. When the user Control-clicks on that view, the menu
appears. To assign a menu to a view, use setMenu:, which NSView inherits from NSResponder.

10 Application Menus
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

How Menus Work

Your subclass can define a menu that’s used for all instances by implementing the defaultMenu class
method. To change the menu displayed based on the mouse event, override the menuForEvent: instance
method. This allows the view clicked to display different menus based on the location of the mouse and of
the view’s state, or to change or enable individual menu items based on the commands available for the
view or for that region of the view.

Contextual Menus 11
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

How Menus Work

12 Contextual Menus
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

How Menus Work

Menu items can have a state: on (NSOnState), off (NSOffState), or mixed (NSMixedState). These are useful
if the menu item represents a setting in your application. The menu item automatically displays its state, as
follows. If the state is NSOnState, a checkmark appears beside it. If the state is NSMixedState, a dash appears
beside it. If the state is NSOffState, nothing appears beside it. To set the menu item’s state, use setState:.

The mixed state is useful if the setting is true for only some items in the application or the current selection.
For example, if some of the selected characters in a word processor document are italic and others are not,
the Italic menu item would have a dash beside it. If the menu item is in the mixed state, then choosing it
should cycle through all three states. Going back to the mixed state should leave the selection as it was.

You can use states to implement a group of mutually exclusive menu items, much like a group of radio
buttons. For example, a game could have three menu items to show the level of play: Beginner, Intermediate,
and Advanced. To implement a such a group, create one action message that they all use. This action message
changes the appropriate setting, and then reflects that change by unchecking the currently checked item
and checking the newly selected item.

In an action method that responds to all commands in the group use setState: to uncheck the menu item
that is currently marked:

[curItem setState:NSOffState];

Then mark the newly selected command:

[sender setState:NSOnState];

13
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Using Menu Item States

14
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Using Menu Item States

By default, every time a user event occurs, NSMenu automatically enables and disables each visible menu
item. You can also force a menu to update using NSMenu’s update method.

There are two ways to enable menus:

 ■ “Automatic Menu Enabling” (page 15): NSMenu updates every menu item whenever a user event occurs.
A menu item is enabled if NSMenu can find an appropriate object that responds to the menu item’s
action. If you want a menu item to remain disabled even though an object responds to the menu item’s
action, define a validateMenuItem: method for that object.

 ■ “Manual Menu Enabling” (page 17): You use setEnabled: to enable or disable every menu item
individually.

To choose a system, use NSMenu’s setAutoenablesItems: with an argument of YES (for automatic menu
enabling) or NO (for manual menu enabling). Automatic menu enabling is on by default.

Automatic Menu Enabling

When you use automatic menu enabling, NSMenu updates the status of every menu item whenever a user
event occurs. To update the status of a menu item, NSMenu first determines the target of the item then
determines whether the target implements validateMenuItem: or validateUserInterfaceItem: (in
that order). In more detail:

 ■ If the menu item’s target is set, then NSMenu first checks to see if that object implements the item’s
action method. If it does not, then the item is disabled. If the target does implement the item’s action
method, NSMenu first checks to see if that object implements validateMenuItem: or
validateUserInterfaceItem: method. If it does not, then the menu item is enabled. If it does, then
the enabled status of the menu item is determined by the return value of the method.

 ■ If the menu item’s target is not set (that is, if it is nil—typically if the menu item is connected to First
Responder) and the NSMenu object is not a contextual menu, then NSMenu uses the responder chain
(described in About the Responder Chain) to determine the target. If there is no object in the responder
chain that implements the item’s action, the item is disabled.

If there is an object in the responder chain that implements the item’s action, NSMenu then checks to
see if that object implements the validateMenuItem: orvalidateUserInterfaceItem: method.
If it does not, then the menu item is enabled. If it does, then the enabled status of the menu item is
determined by the return value of the method.

