
Threading Programming Guide
Cocoa > Process Management

2008-02-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, iMac, Logic, Mac, Mac OS, Objective-C,
QuickTime, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Threading Programming Guide 9

Organization of This Document 9
See Also 10

Chapter 1 Concurrency and Application Design 11

About Concurrency 11
Terminology 12
Mac OS X Support 12

Threads 12
Operation Objects 13
Synchronization Tools 13
Run Loops 14
Interthread Communication 14
Alternatives to Threads 16

Design Considerations 16
Define Your Application’s Expected Behavior 17
Factor Your Code Into Discrete Tasks 18
Consider Alternatives to Threading 19

Design Tips 19
Avoid Creating Threads Explicitly 19
Keep Your Threads Reasonably Busy 19
Avoid Shared Data Structures 20
Threads and Your User Interface 20
Be Aware of Thread Behaviors at Quit Time 20
Handle Exceptions 21
Terminate Your Threads Cleanly 21
Thread Safety in Libraries 21

Chapter 2 Creating and Managing Operation Objects 23

About Operation Objects and Operation Queues 23
Configuration Options for Operation Objects 24
Defining Operation Objects 25

Using an NSInvocationOperation Object 25
Defining a Simple NSOperation Subclass 26
Configuring Dependencies Among Operation Objects 27
Customizing the Execution Environment of an Operation Object 27
Responding to Errors 30

Running Operations 31
Using a Queue to Run Operations 31

3
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Running an Operation Object Directly 32

Chapter 3 Creating and Managing Threads 33

About Mac OS X Threads 33
Threading Technologies 33
Thread Costs 34

Creating a Thread 36
Using NSThread 36
Using POSIX Threads 37
Using NSObject to Spawn a Thread 38
Using Other Threading Technologies 38

Creating POSIX Threads in a Cocoa Application 39
Protecting the Cocoa Frameworks 39
Supporting Autoreleased Objects 39
Mixing POSIX and Cocoa Locks 39

Configuring Threads 40
Configuring the Stack Size of a Thread 40
Memory Management in Threads 40
Configuring Thread-Local Storage 41
Setting Up a Run Loop 41
Setting the Detached State of a Thread 41
Setting the Thread Priority 42

Terminating a Thread 42

Chapter 4 Synchronization and Thread Safety 45

Synchronization Tools 45
Atomic Operations 45
Memory Barriers and Volatile Variables 45
Locks 46
Conditions 47
Perform Selector Routines 48

Synchronization and Performance 48
Thread Safety and Signals 48
Tips for Thread-Safe Designs 49

Avoid Synchronization Altogether 49
Understand the Limits of Synchronization 49
Be Aware of Threats to Code Correctness 49
Watch Out for Deadlocks and Livelocks 51
Use Volatile Variables Correctly 51

Using Atomic Operations 51
Using Locks 54

Using a POSIX Mutex Lock 54
Using the NSLock Class 54
Using the @synchronized Directive 55

4
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Using Other Cocoa Locks 55
Using Conditions 58

Using the NSCondition Class 58
Using POSIX Conditions 59

Chapter 5 Run Loop Management 61

Anatomy of a Run Loop 61
Run Loop Modes 62
Input Sources 63
Timer Sources 65
Run Loop Observers 66
The Run Loop Sequence of Events 66

When Would You Use a Run Loop? 67
Using Run Loop Objects 68

Getting a Run Loop Object 68
Configuring the Run Loop 68
Starting the Run Loop 69
Exiting the Run Loop 71
Thread Safety and Run Loop Objects 71

Configuring Run Loop Sources 71
Defining a Custom Input Source 71
Configuring Timer Sources 76
Configuring a Port-Based Input Source 77

Appendix A Thread Safety Summary for Mac OS X 85

Cocoa 85
Foundation Framework Thread Safety 85
Application Kit Framework Thread Safety 89
Core Data Framework 90

Core Foundation 90

Glossary 91

Document Revision History 93

5
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

6
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Concurrency and Application Design 11

Table 1-1 Communication mechanisms in Mac OS X 15
Table 1-2 Alternative technologies to threads 16

Chapter 2 Creating and Managing Operation Objects 23

Table 2-1 Operation-related classes 23
Table 2-2 Configuration options for operation objects 24
Table 2-3 Running operation objects in different environments 25
Listing 2-1 Creating a task with NSInvocationOperation 26
Listing 2-2 Using an operation object to launch a process 28
Listing 2-3 Adding an operation to a queue 31

Chapter 3 Creating and Managing Threads 33

Table 3-1 Mac OS X thread technologies 34
Table 3-2 Thread creation costs 35
Table 3-3 Setting the stack size of a thread 40
Listing 3-1 Creating a thread in C 37
Listing 3-2 Checking for an exit condition during a long job 43

Chapter 4 Synchronization and Thread Safety 45

Table 4-1 Lock types 46
Table 4-2 Atomic math and logic operations 52
Listing 4-1 Performing atomic operations 53
Listing 4-2 Using a mutex lock 54
Listing 4-3 Using a Cocoa condition 58
Listing 4-4 Signaling a Cocoa condition 58
Listing 4-5 Using a POSIX condition 59
Listing 4-6 Signaling a condition lock 59

Chapter 5 Run Loop Management 61

Figure 5-1 Structure of a run loop and its sources 62
Figure 5-2 Operating a custom input source 72
Table 5-1 Predefined run loop modes 63
Table 5-2 Performing selectors on other threads 65
Listing 5-1 Creating a run loop observer 69
Listing 5-2 Running a run loop 70

7
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Listing 5-3 The custom input source object definition 73
Listing 5-4 Scheduling a run loop source 73
Listing 5-5 Performing work in the input source 74
Listing 5-6 Invalidating an input source 74
Listing 5-7 Installing the run loop source 75
Listing 5-8 Registering and removing an input source with the application delegate 75
Listing 5-9 Waking up the run loop 76
Listing 5-10 Creating and scheduling timers using NSTimer 77
Listing 5-11 Creating and scheduling a timer using Core Foundation 77
Listing 5-12 Main thread launch method 78
Listing 5-13 Handling Mach port messages 78
Listing 5-14 Launching the worker thread using Mach ports 79
Listing 5-15 Sending the check-in message using Mach ports 79
Listing 5-16 Registering a message port 80
Listing 5-17 Attaching a Core Foundation message port to a new thread 80
Listing 5-18 Receiving the checkin message 81
Listing 5-19 Setting up the thread structures 82

8
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

As multicore computers become more commonplace, running an application that has only one path of
execution for code to follow quickly becomes a barrier to performance. In order to take advantage of a
computer’s extra cores, an application must break its overall work down into smaller chunks and run those
chunks concurrently on separate cores. The low-level technology used to run each chunk is called a thread.

Although this document is ostensibly about using threads in your application, it is important to point out
that threads are really just infrastructure. Taking advantage of threads effectively requires you to design your
application in a way that supports concurrency. Done correctly, an application should be able to run tasks
concurrently and be guaranteed that those tasks execute correctly and with minimal interference. Done
incorrectly, an application’s tasks may corrupt each other’s data and potentially cause your application to
crash.

This document provides an introduction to concurrency, describes why it is important, and provides design
tips for implementing it in Mac OS X applications. This document also describes the relevant Mac OS X
technologies (including threads) related to concurrency and provides examples of how to use them.

Because threading and concurrency are advanced programming topics, you should read the information in
this book carefully before trying to implement threads in your own applications. You should also consult
other texts and Internet resources regarding threading and concurrency in application design.

Organization of This Document

This document has the following chapters and appendixes:

 ■ “Concurrency and Application Design” (page 11) introduces the concept of concurrency and its role in
application design.

 ■ “Creating and Managing Operation Objects” (page 23) focuses on the NSOperation object and how
you use it to perform tasks concurrently.

 ■ “Creating and Managing Threads” (page 33) provides information about the lower-level technologies
used to create and manage threads.

 ■ “Synchronization and Thread Safety” (page 45) describes synchronization issues and the tools you use
to prevent multiple threads from corrupting data or crashing your program.

 ■ “Run Loop Management” (page 61) provides information about how to manage event-processing loops
in secondary threads.

 ■ “Thread Safety Summary for Mac OS X” (page 85) provides a summary of the inherent thread safety of
Mac OS X and some of its key frameworks.

Organization of This Document 9
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Threading Programming
Guide

See Also

This document provides only a light coverage of the use of the POSIX threads API. For more information
about the available POSIX thread routines, see the pthread man page. For a more in-depth explanation of
POSIX threads and their usage, see Programming with POSIX Threads by David R. Butenhof.

10 See Also
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Threading Programming Guide

For many years, maximum computer performance was limited largely by the speed of a single microprocessor
at the heart of the computer. As the speed of individual processors started reaching their practical limits,
however, designers switched to multicore designs, which let the computer perform multiple tasks
simultaneously. Of course, software plays a crucial role in keeping each core in a multicore machine busy.
This is where concurrency plays a role.

This chapter introduces the concept of concurrency and its effects on application design. You do not have
to understand the implementation details of threads to read this chapter. The purpose of this chapter is to
get you thinking about whether concurrency (and threading) is an appropriate tool for you to use in your
application.

About Concurrency

The foundations of Mac OS X were built to support concurrency, both at the system level and at the application
level. At the system level, multiple applications run side by side, each receiving an appropriate amount of
execution time based on its needs and the needs of other programs. At the application level, a single
application can have multiple paths of execution perform different tasks simultaneously, or in a nearly
simultaneous manner. This document focuses on the latter form of concurrency—application-level
concurrency—along with its benefits and hazards.

In a nonconcurrent application, there is only one path (or thread) of execution through the application’s
code. That path starts and ends with the application’s main routine and branches one-by-one to different
methods or functions to implement the application’s overall behavior. By contrast, an application that supports
concurrency starts with one path of execution and adds more paths as needed. Each new path has its own
custom start and end routines that runs parallel to the application’s main routine. There are two important
reasons to have multiple paths of execution in an application:

 ■ Multiple paths can improve an application’s perceived responsiveness.

 ■ Multiple paths can improve an application’s real-time performance on multicore systems.

If your application has only a single execution path, that one path does everything. It responds to user events,
draws to your windows, and does all of the computations you need to implement your application’s behavior.
The problem is that it can only do one thing at a time, so what happens when one of your computations
takes a long time to finish? While your code is computing the needed values, your application stops responding
to user events or drawing to its windows. A user seeing this behavior might think your application is hung
and try to forcibly kill it. But if you moved all of your custom computations on a separate path of execution,
you could free up the main path to respond to the user and make sure events got handled and windows got
updated.

With multicore computers all but ubiquitous these days, concurrency also offers a way to increase performance
in some types of applications. Tasks that are truly parallel can now be run on different processor cores, making
it possible for an application to increase the amount of work it does in a given amount of time by multiple
factors.

About Concurrency 11
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

Of course, along with the benefits of concurrency come the potential problems. As you might expect, having
multiple paths of execution in an application can add a considerable amount of complexity to your code.
Because all of your application’s execution paths share the same memory space, two paths modifying the
same block of memory at the same time can corrupt each other’s changes and cause your application to
misbehave. Even with protection in place to prevent that occurrence, you still have to watch out for compiler
optimizations that introduce subtle (and not so subtle) bugs into your code. Fortunately, Mac OS X has tools
to help overcome many of the problems associated with concurrency and to help you reap its benefits.

Terminology

Before getting too far into discussions about programs and the technologies used to implement concurrency,
it would be good to settle on some basic terminology.

If you are familiar with Carbon’s Multiprocessor Services API or with UNIX systems, you may find that the
term “task” is used differently by this document. In earlier versions of Mac OS, the term “task” was used to
distinguish between threads created using the Multiprocessor Services and those created using the Carbon
Thread Manager API. On UNIX systems, the term “task” is also used at times to refer to a running process. In
practical terms, a Multiprocessor Services task is equivalent to a preemptively scheduled thread in Mac OS
X.

This document adopts the following terminology:

 ■ The term thread is used to refer to a separate thread of execution.

 ■ The term process is used to refer to a running executable, which can encompass multiple threads.

 ■ The term task is used to refer to the abstract concept of the job being performed by a thread.

Mac OS X Support

Mac OS X provides numerous technologies to help you implement concurrency in your applications. The
following sections summarize these technologies and how you can use them.

Threads

Threads are the fundamental technology underlying application-level concurrency. More lightweight than
processes, threads provide the basic constructs needed to implement separate paths of execution inside a
process. The kernel provides direct support for threads and runs them using a preemptive scheduling model.
This implementation prevents any one thread from dominating the processor and also provides support for
fundamental features, such as locks and the ability to put threads to sleep when there is nothing to do.

Although the kernel provides the basic implementation for threads, application-level threads are based on
BSD threads and the POSIX threading API. This API provides the application-level support needed to create
and manage threads. In addition, Mac OS X implements several higher-level technologies that provide a
more streamlined or sophisticated interface to the basic POSIX threads API. Although higher-level technologies
are usually the natural choice, they are by no means the only choice. Stepping down and using lower-level
APIs is completely supported and may be necessary at times to use features not readily accessible in the
higher-level technology.

12 Terminology
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

At the application level, threads in Mac OS X behave in basically the same way as on other platforms. After
starting a thread, the thread runs in one of three main states: running, ready, or blocked. If a thread is not
currently running, it is either blocked and waiting for input or it is ready to run but not scheduled to do so
yet. The thread continues moving back and forth among these states until it finally exits and moves to the
terminated state.

When you create a thread, you specify an entry-point function (or an entry-point method in the case of Cocoa
threads). This entry-point function constitutes the code you want to run on the thread. The function can
perform a fixed amount of work and then exit or it can set up a run loop and keep running for as long as you
want. (For information about run loops, see “Run Loops” (page 14).) When the entry-point function exits, or
when you terminate the thread explicitly, the thread stops permanently and is reclaimed by the system.

For more information about the available threading technologies and how to use them, see “Creating and
Managing Threads” (page 33).

Operation Objects

Operation objects provide an easy way to add concurrency to your Cocoa applications without creating
threads yourself. Introduced in Mac OS X v10.5, operation objects separate out the custom behavior of your
application from the threads used to run that behavior. An operation object encapsulates the code and data
associated with a particular task in your application. All you have to do to perform that task is create the
operation object and either run it directly or add it to an operation queue. The operation queue infrastructure
then takes over by setting up the runtime environment and running your task. By default, an operation queue
runs each operation in a separate thread, but you can customize the environment for each operation object
as needed.

Because operation objects provide a clean and simple encapsulation model, they promote a better (and
simpler) design model than raw threads. In addition, letting operation objects create threads for you is often
more efficient than doing it yourself. Operation queues work directly with the kernel to ensure that an
optimal number of operation objects are run in the most efficient way possible. They take into account
system-specific factors, such as the number of available cores and the system load, and use that information
to decide how many operations to run and when. This kernel support also extends to the creation of the
threads themselves, which are often maintained in thread pools to reduce the startup costs associated with
creating new threads.

For more information about using operation objects to support concurrency, see “Creating and Managing
Operation Objects” (page 23).

Synchronization Tools

One of the hazards of concurrent program design is the fact that although there are multiple threads of
execution, there is often just one set of resources that those threads have to share. If multiple threads try to
modify the same resource at the same time, problems can occur. One way to alleviate shared resource
problems is to eliminate them altogether and make sure each thread has its own set of resources, but
sometimes maintaining completely separate resources is not an option. In those situations, you can synchronize
access to the resource using locks, conditions, atomic operations, and other techniques.

Locks provide a brute force form of protection for code that can be executed by only one thread at a time.
The most common type of lock is mutual exclusion lock, also known as a mutex. When a thread tries to
acquire a mutex that is currently held by another thread, it blocks until the lock is released by the other
thread. Several system frameworks provide support for mutex locks, although they are all based on the same

Mac OS X Support 13
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

underlying technology. In addition, Cocoa provides several variants of the mutex lock to support different
types of behavior, such as recursion. For more information about the types of locks available in Mac OS X,
see “Locks” (page 46).

In addition to locks, Mac OS X provides support for conditions, which ensure the proper sequencing of tasks
within your application. A condition acts as a gatekeeper, blocking a given thread until the condition it
represents becomes true. When that happens, the condition releases the thread and allows it to continue.
Mac OS X provides direct support for conditions in both POSIX and Cocoa. If you use operation objects, you
can also configure dependencies among your operation objects to sequence the execution of tasks, which
is very similar to the behavior offered by conditions.

Although locks and conditions are very common in concurrent design, atomic operations are another way
to protect and synchronize access to data. Atomic operations offer a lightweight alternative to locks in
situations where you want to perform mathematical or logical operations on scalar data types. Atomic
operations take advantage of hardware instructions to ensure that modifications to a variable are completed
before other threads have a chance to access it.

For more information about the available synchronization tools for Mac OS X, see “Synchronization Tools” (page
45).

Run Loops

A run loop is a piece of infrastructure used to manage events arriving asynchronously on a thread. A run loop
is created for each thread automatically by the system, but that run loop must be configured before it can
be used. The infrastructure provided by both Cocoa and Carbon handles the configuration of the main
thread’s run loop for you automatically. If you plan to create long-lived secondary threads, however, you
must configure the run loop for those threads yourself.

A run loop works by monitoring one or more attached event sources. If no events are present and ready to
be handled, the run loop puts the thread to sleep. The thread stays asleep until one of the run loop’s sources
signals that the thread should be woken up. At that point, the kernel wakes up the thread and hands control
back to the run loop, which then dispatches the event to the appropriate handler routine.

You are not required to use a run loop with any threads you create, but doing so can provide a better
experience for the user. Run loops make it possible to create long-lived threads, and to put those threads to
sleep when there is nothing to do. This behavior is much more efficient than polling for events, which wastes
CPU time. The run loop infrastructure is also very flexible and can be configured to support different runtime
modes and application-specific messaging systems.

Details about run loops and examples of how to use them are provided in “Run Loop Management” (page
61).

Interthread Communication

Although a good design minimizes the amount of required communication, at some point, communication
between threads becomes necessary. A thread’s job is to do work for your application, but if the results of
that job are never used, what good is it? Threads may need to process new job requests or report their
progress to your application’s main thread. In these situations, you need a way to get information from one
thread to another. Fortunately, the fact that threads share the same process space means you have lots of
options for communication.

14 Mac OS X Support
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

There are many ways to communicate between threads, each with its own advantages and disadvantages.
“Configuring Thread-Local Storage” lists the most common communication mechanisms you can use in Mac
OS X. The techniques in this table are listed in order of increasing complexity.

Table 1-1 Communication mechanisms in Mac OS X

DescriptionMechanism

Cocoa applications support the ability to perform selectors directly on other threads.
This capability means that one thread can essentially execute a method on any other
thread. Because they are executed in the context of the target thread, messages sent
this way are automatically serialized on that thread. For information about input
sources, see “Cocoa Perform Selector Sources” (page 64).

Direct messaging

Another simple way to communicate information between two threads is to use a
global variable, shared object, or shared block of memory. Although shared variables
are fast and simple, they are also more fragile than direct messaging. Shared variables
must be carefully protected with locks or other synchronization mechanisms to ensure
the correctness of your code. Failure to do so could lead to race conditions, corrupted
data, or crashes.

Global variables,
shared memory,
and objects

Conditions are a synchronization tool that you can use to control when a thread
executes a particular portion of code. You can think of conditions as gate keepers,
letting a thread run only when the stated condition is met. For information on how
to use conditions, see “Using Conditions” (page 58).

Conditions

A custom run loop source is one that you set up to receive application-specific
messages on a thread. Because they are event driven, run loop sources put your thread
to sleep automatically when there is nothing to do, which improves your thread’s
efficiency. For information about run loops and run loop sources, see “Run Loop
Management” (page 61).

Run loop sources

Port-based communication is a more elaborate way to communication between two
threads, but it is also a very reliable technique. More importantly, ports and sockets
can be used to communicate with external entities, such as other processes and
services. For efficiency, ports are implemented using run loop sources, so your thread
sleeps when there is no data waiting on the port. For information about run loops
and about port-based input sources, see “Run Loop Management” (page 61).

Ports and sockets

Multiprocessing Services defines a first-in, first-out (FIFO) queue abstraction for
managing incoming and outgoing data. Although message queues are simple and
convenient, they are not as efficient as some other communications techniques. For
more information about how to use message queues, see Multiprocessing Services
Programming Guide.

Message queues

Distributed objects is a Cocoa technology that provides a high-level implementation
of port-based communications. Although it is possible to use this technology for
interthread communication, doing so is highly discouraged because of the amount
of overhead it incurs. Distributed objects is much more suitable for communicating
with other processes, where the overhead of going between processes is already high.
For more information, see Distributed Objects Programming Topics.

Cocoa distributed
objects

Mac OS X Support 15
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

Alternatives to Threads

One aspect of concurrency that is often forgotten is that threads are not the only option available. Threads
solve the specific problem of how to run tasks in parallel inside the same process. There may be cases,
however, where the overhead associated with threads may be too great for the intended task or where other
options might be easier. Table 1-2 lists some of the alternatives to threads along with the situations in which
you might use them.

Table 1-2 Alternative technologies to threads

DescriptionTechnology

For tasks that are relatively short and very low priority, idle time notifications let you
perform the task at a time when your application is not as busy. Cocoa provides support
for idle-time notifications using the NSNotificationQueue object. To request an
idle-time notification, post a notification to the default NSNotificationQueue object
using the NSPostWhenIdle option. The queue delays the delivery of your notification
object until the run loop becomes idle. For more information, see Notification
Programming Topics for Cocoa.

Idle-time
notifications

Mac OS X provides many asynchronous functions that provide automatic concurrency
for you. These APIs may use system daemons and processes or create custom threads
to perform their task and return the results to you. (The actual implementation is
irrelevant because it is separated from your code.) As you design your application, look
for functions that offer asynchronous behavior and consider using them instead of
using the equivalent synchronous function on a custom thread.

Asynchronous
functions

You can use timers on your application’s main thread to perform periodic tasks that
are too trivial to require a thread, but which still require servicing at regular intervals.
For information on timers, see “Timer Sources” (page 65).

