
Notification Programming Topics for Cocoa
Cocoa > Events & Other Input

2007-05-03



Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, eMac, Mac, and
Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction to Notification Programming Topics 5

Organization of This Document 5

Notifications 7

Notifications and Their Rationale 7
Notification and Delegation 7

Notification Centers 9

NSNotificationCenter 9
NSDistributedNotificationCenter 9

Notification Queues 11

Notification Queue Basics 11
Posting Notifications Asynchronously 11

Posting As Soon As Possible 12
Posting When Idle 12
Posting Immediately 12

Coalescing Notifications 12

Registering for a Notification 15

Registering for Local Notifications 15
Registering for Distributed Notifications 16
Unregistering an Observer 17

Posting a Notification 19

Posting Local Notifications 19
Posting Distributed Notifications 20

Delivering Notifications To Particular Threads 21

Document Revision History 25

3
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.



4
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.



This document describes how to use the architecture supplied by Foundation to pass around information
about the occurrence of events.

You should read this document to learn about notifications, notification centers, and notification queues.

Organization of This Document

This document contains the following articles:

 ■ “Notifications” (page 7) describes what a notification is.

 ■ “Notification Centers” (page 9) describes notification centers.

 ■ “Notification Queues” (page 11) describes notification queues.

 ■ “Registering for a Notification” (page 15) describes how to register for a notification.

 ■ “Posting a Notification” (page 19) describes how to post a notification.

 ■ “Delivering Notifications To Particular Threads” (page 21) shows an example of how to handle notifications
that should be processed on a particular thread.

Organization of This Document 5
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Introduction to Notification Programming
Topics



6 Organization of This Document
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Introduction to Notification Programming Topics



A notification encapsulates information about an event, such as a window gaining focus or a network
connection closing. Objects that need to know about an event (for example, a file that needs to know when
its window is about to be closed) register with the notification center that it wants to be notified when that
event happens. When the event does happen, a notification is posted to the notification center, which
immediately broadcasts the notification to all registered objects. Optionally, a notification is queued in a
notification queue, which posts notifications to a notification center after it delays specified notifications and
coalesces notifications that are similar according to some specified criteria you specify.

Note:  Frameworks such as Foundation and Application Kit make extensive use of notifications to allow
objects to react to events they are interested in. The notifications sent by each class are described in the
class’s reference documentation, under the “Notifications” section.

Notifications and Their Rationale

The standard way to pass information between objects is message passing—one object invokes the method
of another object. However, message passing requires that the object sending the message know who the
receiver is and what messages it responds to. At times, this tight coupling of two objects is undesirable—most
notably because it would join together two otherwise independent subsystems. For these cases, a broadcast
model is introduced: An object posts a notification, which is dispatched to the appropriate observers through
an NSNotificationCenter object, or simply notification center.

An NSNotification object (referred to as a notification) contains a name, an object, and an optional
dictionary. The name is a tag identifying the notification. The object is any object that the poster of the
notification wants to send to observers of that notification (typically, it is the object that posted the
notification). The dictionary stores other related objects if any.

Any object may post a notification. Other objects can register themselves with the notification center as
observers to receive notifications when they are posted. The notification center takes care of broadcasting
notifications to the registered observers, if any. The object posting the notification, the object included in
the notification, and the observer of the notification may all be different objects or the same object. Objects
that post notifications need not know anything about the observers. On the other hand, observers need to
know at least the notification name and keys to the dictionary if provided.

Notification and Delegation

Using the notification system is similar to using delegates, but it has these advantages:

 ■ Any number of objects may receive the notification, not just the delegate object. This precludes returning
a value.

Notifications and Their Rationale 7
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notifications



 ■ An object may receive any message you like from the notification center, not just the predefined delegate
methods.

 ■ The object posting the notification does not even have to know the observer exists.

8 Notification and Delegation
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notifications



A notification center manages the sending and receiving of notifications. It notifies all observers of notifications
meeting specific criteria. The notification information is encapsulated in NSNotification objects. Client
objects register themselves with the notification center as observers of specific notifications posted by other
objects. When an event occurs, an object posts an appropriate notification to the notification center. (See
“Posting a Notification” (page 19) for more on posting notifications.) The notification center dispatches a
message to each registered observer, passing the notification as the sole argument. It is possible for the
posting object and the observing object to be the same.