 ■ If the menu item’s target is not set and the NSMenu object is a contextual menu, NSMenu goes through
the same steps as before but the search order for the responder chain is different:

1. The responder chain for the window in which the view that triggered the context menu resides,
starting with the view.

Automatic Menu Enabling 15
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Enabling Menu Items

2. The window itself.

3. The window’s delegate.

4. The NSApplication object.

5. The NSApplication object’s delegate.

Implementing validation

As noted above, before it is displayed a menu item checks to see if its target implements validateMenuItem:
or validateUserInterfaceItem:. If it does, then the enabled status of the menu item is determined by
the return value of the method. You can therefore conditionally enable or disable a menu item by
implementing either of these methods in the menu’s target (see “Choosing validateMenuItem: or
validateUserInterfaceItem:” (page 17) to determine which is the most appropriate). The implementation
strategy is the same whichever you choose:

1. To decide whether or not an item should be enabled, you need to know what it will do if the user selects
it. You typically first therefore check to see what action is associated with the item (you need to test for
each of the actions you’re interested in).

Checking the action rather than, say, the title makes sure that: (a) your code works with different
localizations and is robust against changes in the title due to changes in the user interface, and (b) you
avoid the fragility of having to remember to use the same tag for each user interface element that invokes
the same method on the target. (In the case of validateUserInterfaceItem:, you can only check
the action or the tag.)

2. If the action is something you’re interested in, then return a Boolean value appropriate for the current
context.

3. If the action is not something you’re interested in, then either:

a. If your superclass implements the validation method (for example, NSDocument and
NSObjectController implementvalidateUserInterfaceItem:, andNSObjectController
implements validateMenuItem:), invoke super’s implementation; otherwise

b. Return a default value (typically YES).

The following example illustrates the implementation of validateUserInterfaceItem: in a subclass of
NSDocument.

- (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)anItem
{
 SEL theAction = [anItem action];

 if (theAction == @selector(copy:))
 {
 if (/* there is a current selection and it is copyable */)
 {
 return YES;
 }

16 Automatic Menu Enabling
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Enabling Menu Items

 return NO;
 } else if (theAction == @selector(paste:))
 {
 if (/* there is a something on the pasteboard we can use and
 the user interface is in a configuration in which it makes sense
 to paste */)
 {
 return YES;
 }
 return NO;
 } else
 /* check for other relevant actions ... */
 }
 // subclass of NSDocument, so invoke super's implementation
 return [super validateUserInterfaceItem:anItem];
}

Choosing validateMenuItem: or validateUserInterfaceItem:

In general, you should use validateUserInterfaceItem: instead of validateMenuItem: since the
former will also work for toolbar items which have the same target and action. If, however, there is additional
work that you want to do that is specific to a menu item, use validateMenuItem:—for example,
validateMenuItem: is also a good place to toggle titles or set state on menu items to make sure they're
always correct.

Here is an example of using validateUserInterfaceItem: to override automatic enabling. If your
application has a Copy menu item that sends the copy: action message to the first responder, that menu
item is automatically enabled any time an object that responds to copy:, such as an NSText object, is the
first responder of the key or main window. If you create a class whose instances might become the first
responder, and which doesn’t support copying of everything it allows the user to select, you should implement
validateUserInterfaceItem: in that class. validateUserInterfaceItem: should then return NO if
items that can’t be copied are selected (or if no items are selected) and YES if all items in the selection can
be copied. By implementing validateUserInterfaceItem::, you can have the Copy menu item disabled
even though the target object does implement the copy: method. If a class never permits copying, then
you simply omit an implementation of copy: in that class, and the Copy menu item is disabled automatically
whenever an instance of that class is the first responder.

Manual Menu Enabling

When you use manual menu enabling, you use setEnabled: to enable or disable every menu item
individually. None of the menu items, even those controlled by Application Kit classes like NSTextView, are
updated automatically.

To turn on manual menu enabling, use NSMenu’s setAutoenablesItems: with an argument of NO.

Important: If you send a setEnabled: message when automatic updating is on, other objects might undo
what you have done after another user event occurs. Hence you can never be sure that the menu item will
remain the way you set it.

Manual Menu Enabling 17
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Enabling Menu Items

18 Manual Menu Enabling
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Enabling Menu Items

To remove a menu item from a menu, you send removeItem: or removeItemAtIndex: to the NSMenu
object managing the menu item.