Timers

Although more heavyweight than threads, creating a separate process might be useful
in cases where the task is only tangentially related to your application. You might use
a process if a task requires a significant amount of memory or must be executed using
root privileges. For example, you might use a 64-bit server process to compute a large
data set while your 32-bit application displays the results to the user.

Separate
processes

Warning: When launching separate processes using the fork function, you must always follow a call
to fork with a call to exec or a similar function. Applications that depend on the Core Foundation,
Cocoa, or Core Data frameworks (either explicitly or implicitly) must make a subsequent call to an exec
function or those frameworks may behave improperly.

Design Considerations

As computers gain more and more cores, support for concurrency is quickly becoming less of an option and
more of a requirement for software designers. But does this mean you should start creating large numbers
of threads in your code? Absolutely not. Supporting concurrency requires a careful analysis of your program’s

16 Design Considerations
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

behavior to determine which portions (if any) might benefit from running independently. This set of tasks
then has to be balanced against the costs of supporting concurrency, which are not trivial. When analyzing
your application, you should look for tasks that exhibit as many of the following characteristics as possible:

 ■ The task shares as few data structures with other tasks.

 ■ The task is as modular.

 ■ The task performs a relatively large (more than 10 milliseconds worth) amount of work.

Tasks that share data or code tend to require much more careful coding than those that do not. Shared data
structures require the use of locks to synchronize access to those structures. Although locks are a useful tool,
they are also a performance bottleneck because their acquisition takes a nontrivial amount of time. Avoiding
locks by using separate data structures is preferable, especially when that separation comes naturally. Forcibly
separating a large data structure into several smaller chunks may avoid the need for a lock, but creating
those data structures and reintegrating them has a cost associated with it as well.

It is also important to remember that there are costs to supporting concurrency. Threads and other
thread-related data structures consume system resources. If you choose tasks that take relatively little time
to complete, the cost of allocating the needed resources may outweigh the potential benefits. This is not to
say that you should never perform short tasks on background threads. Operation objects are optimized to
use thread pools, which often alleviates many of the costs associated with setting up a thread. You can also
configure a thread to be long-lived and process multiple requests on demand, although doing so requires
more effort and increases the complexity of your code, which increases the potential for bugs.

As far as knowing whether your application is right for concurrency, the most important thing you can do is
understand your application’s data model and expected behavior. After that, you need to understand where
the potential pitfalls lie. Understanding your data model is something only you can do, but the remaining
sections in this chapter (and the rest of this document) are here to help you understand where the potential
pitfalls lie and how you might avoid them.

Define Your Application’s Expected Behavior

In the context of concurrency, your application’s expected behavior comprises two factors. First, you must
define what your application does and what is considered to be “correct” behavior. Second, you should define
the expected performance for your application when it is behaving correctly. Defining both of these pieces
up front is necessary for determining whether your actual implementation is working correctly.

The absolute correctness of your code is of the utmost importance in a concurrent application. By its nature,
concurrency introduces the potential for data to be misinterpreted or corrupted due to timing errors. Ensuring
that the data in your data structures is accessed safely, and in the proper sequence, must always be part of
your overall design. Document all of the key data structures in your program and the steps it takes to access
and modify them correctly. Understand how your key data structures affect and influence each other. In a
concurrent application it is easier to modify isolated data structures than it is to modify structures with large
sets of dependencies.

If you are using concurrency to increase the real-time performance of your application, you should also define
some performance goals. Resource contention and an improperly designed set of tasks are both factors that
can degrade performance significantly. If those problems are serious enough, they can even make performance
in the concurrent case worse than in the single-threaded case. Having definite, but reasonable, performance
goals helps you track whether the addition of concurrency is having the intended effect.

Design Considerations 17
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

As part of your performance goals, you should also consider the constraints for your application. Sure, having
an application that runs fast on a Mac Pro with eight processors and 8 gigabytes of memory is great, but
what happens when you run it on an older Mac Mini? The point of having constraints is that they will help
influence the decisions you make as you try to achieve your goals. Ask yourself the following questions during
your planning.

 ■ Are you trying to boost application responsiveness? If so, what level of latency is expected?

 ■ What is the minimum level of acceptable performance? (10% gain? 50% gain?)

 ■ What level of additional memory usage is allowable? (Threads use up additional memory, so setting an
upper limit may limit the level of concurrency you support.)

Factor Your Code Into Discrete Tasks

After you have a set of goals for your application’s expected behavior, you need to think about how you can
factor your application’s tasks to support those goals. Just because you can create concurrent threads of
execution, does not mean you should. Each task should be considered carefully to determine if running it
concurrently would benefit your application or cause potential problems. You should already know the
expected behaviors of your application, so this exercise is all about identifying which of those behaviors is
suited for concurrency. For example, searching for a string in a large block of text or performing a large
calculation might be well suited for concurrency, but things like low-level event handling and drawing (with
some exceptions) typically are not.

When deciding which tasks to make concurrent, there are several factors you should consider.

 ■ Are there alternatives to performing the task yourself? Asynchronous methods or system technologies
may already perform the same task, and may be able to do so concurrently. If so, using them might be
simpler than doing the task yourself.

 ■ How long does the task take to execute? Longer tasks are generally better suited for running in the
background than short tasks. However, if a shorter task runs at regular intervals or can share a thread
with other tasks, you might consider creating a long-lived thread to run them.

 ■ What shared resources must be manipulated by the task? If the task must manipulate complex data
structures, or shared data structures, it may encounter more synchronization issues than if it manipulated
only local data.

 ■ What is the benefit to running the task separately? If running the task in the background would offer
significant performance improvements, the benefit of doing so may outweigh other factors.

 ■ How much intertask communication is required? If a task would spend a lot of its time sending messages
or coordinating with other parts of your application, you might reconsider the benefit of executing the
task concurrently. The task might end up spending much more time blocked and waiting on other parts
of your application to respond than doing real work.

These factors are by no means the only criteria to consider, nor should you avoid selecting a task because it
manipulates one data structure too many. All of the decisions you make must be measured against the goals
for your application.

18 Design Considerations
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

Consider Alternatives to Threading

The basic problem with creating threads yourself is that it adds uncertainty to your code. Threads are a
relatively low-level tool for implementing concurrency and their use is fraught with pitfalls. If you do not fully
understand the implications of your design choices, you might encounter synchronization or timing issues,
the severity of which can range from subtle behavioral changes to your application imploding gloriously and
destroying user data. (Granted, it takes a lot of effort for you to cause your application to implode gloriously,
but the fact that it is possible should serve as a warning not to skimp on your planning efforts.)

As part of your planning, you should consider using system technologies that eliminate the need for you to
implement threads yourself. Mac OS X itself takes advantage of threads in many places, and as multicore
machines becomes more common, system concurrency is only going to increase. Building your code on top
of asynchronous functions or using operation objects (see “Creating and Managing Operation Objects” (page
23)) may not totally eliminate the need to think about concurrency, but they certainly make implementing
it easier. Building on top of these technologies also means your code will benefit from any future improvements
to them.

Design Tips

As you design your application, here are some guidelines to help you implement concurrency and ensure
the correctness of your code.

Avoid Creating Threads Explicitly

Writing thread-creation code manually is tedious and potentially error-prone and you should avoid it whenever
possible. Mac OS X provides implicit support for concurrency through other APIs. Rather than create a thread
yourself, consider using asynchronous APIs or operation objects to do the work. These technologies do the
thread-related work behind the scenes for you and are guaranteed to do it correctly. In addition, technologies
such as operation objects are designed to manage threads much more efficiently than your own code ever
could by adjusting the number of active threads based on the current system load. For more information,
see “Creating and Managing Operation Objects” (page 23).

Keep Your Threads Reasonably Busy

If you decide to handle thread creation and management yourself, remember that threads consume precious
system resources. You should do your best to make sure that any tasks you assign to threads are reasonably
long-lived and productive. At the same time, you should not be afraid to terminate threads that are spending
most of their time idle. Threads use a nontrivial amount of memory, some of it wired, so releasing an idle
thread not only helps reduce your application’s memory footprint, it also frees up more physical memory for
other system processes to use.

Design Tips 19
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

Important: Before you start terminating idle threads, you should always record a set of baseline measurements
of your applications current performance. After trying your changes, take additional measurements to verify
that the changes are actually improving performance, rather than hurting it.

Avoid Shared Data Structures

The simplest and easiest way to avoid thread-related resource conflicts is to give each thread in your program
its own copy of whatever data it needs. Parallel code works best when you minimize the communication
and resource contention among your threads.

Creating a multithreaded application is hard. Even if you are very careful and lock shared data structures at
all the right junctures in your code, your code may still be semantically unsafe. For example, your code could
run into problems if it expected shared data structures to be modified in a specific order. Changing your
code to a transaction-based model to compensate could subsequently negate the performance advantage
of having multiple threads. Eliminating the resource contention in the first place often results in a simpler
design with excellent performance.

Threads and Your User Interface

If your application has a graphical user interface, it is recommended that you receive user-related events and
initiate interface updates from your application’s main thread. This approach helps avoid synchronization
issues associated with handling user events and drawing window content. Some frameworks, such as Cocoa,
generally require this behavior, but it also has the advantage of simplifying the logic for managing your user
interface.

There are a few notable cases where it is advantageous to perform graphical operations from other threads.
For example, the QuickTime API includes a number of operations that can be performed from secondary
threads, including opening movie files, rendering movie files, compressing movie files, and importing and
exporting images. Using secondary threads for these operations can greatly increase performance. Similarly,
in Carbon and Cocoa you can use secondary threads to create and process images and perform other
image-related calculations. There are likely other exceptions, but if you’re not sure about a particular graphical
operation, plan on doing it from your main thread.

For more information about QuickTime thread safety, see Technical Note TN2125: “Thread-Safe Programming
in QuickTime.” For more information about Cocoa thread safety, see “Thread Safety Summary for Mac OS
X” (page 85). For more information about drawing in Cocoa, see Cocoa Drawing Guide.

Be Aware of Thread Behaviors at Quit Time

A process runs until all nondetached threads have exited. By default, only the application’s main thread is
created as nondetached, but you can create other threads that way as well. When the user quits an application,
it is usually considered appropriate behavior to terminate all detached threads immediately, because the
work done by detached threads is considered optional. If your application is using background threads to
save data to disk or do other critical work, however, you may want to create those threads as nondetached
to prevent the loss of data when the application exits.

20 Design Tips
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

Creating threads as nondetached (also known as joinable) requires extra work on your part. Because most
high-level thread technologies do not create joinable threads by default, you may have to use the POSIX API
to create your thread. In addition, you must add code to your application’s main thread to join with the
nondetached threads when they do finally exit. For information on creating joinable threads, see “Setting
the Detached State of a Thread” (page 41).

If you are writing a Cocoa application, you can also use the applicationShouldTerminate: delegate
method to delay the termination of the application until a later time or cancel it altogether. When delaying
termination, your application would need to wait until any critical threads have finished their tasks and then
invoke the replyToApplicationShouldTerminate: method. For more information on these methods,
see NSApplication Class Reference.

Handle Exceptions

Exception handling mechanisms rely on the current call stack to perform any necessary clean up when an
exception is thrown. Because each thread has its own call stack, each thread is therefore responsible for
catching its own exceptions. Failing to catch an exception in a secondary thread is the same as failing to
catch an exception in your main thread: the owning process is terminated. You cannot throw an uncaught
exception to a different thread for processing.

If you need to notify another thread (such as the main thread) of an exceptional situation in the current
thread, you should catch the exception and simply send a message to the other thread indicating what
happened. Depending on your model and what you are trying to do, the thread that caught the exception
can then continue processing (if that is possible), wait for instructions, or simply exit.

Note: In Cocoa, an NSException object is a self-contained object that can be passed from thread to thread
once it has been caught.

In some cases, an exception handler may be created for you automatically. For example, the @synchronized
directive in Objective-C contains an implicit exception handler.

Terminate Your Threads Cleanly

The best way for a thread to exit is naturally, by letting it reach the end of its main entry point routine.
Although there are functions to terminate threads immediately, those functions should be used only when
absolutely necessary. Terminating a thread before it has reached its natural end point prevents the thread
from cleaning up after itself. If the thread has allocated memory, opened a file, or acquired other types of
resources, your code may be unable to reclaim those resources, resulting in memory leaks or other potential
problems.

For more information on the proper way to exit a thread, see “Terminating a Thread” (page 42).

Thread Safety in Libraries

Although an application developer has control over whether an application executes with multiple threads,
library developers do not. When developing libraries, you must assume that the calling application is
multithreaded or could switch to being multithreaded at any time. As a result, you should always use locks
for critical sections of code.

Design Tips 21
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

For library developers, it is unwise to create locks only when an application becomes multithreaded. If you
need to lock your code at some point, create the lock object early in the use of your library, preferably in
some sort of explicit call to initialize the library. Although you could also use a static library initialization
function to create such locks, try to do so only when there is no other way. Execution of an initialization
function adds to the time required to load your library and could adversely affect performance.

Note: Always remember to balance calls to lock and unlock a mutex lock within your library. You should
also remember to lock library data structures rather than rely on the calling code to provide a thread-safe
environment.

If you are developing a Cocoa library, you can register as an observer for the
NSWillBecomeMultiThreadedNotification if you want to be notified when the application becomes
multithreaded. You should not rely on receiving this notification, though, as it might be dispatched before
your library code is ever called.

22 Design Tips
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Concurrency and Application Design

Introduced in Mac OS X v10.5, operation objects and operation queue objects simplify the job of executing
multiple, finite tasks in a concurrent manner. Operation objects provide a way for you to encapsulate tasks
into distinct objects. Each subclass of NSOperation that you create represents a unique type of task to be
performed by your application. When you want to perform one of these tasks, simply create the appropriate
operation object and either run it directly or add it to an operation queue.

The encapsulation provided by operation objects makes them a good way to manage your application’s
independent tasks. Encasing the data and behavior for a given task inside a single object provides a clean
demarcation between that task and the rest of your application. Having individual tasks inside objects also
makes it easier to reuse those tasks in other code.

One of the other great benefits of operation objects, though, is the ability to add them to an operation queue.
An operation queue manages the execution of operation objects within separate threads of your application.
You do not have to write any thread creation or management code to make this happen either. The operation
queue takes care of all the thread management work behind the scenes so that you can focus on what you
want to run, and not how you want to run it. Operation queues can also manage interoperation dependencies
to make sure your tasks execute in the correct order.

The following sections provide background on operation objects and show you how to define custom
operation objects and run them with and without an operation queue. Even if you do not plan to run tasks
in separate threads, you should consider using operation objects to manage tasks. The encapsulation they
provide makes for better code reuse and management over time.

About Operation Objects and Operation Queues

Operation objects provide a flexible mechanism for encapsulating the code and data associated with a task.
Operation queue objects provide an advanced infrastructure for executing those operations in background
threads. Together these objects simplify the steps needed to create background tasks and run them in your
application.

Table 2-1 lists the classes associated with implementing and managing operations.

Table 2-1 Operation-related classes

DescriptionClass

The base subclass for defining an operation object. You can override this class to
create custom operation objects for your application’s tasks. You can use the default
NSOperationmethods to manage the status of your task and set up the execution
environment, or you can override those methods to customize the environment.
For information on creating a basic subclass, see “Defining a Simple NSOperation
Subclass” (page 26).

NSOperation

About Operation Objects and Operation Queues 23
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

DescriptionClass

A concrete subclass of NSOperation. Instead of subclassing NSOperation, you
can use this class as-is to create a task from an existing object and selector in your
application. You might use this class in cases where you do not want to create
custom subclasses of NSOperation. For example, you might use it in cases where
your tasks are already encapsulated in custom objects, or in cases where you want
to choose a task dynamically at runtime. For information about how to use this
class, see “Using an NSInvocationOperation Object” (page 25).

NSInvocation-
Operation

An infrastructure object you use to manage operation objects. An application can
use any number of operation queues to run operations, although one is usually
sufficient. Each queue works with the kernel to ensure operations are run in the
most efficient manner possible. For information on managing operations with an
operation queue, see “Using a Queue to Run Operations” (page 31).

NSOperationQueue

Configuration Options for Operation Objects

The NSOperation class is flexible and supports several different configuration and usage variants. These
variants make it possible to design your operation objects in several different ways, depending on your needs.
Fortunately, there are simple options if you just want the basic behavior provided by NSOperation, and
even the more advanced configuration options do not require large amounts of work.

Table 2-2 lists the basic options for creating your NSOperation object. The overrides column lists the methods
you need to override to support each configuration option. You may need to override additional methods,
but this column lists the ones you should always override.

Table 2-2 Configuration options for operation objects

DescriptionOverridesOption

Create an NSInvocationOperation object and provide it
with the object and selector you want to run. For more
information, see “Using an NSInvocationOperation
Object” (page 25)

NoneAvoid subclassing
NSOperation

Use the main method to implement your task. The operation
object uses the default implementation to manage the
operation’s dependency and state information. For more
information, see “Defining a Simple NSOperation
Subclass” (page 26)

mainSimple NSOperation
object

Use the start method to set up your custom environment.
Use the main method to implement the actual task. Your
start method should call your main method at some point
and update state information, such as the isExecuting and
isFinished properties. For more information, see
“Customizing the Execution Environment of an Operation
Object” (page 27).

start

main

isExecuting

isFinished

Custom configuration of
the operation’s runtime
environment (option 1)

24 Configuration Options for Operation Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

DescriptionOverridesOption

Use the start method to set up your custom environment
and implement the actual task. Your start method should
update state information, such as the isExecuting and
isFinished properties. For more information, see
“Customizing the Execution Environment of an Operation
Object” (page 27).

start

isExecuting

isFinished

Custom configuration of
the operation’s runtime
environment (option 2)

The environment in which your operation objects runs depends partly on how you run the operation object
and how you have customized that object. Table 2-3 lists the different options for running your operation
objects.

Table 2-3 Running operation objects in different environments

DescriptionOption

Invoke the start method of the operation object directly.Run the operation in the current thread

Add the operation object to an NSOperationQueue object.
(Recommended)

Run the operation in a background thread
(option 1)

Create a custom thread and invoke the start method of the
operation object from that thread.

Run the operation in a background thread
(option 2)

Customize the operation object as described in “Customizing
the Execution Environment of an Operation Object” (page 27).
Add the operation object to an operation queue or invoke its
start method directly.

Run the operation object in a custom
environment

Defining Operation Objects

There are two ways to create an operation object: You can subclass NSOperation or create an
NSInvocationOperation object to wrap an existing method. Either technique results in essentially the
same operation object; the only difference is how you define the task. The following sections show you how
to use operation objects to implement tasks and how you configure those objects for execution.

Using an NSInvocationOperation Object

The NSInvocationOperation class is a concrete subclass of NSOperation that, when run, invokes a
selector on the object you specify. You might use this class as a convenient way to define operation objects
without having to subclass NSOperation. For example, if your application uses operations to perform a
large number of tasks, you might not want to define separate operation objects for each. Instead, you could
use NSInvocationOperation to create tasks out of existing methods. You might also use this class when
the task you need to perform is determined more dynamically. In such a case, each potential task could be
associated with a different selector that you use to create the resulting operation object.

Defining Operation Objects 25
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

Listing 2-1 shows a custom class that creates a new NSInvocationOperation object and adds it to the
application’s shared operation queue. The operation queue in this example is accessed through a custom
method of the application delegate, but you could create the operation queue anywhere in your application.
Once added to the queue, the operation runs automatically in a background thread until it completes or is
explicitly cancelled.

Listing 2-1 Creating a task with NSInvocationOperation

@implementation MyCustomClass
- (void)launchTaskWithData:(id)data
{
 NSInvocationOperation* theOp = [[NSInvocationOperation alloc]
initWithTarget:self
 selector:@selector(myTaskMethod:) object:data];

 // Add the operation to the internal operation queue managed by the
application delegate.
 [[MyAppDelegate sharedOperationQueue] addOperation:theOp];
}

// This is the method that does the actual work of the task.
- (void)myTaskMethod:(id)data
{
 // Perform the task.
}
@end

Defining a Simple NSOperation Subclass

If you want a more explicit separation between your general application code and your task-specific code,
you can subclass NSOperation directly to implement your tasks. When you subclass NSOperation, you put
all of your task-based code, along with the data needed to implement that task, into your subclass. If all of
the data belongs to the operation object, you can avoid synchronization issues. Even in situations where an
operation does use a shared object, you now have the option of taking locks at the operation object level,
where doing so might be more efficient.

To define a minimal operation object, create a new subclass of NSOperation, add whatever instance variables
you need to your subclass, and implement the following methods:

 ■ a custom initialization method

 ■ the main method

In general, you should use a custom initialization method to configure your operation object as much as
possible. If you define accessor methods for instance variables and plan to call those methods from other
threads, be sure to employ some sort of synchronization to prevent thread-safety issues. Better yet, avoid
accessing member variables from multiple threads entirely. Instead, just set the variables from a single thread
at initialization time and read them back only after the operation finishes.

The actual implementation of your task goes inside the mainmethod. This method is defined by NSOperation
but the default implementation does nothing. Your implementation of this method should perform the
desired task and then notify any interested clients when the results are ready. The notification process can

26 Defining Operation Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

vary depending on your needs. You can use an actual notification object, set a flag, send a message to the
main thread using one of the perform selector routines of NSObject, or you can have interested clients
register for KVO notifications on your object’s isFinished property.

If your task is long-lived—that is, it takes more than a few milliseconds to execute—your mainmethod should
periodically check to see if the operation was cancelled. You do this by calling the isCancelled method of
your operation object. If this method ever returns YES, your main method should immediately stop what it
is doing and exit, leaving any pending calculations unfinished. The exact amount of time you should wait
between calls to isCancelled depends entirely on how responsive you want your task to be. If the task
can be programmatically terminated, you might want to call this method more frequently. If it can only be
cancelled by the user, once every millisecond is probably sufficient, but more frequently would be even
better.

To run your operation, create a new instance and add it to an operation queue as described in “Using a Queue
to Run Operations” (page 31). For additional options on how to run your operation, see “Running an Operation
Object Directly” (page 32).

Configuring Dependencies Among Operation Objects

Dependencies define the relationships between operation objects. You use dependencies in your application
to enforce a specific execution order for your operations. When you add a dependency to an operation object,
you prevent that operation object from starting until the dependent operation has finished. For example,
you might use a dependency to prevent one operation from starting until the data it needed was generated
by a different operation object.