Cocoa includes two types of notification centers:

 ■ The NSNotificationCenter class manages notifications within a single task.

 ■ The NSDistributedNotificationCenter class manages notifications across multiple tasks on a
single computer.

NSNotificationCenter

Each task has a default notification center that you access with the NSNotificationCenter
+defaultCenter method. This notification center handles notifications within a single task. For
communication between tasks on the same machine, use a distributed notification center (see
“NSDistributedNotificationCenter” (page 9)).

A notification center delivers notifications to observers synchronously. In other words, when posting a
notification, control does not return to the poster until all observers have received and processed the
notification. To send notifications asynchronously use a notification queue, which is described in “Notification
Queues” (page 11).

In a multithreaded application, notifications are always delivered in the thread in which the notification was
posted, which may not be the same thread in which an observer registered itself.

NSDistributedNotificationCenter

Each task has a default distributed notification center that you access with the
NSDistributedNotificationCenter +defaultCenter method. This distributed notification center
handles notifications that can be sent between tasks on a single machine. For communication between tasks
on different machines, use distributed objects (see Distributed Objects).

Posting a distributed notification is an expensive operation. The notification gets sent to a systemwide server
that then distributes it to all the tasks that have objects registered for distributed notifications. The latency
between posting the notification and the notification’s arrival in another task is unbounded. In fact, if too
many notifications are being posted and the server’s queue fills up, notifications can be dropped.

NSNotificationCenter 9
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notification Centers



Distributed notifications are delivered via a task’s run loop. A task must be running a run loop in one of the
“common” modes, such as NSDefaultRunLoopMode, to receive a distributed notification. If the receiving
task is multithreaded, do not depend on the notification arriving on the main thread. The notification is
usually delivered to the main thread’s run loop, but other threads could also receive the notification.

Whereas a regular notification center allows any object to be observed, a distributed notification center is
restricted to observing a string object. Because the posting object and the observer may be in different tasks,
notifications cannot contain pointers to arbitrary objects. Therefore, a distributed notification center requires
notifications to use a string as the notification object. Notification matching is done based on this string,
rather than an object pointer.

10 NSDistributedNotificationCenter
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notification Centers



NSNotificationQueue objects (or simply, notification queues) act as buffers for notification centers
(instances of NSNotificationCenter). The NSNotificationQueue class contributes two important
features to the Foundation Kit’s notification mechanism: the coalescing of notifications and asynchronous
posting.

Notification Queue Basics

Using the NSNotificationCenter’s postNotification: method and its variants, you can post a
notification to a notification center. However, the invocation of the method is synchronous: before the posting
object can resume its thread of execution, it must wait until the notification center dispatches the notification
to all observers and returns. A notification queue, on the other hand, maintains notifications (instances of
NSNotification) generally in a First In First Out (FIFO) order. When a notification rises to the front of the
queue, the queue posts it to the notification center, which in turn dispatches the notification to all objects
registered as observers.

Every thread has a default notification queue, which is associated with the default notification center for the
task. You can create your own notification queues and have multiple queues per center and thread.

Posting Notifications Asynchronously

With NSNotificationQueue’s enqueueNotification:postingStyle: and
enqueueNotification:postingStyle:coalesceMask:forModes:methods, you can post a notification
asynchronously to the current thread by putting it in a queue. These methods immediately return to the
invoking object after putting the notification in the queue.

Note:  When the thread where a notification is enqueued terminates before the notification queue posts the
notification to its notification center, the notification goes unposted. See “Delivering Notifications To Particular
Threads” (page 21) to learn how to post a notification to a different thread.

The notification queue is emptied and its notifications posted based on the posting style and run loop mode
specified in the enqueuing method. The mode argument specifies the run loop mode in which the queue
will be emptied. For example, if you specify NSModalPanelRunLoopMode, the notifications will be posted
only when the run loop is in this mode. If the run loop is not currently in this mode, the notifications wait
until the next time that mode is entered. See “Input Modes” for more information on run loop modes.