To remove an entire menu from the menu bar, you use the same technique. The menus in the menu bar are
themselves items of another menu: the root menu, or main menu. To get the main menu, send mainMenu
to NSApp, the global application instance. Then send removeItem: to the main menu; or find the index of
the menu to be removed and send removeItemAtIndex: to the main menu. Listing 1 illustrates the latter
procedure.

Listing 1 Removing a menu from the menu bar

- (IBAction)removeMenu:(id)sender {
 NSMenu* rootMenu = [NSApp mainMenu];
 // sender is an NSMenuItem
 [rootMenu removeItemAtIndex:[rootMenu indexOfItemWithSubmenu:[sender menu]]];
}

19
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Removing a Menu

20
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Removing a Menu

You can assign a keyboard equivalent to an NSMenuItem, so that when the user types a character the menu
item sends its action. The keyboard equivalent is defined in two parts. First is the basic key equivalent, which
must be a Unicode character that can be generated by a single key press without modifier keys (Shift excepted).
It is also possible to use a sequence of Unicode characters so long as the user’s key mapping is able to generate
the sequence with a single key press. The basic key equivalent is set using setKeyEquivalent: and returned
by keyEquivalent. The second part defines the modifier keys that must also be pressed. This is set using
setKeyEquivalentModifierMask: and returned by keyEquivalentModifierMask. The modifier mask
by default includes NSCommandKeyMask, and may also include the masks for the Shift, Option, or other
modifier keys. Specifying keyboard equivalents in two parts allows you to define a modified keyboard
equivalent without having to know which character is generated by the basic key plus the modifier. For
example, you can define the keyboard equivalent Command-Option-f without having to know which character
is generated by typing Option-f.

Note: To specify the Option key, use the constant NSAlternateKeyMask.

Certain methods in NSMenuItem can override assigned keyboard equivalents with those the user has specified
in the defaults system. The setUsesUserKeyEquivalents: method turns this behavior on or off, and
usesUserKeyEquivalents returns its status. To determine the user-defined key equivalent for an
NSMenuItem object, invoke the userKeyEquivalent instance method. If user-defined key equivalents are
active and an NSMenuItem object has a user-defined key equivalent, its keyEquivalent method returns
the user-defined key equivalent and not the one set using setKeyEquivalent:.

21
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Setting a Menu Item’s Key Equivalent

22
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Setting a Menu Item’s Key Equivalent

Pop-up buttons and pull-down lists are both implemented by the NSPopUpButton class. You can choose
from a pop-up list or a pull-down list, with the setPullsDown: method. A pop-up list lets the user choose
one option among several and generally displays the option that was last selected. A pull-down list is generally
used for selecting commands in a specific context.

Pop-Up Buttons

A pop-up button displays several options and generally displays the option that was last selected. The
following illustration shows a pop-up button before and while its menu is displayed. (Note that “Language:”
isn’t part of the pop-up button.)

When the pop-up menu is displayed, the pop-up button’s cell displays the list on top of the popup button.
The currently selected choice appears in the same location as the popup button with the other items arranged
above or below the current selection according to the order of the cell’s menu. When the popup list is
dismissed, the title of the popup button changes to match the title of the currently selected item.

Pull-Down Lists

You generally use a pull-down for selecting commands in a specific context. The following illustration shows
a pull-down list before and while its menu is displayed.

You can think of a pull-down list as a compact form of menu. A pull-down list’s display isn’t affected by the
user’s actions, and a pull-down list usually displays the first item in the list. When the commands only make
sense in the context of a particular display, you can use a pull-down list in that display to keep the related
actions nearby and to keep them out of the way when that display isn’t visible.

Pop-Up Buttons 23
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Managing Pop-Up Buttons and Pull-Down
Lists

Pulldown lists typically display themselves adjacent to the popup button in the same way a submenu is
displayed next to its parent item. Unlike popup lists, the title of a popup button displaying a pulldown list is
not based on the currently selected item and thus remains fixed unless you change using the cell’s setTitle:
method.