To establish dependencies between operations, use the addDependency:method. To remove dependencies,
use the removeDependency:method. You can add as many dependencies as you want to a given operation,
but it is a programmer error to create circular dependencies.

Important: You should always configure dependencies before running your operation object or adding it
to an operation queue. Dependencies added afterwards may not prevent the operation object from running.

Dependencies rely on each operation object sending out appropriate KVO notifications whenever the status
of the object changes. If you customize the behavior of your operation objects, you may need to generate
appropriate KVO notifications from your custom code to avoid causing issues with dependencies. For more
information on KVO notifications and operation objects, see “Maintaining KVO Compliance” (page 30). For
additional information on configuring dependencies, see NSOperation Class Reference.

Customizing the Execution Environment of an Operation Object

The default runtime environment for operations is a thread. If you run an operation from an operation queue,
the NSOperationQueue object creates a new thread and runs the operation in it. If you run an operation
directly, the operation runs in the current thread. Threads are not the only environment you can use in
conjunction with operations, however. Through customization, it is possible to configure a custom
environment.

The NSOperation class itself is simply an abstraction for a task. It does not matter how that task is executed.
What is important is the encapsulation that the class provides. You could create an operation object that
performs its task by launching a separate process or by calling an asynchronous function and handling the
resulting callback. Both of these options are perfectly acceptable and might not involve threads at all.

Defining Operation Objects 27
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

The following sections show how to modify an operation object to use a different runtime environment or
use a slightly modified version of the existing thread environment.

Configuring a Custom Runtime Environment

Configuring an operation object to use a different environment involves override the following methods at
a minimum:

 ■ isConcurrent

 ■ start

The implementation of your isConcurrentmethod is pretty simple. Override it and return YES to let Cocoa
know that the operation object configures its own runtime environment.

The start method is where you configure your environment and run your task. In the case of launching a
separate process, you might fork and exec the process here, set up a communications channel for receiving
the results, and exit. Similarly, in the case of calling an asynchronous function, you would call the function
and exit. The key part to both of these techniques is that after setting up the environment, you start the task
and then exit from the start method. You do not want your start method to block the current thread,
because as strange as it might sound, Cocoa executes concurrent tasks on the current thread. The
“concurrency” in this case is provided by you when you set your task in motion and exit.

Of course, the end of your start method does not imply that your task is finished or that your work is done.
Another job of your customized NSOperation object (and your start method in particular) is to generate
KVO notifications about the current execution status of the operation. In your start method, this means
generating change notifications for the isExecuting property. Your start method must do this. Once
your task completes (or is cancelled), your operation object must generate another notification for the
isExecuting property and another notification for the isFinished (or isCancelled) property.

Listing 2-2 shows the implementation of a simple operation class that forks a process and waits for it to exit.
The start method of the operation object creates the NSTask object, registers for the
NSTaskDidTerminateNotification notification, launches the task, and exits. Receipt of the notification
results in the finalization of the task, which generates the final KVO change notifications. Because the class
maintains its own instance variables for the isExecuting and isFinished properties, the implementation
of the class also provides overrides of the corresponding accessor methods.

Listing 2-2 Using an operation object to launch a process

@interface TaskOperation : NSOperation {
 NSTask* task;
 BOOL executing;
 BOOL finished;
}
- (void)handleTaskExitedNotification:(NSNotification*)aNotification;
@end

@implementation TaskOperation
- (id)init {
 self = [super init];
 if (self){
 executing = NO;
 finished = NO;
 task = nil;
 }

28 Defining Operation Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

 return self;
}

- (BOOL)isConcurrent {
 return YES;
}

- (void)start {
 // Create the NSTask object.
 task = [[NSTask alloc] init];
 [task setLaunchPath:@"/usr/bin/myCustomTool"];

 [[[NSApplication sharedApplication] delegate] registerNotifications];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(handleTaskExitedNotification:)
 name:NSTaskDidTerminateNotification
 object:task];

 // If the operation hasn't already been cancelled, launch it.
 if (![self isCancelled]) {
 [self willChangeValueForKey:@"isExecuting"];
 executing = YES;
 [task launch];
 [self didChangeValueForKey:@"isExecuting"];
 }
}

- (void)handleTaskExitedNotification:(NSNotification*)aNotification {
 [self willChangeValueForKey:@"isFinished"];
 [self willChangeValueForKey:@"isExecuting"];

 finished = YES;
 executing = NO;

 // Clean up.
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:NSTaskDidTerminateNotification
 object:task];
 [task release];

 NSLog(@"Task exit notification received successfully.\n");

 [self didChangeValueForKey:@"isExecuting"];
 [self didChangeValueForKey:@"isFinished"];
}

- (BOOL)isExecuting {
 return executing;
}

- (BOOL)isFinished {
 return finished;
}

@end

Defining Operation Objects 29
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

As with other operation objects, your code should call the isCancelled method whenever possible to
determine whether the operation has been cancelled. If the method ever returns YES, you should abort the
current task and set both the isExecuting and isFinished properties to NO.

Maintaining KVO Compliance

The NSOperation class is KVO compliant for the following properties:

 ■ isCancelled

 ■ isConcurrent

 ■ isExecuting

 ■ isFinished

 ■ isReady

 ■ dependencies

 ■ queuePriority

If you override the start method or do any other significant customization of an NSOperation object,
other than override main, you must ensure that your custom object remains KVO compliant for these
properties. For custom operation objects, the properties you should be most concerned with are the
isExecuting andisFinishedproperties. These are the properties most commonly affected by implementing
a custom start method.

If your custom operation object also manages its own set of custom dependencies, you should also add KVO
notifications for the isReady property. You should also override the isReady method and force it to return
NO until your custom dependencies were satisfied. (Be sure to call super if you also support the default
dependency management of NSOperation .) Unless you override the addDependency: or
removeDependency: methods, you should not need to worry about the dependencies property.

Although you could generate KVO notifications for other properties of NSOperation, it is unlikely you would
ever need to do so. If you need to cancel an operation, you can simply use the existing cancel method to
do so. Similarly, there should be little need for you to modify the queue priority information in an operation
object. Finally, unless your operation is capable of changing its concurrency status dynamically, you do not
need to provide KVO notifications for the isConcurrent property.

For an example that shows how to generate KVO notifications for the isExecutable and isFinished
properties, see Listing 2-2 (page 28).

Responding to Errors

If your operation object is unable to perform its task for some reason, it is your responsibility to make that
determination and generate the appropriate errors. Similarly, if your operation object is dependent on other
operations that may fail, it is also your responsibility to respond to potential errors and abort the current
operation as needed.

Operation objects that are not concurrent (that is, their isConcurrent method returns NO) automatically
catch and suppress any exceptions thrown by the operation object’s main method. Thus, an operation that
generates an exception may appear to finish normally even if it did not. If an operation may fail, it is up to
you to provide a way for dependent operations to determine that an error occurred and do something about

30 Defining Operation Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

it. For example, you might want to provide a custom method for reporting whether the operation completed
successfully. The isReady method of dependent operation objects could then call this method and use it
to determine whether it is safe to execute.

Running Operations

Once you have an operation object, you need to know how to run it. There are two ways to run an operation
object: directly or from an operation queue. The following sections show you how to use both of these
options.

Using a Queue to Run Operations

By far, the easiest way to run an operation is to add it to an operation queue. The NSOperationQueue class
defines the basic interface for managing operation objects within an application. An operation queue is
typically a long-lived object—that is, you create it and keep it around for the lifetime of your application. An
application can create any number of operation queues, although one is usually sufficient.

To run an operation, all you have to do is add that operation to a queue using the addOperation: method,
as shown in Listing 2-3. This method gets the application’s shared queue object and adds the specified
operation to it.

Listing 2-3 Adding an operation to a queue

- (void)myQueueUpOperation:(NSOperation*)theOp
{
 // Get the custom queue object from the app delegate.
 NSOperationQueue* myQueue = [[[NSApplication sharedApplication] delegate]
myOperationQueue];
 [myQueue addOperation:theOp];
}

In most cases, operations are run shortly after they are added to an operation queue. The operation queue
may delay execution of an operation for any of several reasons, however. Specifically, an operation may be
delayed if it is dependent on other operations that have not yet completed. It may also be delayed if the
operation queue determines that there are not enough system resources to run it.

Operation queues try to balance the available system resources with the amount of work that needs to be
done. Rather than spawn a number of operations and let them vie for processor time, operation queues work
with the kernel to run as many operations as possible while still using the available processor cores efficiently.
The maximum number of simultaneous operations typically matches the number of available cores. If the
system load is particularly heavy or several cores are dedicated to other tasks, however, the operation queue
may run fewer operations.

Running Operations 31
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

Important: You should never modify an operation object after it has been added to a queue. While waiting
in a queue, the operation could execute at any time. Changing its status while it is executing could have
adverse effects. You can use the methods of the operation object to determine if the operation is running,
waiting to run, or already finished.

If you want to remove an operation from a queue before it completes its task, you must cancel it. You can
cancel individual operation objects by calling their cancel method or you can cancel all of the operation
objects in a queue by calling the cancelAllOperations method of the queue object. You should cancel
only operations that you no longer need to perform. Issuing a cancel command puts the operation object
into the “cancelled” state, which prevents it from being run again.

For information about using operation queues, see NSOperationQueue Class Reference.

Running an Operation Object Directly

It is possible to run operation objects directly and not use an operation queue. You might do so in cases
where you want to run it either from the current thread or from a different thread. Or you might simply want
to manage the execution of operations yourself without an operation queue.

To run an operation object directly, all you have to do is create the object, make sure it is ready, and then
call its start method. It is important that an operation object is ready before you attempt to run it. The
isReady method of NSOperation reports on the readiness of the operation, checking to make sure that
any dependent operations have already finished. Once that method returns YES, you can call the start
method to run the operation in the current thread.

Important: You should always run an operation using the start method and not the main method. The
default implementation of the start method updates the running state of the operation object, providing
feedback to other dependent operations about when it is safe for them to execute. If you override the start
method in your custom object, your implementation must maintain the running state as described in
“Maintaining KVO Compliance” (page 30).

32 Running Operations
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating and Managing Operation Objects

In Mac OS X, each process (application) is made up of one or more threads. Each thread represents a single
stream of execution for the application's code. Every application starts with a single thread, which runs the
application's main function. Applications can spawn additional threads, each of which executes the code of
a specific function.

When an application spawns a new thread, that thread becomes an independent entity inside of the
application's process space. Each thread has its own execution stack and is scheduled for runtime separately
by the kernel. A thread can communicate with other threads and other processes, perform I/O operations,
and do anything else you might need it to do. Because they are inside the same process space, however, all
threads in a single application share the same virtual memory space and have the same access rights as the
process itself.

This chapter provides an overview of the thread technologies available in Mac OS X and examples of how
to use those technologies in your applications.

Note: For a historical look at the threading architecture of Mac OS, and for additional background information
on threads, see Technical Note TN2028, “Threading Architectures”.

About Mac OS X Threads

In Mac OS X, threads are a low-level way to facilitate multiple streams of execution in a single application.
Although not as sophisticated as operation objects, threads are a common paradigm on most operating
systems and so are familiar to most developers. The following sections describe the thread technologies
available in Mac OS X and platform-specific information about those technologies.

Threading Technologies

Although the underlying implementation mechanism for threads in Mac OS X is Mach threads, you rarely (if
ever) work with threads at the Mach level. Instead, you usually use the more convenient POSIX API or one
of its derivatives. The Mach implementation does provide the basic features of all threads, however, including
a preemptive execution model and the ability to schedule threads so they are independent of each other.

Table 3-1 lists the threading technologies you can use in your applications. This list does not cover
thread-related technologies, such as NSOperation, which use threads internally to implement program
concurrency. Those technologies are covered in other chapters of this document.

About Mac OS X Threads 33
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

Table 3-1 Mac OS X thread technologies

DescriptionTechnology

Cocoa implements threads using the NSThread class. Cocoa also provides methods
on NSObject for spawning new threads and executing code on already-running
threads. For more information, see “Using NSThread” (page 36) and “Using NSObject
to Spawn a Thread” (page 38).

Cocoa threads

POSIX threads provide a C-based interface for creating threads. If you are not writing
a Cocoa application, this is the best choice for creating threads. The POSIX interface
is relatively simple to use and offers ample flexibility for configuring your threads.
For more information, see “Using POSIX Threads” (page 37)

POSIX threads

Multiprocessing Services is a legacy C-based interface used by applications
transitioning from older versions of Mac OS. You should avoid using this technology
for any new development. Instead, you should use the NSThread class or POSIX
threads. For more information about this technology, see Multiprocessing Services
Programming Guide.

Multiprocessing
Services

Note: Another threading technology found in some versions of Mac OS X is the Carbon Thread Manager. It
is a legacy technology, however, that should not be used for any active development.

Mac OS X supports all of the standard features found in the POSIX threads implementation, including the
following:

 ■ Thread customization; see “Configuring Threads” (page 40)

 ■ Support for creating threads as joinable or detached; see “Setting the Detached State of a Thread” (page
41)

 ■ Per-thread storage; see “Configuring Thread-Local Storage” (page 41)

 ■ Support for thread cancellation semantics; see “Terminating a Thread” (page 42)

Thread Costs

Threading has a real cost to your program (and the system) in terms of memory use and performance. Each
thread in Mac OS X requires the allocation of memory in both the kernel memory space and your program’s
memory space. The core structures needed to manage your thread and coordinate its scheduling are stored
in the kernel using wired memory. Your thread’s stack space and per-thread data is stored in your program’s
memory space. Most of these structures are created and initialized when you first create the thread—a
process that can be relatively expensive because of the required interactions with the kernel.

Table 3-2 quantifies the approximate costs associated with creating a new user-level thread in your application.
Some of these costs are configurable, such as the amount of stack space allocated for secondary threads.
The time-based costs in particular are rough approximations and should be used only for relative comparisons
with each other. Things like thread and lock creation times can vary greatly depending on processor load,
the speed of the computer, and the amount of available system and program memory.

34 About Mac OS X Threads
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

Table 3-2 Thread creation costs

NotesApproximate costItem

This memory is used to store the thread data structures and
attributes, much of which is allocated as wired memory and
therefore cannot be paged to disk.

Approximately 1 KBKernel data
structures

The minimum allowed stack size for secondary threads is 16
KB and the stack size must be a multiple of 4 KB. The space
for this memory is set aside in your process space at thread
creation time, but the actual pages associated with that
memory are not created until they are needed.

512 KB (secondary
threads)

8 MB (main thread

Stack space

This value reflects the time between the initial call to create
the thread and the time at which the thread’s entry point
routine began executing. The figures were determined by
analyzing the mean and median values generated during
thread creation on an Intel-based iMac with a 2 GHz Core Duo
processor and 1 GB of RAM.

Approximately 90
microseconds

Creation time

This is the lock acquisition time in an uncontested case. If the
lock is held by another thread, the acquisition time can be
much greater. The figures were determined by analyzing the
mean and median values generated during mutex acquisition
on an Intel-based iMac with a 2 GHz Core Duo processor and
1 GB of RAM.

Approximately 0.2
microseconds

Mutex acquisition
time

This is the compare-and-swap time in an uncontested case.
The figures were determined by analyzing the mean and
median values for the operation and were generated on an
Intel-based iMac with a 2 GHz Core Duo processor and 1 GB
of RAM.

Approximately 0.05
microseconds

Atomic
compare-and-swap

Note: Because of their underlying kernel support, operation objects can often create threads more quickly.
Rather than creating threads from scratch every time, they use pools of threads already residing in the kernel
to save on allocation time. For more information about using operation objects, see “Creating and Managing
Operation Objects” (page 23).

Another cost to consider when writing threaded code is the production costs. Designing a threaded application
can sometimes require fundamental changes to the way you organize your application’s data structures.
Making those changes might be necessary to avoid the use of synchronization, which can itself impose a
tremendous performance penalty on poorly designed applications. Designing those data structures, and
debugging problems in threaded code, can increase the time it takes to develop a threaded application.
Avoiding those costs can create bigger problems at runtime, however, if your threads spend too much time
waiting on locks or doing nothing.

About Mac OS X Threads 35
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

Creating a Thread

Creating low-level threads is relatively simple. In all cases, you must have a function or method to act as your
thread’s main entry point and you must use one of the available thread routines to start your thread. The
following sections show the basic creation process for the more commonly used thread technologies. Threads
created using these techniques inherit a default set of attributes, determined by the technology you use. For
information on how to configure your threads, see “Configuring Threads” (page 40).

Using NSThread

There are two ways to create a thread using the NSThread class:

 ■ Use the detachNewThreadSelector:toTarget:withObject: class method to spawn the new thread.

 ■ Create a new NSThread object and call its start method. (Supported only in Mac OS X v10.5 and later.)

Both techniques create a detached thread in your application. A detached thread means that the thread’s
resources are automatically reclaimed by the system when the thread exits. It also means that your code
does not have to join explicitly with the thread later.

Because the detachNewThreadSelector:toTarget:withObject: method is supported in all versions
of Mac OS X, it is more frequently used than the other technique. To detach a new thread, you simply provide
the name of the method (specified as a selector) that you want to use as the thread entry point along with
the object that defines that method and any data you want to pass to the thread. The following example
shows a basic invocation of this method that spawns a thread using a custom method of the current object.

[NSThread detachNewThreadSelector:@selector(myThreadMainMethod:) toTarget:self
 withObject:nil];

Prior to Mac OS X v10.5, you used the NSThread class primarily to spawn threads. Although you could get
an NSThread object and access some thread attributes, you could only do so from the thread itself after it
was running. In Mac OS X v10.5, support was added for creating NSThread objects without a running thread.
This support made it possible to get and set various thread attributes prior to starting the thread. It also
made it possible to use that thread object later to refer to the running thread.

The simple way to initialize an NSThread object is to use the initWithTarget:selector:object:method.
This method takes the exact same information as thedetachNewThreadSelector:toTarget:withObject:
method and uses it to initialize a new NSThread instance. It does not start the thread, however. To start the
thread, you call the thread object’s start method explicitly, as shown in the following example:

NSThread* myThread = [[NSThread alloc] initWithTarget:self
 selector:@selector(myThreadMainMethod:)
 object:nil];
[myThread start];

36 Creating a Thread
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

Note: An alternative to using the initWithTarget:selector:object: method is to subclass NSThread
and override its main method. You would use the overridden version of this method to implement your
thread’s main entry point. For more information, see the subclassing notes in NSThread Class Reference.

If you have an NSThread object whose thread is currently running, one way you can send messages to that
thread is to use the performSelector:onThread:withObject:waitUntilDone:method of almost any
object in your application. Support for performing selectors on threads (other than the main thread) was
introduced in Mac OS X v10.5 and is a convenient way to communicate between threads. The messages you
send using this technique are executed directly by the other thread as part of its normal run-loop processing.
(Of course, this does mean that the target thread has to be running in its run loop, but that is a relatively
straightforward matter; see “Run Loop Management” (page 61).) You may still need some form of
synchronization when you communicate this way, but it is still simpler than setting up communications ports
between the threads.

Note: Although good for occasional communication between threads, you should not use the
performSelector:onThread:withObject:waitUntilDone: method for time critical or frequent
communication between threads.

For a list of other thread communication options, see “Setting the Detached State of a Thread” (page 41).

Using POSIX Threads

Mac OS X provides C-based support for creating threads using the POSIX thread API. This technology can
actually be used in any type of Mac OS X application (including Cocoa applications) and might be more
convenient if you are writing your software for multiple platforms. The POSIX routine you use to create
threads is called, appropriately enough, pthread_create.

Listing 3-1 shows two custom functions for creating a thread using POSIX calls. The LaunchThread function
creates a new thread whose main routine is implemented in the PosixThreadMainRoutine function. The
new thread is created as a detached thread in the following example. The default attribute set for POSIX
results in the creation of joinable threads. Marking the thread as detached gives the system a chance to
reclaim the resources for that thread immediately when it exits.

Listing 3-1 Creating a thread in C

#include <assert.h>
#include <pthread.h>

// The thread entry point routine.
void* PosixThreadMainRoutine(void* data)
{
 // Do some work here.

 return NULL;
}

void LaunchThread()
{
 // Create the thread using POSIX routines.
 pthread_attr_t attr;
 pthread_t posixThreadID;

Creating a Thread 37
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

 assert(!pthread_attr_init(&attr));
 assert(!pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));

 int threadError = pthread_create(&posixThreadID, &attr,
&PosixThreadMainRoutine, NULL);

 assert(!pthread_attr_destroy(&attr));
 if (threadError != 0)
 {
 // Report an error.
 }
}

If you add the code from the preceding listing to one of your source files and call the LaunchThread function,
it would create a new detached thread in your application. Of course, new threads created using this code
would not do anything useful. The threads would launch and almost immediately exit. To make things more
interesting, you would need to add code to the PosixThreadMainRoutine function to do some actual
work. To ensure that a thread knows what work to do, you can pass it a pointer to some data at creation
time. You pass this pointer as the last parameter of the pthread_create function.

To communicate information from your newly created thread back to your application’s main thread, you
need to establish a communications path between the target threads. For C-based applications, there are
several ways to communicate between threads, including the use of ports, conditions, or shared memory.
For long-lived threads, you should almost always set up some sort of interthread communications mechanism
to give your application’s main thread a way to check the status of the thread or shut it down cleanly when
the application exits.

Using NSObject to Spawn a Thread

In Mac OS X v10.5 and later, all objects have the ability to spawn a new thread and use it to execute one of
their methods. The performSelectorInBackground:withObject: method creates a new detached
thread and uses the specified method as the entry point for the new thread. For example, if you have some
object (represented by the variable myObj) and that object has a method called doSomething that you want
to run in a background thread, you could could use the following code to do that:

[myObj performSelectorInBackground:@selector(doSomething) withObject:nil];

The effect of calling this method is the same as if you called the
detachNewThreadSelector:toTarget:withObject: method of NSThread with the current object,
selector, and parameter object as parameters. The new thread is spawned immediately using the default
configuration and begins running. Inside the selector, you must configure the thread just as you would any
thread. For example, you would need to set up an autorelease pool (if you were not using garbage collection)
and configure the thread’s run loop if you planned to use it. For information on how to configure new threads,
see “Configuring Threads” (page 40).