Posting to a notification queue can occur in one of three different styles: NSPostASAP, NSPostWhenIdle,
and NSPostNow. These styles are described in the following sections.

Notification Queue Basics 11
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notification Queues



Posting As Soon As Possible

Any notification queued with the NSPostASAP style is posted to the notification center when the current
iteration of the run loop completes, assuming the current run loop mode matches the requested mode. (If
the requested and current modes are different, the notification is posted when the requested mode is entered.)
Because the run loop can make multiple callouts during each iteration, the notification may or may not get
delivered as soon as the current callout exits and control returns to the run loop. Other callouts may take
place first, such as a timer or source firing or other asynchronous notifications being delivered.

You typically use the NSPostASAP posting style for an expensive resource, such as the display server. When
many clients draw on the window buffer during a callout from the run loop, it is expensive to flush the buffer
to the display server after every draw operation. In this situation, each draw... method enqueues some
notification such as “FlushTheServer” with coalescing on name and object specified and with a posting style
of NSPostASAP. As a result, only one of those notifications is dispatched at the end of the run loop and the
window buffer is flushed only once.

Posting When Idle

A notification queued with the NSPostWhenIdle style is posted only when the run loop is in a wait state.
In this state, there’s nothing in the run loop’s input channels, be it timers or other asynchronous events. A
typical example of queuing with the NSPostWhenIdle style occurs when the user types text, and the program
displays the size of the text in bytes somewhere. It would be very expensive (and not very useful) to update
the text field size after each character the user types, especially if the user types quickly. In this case, the
program queues a notification, such as “ChangeTheDisplayedSize,” with coalescing turned on and a posting
style of NSPostWhenIdle after each character typed. When the user stops typing, the single
“ChangeTheDisplayedSize” notification in the queue (due to coalescing) is posted when the run loop enters
its wait state and the display is updated. Note that a run loop that is about to exit (which occurs when all of
the input channels have expired) is not in a wait state and thus will not post a notification.

Posting Immediately

A notification queued with NSPostNow is posted immediately after coalescing to the notification center. You
queue a notification with NSPostNow (or post one with postNotification:) when you do not require
asynchronous calling behavior. For many programming situations, synchronous behavior is not only allowable
but desirable: You want the notification center to return after dispatching so you can be sure that observing
objects have received and processed the notification. Of course, you should use enqueueNotification...
with NSPostNow rather than use postNotification: when there are similar notifications in the queue
that you want to remove through coalescing.

Coalescing Notifications

In some situations, you may want to post a notification if a given event occurs at least once, but you want
to post no more than one notification even if the event occurs multiple times. For example, in an application
that receives data in discrete packets, upon receipt of a packet you may wish to post a notification to signify
that the data needs to be processed. If multiple packets arrive within a given time period, however, you do

12 Coalescing Notifications
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notification Queues



not want to post multiple notifications. Moreover, the object that posts these notifications may not have any
way of knowing whether more packets are coming or not, whether the posting method is called in a loop
or not.

In some situations it may be possible to simply set a Boolean flag (whether an instance variable of an object
or a global variable) to denote that an event has occurred and to suppress posting of further notifications
until the flag is cleared. If this is not possible, however, in this situation you cannot directly use
NSNotificationCenter since its behavior is synchronous—notifications are posted before returning, thus
there is no opportunity for "ignoring” duplicate notifications; moreover, an NSNotificationCenter instance
has no way of knowing whether more notifications are coming or not.

Rather than posting a notification to a notification center, therefore, you can add the notification to an
NSNotificationQueue instance specifying an appropriate option for coalescing. Coalescing is a process
that removes from a queue notifications that are similar in some way to a notification that was queued earlier.
You indicate the criteria for similarity by specifying one or more of the following constants in the third
argument of the enqueueNotification:postingStyle:coalesceMask:forModes: method.

Do not coalesce notifications in the queue.NSNotificationNoCoalescing

Coalesce notifications with the same name.NSNotificationCoalescingOnName

Coalesce notifications with the same object.NSNotificationCoalescingOnSender

You can perform a bitwise-OR operation with the NSNotificationCoalescingOnName and
NSNotificationCoalescingOnSender constants to specify coalescing using both the notification name
and notification object. The following example illustrates how you might use a queue to ensure that, within
a given event loop cycle, all notifications named MyNotificationName are coalesced into a single notification.