While popup lists are displayed right over their button, the location of the pulldown list depends on the
preferred edge, set through the cell’s setPreferredEdge: method. By default, the list appears under the
cell. When drawing the list, the cell does its best to honor the preferred edge if there is enough space on the
user’s screen. If there is not enough space, the cell positions the list somewhere else.

Note that in a pull-down list, the first item is stored at index 1, not index 0 as is the case with pop-up lists or
ordinary menus. This is done so that the pull-down list’s title can be stored at index 0 if necessary. Even when
the title is stored at index 0, always change the buttons title with the setTitle: method.

Managing Pop-Up Button Items

In many cases, it is easiest to populate a pop-up button using Cocoa bindings (see CocoaBindings Programming
Topics). You typically bind the contentObjects value of the button to the arrangedObjects of an array
controller, and the contentValues value of the button to the same path but adding as the final path
component the key of the attribute you want to use as the button title. For more details, see NSPopUpButton
Bindings.

You can also modify a pop-up button programmatically. To add items to a pop-up button cell’s list, use the
methods addItemWithTitle:, addItemsWithTitles:, and insertItemWithTitle:atIndex:. These
methods create or replace a menu item with the given title and assign it a default action and key equivalent.
Once the item is added to the list, use NSMenuItem methods to modify the attributes of the item. To remove
one or more items, use the removeItemWithTitle:, removeItemAtIndex:, or removeAllItemsmethod.

Pop-Up Button Actions

There are two ways to assign an action method to a pop-up button. You can assign actions to each menu
item in the pop-up. Or you can assign an action directly to the pop-up button, and it’s invoked whenever
the user selects any menu item that doesn’t have its own action. The second way is especially useful with
pop-up lists.

Here’s a sample action for a pop-up menu. It’s part of a controller object that sets an instance variable named
language to an constant corresponding to the item the user has chosen. You use Interface Builder to create
the NSPopUpButton object, configure it as a pop-up list, and add items to it—setting the tags of the menu
items to equal the corresponding value in the enum. The code you write might look like this:

typedef enum _languageValue
{
 English = 1, French, German, Spanish, Swedish
} languageValue;

- (void)setLanguageFrom:(id)sender
{
 [self setLanguage:[[sender selectedItem] tag]];
}

24 Managing Pop-Up Button Items
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Managing Pop-Up Buttons and Pull-Down Lists

The Application Kit interprets right-mouse-down events and left-mouse-down events modified by the Control
key as commands to display a contextual menu for the clicked view. Your view subclasses have several
alternative approaches for displaying a contextual menu. If the view’s menu is to remain unchanged regardless
of context, you can do one of three simple procedures:

 ■ Configure in Interface Builder: Add a standalone (rootless) menu to a nib file and customize it to suit,
including the specification of targets and actions. Then connect it to your custom view’s menu outlet,
which is inherited from NSView.

 ■ Programmatically assign a generic menu: Override the defaultMenu class method of NSView to create
and return a menu that’s common to all instances of your subclass. (See Listing 1 (page 25) for a sample
implementation of this method.) This default menu is also accessible via the NSResponder menumethod
unless some other NSMenu object has been associated with the view.

 ■ Programmatically assign an instance-specific menu: In the custom view’s initWithFrame: or
awakeFromNibmethods, create the menu and associate it with the view by using the setMenu:method
(NSResponder).

After you complete any of these procedures, the Application Kit displays the contextual menu whenever the
user left-Control-clicks or right-clicks the view. Note that the Application Kit automatically also validates the
menu items of contextual menus, unless you request it not to.

However, you might want the view’s contextual menu to change based on where the mouse click occurs in
the view or on the current state of the view; you may want to add, delete, enable, or disable menu items or
change some item attributes to reflect the current context. There is more than one way to accomplish this,
but a good approach is to override the defaultMenu and menuForEvent: methods of NSView. In the
former method implementation, create and return an NSMenu object that is the “base” contextual menu,
suitable for most contexts. Be sure to create menu items for the menu that have all necessary attributes
(including action selector and possibly target object). Listing 1 shows how you might do this.