Using Other Threading Technologies

Although the POSIX routines and NSThread class are the recommended technologies to use for creating
low-level threads, Mac OS X does include other C-based technologies. Of these, the only other one you might
consider using is Multiprocessing Services, which is itself implemented on top of POSIX threads. Multiprocessing

38 Creating a Thread
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

Services was developed originally for earlier versions of Mac OS and was later made available for Carbon
applications in Mac OS X. If you have existing code that uses this technology, you can continue to use it,
although you should also consider porting your thread-related code to POSIX.

For information on how to use Multiprocessing Services, see Multiprocessing Services Programming Guide.

Creating POSIX Threads in a Cocoa Application

Although the NSThread class is the main interface for creating threads in Cocoa applications, you are free
to use POSIX threads instead if doing so is more convenient for you. For example, you might use POSIX
threads if you already have code that uses them and you do not want to rewrite it. If you do plan to use the
POSIX threads in a Cocoa application, you should still be aware of the interactions between Cocoa and threads
and obey the guidelines in the following sections.

Protecting the Cocoa Frameworks

For multithreaded applications, Cocoa frameworks use locks and other forms of internal synchronization to
ensure they behave correctly. To prevent these locks from degrading performance in the single-threaded
case, however, Cocoa does not create them until the application spawns its first new thread using the
NSThread class. If you spawn threads using only POSIX thread routines, Cocoa does not receive the
notifications it needs to know that your application is now multithreaded. When that happens, operations
involving the Cocoa frameworks may destabilize or crash your application.

To let Cocoa know that you intend to use multiple threads, all you have to do is spawn a single thread using
the NSThread class and let that thread immediately exit. Your thread entry point need not do anything. Just
the act of spawning a thread using NSThread is enough to ensure that the locks needed by the Cocoa
frameworks are put in place.

If you are not sure if Cocoa thinks your application is multithreaded or not, you can use the isMultiThreaded
method of NSThread to check.

Supporting Autoreleased Objects

If your code does not require garbage collection, and you plan to create Cocoa objects, each thread you
create must have an autorelease pool. Creating an autorelease pool at the beginning of your thread’s main
entry routine is a standard procedure regardless of which technology you use to create the thread. For more
information, see “Memory Management in Threads” (page 40).

Mixing POSIX and Cocoa Locks

It is safe to use a mixture of POSIX and Cocoa locks inside the same application. Cocoa lock and condition
objects are essentially just wrappers for POSIX mutexes and conditions. For a given lock, however, you must
always use the same interface to create and manipulate that lock. In other words, you cannot use a Cocoa
NSLock object to manipulate a mutex you created using the pthread_mutex_init function, and vice versa.

Creating POSIX Threads in a Cocoa Application 39
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

Configuring Threads

After you create a thread, and sometimes before, you may want to configure different portions of the thread
environment. The following sections describe some of the changes you can make and when you might make
them.

Configuring the Stack Size of a Thread

For each new thread you create, Mac OS X allocates a specific amount of memory in your process space to
act as the stack for that thread. The stack manages the stack frames and is also where any local variables for
the thread are declared. The amount of memory allocated for threads is listed in “Thread Costs” (page 34).

If you want to change the stack size of a given thread, you must do so before you create the thread. All of
the threading technologies provide some way of setting the stack size, although setting the stack size using
NSThread is available only in Mac OS X v10.5 and later. Table 3-3 lists the different options for each technology.

Table 3-3 Setting the stack size of a thread

OptionTechnology

In Mac OS X v10.5 and later, allocate and initialize an NSThread object (do not use
the detachNewThreadSelector: toTarget:withObject: method). Before
calling the start method of the thread object, use the setStackSize: method
to specify the new stack size.

Cocoa

Create a new pthread_attr_t structure and use the pthread_attr_-
setstacksize function to change the default stack size. Pass the attributes to
the pthread_create function when creating your thread.

POSIX

Pass the appropriate stack size value to the MPCreateTask function when you
create your thread.

Multiprocessing
Services

Memory Management in Threads

Because threads share the memory space of your process, memory management is usually the same for
threads as it is for the rest of your program. In other words, you can continue to use malloc package or the
Cocoa memory management techniques you would use in a single-threaded application.

If you are writing a Cocoa application, however, there is one additional aspect to threaded programming
that you must handle. If your code uses the traditional reference counting model to retain and release objects,
as opposed to using garbage collection, you must create an autorelease pool for each of your custom threads
that uses Cocoa. You must always create an autorelease pool before performing any operation where the
autorelease method of an object might be called. This usually means creating the NSAutoreleasePool
object as the first step in your thread’s main entry routine and deleting it as the last step, as shown in the
following example:

- (void)myThreadMainRoutine
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

40 Configuring Threads
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

 // Do thread work here.

 [pool release];
}

If your project requires the use of garbage collection, an autorelease pool is not necessary for secondary
threads. If garbage collection is optional or not used, however, you must create one. The presence of an
autorelease pool in a garbage-collected application is not harmful, and for the most part is simply ignored.

For more information on memory management and autorelease pools in Cocoa applications, see Memory
Management Programming Guide for Cocoa.

Configuring Thread-Local Storage

Each thread maintains a dictionary of key-value pairs that can be accessed from anywhere in the thread. You
can use this dictionary to store information that you want to persist throughout the execution of your thread.
For example, you could use it to store state information that you want to persist through multiple iterations
of your thread’s run loop.

Cocoa and POSIX store the thread dictionary in different ways, so you cannot mix and match calls to the two
technologies. As long as you stick with one technology inside your thread code, however, the end results
should be similar. In Cocoa, you use the threadDictionary method of an NSThread object to retrieve an
NSMutableDictionary object, to which you can add any keys required by your thread. In POSIX, you use
the pthread_setspecific and pthread_getspecific functions to set and get the keys and values of
your thread.

Setting Up a Run Loop

When writing code you want to run on a separate thread, you have two options. The first option is to write
the code for a thread as one long task to be performed with little or no interruption, and have the thread
exit when it finishes. The second option is put your thread into a loop and have it process requests dynamically
as they arrive. The first option requires no special setup for your code; you just start doing the work you want
to do. The second option, however, involves setting up your thread’s run loop.

Mac OS X provides built-in support for implementing run loops in every thread. Cocoa and Carbon start the
run loop of your application’s main thread automatically, but if you create any secondary threads, you must
configure the run loop and start it manually.

For information on using and configuring run loops, see “Run Loop Management” (page 61).

Setting the Detached State of a Thread

Most Mac OS X high-level thread technologies create detached threads by default. In most cases, detached
threads are preferred because they allow the system to free up the thread’s data structures immediately
upon completion of the thread. Detached threads also do not require explicit interactions with your program.
The means of retrieving results from the thread is left to your discretion. By comparison, the system does
not reclaim the resources for joinable threads until another thread explicitly joins with that thread, a process
which may block the thread that performs the join.

Configuring Threads 41
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

You can think of joinable threads as akin to child threads. Although they still run as independent threads, a
joinable thread must be joined by another thread before its resources can be reclaimed by the system.
Joinable threads also provide an explicit way to pass data from an exiting thread to another thread. Just
before it exits, a joinable thread can pass a data pointer or other return value to the pthread_exit function.
Another thread can then claim this data by calling the pthread_join function.

Important: At application exit time, detached threads can be terminated immediately but joinable threads
cannot. Each joinable thread must be joined before the process is allowed to exit. Joinable threads may
therefore be preferable in cases where the thread is doing critical work that should not be interrupted, such
as saving data to disk.

If you do want to create joinable threads, the only way to do so is using POSIX threads. POSIX creates threads
as joinable by default. To mark a thread as detached or joinable, modify the thread attributes using the
pthread_attr_setdetachstate function prior to creating the thread. After the thread begins, you can
change a joinable thread to a detached thread by calling the pthread_detach function. For more information
about these POSIX thread functions, see the pthread man page. For information on how to join with a
thread, see the pthread_join man page.

Setting the Thread Priority

Any new thread you create has a default priority associated with it. The kernel’s scheduling algorithm takes
thread priorities into account when determining which threads to run, with higher priority threads being
more likely to run than threads with lower priorities. Higher priorities do not guarantee a specific amount of
execution time for your thread, just that it is more likely to be chosen by the scheduler when compared to
lower-priority threads.

Important: It is generally a good idea to leave the priorities of your threads at their default values. Increasing
the priorities of some threads also increases the likelihood of starvation among lower-priority threads. If your
application contains high-priority and low-priority threads that must interact with each other, the starvation
of lower-priority threads may block other threads and create performance bottlenecks.

If you do want to modify thread priorities, both Cocoa and POSIX provide a way to do so. For Cocoa threads,
you can use the setThreadPriority: class method of NSThread to set the priority of the currently running
thread. For POSIX threads, you use the pthread_setschedparam function. For more information, see
NSThread Class Reference or pthread_setschedparam man page.

Terminating a Thread

The recommended way to exit a thread is to let it exit its entry point routine normally. Although Cocoa,
POSIX, and Multiprocessing Services offer routines for killing threads directly, the use of such routines is
strongly discouraged. Killing a thread prevents that thread from cleaning up after itself. Memory allocated
by the thread could potentially be leaked and any other resources currently in use by the thread might not
be cleaned up properly, creating potential problems later.

42 Terminating a Thread
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

If you anticipate the need to terminate a thread in the middle of an operation, you should design your threads
from the outset to respond to a cancel or exit message. For long-running operations, this might mean stopping
work periodically and checking to see if such a message arrived. If a message does come in asking the thread
to exit, the thread would then have the opportunity to perform any needed cleanup and exit gracefully;
otherwise, it could simply go back to work and process the next chunk of data.

One way to respond to cancel messages is to use a run loop input source to receive such messages. Listing
3-2 shows the structure of how this code might look in your thread’s main entry routine. (The example shows
the main loop portion only and does not include the steps for setting up an autorelease pool or configuring
the actual work to do.) The example installs a custom input source on the run loop that presumably can be
messaged from another one of your threads; for information on setting up input sources, see “Configuring
Run Loop Sources” (page 71). After performing a portion of the total amount of work, the thread runs the
run loop briefly to see if a message arrived on the input source. If not, the run loop exits immediately and
the loop continues with the next chunk of work. Because the handler does not have direct access to the
exitNow local variable, the exit condition is communicated through a key-value pair in the thread dictionary.

Listing 3-2 Checking for an exit condition during a long job

- (void)threadMainRoutine
{
 BOOL moreWorkToDo = YES;
 BOOL exitNow = NO;
 NSRunLoop* runLoop = [NSRunLoop currentRunLoop];

 // Add the exitNow BOOL to the thread dictionary.
 NSMutableDictionary* threadDict = [[NSThread currentThread] threadDictionary];
 [threadDict setValue:[NSNumber numberWithBool:exitNow]
forKey:@"ThreadShouldExitNow"];

 // Install an input source.
 [self myInstallCustomInputSource];

 while (moreWorkToDo && !exitNow)
 {
 // Do one chunk of a larger body of work here.
 // Change the value of the moreWorkToDo Boolean when done.

 // Run the run loop but timeout immediately if the input source isn't
waiting to fire.
 [runLoop runUntilDate:[NSDate date]];

 // Check to see if an input source handler changed the exitNow value.
 exitNow = [[threadDict valueForKey:@"ThreadShouldExitNow"] boolValue];
 }
}

Terminating a Thread 43
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

44 Terminating a Thread
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Managing Threads

The presence of multiple threads in an application opens up potential issues regarding safe access to resources
from multiple threads of execution. Two threads modifying the same resource might interfere with each
other in unintended ways. For example, one thread might overwrite another’s changes or put the application
into an unknown and potentially invalid state. If you are lucky, the corrupted resource might cause obvious
performance problems or crashes that are relatively easy to track down and fix. If you are unlucky, however,
the corruption may cause subtle errors that do not manifest themselves until much later, or the errors might
require a significant overhaul of your underlying coding assumptions.

When it comes to thread safety, a good design is the best protection you have. Avoiding shared resources
and minimizing the interactions between your threads makes it less likely for those threads to interfere with
each other. A completely interference-free design is not always possible, however. In cases where your threads
must interact, you need to use synchronization tools to ensure that when they interact, they do so safely.

Mac OS X provides numerous synchronization tools for you to use, ranging from tools that provide mutually
exclusive access to those that sequence events correctly in your application. The following sections describe
these tools and how you use them in your code to affect safe access to your program’s resources.

Synchronization Tools

To prevent different threads from changing data unexpectedly, you can either design your application to
not have synchronization issues or you can use synchronization tools. Although avoiding synchronization
issues altogether is preferable, it is not always possible. The following sections describe the basic categories
of synchronization tools available for you to use.

Atomic Operations

Atomic operations are a simple form of synchronization that work on simple data types. The advantage of
atomic operations is that they do not block competing threads. For simple operations, such as incrementing
a counter variable, this can lead to much better performance than taking a lock.

Mac OS X includes numerous operations to perform basic mathematical and logical operations on 32-bit and
64-bit values. Among these operations are atomic versions of the compare-and-swap, test-and-set, and
test-and-clear operations. For a list of supported atomic operations, see the
/usr/include/libkern/OSAtomic.h header file or see the atomic man page.

Memory Barriers and Volatile Variables

In order to achieve optimal performance, compilers often reorder assembly-level instructions to keep the
instruction pipeline for the processor as full as possible. As part of this optimization, the compiler may reorder
instructions that access main memory when it thinks doing so would not generate incorrect data.

Synchronization Tools 45
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

Unfortunately, it is not always possible for the compiler to detect all memory-dependent operations. If
seemingly separate variables actually influence each other, the compiler optimizations could update those
variables in the wrong order, generating potentially incorrect results.

A memory barrier is a type of nonblocking synchronization tool used to ensure that memory operations
occur in the correct order. A memory barrier acts like a fence, forcing the processor to complete any load
and store operations positioned in front of the barrier before it is allowed to perform load and store operations
positioned after the barrier. Memory barriers are typically used to ensure that memory operations by one
thread (but visible to another) always occur in an expected order. The lack of a memory barrier in such a
situation might allow other threads to see seemingly impossible results. (For an example, see the Wikipedia
entry for memory barriers.) To employ a memory barrier, you simply call the OSMemoryBarrier function at
the appropriate point in your code.

Volatile variables apply another type of memory constraint to individual variables. The compiler often optimizes
code by loading the values for variables into registers. For local variables, this is usually not a problem. If the
variable is visible from another thread however, such an optimization might prevent the other thread from
noticing any changes to it. Applying the volatile keyword to a variable forces the compiler to load that
variable from memory each time it is used. You might declare a variable as volatile if its value could be
changed at any time by an external source that the compiler may not be able to detect.

Because both memory barriers and volatile variables decrease the number of optimizations the compiler can
perform, they should be used sparingly and only where needed to ensure correctness. For information about
using memory barriers, see the OSMemoryBarrier man page.

Locks

Locks are one of the most commonly used synchronization tools. You can use locks to protect a critical
section of your code, which is a segment of code that only one thread at a time is allowed access. For example,
a critical section might manipulate a particular data structure or use some resource that supports at most
one client at a time. By placing a lock around this section, you exclude other threads from making changes
that might affect the correctness of your code.

Table 4-1 lists some of the locks that are commonly used by programmers. Mac OS X provides implementations
for most of these lock types, but not all of them. For unsupported lock types, the description column explains
the reasons why those locks are not implemented directly on the platform.

Table 4-1 Lock types

DescriptionLock

A mutually exclusive (or mutex) lock acts as a protective barrier around a resource. A
mutex is a type of semaphore that grants access to only one thread at a time. If a mutex
is in use and another thread tries to acquire it, that thread blocks until the mutex is
released by its original holder. If multiple threads compete for the same mutex, only one
at a time is allowed access to it.

Mutex

A recursive lock is a variant on the mutex lock. A recursive lock allows a single thread to
acquire the lock multiple times before releasing it. Other threads remain blocked until
the owner of the lock releases the lock the same number of times it acquired it. Recursive
locks are used during recursive iterations primarily but may also be used in cases where
multiple methods each need to acquire the lock separately.

Recursive lock

46 Synchronization Tools
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

http://en.wikipedia.org/wiki/Memory_barrier

DescriptionLock

A read-write lock is also referred to as a shared-exclusive lock. This type of lock is typically
used in larger-scale operations and can significantly improve performance if the protected
data structure is read frequently and modified only occasionally. During normal operation,
multiple readers can access the data structure simultaneously. When a thread wants to
write to the structure, though, it blocks until all readers release the lock, at which point
it acquires the lock and can update the structure. While a writing thread is waiting for
the lock, new reader threads block until the writing thread is finished. Mac OS X supports
read-write locks using POSIX threads only. For more information on how to use these
locks, see the pthread man page.

Read-write lock

A distributed lock provides mutually exclusive access at the process level. Unlike a true
mutex, a distributed lock does not block a process or prevent it from running. It simply
reports when the lock is busy and lets the process decide how to proceed.

Distributed lock

A spin lock polls its lock condition repeatedly until that condition becomes true. Spin
locks are most often used on multiprocessor systems where the expected wait time for
a lock is small. In these situations, it is often more efficient to poll than to block the
thread, which involves a context switch and the updating of thread data structures. Mac
OS X does not provide any implementations of spin locks because of their polling nature,
but you can easily implement them in specific situations. For information on
implementing spin locks in the kernel, see Kernel Programming Guide.

Spin lock

A double-checked lock is an attempt to reduce the overhead of taking a lock by testing
the locking criteria prior to taking the lock. Because double-checked locks are potentially
unsafe, Mac OS X does not provide explicit support for them and their use is discouraged.

Double-checked
lock

Note: Most types of locks also incorporate a memory barrier to ensure that any preceding load and store
instructions are completed before entering the critical section.

For information on how to use locks, see “Using Locks” (page 54).

Conditions

A condition is another type of semaphore that allows threads to signal each other when a certain condition
is true. Conditions are typically used to indicate the availability of a resource or to ensure that tasks are
performed in a specific order. When a thread tests a condition, it blocks unless that condition is already true.
It remains blocked until some other thread explicitly changes and signals the condition. The difference
between a condition and a mutex lock is that multiple threads may be permitted access to the condition at
the same time. The condition is more of a gatekeeper that lets different threads through the gate depending
on some specified criteria.

One way you might use a condition is to manage a pool of pending events. The event queue would use a
condition variable to signal waiting threads when there were events in the queue. If one event arrives, the
queue would signal the condition appropriately. If a thread were already waiting, it would be woken up
whereupon it would pull the event from the queue and process it. If two events came in to the queue at
roughly the same time, the queue would signal the condition twice to wake up two threads.

Synchronization Tools 47
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

Mac OS X provides support for conditions in several different technologies. The correct implementation of
conditions requires careful coding, however, so you should look at the examples in “Using Conditions” (page
58) before using them in your own code.

Perform Selector Routines

Cocoa applications have a convenient way of delivering messages in a synchronized manner to a single
thread. The NSObject class declares methods for performing a selector on one of the application’s active
threads. These methods let your threads deliver messages asynchronously with the guarantee that they will
be performed synchronously by the target thread. For example, you might use perform selector messages
to deliver results from a distributed computation to your application’s main thread or to a designated
coordinator thread. Each request to perform a selector is queued on the target thread’s run loop and the
requests are then processed sequentially in the order in which they were received.

For a summary of perform selector routines and more information about how to use them, see “Cocoa Perform
Selector Sources” (page 64).

Synchronization and Performance

Synchronization helps ensure the correctness of your code, but does so at the expense of performance. The
use of synchronization tools introduces delays, even in uncontested cases. Locks and atomic operations
generally involve the use of memory barriers and kernel-level synchronization to ensure code is properly
protected. And if there is contention for a lock, your threads could block and experience even greater delays.

When designing your concurrent tasks, correctness is always the most important factor, but you should also
consider performance factors as well. Code that executes correctly under multiple threads, but slower than
the same code running on a single thread, is hardly an improvement.

If you are retrofitting an existing single-threaded application, you should always take a set of baseline
measurements of the performance of key tasks. Upon adding additional threads, you should then take new
measurements for those same tasks and compare the performance of the multithreaded case to the
single-threaded case. If after tuning your code, threading does not improve performance, you may want to
reconsider your specific implementation or the use of threads altogether.

For information about performance and the tools for gathering metrics, see PerformanceOverview. For specific
information about the cost of locks and atomic operations, see “Thread Costs” (page 34).

Thread Safety and Signals

When it comes to threaded applications, nothing causes more fear or confusion than the issue of handling
signals. Signals are a low-level BSD mechanism that can be used to deliver information to a process or
manipulate it in some way. Some programs use signals to detect certain events, such as the death of a child
process. The system uses signals to terminate runaway processes and communicate other types of information.

The problem with signals is not what they do, but their behavior when your application has multiple threads.
In a single-threaded application, all signal handlers run on the main thread. In a multithreaded application,
signals that are not tied to a specific hardware error (such as an illegal instruction) are delivered to whichever

48 Synchronization and Performance
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

thread happens to be running at the time. If multiple threads are running simultaneously, the signal is
delivered to whichever one the system happens to pick. In other words, signals can be delivered to any thread
of your application.

The first rule for implementing signal handlers in Mac OS X applications is to avoid assumptions about which
thread is handling the signal. If a specific thread wants to handle a given signal, you need to work out some
way of notifying that thread when the signal arrives. You cannot just assume that installation of a signal
handler from that thread will result in the signal being delivered to the same thread.

For more information about signals and installing signal handlers, see signal and sigaction man pages.

Tips for Thread-Safe Designs

Synchronization tools are a useful way to make your code thread-safe, but they are not a panacea. Used too
much, locks and other types of synchronization primitives can actually decrease your application’s threaded
performance compared to its nonthreaded performance. Finding the right balance between safety and
performance is an art that takes experience. The following sections provide tips to help you choose the
appropriate level of synchronization for your application.

Avoid Synchronization Altogether

For any new projects you work on, and even for existing projects, designing your code and data structures
to avoid the need for synchronization is the best possible solution. Although locks and other synchronization
tools are useful, they do impact the performance of any application. And if the overall design causes high
contention among specific resources, your threads could be waiting even longer.