Listing 1 Returning the default menu

+ (NSMenu *)defaultMenu {
 NSMenu *theMenu = [[[NSMenu alloc] initWithTitle:@"Contextual Menu"]
autorelease];
 [theMenu insertItemWithTitle:@"Beep" action:@selector(beep:) keyEquivalent:@""
 atIndex:0];
 [theMenu insertItemWithTitle:@"Honk" action:@selector(honk:) keyEquivalent:@""
 atIndex:1];
 return theMenu;
}

For contextual-menu events, the Application Kit invokes the menuForEvent: method if your view subclass
implements it. In your implementation of this method, test for a certain condition (event type, mouse location,
view state, and so on) and if that condition holds modify and return the default menu. Otherwise, return the
default menu unchanged. Listing 2 gives an example that tests for a mouse click in a certain area and returns
a modified contextual menu if that test holds true.

25
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Displaying a Contextual Menu

Listing 2 Displaying a dynamically modified contextual menu

- (NSMenu *)menuForEvent:(NSEvent *)theEvent {
 NSPoint curLoc = [self convertPoint:[theEvent locationInWindow] fromView:nil];
 NSRect magic_square = NSMakeRect(0.0, 0.0, 10.0, 10.0);

 if ([self mouse:curLoc inRect:magic_square]) {
 NSMenu *theMenu = [[self class] defaultMenu];
 [theMenu insertItemWithTitle:@"Wail" action:@selector(wail:)
keyEquivalent:@"" atIndex:[theMenu numberOfItems]-1];
 return theMenu;
 }
 return [[self class] defaultMenu];
}

If you want your view to display a contextual menu in response to events other than right-mouse clicks and
left-mouse-Control clicks, you can directly handle the event message in the appropriate NSResponder
method. For example, if you want users to be able to left-click an image view to get a menu of export options,
you would override the mouseDown: method. In your implementation of the method, create a menu and
then invoke the NSMenu class method popUpContextMenu:withEvent:forView:, passing in the event
object related to the mouse-down event and the view owning the contextual menu. Listing 3 illustrates this
approach.

Listing 3 Displaying a contextual menu upon receiving a left-mouse event

- (void)mouseDown:(NSEvent *)theEvent {

 NSMenu *theMenu = [[[NSMenu alloc] initWithTitle:@"Contextual Menu"]
autorelease];
 [theMenu insertItemWithTitle:@"Beep" action:@selector(beep:) keyEquivalent:@""
 atIndex:0];
 [theMenu insertItemWithTitle:@"Honk" action:@selector(honk:) keyEquivalent:@""
 atIndex:1];

 [NSMenu popUpContextMenu:theMenu withEvent:theEvent forView:self];
}

Contextual menus, including any menu you pop up with popUpContextMenu:withEvent:forView:,
automatically insert menu items from any contextual menu plug-ins that the user has installed into the menu.
A contextual menu plug-in, which is CFPlugIn bundle installed in a Library/Contextual Menu Items
directory at the appropriate level of the system, enables applications and other forms of software to extend
the list of commands found on contextual menus such as the Finder’s. The applications do not have to be
running for their items to appear. If you are trying to programmatically display a menu, you might not want
those items to appear. The preferred approach for programmatically displaying a non-contextual menu is to
create an NSPopUpButtonCell object, set its menu, and then call send a attachPopUpWithFrame:inView:
message to the pop-up button cell.

Note: For information on how to create a CFPlugIn plug-in, see Plug-ins. For information on the Carbon
Menu Manager functions you must implement for a contextual menu plug-in, see Menu Manager Reference.

26
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Displaying a Contextual Menu

In Mac OS X v10.5, the NSMenuItem class is enhanced to allow you to include views in the menu item. This
article describes the feature.