The best way to implement concurrency is to reduce the interactions and inter-dependencies between your
concurrent tasks. If each task operates on its own private data set, it does not need to protect that data using
locks. Even in situations where two tasks do share a common data set, you can look at ways of partitioning
that set or providing each task with its own copy. Of course, copying data sets has its costs too, so you have
to weigh those costs against the costs of synchronization before making your decision.

Understand the Limits of Synchronization

Synchronization tools are effective only when they are used consistently by all threads in an application. If
you create a mutex to restrict access to a specific resource, all of your threads must acquire the same mutex
before trying to manipulate the resource. Failure to do so defeats the protection offered by the mutex and
is a programmer error.

Be Aware of Threats to Code Correctness

When using locks and memory barriers, you should always give careful thought to their placement in your
code. Even locks that seem well placed can actually lull you into a false sense of security. The following series
of examples attempt to illustrate this problem by pointing out the flaws in seemingly innocuous code. The
basic premise is that you have a mutable array containing a set of immutable objects. Suppose you want to
invoke a method of the first object in the array. You might do so using the following code:

Tips for Thread-Safe Designs 49
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

NSLock* arrayLock = GetArrayLock();
NSMutableArray* myArray = GetSharedArray();
id anObject;

[arrayLock lock];
anObject = [myArray objectAtIndex:0];
[arrayLock unlock];

[anObject doSomething];

Because the array is mutable, the lock around the array prevents other threads from modifying the array until
you get the desired object. And because the object you retrieve is itself immutable, a lock is not needed
around the call to the doSomething method.

There is a problem with the preceding example, though. What happens if you release the lock and another
thread comes in and removes all objects from the array before you have a chance to execute the doSomething
method? In an application without garbage collection, the object your code is holding could be released,
leaving anObject pointing to an invalid memory address. To fix the problem, you might decide to simply
rearrange your existing code and release the lock after your call to doSomething, as shown here:

NSLock* arrayLock = GetArrayLock();
NSMutableArray* myArray = GetSharedArray();
id anObject;

[arrayLock lock];
anObject = [myArray objectAtIndex:0];
[anObject doSomething];
[arrayLock unlock];

By moving the doSomething call inside the lock, your code guarantees that the object is still valid when the
method is called. Unfortunately, if the doSomething method takes a long time to execute, this could cause
your code to hold the lock for a long time, which could create a performance bottleneck.

The problem with the code is not that the critical region was poorly defined, but that the actual problem
was not understood. The real problem is a memory management issue that is triggered only by the presence
of other threads. Because it can be released by another thread, a better solution would be to retain anObject
before releasing the lock. This solution addresses the real problem of the object being released and does so
without introducing a potential performance penalty.

NSLock* arrayLock = GetArrayLock();
NSMutableArray* myArray = GetSharedArray();
id anObject;

[arrayLock lock];
anObject = [myArray objectAtIndex:0];
[anObject retain];
[arrayLock unlock];

[anObject doSomething];

Although the preceding examples are very simple in nature, they do illustrate a very important point. When
it comes to correctness, you have to think beyond the obvious problems. Memory management and other
aspects of your design may also be affected by the presence of multiple threads, so you have to think about
those problems up front. In addition, you should always assume that the compiler will do the worst possible
thing when it comes to safety. This kind of awareness and vigilance should help you avoid potential problems
and ensure that your code behaves correctly.

50 Tips for Thread-Safe Designs
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

For additional examples of how to make your program thread-safe, see Technical Note TN2059: “Using Col-
lection Classes Safely in Multithreaded Applications.”

Watch Out for Deadlocks and Livelocks

Any time a thread tries to take more than one lock at the same time, there is a potential for a deadlock to
occur. A deadlock occurs when two different threads hold a lock that the other one needs and then try to
acquire the lock held by the other thread. The result is that each thread blocks permanently because it can
never acquire the other lock.

A livelock is similar to a deadlock and occurs when two threads compete for the same set of resources. In a
livelock situation, a thread gives up its first lock in an attempt to acquire its second lock. Once it acquires the
second lock, it goes back and tries to acquire the first lock again. It locks up because it spends all its time
releasing one lock and trying to acquire the other lock rather than doing any real work.

The best way to avoid both deadlock and livelock situations is to take only one lock at a time. If you must
acquire more than one lock at a time, you should make sure that other threads do not try to do something
similar.

Use Volatile Variables Correctly

If you are already using mutexes to protect a section of code, you should avoid using the volatile keyword
to protect variables used in those sections. A mutex includes a memory barrier to ensure the proper ordering
of load and store operations. Adding the volatile keyword to a variable that is protected by that critical
section only serves to slow down operations that involve that variable.

It is also important that you do not use volatile variables in an attempt to avoid the use of mutexes. In general,
mutexes and other synchronization mechanisms are a better way to protect the integrity of your data
structures than volatile variables. The volatile keyword only ensures that a variable is loaded from memory
rather than stored in a register. It does not ensure that the variable is accessed correctly by your code.

Using Atomic Operations

Nonblocking synchronization is a way to perform some types of operations and avoid the expense of locks.
Although locks are an effective way to synchronize two threads, acquiring a lock is a relatively expensive
operation, even in the uncontested case. By contrast, many atomic operations take a fraction of the time to
complete and can be just as effective as a lock.

Atomic operations let you perform simple mathematical and logical operations on 32-bit or 64-bit values.
These operations rely on special hardware instructions (and an optional memory barrier) to ensure that the
given operation completes before the affected memory is accessed again. In the multithreaded case, you
should always use the atomic operations that incorporate a memory barrier to ensure that the memory is
synchronized correctly between threads.

Table 4-2 lists the available atomic mathematical and logical operations and the corresponding function
names. These functions are all declared in the /usr/include/libkern/OSAtomic.h header file, where
you can also find the complete syntax. The 64-bit versions of these functions are available only in 64-bit
processes.

Using Atomic Operations 51
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

http://developer.apple.com/technotes/tn2002/tn2059.html
http://developer.apple.com/technotes/tn2002/tn2059.html

Table 4-2 Atomic math and logic operations

DescriptionFunction nameOperation

Adds two integer values together and stores the result
in one of the specified variables.

OSAtomicAdd32

OSAtomicAdd32Barrier

OSAtomicAdd64

OSAtomicAdd64Barrier

Add

Increments the specified integer value by 1.OSAtomicIncrement32

OSAtomicIncrement32Barrier

OSAtomicIncrement64

OSAtomicIncrement64Barrier

Increment

Decrements the specified integer value by 1.OSAtomicDecrement32

OSAtomicDecrement32Barrier

OSAtomicDecrement64

OSAtomicDecrement64Barrier

Decrement

Performs a logical OR between the specified 32-bit
value and a 32-bit mask.

OSAtomicOr32

OSAtomicOr32Barrier

Logical OR

Performs a logical AND between the specified 32-bit
value and a 32-bit mask.

OSAtomicAnd32

OSAtomicAnd32Barrier

Logical
AND

Performs a logical XOR between the specified 32-bit
value and a 32-bit mask.

OSAtomicXor32

OSAtomicXor32Barrier

Logical XOR

Compares a variable against the specified old value. If
the two values are equal, this function assigns the
specified new value to the variable; otherwise, it does
nothing. The comparison and assignment are done as
one atomic operation and the function returns a
Boolean value indicating whether the swap actually
occurred.

OSAtomicCompareAndSwap32

OSAtomicCompareAnd-
Swap32Barrier

OSAtomicCompareAndSwap64

OSAtomicCompareAnd-
Swap64Barrier

OSAtomicCompareAndSwapPtr

OSAtomicCompareAnd-
SwapPtrBarrier

OSAtomicCompareAndSwapInt

OSAtomicCompareAnd-
SwapIntBarrier

OSAtomicCompareAndSwapLong

OSAtomicCompareAnd-
SwapLongBarrier

Compare
and swap

52 Using Atomic Operations
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

DescriptionFunction nameOperation

Tests a bit in the specified variable, sets that bit to 1,
and returns the value of the old bit as a Boolean value.
Bits are tested according to the formula (0x80 >> (n
& 7)) of byte ((char*)address + (n >> 3))
where n is the bit number and address is a pointer
to the variable. This formula effectively breaks up the
variable into 8-bit sized chunks and orders the bits in
each chunk in reverse. For example, to test the
lowest-order bit (bit 0) of a 32-bit integer, you would
actually specify 7 for the bit number; similarly, to test
the highest order bit (bit 32), you would specify 24 for
the bit number.

OSAtomicTestAndSet

OSAtomicTestAndSetBarrier

Test and set

Tests a bit in the specified variable, sets that bit to 0,
and returns the value of the old bit as a Boolean value.
Bits are tested according to the formula (0x80 >> (n
& 7)) of byte ((char*)address + (n >> 3))
where n is the bit number and address is a pointer
to the variable. This formula effectively breaks up the
variable into 8-bit sized chunks and orders the bits in
each chunk in reverse. For example, to test the
lowest-order bit (bit 0) of a 32-bit integer, you would
actually specify 7 for the bit number; similarly, to test
the highest order bit (bit 32), you would specify 24 for
the bit number.

OSAtomicTestAndClear

OSAtomicTestAndClearBarrier

Test and
clear

The behavior of most atomic functions should be relatively straightforward and what you would expect.
Listing 4-1, however, shows the behavior of atomic test-and-set and compare-and-swap operations, which
are a little more complex. The first three calls to the OSAtomicTestAndSet function demonstrate how the
bit manipulation formula being used on an integer value and its results might differ from what you would
expect. The last two calls show the behavior of the OSAtomicCompareAndSwap32 function. In all cases,
these functions are being called in the uncontested case when no other threads are manipulating the values.

Listing 4-1 Performing atomic operations

int32_t theValue = 0;
OSAtomicTestAndSet(0, &theValue);
// theValue is now 128.

theValue = 0;
OSAtomicTestAndSet(7, &theValue);
// theValue is now 1.

theValue = 0;
OSAtomicTestAndSet(15, &theValue)
// theValue is now 256.

OSAtomicCompareAndSwap32(256, 512, &theValue);
// theValue is now 512.

OSAtomicCompareAndSwap32(256, 1024, &theValue);
// theValue is still 512.

Using Atomic Operations 53
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

For information about atomic operations, see the atomic man page and the
/usr/include/libkern/OSAtomic.h header file.

Using Locks

Locks are a fundamental synchronization tool for threaded programming. Locks enable you to protect large
sections of code easily so that you can ensure the correctness of that code. Mac OS X provides basic mutex
locks for all application types and Cocoa defines some additional variants of the mutex lock for special
situations. The following sections show you how to use several of these lock types.

Using a POSIX Mutex Lock

POSIX mutex locks are extremely easy to use from any application in Mac OS X. To create the mutex lock,
you declare and initialize a pthread_mutex_t structure. To lock and unlock the mutex lock, you use the
pthread_mutex_lock and pthread_mutex_unlock functions. Listing 4-2 shows the basic code required
to initialize and use a POSIX thread mutex lock. When you are done with the lock, simply call
pthread_mutex_destroy to free up the lock data structures.

Listing 4-2 Using a mutex lock

pthread_mutex_t mutex;
void MyInitFunction()
{
 pthread_mutex_init(&mutex, NULL);
}

void MyLockingFunction()
{
 pthread_mutex_lock(&mutex);
 // Do work.
 pthread_mutex_unlock(&mutex);
}

Note: The preceding code is a simplified example intended to show the basic usage of the POSIX thread
mutex functions. Your own code should check the error codes returned by these functions and handle them
appropriately.

Using the NSLock Class

An NSLock object implements a basic mutex for Cocoa applications. The interface for all locks (including
NSLock) is actually defined by the NSLocking protocol, which defines the lock and unlock methods. You
use these methods to acquire and release the lock just as you would any mutex.

In addition to the standard locking behavior, the NSLock class adds the tryLock and lockBeforeDate:
methods. The tryLock method attempts to acquire the lock but does not block if the lock is unavailable;
instead, the method simply returns NO. The lockBeforeDate: method attempts to acquire the lock but
unblocks the thread (and returns NO) if the lock is not acquired within the specified time limit.

54 Using Locks
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

The following example shows how you could use an NSLock object to coordinate the updating of a visual
display, whose data is being calculated by several threads. If the thread cannot acquire the lock immediately,
it simply continues its calculations until it can acquire the lock and update the display.

BOOL moreToDo = YES;
NSLock *theLock = [[NSLock alloc] init];
...
while (moreToDo) {
 /* Do another increment of calculation */
 /* until there’s no more to do. */
 if ([theLock tryLock]) {
 /* Update display used by all threads. */
 [theLock unlock];
 }
}

Using the @synchronized Directive

The @synchronized directive is a convenient way to create mutex locks on the fly in Objective-C code. The
@synchronized directive does what any other mutex lock would do—it prevents different threads from
acquiring the same lock at the same time. In this case, however, you do not have to create the mutex or lock
object directly. Instead, you simply use any Objective-C object as a lock token, as shown in the following
example:

- (void)myMethod:(id)anObj
{
 @synchronized(anObj)
 {
 // Everything between the braces is protected by the @synchronized
directive.
 }
}

The object passed to the @synchronized directive is a unique identifier used to distinguish the protected
block. If you execute the preceding method in two different threads, passing a different object for the anObj
parameter on each thread, each would take its lock and continue processing without being blocked by the
other. If you pass the same object in both cases, however, one of the threads would acquire the lock first
and the other would block until the first thread completed the critical section.

As a precautionary measure, the @synchronized block implicitly adds an exception handler to the protected
code. This handler automatically releases the mutex in the event that an exception is thrown. This means
that in order to use the @synchronized directive, you must also enable Objective-C exception handling in
your code. If you do not want the additional overhead caused by the implicit exception handler, you should
consider using the lock classes.

For more information about the @synchronized directive, see The Objective-C 2.0 Programming Language.

Using Other Cocoa Locks

The following sections describe the process for using several other types of Cocoa locks.

Using Locks 55
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

Using an NSRecursiveLock Object

The NSRecursiveLock class defines a lock that can be acquired multiple times by the same thread without
causing the thread to deadlock. A recursive lock keeps track of how many times it was successfully acquired.
Each successful acquisition of the lock must be balanced by a corresponding call to unlock the lock. Only
when all of the lock and unlock calls are balanced is the lock actually released so that other threads can
acquire it.

As its name implies, this type of lock is commonly used inside a recursive function to prevent the recursion
from blocking the thread. You could similarly use it in the nonrecursive case to call functions whose semantics
demand that they also take the lock. Here’s an example of a simple recursive function that acquires the lock
through recursion. If you did not use an NSRecursiveLock object for this code, the thread would deadlock
when the function was called again.

NSRecursiveLock *theLock = [[NSRecursiveLock alloc] init];

void MyRecursiveFunction(int value)
{
 [theLock lock];
 if (value != 0)
 {
 --value;
 MyRecursiveFunction(value);
 }
 [theLock unlock];
}

MyRecursiveFunction(5);

Note: Because a recursive lock is not released until all lock calls are balanced with unlock calls, you should
carefully weigh the decision to use a performance lock against the potential performance implications.
Holding any lock for an extended period of time can cause other threads to block until the recursion completes.
If you can rewrite your code to eliminate the recursion or eliminate the need to use a recursive lock, you may
achieve better performance.

Using an NSConditionLock Object

An NSConditionLock object defines a mutex lock that can be locked and unlocked with specific values.
You should not confuse this type of lock with a condition (see “Conditions” (page 47)). The behavior is
somewhat similar to conditions, but is implemented very differently.

Typically, you use an NSConditionLock object when threads need to perform tasks in a specific order, such
as when one thread produces data that another consumes. While the producer is executing, the consumer
acquires the lock using a condition that is specific to your program. (The condition itself is just an integer
value that you define.) When the producer finishes, it unlocks the lock and sets the lock condition to the
appropriate integer value to wake the consumer thread, which then proceeds to process the data.

The locking and unlocking methods that NSConditionLock objects respond to can be used in any
combination. For example, you can pair a lock message with unlockWithCondition:, or a
lockWhenCondition: message with unlock. Of course, this latter combination unlocks the lock but might
not release any threads waiting on a specific condition value.

56 Using Locks
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

The following example shows how the producer-consumer problem might be handled using condition locks.
Imagine that an application contains a queue of data. A producer thread adds data to the queue, and consumer
threads extract data from the queue. The producer need not wait for a specific condition, but it must wait
for the lock to be available so it can safely add data to the queue.

id condLock = [[NSConditionLock alloc] initWithCondition:NO_DATA];

while(true)
{
 [condLock lock];
 /* Add data to the queue. */
 [condLock unlockWithCondition:HAS_DATA];
}

Because the initial condition of the lock is set to NO_DATA, the producer thread should have no trouble
acquiring the lock initially. It fills the queue with data and sets the condition to HAS_DATA. During subsequent
iterations, the producer thread can add new data as it arrives, regardless of whether the queue is empty or
still has some data. The only time it blocks is when a consumer thread is extracting data from the queue.

Because the consumer thread must have data to process, it waits on the queue using a specific condition.
When the producer puts data on the queue, the consumer thread wakes up and acquires its lock. It can then
extract some data from the queue and update the queue status. The following example shows the basic
structure of the consumer thread’s processing loop.

while (true)
{
 [condLock lockWhenCondition:HAS_DATA];
 /* Remove data from the queue. */
 [condLock unlockWithCondition:(isEmpty ? NO_DATA : HAS_DATA)];

 // Process the data locally.
}

Using an NSDistributedLock Object

The NSDistributedLock class can be used by multiple applications on multiple hosts to restrict access to
some shared resource, such as a file. The lock itself is effectively a mutex lock that is implemented using a
file-system item, such as a file or directory. For an NSDistributedLock object to be usable, the lock must
be writable by all applications that use it. This usually means putting it on a file system that is accessible to
all of the computers that are running the application.

Unlike other types of lock, NSDistrubutedLock does not conform to the NSLocking protocol and thus
does not have a lock method. A lock method would block the execution of the thread and require the
system to poll the lock at a predetermined rate. Rather than impose this penalty on your code,
NSDistributedLock provides a tryLock method and lets you decide whether or not to poll.

Because it is implemented using the file system, an NSDistributedLock object is not released unless the
owner explicitly releases it. If your application crashes while holding a distributed lock, other clients will be
unable to access the protected resource. In this situation, you can use the breakLock method to break the
existing lock so that you can acquire it. Breaking locks should generally be avoided, though, unless you are
certain the owning process died and cannot release the lock.

As with other types of locks, when you are done using an NSDistributedLock object, you release it by
calling the unlock method.

Using Locks 57
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

Using Conditions

Conditions are a special type of lock that you can use to synchronize the order in which operations must
proceed. They differ from mutex locks in a subtle way. A thread waiting on a condition remains blocked until
that condition is signaled explicitly by another thread.

Due to the subtleties involved in implementing operating systems, condition locks are permitted to return
with spurious success even if they were not actually signaled by your code. To avoid problems caused by
these spurious signals, you should always use a predicate in conjunction with your condition lock. The
predicate is a more concrete way of determining whether it is safe for your thread to proceed. The condition
simply keeps your thread asleep until the predicate can be set by the signaling thread.

The following sections show you how to use conditions in your code.

Using the NSCondition Class

The NSCondition class provides the same semantics as POSIX conditions, but wraps both the required lock
and condition data structures in a single object. The result is an object that you can lock like a mutex and
then wait on like a condition.

Listing 4-3 shows a code snippet demonstrating the sequence of events for waiting on an NSCondition
object. The cocoaCondition variable contains an NSCondition object and the timeToDoWork variable
is an integer that is incremented from another thread immediately prior to signaling the condition.

Listing 4-3 Using a Cocoa condition

[cocoaCondition lock];
while (timeToDoWork <= 0)
 [cocoaCondition wait];

timeToDoWork--;

// Do real work here.

[cocoaCondition unlock];

Listing 4-4 shows the code used to signal the Cocoa condition and increment the predicate variable. You
should always lock the condition before signaling it.

Listing 4-4 Signaling a Cocoa condition

[cocoaCondition lock];
timeToDoWork++;
[cocoaCondition signal];
[cocoaCondition unlock];

58 Using Conditions
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

Using POSIX Conditions

POSIX thread condition locks require the use of both a condition data structure and a mutex. Although the
two lock structures are separate, the mutex lock is intimately tied to the condition structure at runtime.
Threads waiting on a signal should always use the same mutex lock and condition structures together.
Changing the pairing can cause errors.

Listing 4-5 shows the basic initialization and usage of a condition and predicate. After initializing both the
condition and the mutex lock, the waiting thread enters a while loop using the ready_to_go variable as its
predicate. Only when the predicate is set and the condition subsequently signaled does the waiting thread
wake up and start doing its work.

Listing 4-5 Using a POSIX condition

pthread_mutex_t mutex;
pthread_cond_t condition;
Boolean ready_to_go = true;

void MyCondInitFunction()
{
 pthread_mutex_init(&mutex);
 pthread_cond_init(&condition, NULL);
}

void MyWaitOnConditionFunction()
{
 // Lock the mutex.
 pthread_mutex_lock(&mutex);

 // If the predicate is already set, then the while loop is bypassed;
 // otherwise, the thread sleeps until the predicate is set.
 while(ready_to_go == false)
 {
 pthread_cond_wait(&condition, &mutex);
 }

 // Do work. (The mutex should stay locked.)

 // Reset the predicate and release the mutex.
 ready_to_go = false;
 pthread_mutex_unlock(&mutex);
}

The signaling thread is responsible both for setting the predicate and for sending the signal to the condition
lock. Listing 4-6 shows the code for implementing this behavior. In this example, the condition is signaled
inside of the mutex to prevent race conditions from occurring between the threads waiting on the condition.

Listing 4-6 Signaling a condition lock

void SignalThreadUsingCondition()
{
 // At this point, there should be work for the other thread to do.
 pthread_mutex_lock(&mutex);
 ready_to_go = true;

 // Signal the other thread to begin work.

Using Conditions 59
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

 pthread_cond_signal(&condition);

 pthread_mutex_unlock(&mutex);
}

Note: The preceding code is a simplified example intended to show the basic usage of the POSIX thread
condition functions. Your own code should check the error codes returned by these functions and handle
them appropriately.