In Mac OS X v10.5, you can set the view for a menu item using NSMenuItem's setView: method (by default,
a menu item has a nil view)—note, though, that menu item views are not supported in the Dock menu.
The following code fragment illustrates how you can create a new menu and add it to your application’s
menu bar

NSMenuItem* menuBarItem = [[NSMenuItem alloc]
 initWithTitle:@"Custom" action:NULL keyEquivalent:@""];
// title localization is omitted for compactness
NSMenu* newMenu = [[NSMenu alloc] initWithTitle:@"Custom"];
[menuBarItem setSubmenu:newMenu];
[newMenu release];
[[NSApp mainMenu] insertItem:menuBarItem atIndex:3];
[menuBarItem release];

/*
 Assume that myView1 and myView2 are existing view objects;
 for example, you may have created them in a NIB file.
 */
NSMenuItem* newItem;
newItem = [[NSMenuItem alloc]
 initWithTitle:@"Custom Item 1"
 action:@selector(menuItem1Action:)
 keyEquivalent:@""];
[newItem setView: myView1];
[newItem setTarget:self];
[newMenu addItem:newItem];
[newItem release];

newItem = [[NSMenuItem alloc]
 initWithTitle:@"Custom Item 2"
 action:@selector(menuItem2Action:)
 keyEquivalent:@""];
[newItem setView: myView2];
[newItem setTarget:self];
[newMenu addItem:newItem];
[newItem release];

A menu item with a view does not draw its title, state, font, or other standard drawing attributes, and assigns
drawing responsibility entirely to the view. Keyboard equivalents and type-select continue to use the key
equivalent and title as normal.

A view in a menu item can receive all mouse events as normal, but keyboard events are not supported.
During “non-sticky” menu tracking (that is, manipulating menus with the mouse button held down), a view
in a menu item receives mouseDragged: events.

27
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Views in Menu Items

You can add animation to a menu item view as you would any other view (you set a timer to call
setNeedsDisplay:ordisplay), but because menu tracking occurs in theNSEventTrackingRunLoopMode,
you must add the timer to the run loop in that mode.

When the menu is opened, the view is added to a window; when the menu is closed the view is removed
from the window. If you are using a custom view, you can therefore override viewDidMoveToWindow as a
convenient place to start or stop animation, reset tracking rectangles and so on, but you should not attempt
to move or otherwise modify the window

A menu item with a view sizes itself according to the view's frame, and the width of the other menu items.
The menu item will always be at least as wide as its view, but it may be wider. If you want your view to
auto-expand to fill the menu item, then make sure that its autoresizing mask has NSViewWidthSizable
set. A menu item will resize itself as the view's frame changes, but resizing during menu tracking is not
supported.

When a menu item is copied using NSCopying, any attached view is copied using archiving and unarchiving.

28
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Views in Menu Items

This table describes the changes to Application Menu and Pop-up List Programming Topics for Cocoa.

NotesDate

Added article to describe use of views in menus in Mac OS X v10.5.2007-06-26

Removed mention of deprecated classes; added articles on removing menus
from menu bar and displaying a contextual menu.

2006-12-05

Revised the discussion of Enabling Menu Items.2006-06-28

Reorganized introduction. Corrected typos.2004-06-28

Clarified the search order for context menus in “Enabling Menu Items” (page
15).

2003-04-01

Corrected errors in the Java sample code in “How Pop-Up Lists Work”.2003-02-20

Revision history was added to existing topic.2002-11-12

29
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Document Revision History

30
2007-06-26 | © 2001, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Application Menu and Pop-up List Programming Topics for Cocoa
	Contents
	Listings
	Introduction
	How Menus Work
	Menu Basics
	Application Menus
	Pop-Up Buttons and Pull-Down Lists
	Contextual Menus

	Using Menu Item States
	Enabling Menu Items
	Automatic Menu Enabling
	Implementing validation
	Choosing validateMenuItem: or validateUserInterfaceItem:

	Manual Menu Enabling

	Removing a Menu
	Setting a Menu Item’s Key Equivalent
	Managing Pop-Up Buttons and Pull-Down Lists
	Pop-Up Buttons
	Pull-Down Lists
	Managing Pop-Up Button Items
	Pop-Up Button Actions

	Displaying a Contextual Menu
	Views in Menu Items
	Revision History