60 Using Conditions
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Synchronization and Thread Safety

Run loops are part of the fundamental infrastructure associated with threads. A run loop is an event processing
loop that you use to schedule work and coordinate the receipt of incoming events. The purpose of a run
loop is to keep your thread busy when there is work to do and put your thread to sleep when there is none.

Run loop management is not entirely automatic. You must still design your thread’s code to start the run
loop at appropriate times and respond to incoming events. Both Cocoa and Core Foundation provide run
loop objects to help you configure and manage your thread’s run loop. Your application does not need to
create these objects explicitly; each thread, including the application’s main thread, has an associated run
loop object. Only secondary threads need to run their run loop explicitly, however. In both Carbon and Cocoa
applications, the main thread automatically sets up and runs its run loop as part of the general application
startup process.

The following sections provide more information about run loops and how you configure them for your
application. For additional information about run loop objects, see NSRunLoopClass Reference and CFRunLoop
Reference.

Anatomy of a Run Loop

A run loop is very much like its name sounds. It is a loop your thread enters and uses to run event handlers
in response to incoming events. Your code provides the control statements used to implement the actual
loop portion of the run loop—in other words, your code provides the while or for loop that drives the run
loop. Within your loop, you use a run loop object to "run” the event-processing code that receives events
and calls the installed handlers.

A run loop receives events from two different types of sources. Input sources deliver asynchronous events,
usually messages from another thread or from a different application. Timer sources deliver synchronous
events, occurring at a scheduled time or repeating interval. Both types of source use an application-specific
handler routine to process the event when it arrives.

Figure 5-1 shows the conceptual structure of a run loop and a variety of sources. The input sources deliver
asynchronous events to the corresponding handlers and cause the runUntilDate: method (called on the
thread’s associated NSRunLoop object) to exit. Timer sources deliver events to their handler routines but do
not cause the run loop to exit.

Anatomy of a Run Loop 61
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

Figure 5-1 Structure of a run loop and its sources

Input sources

Timer sources

handlePort:

customSrc:

mySelector:

timerFired:

runUntilDate:

performSelector:onThread:...

Thread

Custom

EtherPort

Start

End

In addition to handling sources of input, run loops also generate notifications about the run loop’s behavior.
Registered run-loop observers can receive these notifications and use them to do additional processing on
the thread. You use Core Foundation to install run-loop observers on your threads.

The following sections provide more information about the components of a run loop and the modes in
which they operate. They also describe the notifications that are generated at different times during the
handling of events.

Run Loop Modes

A run loop mode is a collection of input sources and timers to be monitored and a collection of run loop
observers to be notified. Each time you run your run loop, you specify (either explicitly or implicitly) a particular
“mode” in which to run. During that pass of the run loop, only sources associated with that mode are monitored
and allowed to deliver their events. (Similarly, only observers associated with that mode are notified of the
run loop’s progress.) Sources associated with other modes hold on to any new events until subsequent passes
through the loop in the appropriate mode.

In your code, you identify modes by name. Both Cocoa and Core Foundation define a default mode and
several commonly used modes, along with strings for specifying those modes in your code. You can define
custom modes by simply specifying a custom string for the mode name. Although the names you assign to
custom modes are arbitrary, the contents of those modes are not. You must be sure to add one or more
input sources, timers, or run-loop observers to any modes you create for them to be useful.

You use modes to filter out events from unwanted sources during a particular pass through your run loop.
Most of the time, you will want to run your run loop in the system-defined “default” mode. A modal panel,
however, might run in the “modal” mode. While in this mode, only sources relevant to the modal panel would
deliver events to the thread. For secondary threads, you might use custom modes to prevent low-priority
sources from delivering events during time-critical operations.

62 Anatomy of a Run Loop
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

Note: Modes discriminate based on the source of the event, not the type of the event. For example, you
would not use modes to match only mouse-down events or only keyboard events. You could use modes to
listen to a different set of ports, suspend timers temporarily, or otherwise change the sources and run loop
observers currently being monitored.

Table 5-1 lists the standard modes defined by Cocoa and Core Foundation along with a description of when
you use that mode. The name column lists the actual constants you use to specify the mode in your code.

Table 5-1 Predefined run loop modes

DescriptionNameMode

The default mode is the one used for most operations.
Most of the time, you should use this mode to start your
run loop and configure your input sources.

NSDefaultRunLoopMode
(Cocoa)

kCFRunLoopDefaultMode
(Core Foundation)

Default

Cocoa uses this mode in conjunction with NSConnection
objects to monitor replies. You should rarely need to use
this mode yourself.

NSConnectionReplyMode
(Cocoa)

Connection

Cocoa uses this mode to identify events intended for
modal panels.

NSModalPanelRunLoopMode
(Cocoa)

Modal

Cocoa uses this mode to restrict incoming events during
mouse-dragging loops and other sorts of user interface
tracking loops.

NSEventTracking-
RunLoopMode (Cocoa)

Event
tracking

This is a configurable group of commonly used modes.
Associating an input source with this mode also associates
it with each of the modes in the group. For Cocoa
applications, this set includes the default, modal, and event
tracking modes by default. Core Foundation includes just
the default mode initially. You can add custom modes to
the set using the CFRunLoopAddCommonMode function.

NSRunLoopCommonModes
(Cocoa)

kCFRunLoopCommonModes
(Core Foundation)

Common
modes

Input Sources

Input sources deliver events asynchronously to your threads. The source of the event depends on the type
of the input source, which is generally one of two categories. Port-based input sources monitor your
application’s Mach ports. Custom input sources monitor custom sources of events. As far as your run loop is
concerned, it should not matter whether an input source is port-based or custom. Mac OS X itself implements
input sources of both types that you can use as is. The only difference between the two sources is how they
are signaled. Port-based sources are signaled automatically by the kernel, and custom sources must be
signaled manually from another thread.

When you create an input source, you assign it to one or more modes of your run loop. Modes affect which
input sources are monitored at any given moment. Most of the time, you run the run loop in the default
mode, but you can specify custom modes too. If an input source is not in the currently monitored mode, any
events it generates are held until the run loop runs in the correct mode.

Anatomy of a Run Loop 63
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

The following sections describe some of the input sources found in Mac OS X.

Port-Based Sources

Cocoa and Core Foundation provide built-in support for creating port-based input sources using port-related
objects and functions. For example, in Cocoa, you never have to create an input source directly at all. You
simply create a port object and use the methods of NSPort to add that port to the run loop. The port object
handles the creation and configuration of the needed input source for you.

In Core Foundation, you must manually create both the port and its run loop source. In both cases, you use
the functions associated with the port opaque type (CFMachPortRef, CFMessagePortRef, or CFSocketRef)
to create the appropriate objects.

For examples of how to set up and configure custom port-based sources, see “Configuring a Port-Based Input
Source” (page 77).

Custom Input Sources

To create a custom input source, you must use the functions associated with the CFRunLoopSourceRef
opaque type in Core Foundation. You configure a custom input source using several callback functions. Core
Foundation calls these functions at different points to configure the source, handle any incoming events,
and tear down the source when it is removed from the run loop.

In addition to defining the behavior of the custom source when an event arrives, you must also define the
event delivery mechanism. This part of the source runs on a separate thread and is responsible for providing
the input source with its data and for signaling it when that data is ready for processing. The event delivery
mechanism is up to you but need not be overly complex.

For an example of how to create a custom input source, see “Defining a Custom Input Source” (page 71).
For reference information for custom input sources, see also CFRunLoopSource Reference.

Cocoa Perform Selector Sources

In addition to port-based sources, Cocoa defines a custom input source that allows you to perform a selector
on any thread. Like a port-based source, perform selector requests are serialized on the target thread,
alleviating many of the synchronization problems that might occur with multiple methods being run on one
thread. Unlike a port-based source, a perform selector source removes itself from the run loop after it performs
its selector.

Note: Prior to Mac OS X v10.5, perform selector sources were used mostly to send messages to the main
thread, but in Mac OS X v10.5 and later, you can use them to send messages to any thread.

When performing a selector on another thread, the target thread must have an active run loop. For threads
you create, this means waiting until your code explicitly starts the run loop. Because the main thread starts
its own run loop, however, you can begin issuing calls on that thread as soon as your application sends its
applicationDidFinishLaunching: notification. The run loop processes all queued perform selector calls
each time through the loop, rather than processing one during each loop iteration.

64 Anatomy of a Run Loop
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

Table 5-2 lists the methods defined on NSObject that can be used to perform selectors on other threads.
Because these methods are declared on NSObject, you can use them from any threads where you have
access to Objective-C objects, including POSIX threads. These methods do not actually create a new thread
to perform the selector.

Table 5-2 Performing selectors on other threads

DescriptionMethods

Performs the specified selector on the application’s
main thread during that thread’s next run loop cycle.
These methods give you the option of blocking the
current thread until the selector is performed.

performSelectorOnMainThread: withObject:
waitUntilDone:

performSelectorOnMainThread: withObject:
waitUntilDone:modes:

Performs the specified selector on any thread for
which you have an NSThread object. These
methods give you the option of blocking the current
thread until the selector is performed.

performSelector: onThread:withObject:
waitUntilDone:

performSelector: onThread:withObject:
waitUntilDone:modes:

Performs the specified selector on the current thread
during the next run loop cycle and after an optional
delay period. Because it waits until the next run loop
cycle to perform the selector, these methods
provide an automatic mini delay from the currently
executing code. Multiple queued selectors are
performed one after another in the order they were
queued.

performSelector: withObject: afterDelay:

performSelector: withObject:
afterDelay:inModes:

Lets you cancel a message sent to the current thread
using the performSelector: withObject:
afterDelay: or performSelector:
withObject: afterDelay:inModes: method.

cancelPreviousPerformRequestsWithTarget:

cancelPreviousPerformRequestsWithTarget:
selector:object:

For detailed information about each of these methods, see NSObject Class Reference.

Timer Sources

Timer sources deliver events synchronously to your threads at a preset time in the future. Timers are a way
for a thread to notify itself to do something. For example, a search field could use a timer to initiate an
automatic search once a certain amount of time has passed between successive key strokes from the user.
The use of this delay time gives the user a chance to type as much of the desired search string as possible
before beginning the search.

Although it generates time-based notifications, a timer is not a real-time mechanism. Like input sources,
timers are associated with specific modes of your run loop. If a timer is not in the mode currently being
monitored by the run loop, it does not fire until you run the run loop in one of the timer’s supported modes.
Similarly, if a timer fires when the run loop is in the middle of executing a handler routine, the timer waits
until the next time through the run loop to invoke its handler routine. If the run loop is not running at all,
the timer never fires.

Anatomy of a Run Loop 65
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

You can configure timers to generate events only once or repeatedly. A repeating timer reschedules itself
automatically based on the scheduled firing time, not the actual firing time. For example, if a timer is scheduled
to fire at a particular time and every 5 seconds after that, the scheduled firing time will always fall on the
original 5 second time intervals, even if the actual firing time gets delayed. If the firing time is delayed so
much that it misses one or more of the scheduled firing times, the timer is fired only once for the missed
time period. After firing for the missed period, the timer is rescheduled for the next scheduled firing time.

For more information on configuring timer sources, see “Configuring Timer Sources” (page 76). For reference
information, see NSTimer Class Reference or CFRunLoopTimer Reference.

Run Loop Observers

In contrast to sources, which fire when an appropriate asynchronous or synchronous event occurs, run loop
observers fire at special locations during the execution of the run loop itself. You might use run loop observers
to prepare your thread to process a given event or to prepare the thread before it goes to sleep. You can
associate run loop observers with the following events in your run loop:

 ■ The entrance to the run loop.

 ■ When the run loop is about to process a timer.

 ■ When the run loop is about to process an input source.

 ■ When the run loop is about to go to sleep.

 ■ When the run loop has woken up, but before it has processed the event that woke it up.

 ■ The exit from the run loop.

You can add run loop observers to both Cocoa and Carbon applications, but to define one and add it to your
run loop, you must use Core Foundation. To create a run loop observer, you create a new instance of the
CFRunLoopObserver opaque type. This type keeps track of your custom callback function and the activities
in which it is interested.

Similar to timers, run-loop observers can be used once or repeatedly. A one-shot observer removes itself
from the run loop after it fires, while a repeating observer remains attached. You specify whether an observer
runs once or repeatedly when you create it.

For an example of how to create a run-loop observer, see “Configuring the Run Loop” (page 68). For reference
information, see CFRunLoopObserver Reference.

The Run Loop Sequence of Events

Each time you run it, your thread’s run loop processes pending events and generates notifications for any
attached observers. The order in which it does this is very specific and is as follows:

1. Notify observers that the run loop has been entered.

2. Notify observers that any ready timers are about to fire.

3. Notify observers that any input sources that are not port based are about to fire.

4. Fire any non-port-based input sources that are ready to fire.

66 Anatomy of a Run Loop
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

5. If a port-based input source is ready and waiting to fire, process the event immediately. Go to step 9.

6. Notify observers that the thread is about to sleep.

7. Put the thread to sleep until one of the following events occurs:

 ■ An event arrives for a port-based input source.

 ■ A timer fires.

 ■ The timeout value set for the run loop expires.

 ■ The run loop is explicitly woken up.

8. Notify observers that the thread just woke up.

9. Process the pending event.

 ■ If a user-defined timer fired, process the timer event and restart the loop. Go to step 2.

 ■ If an input source fired, deliver the event.

 ■ If the run loop was explicitly woken up but has not yet timed out, restart the loop. Go to step 2.

10. Notify observers that the run loop has exited.

Because observer notifications for timer and input sources are delivered before those events actually occur,
there may be a gap between the time of the notifications and the time of the actual events. If the timing
between these events is critical, you can use the sleep and awake-from-sleep notifications to help you correlate
the timing between the actual events.

Because timers and other periodic events are delivered when you run the run loop, circumventing that loop
disrupts the delivery of those events. The typical example of this behavior occurs whenever you implement
a mouse-tracking routine by entering a loop and repeatedly requesting events from the application. Because
your code is grabbing events directly, rather than letting the application dispatch those events normally,
active timers would be unable to fire until after your mouse-tracking routine exited and returned control to
the application.

A run loop can be explicitly woken up using the run loop object. Other events may also cause the run loop
to be woken up. For example, adding another non-port-based input source wakes up the run loop so that
the input source can be processed immediately, rather than waiting until some other event occurs.

When Would You Use a Run Loop?

The only time you need to run a run loop explicitly is when you create secondary threads for your application.
The run loop for your application’s main thread is a crucial piece of infrastructure. As a result, both Cocoa
and Carbon provide the code for running the main application loop and start that loop automatically. The
runmethod of NSApplication starts a Cocoa application’s main loop as part of the normal startup sequence.
Similarly, the RunApplicationEventLoop function starts the main loop for Carbon applications. If you use
the Xcode template projects to create your application, you should never have to call these routines explicitly.

When Would You Use a Run Loop? 67
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

For secondary threads, you need to decide whether a run loop is necessary, and if it is, configure and start
it yourself. You do not need to start a thread’s run loop in all cases. For example, if you use a thread to perform
some long-running and predetermined task, you can probably avoid starting the run loop. Run loops are
intended for situations where you want more interactivity with the thread. For example, you need to start a
run loop if you plan to do any of the following:

 ■ Use ports or custom input sources to communicate with other threads.

 ■ Use timers on the thread.

 ■ Use any of the performSelector… methods in a Cocoa application.

 ■ Keep the thread around to perform periodic tasks.

If you do choose to use a run loop, the configuration and setup is straightforward. As with all threaded
programming though, you should have a plan for exiting your secondary threads in appropriate situations.
It is always better to end a thread cleanly by letting it exit than to force it to terminate. Information on how
to configure and exit a run loop is described in “Using Run Loop Objects” (page 68).

Using Run Loop Objects

A run loop object provides the main interface for adding input sources, timers, and run-loop observers to
your run loop and then running it. Every thread has a single run loop object associated with it. In Cocoa, this
object is an instance of the NSRunLoop class. In a Carbon or BSD application, it is a pointer to a CFRunLoopRef
opaque type.

Getting a Run Loop Object

To get the run loop for the current thread, you use one of the following:

 ■ In a Cocoa application, use the currentRunLoop class method of NSRunLoop to retrieve an NSRunLoop
object.

 ■ Use the CFRunLoopGetCurrent function.

Although they are not toll-free bridged types, you can get a CFRunLoopRef opaque type from an NSRunLoop
object when needed. The NSRunLoop class defines a getCFRunLoop method that returns a CFRunLoopRef
type that you can pass to Core Foundation routines. Because both objects refer to the same run loop, you
can intermix calls to the NSRunLoop object and CFRunLoopRef opaque type as needed.

Configuring the Run Loop

Before you run a run loop on a secondary thread, you must add at least one input source or timer to it. If a
run loop does not have any sources to monitor, it exits immediately when you try to run it. For examples of
how to add sources to a run loop, see “Configuring Run Loop Sources” (page 71).

68 Using Run Loop Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

In addition to installing sources, you can also install run loop observers and use them to detect different
execution stages of the run loop. To install a run loop observer, you create a CFRunLoopObserverRef
opaque type and use the CFRunLoopAddObserver function to add it to your run loop. Run loop observers
must be created using Core Foundation, even for Cocoa applications.

Listing 5-1 shows the main routine for a thread that attaches a run loop observer to its run loop. The purpose
of the example is to show you how to create a run loop observer, so the code simply sets up a run loop
observer to monitor all run loop activities. The basic handler routine (not shown) simply logs the run loop
activity as it processes the timer requests.

Listing 5-1 Creating a run loop observer

- (void)threadMain
{
 // The application uses garbage collection, so no autorelease pool is needed.
 NSRunLoop* myRunLoop = [NSRunLoop currentRunLoop];

 // Create a run loop observer and attach it to the run loop.
 CFRunLoopObserverContext context = {0, self, NULL, NULL, NULL};
 CFRunLoopObserverRef observer =
CFRunLoopObserverCreate(kCFAllocatorDefault,
 kCFRunLoopAllActivities, YES, 0, &myRunLoopObserver, &context);

 if (observer)
 {
 CFRunLoopRef cfLoop = [myRunLoop getCFRunLoop];
 CFRunLoopAddObserver(cfLoop, observer, kCFRunLoopDefaultMode);
 }

 // Create and schedule the timer.
 [NSTimer scheduledTimerWithTimeInterval:0.1 target:self
 selector:@selector(doFireTimer:) userInfo:nil repeats:YES];

 NSInteger loopCount = 10;
 do
 {
 // Run the run loop 10 times to let the timer fire.
 [myRunLoop runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1]];
 loopCount--;
 }
 while (loopCount);
}

When configuring the run loop for a long-lived thread, it is better to add at least one input source to receive
messages. Although you can enter the run loop with only a timer attached, once the timer fires, it is typically
invalidated, which would then cause the run loop to exit. Attaching a repeating timer could keep the run
loop running over a longer period of time, but would involve firing the timer periodically to wake your thread,
which is effectively another form of polling. By contrast, an input source waits for an event to happen, keeping
your thread asleep until it does.

Starting the Run Loop

Starting the run loop is necessary only for the secondary threads in your application. A run loop must have
at least one input source or timer to monitor. If one is not attached, the run loop exits immediately.

Using Run Loop Objects 69
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

There are several ways to start the run loop, including the following:

 ■ Unconditionally

 ■ With a set time limit

 ■ In a particular mode

Entering your run loop unconditionally is the simplest option, but it is also the least desirable. Running your
run loop unconditionally puts the thread into a permanent loop, which gives you very little control over the
run loop itself. You can add and remove input sources and timers, but the only way to stop the run loop is
to kill it. There is also no way to run the run loop in a custom mode.

Instead of running a run loop unconditionally, it is better to run the run loop with a timeout value. When
you use a timeout value, the run loop runs until an event arrives or the allotted time expires. If an event
arrives, that event is dispatched to a handler for processing and then the run loop exits. Your code can then
restart the run loop to handle the next event. If the allotted time expires instead, you can simply restart the
run loop or use the time to do any needed housekeeping.

In addition to a timeout value, you can also run your run loop using a specific mode. Modes and timeout
values are not mutually exclusive and can both be used when starting a run loop. Modes limit the types of
sources that deliver events to the run loop and are described in more detail in “Run Loop Modes” (page 62).

Listing 5-2 shows a skeleton version of a thread’s main entry routine. The key portion of this example shows
the basic structure of a run loop. In essence, you add your input sources and timers to the run loop and then
repeatedly call one of the routines to start the run loop. Each time the the run loop routine returns, you check
to see if any conditions have arisen that might warrant exiting the thread. The example uses the Core
Foundation run loop routines so that it can check the return result and determine why the run loop exited.
You could also use the methods of the NSRunLoop class to run the run loop in a similar manner if you are
using Cocoa and do not need to check the return value. (For an example of a run loop that calls methods of
the NSRunLoop class, see Listing 5-14 (page 79).)

Listing 5-2 Running a run loop

- (void)skeletonThreadMain
{
 // Set up an autorelease pool here if not using garbage collection.
 BOOL done = NO;

 // Add your sources or timers to the run loop and do any other setup.

 do
 {
 // Start the run loop but return after each source is handled.
 SInt32 result = CFRunLoopRunInMode(kCFRunLoopDefaultMode, 10, YES);

 // If a source explicitly stopped the run loop, or if there are no
 // sources or timers, go ahead and exit.
 if ((result == kCFRunLoopRunStopped) || (result == kCFRunLoopRunFinished))
 done = YES;

 // Check for any other exit conditions here and set the
 // done variable as needed.
 }
 while (!done);

 // Clean up code here. Be sure to release any allocated autorelease pools.

70 Using Run Loop Objects
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

}

It is possible to run a run loop recursively. In other words, you can call CFRunLoopRun, CFRunLoopRunInMode,
or any of the NSRunLoop methods for starting the run loop from within the handler routine of an input
source or timer. When doing so, you can use any mode you want to run the nested run loop, including the
mode in use by the outer run loop.

Exiting the Run Loop

There are two ways to make a run loop exit before it has processed an event:

 ■ Configure the run loop to run with a timeout value.

 ■ Tell the run loop to stop.

Using a timeout value is certainly preferred, if you can manage it. Specifying a timeout value lets the run
loop finish all of its normal processing, including delivering notifications to run loop observers, before exiting.

Stopping the run loop explicitly with the CFRunLoopStop function produces a result similar to a timeout.
The run loop sends out any remaining run-loop notifications and then exits. The difference is that you can
use this technique on run loops you started unconditionally.

Although removing a run loop’s input sources and timers may also cause the run loop to exit, this is not a
reliable way to stop a run loop. Some system routines add input sources to a run loop to handle needed
events. Because your code might not be aware of these input sources, it would be unable to remove them,
which would prevent the run loop from exiting.

Thread Safety and Run Loop Objects

Thread safety varies depending on which API you are using to manipulate your run loop. The functions in
Core Foundation are generally thread-safe and can be called from any thread. If you are performing operations
that alter the configuration of the run loop, however, it is still good practice to do so from the thread that
owns the run loop whenever possible.

The Cocoa NSRunLoop class is not as inherently thread safe as its Core Foundation counterpart. If you are
using the NSRunLoop class to modify your run loop, you should do so only from the same thread that owns
that run loop. Adding an input source or timer to a run loop belonging to a different thread could cause your
code to crash or behave in an unexpected way.

Configuring Run Loop Sources

The following sections show examples of how to set up different types of input sources in both Cocoa and
Core Foundation.

Defining a Custom Input Source

Creating a custom input source involves defining the following:

Configuring Run Loop Sources 71
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 ■ The information you want your input source to process.

 ■ A scheduler routine to let interested clients know how to contact your input source.

 ■ A handler routine to perform requests sent by any clients.

 ■ A cancellation routine to invalidate your input source.

Because you create a custom input source to process custom information, the actual configuration is designed
to be flexible. The scheduler, handler, and cancellation routines are the key routines you almost always need
for your custom input source. Most of the rest of the input source behavior, however, happens outside of
those handler routines. For example, it is up to you to define the mechanism for passing data to your input
source and for communicating the presence of your input source to other threads.

Figure 5-2 shows a sample configuration of a custom input source. In this example, the application’s main
thread maintains references to the input source, the custom command buffer for that input source, and the
run loop on which the input source is installed. When the main thread has a task it wants to hand off to the
worker thread, it posts a command to the command buffer along with any information needed by the worker
thread to start the task. (Because both the main thread and the input source of the worker thread have access
to the command buffer, that access must be synchronized.) Once the command is posted, the main thread
signals the input source and wakes up the worker thread’s run loop. Upon receiving the wake up command,
the run loop calls the handler for the input source, which processes the commands found in the command
buffer.

Figure 5-2 Operating a custom input source

Main Thread Worker Thread

Wake up

Signal source

Send command

Task

Command
buffer

Input source

Command
data

Run Loop
Source

The following sections explain the implementation of the custom input source from the preceding figure
and show the key code you would need to implement.

Defining the Input Source

Defining a custom input source requires the use of Core Foundation routines to configure your run loop
source and attach it to a run loop. Although the basic handlers are C-based functions, that does not preclude
you from writing wrappers for those functions and using Objective-C or C++ to implement the body of your
code.

72 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

The input source introduced in Figure 5-2 (page 72) uses an Objective-C object to manage a command buffer
and coordinate with the run loop. Listing 5-3 shows the definition of this object. The RunLoopSource object
manages a command buffer and uses that buffer to receive messages from other threads. This listing also
shows the definition of the RunLoopContext object, which is really just a container object used to pass a
RunLoopSource object and a run loop reference to the application’s main thread.

Listing 5-3 The custom input source object definition

@interface RunLoopSource : NSObject
{
 CFRunLoopSourceRef runLoopSource;
 NSMutableArray* commands;
}

- (id)init;
- (void)addToCurrentRunLoop;
- (void)invalidate;

// Handler method
- (void)sourceFired;

// Client interface for registering commands to process
- (void)addCommand:(NSInteger)command withData:(id)data;
- (void)fireAllCommandsOnRunLoop:(CFRunLoopRef)runloop;

@end

// These are the CFRunLoopSourceRef callback functions.
void RunLoopSourceScheduleRoutine (void *info, CFRunLoopRef rl, CFStringRef
mode);
void RunLoopSourcePerformRoutine (void *info);
void RunLoopSourceCancelRoutine (void *info, CFRunLoopRef rl, CFStringRef mode);

// RunLoopContext is a container object used during registration of the input
source.
@interface RunLoopContext : NSObject
{
 CFRunLoopRef runLoop;
 RunLoopSource* source;
}
@property (readonly) CFRunLoopRef runLoop;
@property (readonly) RunLoopSource* source;

- (id)initWithSource:(RunLoopSource*)src andLoop:(CFRunLoopRef)loop;
@end

Although the Objective-C code manages the custom data of the input source, attaching the input source to
a run loop requires C-based callback functions. The first of these functions is called when you actually attach
the run loop source to your run loop, and is shown in Listing 5-4. Because this input source has only one
client (the main thread), it uses the scheduler function to send a message to register itself with the application
delegate on that thread. When the delegate wants to communicate with the input source, it uses the
information in RunLoopContext object to do so.

Listing 5-4 Scheduling a run loop source

void RunLoopSourceScheduleRoutine (void *info, CFRunLoopRef rl, CFStringRef
mode)

Configuring Run Loop Sources 73
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

{
 RunLoopSource* obj = (RunLoopSource*)info;
 AppDelegate* del = [AppDelegate sharedAppDelegate];
 RunLoopContext* theContext = [[RunLoopContext alloc] initWithSource:obj
andLoop:rl];

 [del performSelectorOnMainThread:@selector(registerSource:)
 withObject:theContext waitUntilDone:NO];
}

One of the most important callback routines is the one used to process custom data when your input source
is signaled. Listing 5-5 shows the perform callback routine associated with the RunLoopSource object. This
function simply forwards the request to do the work to the sourceFired method, which then processes
any commands present in the command buffer.

Listing 5-5 Performing work in the input source

void RunLoopSourcePerformRoutine (void *info)
{
 RunLoopSource* obj = (RunLoopSource*)info;
 [obj sourceFired];
}

If you ever remove your input source from its run loop using the CFRunLoopSourceInvalidate function,
the system calls your input source’s cancellation routine. You can use this routine to notify clients that your
input source is no longer valid and that they should remove any references to it. Listing 5-6 shows the
cancellation callback routine registered with the RunLoopSource object. This function sends another
RunLoopContext object to the application delegate, but this time asks the delegate to remove references
to the run loop source.

Listing 5-6 Invalidating an input source

void RunLoopSourceCancelRoutine (void *info, CFRunLoopRef rl, CFStringRef mode)
{
 RunLoopSource* obj = (RunLoopSource*)info;
 AppDelegate* del = [AppDelegate sharedAppDelegate];
 RunLoopContext* theContext = [[RunLoopContext alloc] initWithSource:obj
andLoop:rl];

 [del performSelectorOnMainThread:@selector(removeSource:)
 withObject:theContext waitUntilDone:YES];
}

Note: The code for the application delegate’s registerSource: and removeSource: methods is shown
in “Coordinating with Clients of the Input Source” (page 75).

Installing the Input Source on the Run Loop

Listing 5-7 shows the init and addToCurrentRunLoop methods of the RunLoopSource class. The init
method creates the CFRunLoopSourceRef opaque type that must actually be attached to the run loop. It
passes the RunLoopSource object itself as the contextual information so that the callback routines have a
pointer to the object. Installation of the input source does not occur until the worker thread invokes the
addToCurrentRunLoop method, at which point the RunLoopSourceScheduleRoutine callback function
is called. Once the input source is added to the run loop, the thread can run its run loop to wait on it.

74 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

Listing 5-7 Installing the run loop source

- (id)init
{
 CFRunLoopSourceContext context = {0, self, NULL, NULL, NULL, NULL, NULL,
 &RunLoopSourceScheduleRoutine,
 RunLoopSourceCancelRoutine,
 RunLoopSourcePerformRoutine};

 runLoopSource = CFRunLoopSourceCreate(NULL, 0, &context);
 commands = [[NSMutableArray alloc] init];

 return self;
}

- (void)addToCurrentRunLoop
{
 CFRunLoopRef runLoop = CFRunLoopGetCurrent();
 CFRunLoopAddSource(runLoop, runLoopSource, kCFRunLoopDefaultMode);
}

Coordinating with Clients of the Input Source

For your input source to be useful, you need to manipulate it and signal it from another thread. The whole
point of an input source is to put its associated thread to sleep until there is something to do. That fact
necessitates having other threads in your application know about the input source and have a way to
communicate with it.

One way to notify clients about your input source is to send out registration requests when your input source
is first installed on its run loop. You can register your input source with as many clients as you want, or you
can simply register it with some central agency that then vends your input source to interested clients. Listing
5-8 shows the registration method defined by the application delegate and invoked when the RunLoopSource
object’s scheduler function is called. This method receives the RunLoopContext object provided by the
RunLoopSource object and adds it to its list of sources. This listing also shows the routine used to unregister
the input source when it is removed from its run loop.

Listing 5-8 Registering and removing an input source with the application delegate

- (void)registerSource:(RunLoopContext*)sourceInfo;
{
 [sourcesToPing addObject:sourceInfo];
}

- (void)removeSource:(RunLoopContext*)sourceInfo
{
 id objToRemove = nil;

 for (RunLoopContext* context in sourcesToPing)
 {
 if ([context isEqual:sourceInfo])
 {
 objToRemove = context;
 break;
 }
 }

Configuring Run Loop Sources 75
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 if (objToRemove)
 [sourcesToPing removeObject:objToRemove];
}

Note: The callback functions that call the methods in the preceding listing are shown in Listing 5-4 (page
73) and Listing 5-6 (page 74).

Signaling the Input Source

After it hands off its data to the input source, a client must signal the source and wake up its run loop.
Signaling the source lets the run loop know that the source is ready to be processed. And because the thread
might be asleep when the signal occurs, you should always wake up the run loop explicitly. Failing to do so
might result in a delay in processing the input source.

Listing 5-9 shows the fireCommandsOnRunLoop method of the RunLoopSource object. Clients invoke this
method when they are ready for the source to process the commands they added to the buffer.

Listing 5-9 Waking up the run loop

- (void)fireCommandsOnRunLoop:(CFRunLoopRef)runloop
{
 CFRunLoopSourceSignal(runLoopSource);
 CFRunLoopWakeUp(runloop);
}

Note: You should never try to handle a SIGHUP or other type of process-level signal by messaging a custom
input source. The Core Foundation functions for waking up the run loop are not signal safe and should not
be used inside your application’s signal handler routines. For more information about signal handler routines,
see the sigaction man page.

Configuring Timer Sources

To create a timer source, all you have to do is create a timer object and schedule it on your run loop. In Cocoa,
you use the NSTimer class to create new timer objects, and in Core Foundation you use the
CFRunLoopTimerRef opaque type. Internally, the NSTimer class is simply an extension of Core Foundation
that provides some convenience features, like the ability to create and schedule a timer using the same
method.

In Cocoa, you can create and schedule a timer all at once using either of these class methods:

 ■ scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:

 ■ scheduledTimerWithTimeInterval:invocation:repeats:

These methods create the timer and add it to the current thread’s run loop in the default mode
(NSDefaultRunLoopMode). You can also schedule a timer manually if you want by creating your NSTimer
object and then adding it to the run loop using the addTimer:forMode: method of NSRunLoop. Both
techniques do basically the same thing but give you different levels of control over the timer’s configuration.
For example, if you create the timer and add it to the run loop manually, you can do so using a mode other

76 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

than the default mode. Listing 5-10 shows how to create timers using both techniques. The first timer has
an initial delay of 1 second but then fires regularly every 0.1 seconds after that. The second timer begins
firing after an initial 0.2 second delay and then fires every 0.2 seconds after that.

Listing 5-10 Creating and scheduling timers using NSTimer

NSRunLoop* myRunLoop = [NSRunLoop currentRunLoop];

// Create and schedule the first timer.
NSDate* futureDate = [NSDate dateWithTimeIntervalSinceNow:1.0];
NSTimer* myTimer = [[NSTimer alloc] initWithFireDate:futureDate
 interval:0.1
 target:self
 selector:@selector(myDoFireTimer1:)
 userInfo:nil
 repeats:YES];
[myRunLoop addTimer:myTimer forMode:NSDefaultRunLoopMode];

// Create and schedule the second timer.
[NSTimer scheduledTimerWithTimeInterval:0.2
 target:self
 selector:@selector(myDoFireTimer2:)
 userInfo:nil
 repeats:YES];

Listing 5-11 shows the code needed to configure a timer using Core Foundation functions. Although this
example does not pass any user-defined information in the context structure, you could use this structure
to pass around any custom data you needed for your timer. For more information about the contents of this
structure, see its description in CFRunLoopTimer Reference.

Listing 5-11 Creating and scheduling a timer using Core Foundation

CFRunLoopRef runLoop = CFRunLoopGetCurrent();
CFRunLoopTimerContext context = {0, NULL, NULL, NULL, NULL};
CFRunLoopTimerRef timer = CFRunLoopTimerCreate(kCFAllocatorDefault, 0.1, 0.3,
0, 0,
 &myCFTimerCallback, &context);

CFRunLoopAddTimer(runLoop, timer, kCFRunLoopCommonModes);

Configuring a Port-Based Input Source

Both Cocoa and Core Foundation provide port-based objects for communicating between threads or between
processes. The following sections show you how to set up port communication using several different types
of ports.

Configuring an NSMachPort Object

To establish a local connection with an NSMachPort object, you create the port object and add it to your
primary thread's run loop. When launching your secondary thread, you pass the same object to your thread's
entry-point function. The secondary thread can use the same object to send messages back to your primary
thread.

Configuring Run Loop Sources 77
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

Implementing the Main Thread Code

Listing 5-12 shows the primary thread code for launching a secondary worker thread. Because the Cocoa
framework performs many of the intervening steps for configuring the port and run loop, the launchThread
method is noticeably shorter than its Core Foundation equivalent (Listing 5-17 (page 80)); however, the
behavior of the two is nearly identical. One difference is that instead of sending the name of the local port
to the worker thread, this method sends the NSPort object directly.

Listing 5-12 Main thread launch method

- (void)launchThread
{
 NSPort* myPort = [NSMachPort port];
 if (myPort)
 {
 // This class handles incoming port messages.
 [myPort setDelegate:self];

 // Install the port as an input source on the current run loop.
 [[NSRunLoop currentRunLoop] addPort:myPort forMode:NSDefaultRunLoopMode];

 // Detach the thread. Let the worker release the port.
 [NSThread detachNewThreadSelector:@selector(LaunchThreadWithPort:)
 toTarget:[MyWorkerClass class] withObject:myPort];
 }
}

In order to set up a two-way communications channel between your threads, you might want to have the
worker thread send its own local port to your main thread in a check-in message. Receiving the check-in
message lets your main thread know that all went well in launching the second thread and also gives you a
way to send further messages to that thread.

Listing 5-13 shows the handlePortMessage: method for the primary thread. This method is called when
data arrives on the thread's own local port. When a check-in message arrives, the method retrieves the port
for the secondary thread directly from the port message and saves it for later use.

Listing 5-13 Handling Mach port messages

#define kCheckinMessage 100

// Handle responses from the worker thread.
- (void)handlePortMessage:(NSPortMessage *)portMessage
{
 unsigned int message = [portMessage msgid];
 NSPort* distantPort = nil;

 if (message == kCheckinMessage)
 {
 // Get the worker thread’s communications port.
 distantPort = [portMessage sendPort];

 // Retain and save the worker port for later use.
 [self storeDistantPort:distantPort];
 }
 else
 {
 // Handle other messages.

78 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 }
}

Implementing the Secondary Thread Code

For the secondary worker thread, you must configure the thread and use the specified port to communicate
information back to the primary thread.

Listing 5-14 shows the code for setting up the worker thread. After creating an autorelease pool for the
thread, the method creates a worker object to drive the thread execution. The worker object’s
sendCheckinMessage: method (shown in Listing 5-15 (page 79)) creates a local port for the worker thread
and sends a check-in message back to the main thread.

Listing 5-14 Launching the worker thread using Mach ports

+(void)LaunchThreadWithPort:(id)inData
{
 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];

 // Set up the connection between this thread and the main thread.
 NSPort* distantPort = (NSPort*)inData;

 MyWorkerClass* workerObj = [[self alloc] init];
 [workerObj sendCheckinMessage:distantPort];
 [distantPort release];

 // Let the run loop process things.
 do
 {
 [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode
 beforeDate:[NSDate distantFuture]];
 }
 while (![workerObj shouldExit]);

 [workerObj release];
 [pool release];
}

When using NSMachPort, local and remote threads can use the same port object for one-way communication
between the threads. In other words, the local port object created by one thread becomes the remote port
object for the other thread.

Listing 5-15 shows the check-in routine of the secondary thread. This method sets up its own local port for
future communication and then sends a check-in message back to the main thread. The method uses the
port object received in the LaunchThreadWithPort: method as the target of the message.

Listing 5-15 Sending the check-in message using Mach ports

// Worker thread check-in method
- (void)sendCheckinMessage:(NSPort*)outPort
{
 // Retain and save the remote port for future use.
 [self setRemotePort:outPort];

 // Create and configure the worker thread port.
 NSPort* myPort = [NSMachPort port];

Configuring Run Loop Sources 79
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 [myPort setDelegate:self];
 [[NSRunLoop currentRunLoop] addPort:myPort forMode:NSDefaultRunLoopMode];

 // Create the check-in message.
 NSPortMessage* messageObj = [[NSPortMessage alloc] initWithSendPort:outPort
 receivePort:myPort components:nil];

 if (messageObj)
 {
 // Finish configuring the message and send it immediately.
 [messageObj setMsgid:kCheckinMessage];
 [messageObj sendBeforeDate:[NSDate date]];
 }
}

Configuring an NSMessagePort Object

To establish a local connection with an NSMessagePort object, you cannot simply pass port objects between
threads. Remote message ports must be acquired by name. Making this possible in Cocoa requires registering
your local port with a specific name and then passing that name to the remote thread so that it can obtain
an appropriate port object for communication. Listing 5-16 shows the port creation and registration process
in cases where you want to use message ports.

Listing 5-16 Registering a message port

NSPort* localPort = [[[NSMessagePort alloc] init] retain];

// Configure the object and add it to the current run loop.
[localPort setDelegate:self];
[[NSRunLoop currentRunLoop] addPort:localPort forMode:NSDefaultRunLoopMode];

// Register the port using a specific name. The name must be unique.
NSString* localPortName = [NSString stringWithFormat:@"MyPortName"];
[[NSMessagePortNameServer sharedInstance] registerPort:localPort
 name:localPortName];

Configuring a Port-Based Input Source in Core Foundation

This section shows how to set up a two-way communications channel between your application’s main
thread and a worker thread using Core Foundation.

Listing 5-17 shows the code called by the application’s main thread to launch the worker thread. The first
thing the code does is set up a CFMessagePort object to listen for messages from worker threads. The
worker thread needs the name of the port to make the connection, so that string value is delivered to the
entry point function of the worker thread. Port names should generally be unique within the current user
context; otherwise, you might run into conflicts.

Listing 5-17 Attaching a Core Foundation message port to a new thread

#define kThreadStackSize (8 *4096)

OSStatus MySpawnThread()
{
 // Create a local port for receiving responses.
 CFStringRef myPortName;

80 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 CFMessagePortRef myPort;
 CFRunLoopSourceRef rlSource;
 CFMessagePortContext context = {0, NULL, NULL, NULL, NULL};
 Boolean shouldFreeInfo;

 // Create a string with the port name.
 myPortName = CFStringCreateWithFormat(NULL, NULL,
CFSTR("com.myapp.MainThread"));

 // Create the port.
 myPort = CFMessagePortCreateLocal(NULL,
 myPortName,
 &MainThreadResponseHandler,
 &context,
 &shouldFreeInfo);

 if (myPort != NULL)
 {
 // The port was successfully created.
 // Now create a run loop source for it.
 rlSource = CFMessagePortCreateRunLoopSource(NULL, myPort, 0);

 if (rlSource)
 {
 // Add the source to the current run loop.
 CFRunLoopAddSource(CFRunLoopGetCurrent(), rlSource,
kCFRunLoopDefaultMode);

 // Once installed, these can be freed.
 CFRelease(myPort);
 CFRelease(rlSource);
 }
 }

 // Create the thread and continue processing.
 MPTaskID taskID;
 return(MPCreateTask(&ServerThreadEntryPoint,
 (void*)myPortName,
 kThreadStackSize,
 NULL,
 NULL,
 NULL,
 0,
 &taskID));
}

With the port installed and the thread launched, the main thread can continue its regular execution while it
waits for the thread to check in. When the check-in message arrives, it is dispatched to the main thread’s
MainThreadResponseHandler function, shown in Listing 5-18. This function extracts the port name for
the worker thread and creates a conduit for future communication.

Listing 5-18 Receiving the checkin message

#define kCheckinMessage 100

// Main thread port message handler
CFDataRef MainThreadResponseHandler(CFMessagePortRef local,
 SInt32 msgid,

Configuring Run Loop Sources 81
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 CFDataRef data,
 void* info)
{
 if (msgid == kCheckinMessage)
 {
 CFMessagePortRef messagePort;
 CFStringRef threadPortName;
 CFIndex bufferLength = CFDataGetLength(data);
 UInt8* buffer = CFAllocatorAllocate(NULL, bufferLength, 0);

 CFDataGetBytes(data, CFRangeMake(0, bufferLength), buffer);
 threadPortName = CFStringCreateWithBytes (NULL, buffer, bufferLength,
kCFStringEncodingASCII, FALSE);

 // You must obtain a remote message port by name.
 messagePort = CFMessagePortCreateRemote(NULL,
(CFStringRef)threadPortName);

 if (messagePort)
 {
 // Retain and save the thread’s comm port for future reference.
 AddPortToListOfActiveThreads(messagePort);

 // Since the port is retained by the previous function, release
 // it here.
 CFRelease(messagePort);
 }

 // Clean up.
 CFRelease(threadPortName);
 CFAllocatorDeallocate(NULL, buffer);
 }
 else
 {
 // Process other messages.
 }

 return NULL;
}

With the main thread configured, the only thing remaining is for the newly created worker thread to create
its own port and check in. Listing 5-19 shows the entry point function for the worker thread. The function
extracts the main thread’s port name and uses it to create a remote connection back to the main thread. The
function then creates a local port for itself, installs the port on the thread’s run loop, and sends a check-in
message to the main thread that includes the local port name.

Listing 5-19 Setting up the thread structures

OSStatus ServerThreadEntryPoint(void* param)
{
 // Create the remote port to the main thread.
 CFMessagePortRef mainThreadPort;
 CFStringRef portName = (CFStringRef)param;

 mainThreadPort = CFMessagePortCreateRemote(NULL, portName);

 // Free the string that was passed in param.
 CFRelease(portName);

82 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 // Create a port for the worker thread.
 CFStringRef myPortName = CFStringCreateWithFormat(NULL, NULL,
CFSTR("com.MyApp.Thread-%d"), MPCurrentTaskID());

 // Store the port in this thread’s context info for later reference.
 CFMessagePortContext context = {0, mainThreadPort, NULL, NULL, NULL};
 Boolean shouldFreeInfo;
 Boolean shouldAbort = TRUE;

 CFMessagePortRef myPort = CFMessagePortCreateLocal(NULL,
 myPortName,
 &ProcessClientRequest,
 &context,
 &shouldFreeInfo);

 if (shouldFreeInfo)
 {
 // Couldn't create a local port, so kill the thread.
 MPExit(0);
 }

 CFRunLoopSourceRef rlSource = CFMessagePortCreateRunLoopSource(NULL, myPort,
 0);
 if (!rlSource)
 {
 // Couldn't create a local port, so kill the thread.
 MPExit(0);
 }

 // Add the source to the current run loop.
 CFRunLoopAddSource(CFRunLoopGetCurrent(), rlSource, kCFRunLoopDefaultMode);

 // Once installed, these can be freed.
 CFRelease(myPort);
 CFRelease(rlSource);

 // Package up the port name and send the check-in message.
 CFDataRef returnData = nil;
 CFDataRef outData;
 CFIndex stringLength = CFStringGetLength(myPortName);
 UInt8* buffer = CFAllocatorAllocate(NULL, stringLength, 0);

 CFStringGetBytes(myPortName,
 CFRangeMake(0,stringLength),
 kCFStringEncodingASCII,
 0,
 FALSE,
 buffer,
 stringLength,
 NULL);

 outData = CFDataCreate(NULL, buffer, stringLength);

 CFMessagePortSendRequest(mainThreadPort, kCheckinMessage, outData, 0.1, 0.0,
 NULL, NULL);

 // Clean up thread data structures.

Configuring Run Loop Sources 83
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

 CFRelease(outData);
 CFAllocatorDeallocate(NULL, buffer);

 // Enter the run loop.
 CFRunLoopRun();
}

Once it enters its run loop, all future events sent to the thread’s port are handled by the
ProcessClientRequest function. The implementation of that function depends on the type of work the
thread does and is not shown here.

84 Configuring Run Loop Sources
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Run Loop Management

This appendix describes the high-level thread safety of some key frameworks in Mac OS X. The information
in this appendix is subject to change.

Cocoa

Guidelines for using Cocoa from multiple threads include the following:

 ■ Immutable objects are generally thread-safe. Once you create them, you can safely pass these objects
to and from threads. On the other hand, mutable objects are generally not thread-safe. To use mutable
objects in a threaded application, the application must synchronize appropriately. For more information,
see “Mutable Versus Immutable” (page 87).

 ■ The main thread of the application is responsible for handling events. Although the Application Kit
continues to work if other threads are involved in the event path, operations can occur out of sequence.

 ■ If you want to use a thread to draw to a view, bracket all drawing code between the
lockFocusIfCanDraw and unlockFocus methods of NSView.

 ■ To use POSIX threads with Cocoa, you must first put Cocoa into multithreaded mode. For more
information, see “Creating POSIX Threads in a Cocoa Application” (page 39).

Foundation Framework Thread Safety

There is a misconception that the Foundation framework is thread-safe and the Application Kit framework
is not. Unfortunately, this is a gross generalization and somewhat misleading. Each framework has areas that
are thread-safe and areas that are not thread-safe. The following sections describe the general thread safety
of the Foundation framework.

Thread-Safe Classes

The classes and functions in the following table are generally considered to be thread-safe. You can use the
same instance from multiple threads without first acquiring a lock.

NSNotificationNSArray

NSNotificationCenterNSAssertionHandler

NSNumberNSAttributedString

NSObjectNSCalendarDate

NSPortCoderNSCharacterSet

Cocoa 85
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary for Mac OS X

NSPortMessageNSConditionLock

NSPortNameServerNSConnection

NSProtocolCheckerNSData

NSProxyNSDate

NSRecursiveLockNSDecimal functions

NSSetNSDecimalNumber

NSStringNSDecimalNumberHandler

NSThreadNSDeserializer

NSTimeZoneNSDictionary

NSTimerNSDistantObject

NSUserDefaultsNSDistributedLock

NSValueNSDistributedNotificationCenter

Object allocation and retain count functionsNSException

Zone and memory functionsNSLock

NSLog/NSLogv

NSMethodSignature

Thread-Unsafe Classes

The classes and functions in the following table are generally not thread-safe. Check the class documentation
for additional details.

NSMutableAttributedStringNSAppleScript

NSMutableCharacterSetNSArchiver

NSMutableDataNSAutoreleasePool

NSMutableDictionaryNSBundle

NSMutableSetNSCoder

NSMutableStringNSCountedSet

NSNotificationQueueNSDateFormatter

NSNumberFormatterNSEnumerator

NSPipeNSFileHandle

86 Cocoa
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary for Mac OS X

NSPortNSFileManager

NSProcessInfoNSFormatter

NSRunLoopNSHashTable functions

NSScannerNSHost

NSSerializerNSInvocation

NSTaskNSJavaSetup functions

NSUnarchiverNSMapTable functions

NSUndoManagerNSMutableArray

User name and home directory functions

Note that although NSSerializer, NSArchiver, NSCoder, and NSEnumerator objects are themselves
thread-safe, they are listed here because it is not safe to change the data objects wrapped by them while
they are in use. For example, in the case of an archiver, it is not safe to change the object graph being archived.
For an enumerator, it is not safe for any thread to change the enumerated collection.

Mutable Versus Immutable

Immutable objects are generally thread-safe; once you create them, you can safely pass these objects to and
from threads. Of course, when using immutable objects, you still need to remember to use reference counts
correctly. If you inappropriately release an object you did not retain, you could cause an exception later.

Mutable objects are generally not thread-safe. To use mutable objects in a threaded application, the application
must synchronize access to them using locks. (For more information, see “Atomic Operations” (page 45)). In
general, the collection classes (for example, NSMutableArray, NSMutableDictionary) are not thread-safe
when mutations are concerned. That is, if one or more threads are changing the same array, problems can
occur. You must lock around spots where reads and writes occur to assure thread safety.

Even if a method claims to return an immutable object, you should never simply assume the returned object
is immutable. Depending on the method implementation, the returned object might be mutable or immutable.
For example, a method with the return type of NSString might actually return an NSMutableString due
to its implementation. If you want to guarantee that the object you have is immutable, you should make an
immutable copy.

Reentrancy

Reentrancy is only possible where operations “call out” to other operations in the same object or on different
objects. Retaining and releasing objects is one such “call out” that is sometimes overlooked.

The following table lists the portions of the Foundation framework that are explicitly reentrant. All other
classes may or may not be reentrant, or they may be made reentrant in the future. A complete analysis for
reentrancy has never been done and this list may not be exhaustive.

NSNotificationCenterDistributed Objects

Cocoa 87
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary for Mac OS X

NSRecursiveLockNSConditionLock

NSRunLoopNSDistributedLock

NSUserDefaultsNSLock

NSLog/NSLogv

Class Initialization

The Objective-C runtime system sends an initializemessage to every class object before the class receives
any other messages. This gives the class a chance to set up its runtime environment before it’s used. In a
multithreaded application, the runtime guarantees that only one thread—the thread that happens to send
the first message to the class—executes the initialize method. If a second thread tries to send messages
to the class while the first thread is still in the initialize method, the second thread blocks until the
initialize method finishes executing. Meanwhile, the first thread can continue to call other methods on
the class. The initialize method should not rely on a second thread calling methods of the class; if it
does, the two threads become deadlocked.

Due to a bug in Mac OS X version 10.1.x and earlier, a thread could send messages to a class before another
thread finished executing that class’s initialize method. The thread could then access values that have
not been fully initialized, perhaps crashing the application. If you encounter this problem, you need to either
introduce locks to prevent access to the values until after they are initialized or force the class to initialize
itself before becoming multithreaded.

Autorelease Pools

Each thread maintains its own stack of NSAutoreleasePool objects. Cocoa expects there to be an autorelease
pool always available on the current thread’s stack. If a pool is not available, objects do not get released and
you leak memory. An NSAutoreleasePool object is automatically created and destroyed in the main thread
of applications based on the Application Kit, but secondary threads (and Foundation-only applications) must
create their own before using Cocoa. If your thread is long-lived and potentially generates a lot of autoreleased
objects, you should periodically destroy and create autorelease pools (like the Application Kit does on the
main thread); otherwise, autoreleased objects accumulate and your memory footprint grows. If your detached
thread does not use Cocoa, you do not need to create an autorelease pool.

Run Loops

Every thread has one and only one run loop. Each run loop, and hence each thread, however, has its own
set of input modes that determine which input sources are listened to when the run loop is run. The input
modes defined in one run loop do not affect the input modes defined in another run loop, even though they
may have the same name.

The run loop for the main thread is automatically run if your application is based on the Application Kit, but
secondary threads (and Foundation-only applications) must run the run loop themselves. If a detached thread
does not enter the run loop, the thread exits as soon as the detached method finishes executing.

Despite some outward appearances, the NSRunLoop class is not thread safe. You should call the instance
methods of this class only from the thread that owns it.

88 Cocoa
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary for Mac OS X

Application Kit Framework Thread Safety

The following sections describe the general thread safety of the Application Kit framework.

Windows

You can create a window on a secondary thread. The Application Kit ensures that the data structures associated
with a window are deallocated on the main thread to avoid race conditions. There is some possibility that
window objects may leak in an application that deals with a lot of windows concurrently.

You can create a modal window on a secondary thread. The Application Kit blocks the calling secondary
thread while the main thread runs the modal loop.

Events

The main thread of the application is responsible for handling events. The main thread is the one blocked
in the runmethod of NSApplication, usually invoked in an application’s main function. While the Application
Kit continues to work if other threads are involved in the event path, operations can occur out of sequence.
For example, if two different threads are responding to key events, the keys could be received out of order.
By letting the main thread process events, you achieve a more consistent user experience. Once received,
events can be dispatched to secondary threads for further processing if desired.

You can call the postEvent:atStart: method of NSApplication from a secondary thread to post an
event to the main thread’s event queue. Order is not guaranteed with respect to user input events, however.
The main thread of the application is still responsible for handling events in the event queue.

Drawing

The Application Kit is generally thread-safe when drawing with its graphics functions and classes, including
the NSBezierPath and NSString classes. Details for using particular classes are described in the following
sections. Additional information about drawing and threads is available in Cocoa Drawing Guide.

NSView

The NSView class is generally thread-safe, with a few exceptions. You should create, destroy, resize, move,
and perform other operations on NSView objects only from the main thread of an application. Drawing from
secondary threads is thread-safe as long as you bracket drawing calls with calls to lockFocusIfCanDraw
and unlockFocus.

If a secondary thread of an application wants to cause portions of the view to be redrawn on the main thread,
it must not do so using methods like display, setNeedsDisplay:, setNeedsDisplayInRect:, or
setViewsNeedDisplay:. Instead, it should send a message to the main thread or call those methods using
the performSelectorOnMainThread: method instead.

The view system’s graphics states (gstates) are per-thread. Using graphics states used to be a way to achieve
better drawing performance over a single-threaded application but that is no longer true. Incorrect use of
graphics states can actually lead to drawing code that is less efficient than drawing in the main thread.

Cocoa 89
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary for Mac OS X

NSGraphicsContext

The NSGraphicsContext class represents the drawing context provided by the underlying graphics system.
Each NSGraphicsContext instance holds its own independent graphics state: coordinate system, clipping,
current font, and so on. An instance of the class is automatically created on the main thread for each NSWindow
instance. If you do any drawing from a secondary thread, a new instance of NSGraphicsContext is created
specifically for that thread.

If you do any drawing from a secondary thread, you must flush your drawing calls manually. Cocoa does not
automatically update views with content drawn from secondary threads, so you need to call the
flushGraphics method of NSGraphicsContext when you finish your drawing. If your application draws
content from the main thread only, you do not need to flush your drawing calls.

NSImage

One thread can create an NSImage object, draw to the image buffer, and pass it off to the main thread for
drawing. The underlying image cache is shared among all threads. For more information about images and
how caching works, see Cocoa Drawing Guide.

Core Data Framework

The Core Data framework generally supports threading, although there are some usage caveats that apply.
For information on these caveats, see Multi-Threading with Core Data in Core Data Programming Guide.

Core Foundation

Core Foundation is sufficiently thread-safe that, if you program with care, you should not run into any problems
related to competing threads. It is thread-safe in the common cases, such as when you query, retain, release,
and pass around immutable objects. Even central shared objects that might be queried from more than one
thread are reliably thread-safe.

Like Cocoa, Core Foundation is not thread-safe when it comes to mutations to objects or their contents. For
example, modifying a mutable data or mutable array object is not thread-safe, as you might expect, but
neither is modifying an object inside of an immutable array. One reason for this is performance, which is
critical in these situations. Moreover, it is usually not possible to achieve absolute thread safety at this level.
You cannot rule out, for example, indeterminate behavior resulting from retaining an object obtained from
a collection. The collection itself might be freed before the call to retain the contained object is made.

In those cases where Core Foundation objects are to be accessed from multiple threads and mutated, your
code should protect against simultaneous access by using locks at the access points. For instance, the code
that enumerates the objects of a Core Foundation array should use the appropriate locking calls around the
enumerating block to protect against someone else mutating the array.

90 Core Foundation
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

APPENDIX A

Thread Safety Summary for Mac OS X

application A specific style of program that displays
a graphical interface to the user.

condition A construct used to synchronize access to
a resource. A thread waiting on a condition is not
allowed to proceed until another thread explicitly
signals the condition.

critical section A portion of code that must be
executed by only one thread at a time.

input source A source of asynchronous events for a
thread. Input sources can be port-based or manually
triggered and must be attached to the thread’s run
loop.

joinable thread A thread whose resources are not
reclaimed immediately upon termination. Joinable
threads must be explicitly detached or be joined by
another thread before the resources can be reclaimed.
Joinable threads provide a return value to the thread
that joins with them.

main thread A special type of thread created when
its owning process is created. When the main thread
of a program exits, the process ends.

mutex A lock that provides mutually exclusive access
to a shared resource. A mutex lock can be held by
only one thread at a time. Attempting to acquire a
mutex held by a different thread puts the current
thread to sleep until the lock is finally acquired.

operation object An instance of the NSOperation
class. Operation objects wrap the code and data
associated with a task into an executable unit.

operation queue An instance of the
NSOperationQueue class. Operation queues manage
the execution of operation objects.

process The runtime instance of an application or
program. A process has its own virtual memory space
and system resources (including port rights) that are
independent of those assigned to other programs. A
process always contains at least one thread (the main
thread) and may contain any number of additional
threads.

program A combination of code and resources that
can be run to perform some task. Programs need not
have a graphical user interface, although graphical
applications are also considered programs.

recursive lock A lock that can be locked multiple
times by the same thread.

run loop An event-processing loop, during which
events are received and dispatched to appropriate
handlers.

run loop mode A collection of input sources, timer
sources, and run loop observers associated with a
particular name. When run in a specific “mode,” a run
loop monitors only the sources and observers
associated with that mode.

run loop object An instance of the NSRunLoop class
or CFRunLoop opaque type. These objects provide
the interface for implementing an event-processing
loop in a thread.

run loop observer A recipient of notifications during
different phases of a run loop’s execution.

semaphore A protected variable that restricts access
to a shared resource. Mutexes and conditions are both
different types of semaphore.

91
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Glossary

task A quantity of work to be performed. Although
some technologies (most notably Carbon
Multiprocessing Services) use this term differently,
the preferred usage is as an abstract concept
indicating some quantity of work to be performed.

thread A flow of execution in a process. Each thread
has its own stack space but otherwise shares memory
with other threads in the same process.

timer source A source of synchronous events for a
thread. Timers generate one-shot or repeated events
at a scheduled future time.

92
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to Threading Programming Guide.

NotesDate

Performed a major rewrite and update of thread-related concepts and tasks.2008-02-08

Added more information about configuring threads.

Reorganized the synchronization tools sections into a chapter and added
information about atomic operations, memory barriers, and volatile variables.

Added more details regarding the use and configuration of run loops.

Changed document title from Multithreading Programming Topics.

Added information about the NSOperation and NSOperationQueue objects.2007-10-31

Added some new guidelines and updated the information about run loops.
Verified the accuracy of the distributed object code examples and updated the
code examples in several other articles.

2006-04-04

Updated port examples to use NSPort instead of NSMessagePort.2005-03-03

Reorganized articles and expanded document to cover more than just Cocoa
threading techniques.

2005-01-11

Updated thread conceptual information and added information covering the
different threading packages in Mac OS X.

Incorporated material from Core Foundation multithreading document.

Added information on performing socket-based communication between
threads.

Added sample code and information on creating and using Carbon threads.

Added thread safety guidelines.

Added information about POSIX threads and locks.

Added sample code demonstrating port-based communications.

This document replaces information about threading that was published
previously in Multithreading.

Updated the advice for using locks in libraries in third-party libraries.2003-07-28

Restated information on lock/unlock balancing in third-party libraries.2003-04-08

93
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Revision history was added to existing topic.2002-11-12

94
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Threading Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Concurrency and Application Design
	About Concurrency
	Terminology
	Mac OS X Support
	Threads
	Operation Objects
	Synchronization Tools
	Run Loops
	Interthread Communication
	Alternatives to Threads

	Design Considerations
	Define Your Application’s Expected Behavior
	Factor Your Code Into Discrete Tasks
	Consider Alternatives to Threading

	Design Tips
	Avoid Creating Threads Explicitly
	Keep Your Threads Reasonably Busy
	Avoid Shared Data Structures
	Threads and Your User Interface
	Be Aware of Thread Behaviors at Quit Time
	Handle Exceptions
	Terminate Your Threads Cleanly
	Thread Safety in Libraries

	Creating and Managing Operation Objects
	About Operation Objects and Operation Queues
	Configuration Options for Operation Objects
	Defining Operation Objects
	Using an NSInvocationOperation Object
	Defining a Simple NSOperation Subclass
	Configuring Dependencies Among Operation Objects
	Customizing the Execution Environment of an Operation Object
	Configuring a Custom Runtime Environment
	Maintaining KVO Compliance

	Responding to Errors

	Running Operations
	Using a Queue to Run Operations
	Running an Operation Object Directly

	Creating and Managing Threads
	About Mac OS X Threads
	Threading Technologies
	Thread Costs

	Creating a Thread
	Using NSThread
	Using POSIX Threads
	Using NSObject to Spawn a Thread
	Using Other Threading Technologies

	Creating POSIX Threads in a Cocoa Application
	Protecting the Cocoa Frameworks
	Supporting Autoreleased Objects
	Mixing POSIX and Cocoa Locks

	Configuring Threads
	Configuring the Stack Size of a Thread
	Memory Management in Threads
	Configuring Thread-Local Storage
	Setting Up a Run Loop
	Setting the Detached State of a Thread
	Setting the Thread Priority

	Terminating a Thread

	Synchronization and Thread Safety
	Synchronization Tools
	Atomic Operations
	Memory Barriers and Volatile Variables
	Locks
	Conditions
	Perform Selector Routines

	Synchronization and Performance
	Thread Safety and Signals
	Tips for Thread-Safe Designs
	Avoid Synchronization Altogether
	Understand the Limits of Synchronization
	Be Aware of Threats to Code Correctness
	Watch Out for Deadlocks and Livelocks
	Use Volatile Variables Correctly

	Using Atomic Operations
	Using Locks
	Using a POSIX Mutex Lock
	Using the NSLock Class
	Using the @synchronized Directive
	Using Other Cocoa Locks
	Using an NSRecursiveLock Object
	Using an NSConditionLock Object
	Using an NSDistributedLock Object

	Using Conditions
	Using the NSCondition Class
	Using POSIX Conditions

	Run Loop Management
	Anatomy of a Run Loop
	Run Loop Modes
	Input Sources
	Port-Based Sources
	Custom Input Sources
	Cocoa Perform Selector Sources

	Timer Sources
	Run Loop Observers
	The Run Loop Sequence of Events

	When Would You Use a Run Loop?
	Using Run Loop Objects
	Getting a Run Loop Object
	Configuring the Run Loop
	Starting the Run Loop
	Exiting the Run Loop
	Thread Safety and Run Loop Objects

	Configuring Run Loop Sources
	Defining a Custom Input Source
	Defining the Input Source
	Installing the Input Source on the Run Loop
	Coordinating with Clients of the Input Source
	Signaling the Input Source

	Configuring Timer Sources
	Configuring a Port-Based Input Source
	Configuring an NSMachPort Object
	Implementing the Main Thread Code
	Implementing the Secondary Thread Code

	Configuring an NSMessagePort Object
	Configuring a Port-Based Input Source in Core Foundation

	Appendix A: Thread Safety Summary for Mac OS X
	Cocoa
	Foundation Framework Thread Safety
	Thread-Safe Classes
	Thread-Unsafe Classes
	Mutable Versus Immutable
	Reentrancy
	Class Initialization
	Autorelease Pools
	Run Loops

	Application Kit Framework Thread Safety
	Windows
	Events
	Drawing
	NSView
	NSGraphicsContext
	NSImage

	Core Data Framework

	Core Foundation

	Glossary
	Revision History