// MyNotificationName defined globally
NSString *MyNotificationName = @"MyNotification";

id object = /* the object associated with the notification *;/
NSNotification *myNotification =
        [NSNotification notificationWithName:MyNotificationName object:object]
[[NSNotificationQueue defaultQueue]
        enqueueNotification:myNotification
        postingStyle:NSPostWhenIdle
        coalesceMask:NSNotificationCoalescingOnName
        forModes:nil];

Coalescing Notifications 13
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notification Queues



14 Coalescing Notifications
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Notification Queues



You can register for notifications from within your own application or other applications. See “Registering
for Local Notifications” (page 15) for the former and “Registering for Distributed Notifications” (page 16) for
the latter. To unregister for a notification, which must be done when your object is deallocated, see
“Unregistering an Observer” (page 17).

Registering for Local Notifications

An object registers itself to receive a notification by invoking the notification center method
addObserver:selector:name:object: (or the addObserver method in Java), specifying the message
the notification center should send to the observer, the name of the notification it wants to receive, and
about which object. However, the observer need not specify both the name and the object. If it specifies
only the object, it will receive all notifications containing that object. If the object specifies only a notification
name, it will receive that notification every time it’s posted, regardless of the object associated with it.

It is possible for an observer to register to receive more than one message for the same notification. In such
a case, the observer will receive all messages it is registered to receive for the notification, but the order in
which it receives them cannot be determined.

If an observer later decides it no longer needs to receive notifications (for example, if it is being deallocated),
it can remove itself from the notification center’s list of observers with the methods removeObserver: or
removeObserver:name:object: (or the removeObserver method in Java).

Normally, you register objects with the task’s default notification center. You obtain the default object using
the defaultCenter class method.

As an example of using the notification center to receive notifications, suppose your program can perform
a number of conversions on text (for instance, RTF to ASCII). You have defined a class of objects that perform
those conversions, Converter. Converter objects might be added or removed during program execution.
Your program has a client object that wants to be notified when converters are added or removed, allowing
the application to reflect the available services in a pop-up menu. The client object would register itself as
an observer by sending the following messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self
    selector:@selector(objectAddedToConverterList:)
    name:@"ConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self
    selector:@selector(objectRemovedFromConverterList:)
    name:@"ConverterRemoved" object:nil];

By passing nil as the object to observe, the client object (self) is notified when any object posts a
"ConverterAdded" or "ConverterRemoved" notification.

Registering for Local Notifications 15
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Registering for a Notification



When a user installs or removes a Converter, the Converter posts either a "ConverterAdded" or
"ConverterRemoved" notification to the notification center. The notification center notifies all observers
who are interested in the notification by invoking the method they specified in the selector argument of
addObserver:selector:name:object:. In the case of our example observer, the selector is either
objectAddedToConverterList: or objectRemovedFromConverterList:. Assume the Converter class
has an instance method converterName that returns the name of the Converter object. Then the
objectAddedToConverterList: method might have the following implementation:

- (void)objectAddedToConverterList:(NSNotification *)notification
{
    Converter *addedConverter = [notification object];

    // Add this to our popup (it will only be added if not there)...
    [myPopUpButton addItem:[addedConverter converterName]];
}

The Converters don’t need to know anything about the pop-up list or any other aspect of the user interface
to your program.

Registering for Distributed Notifications

An object registers itself to receive a notification by sending the
addObserver:selector:name:object:suspensionBehavior: method to an
NSDistributedNotificationCenter object, specifying the message the notification should send, the
name of the notification it wants to receive, the identifying string to match (the object argument), and the
behavior to follow if notification delivery is suspended.

Because the posting object and the observer may be in different tasks, notifications can’t contain pointers
to arbitrary objects. Therefore, the NSDistributedNotificationCenter class requires notifications to
use an NSString object as the object argument. Notification matching is done based on this string, rather
than an object pointer. You should check the documentation of the object posting the notification to see
what it uses as its identifying string.

When a task is no longer interested in receiving notifications immediately, it may suspend notification delivery.
This is often done when the application is hidden, or is put into the background. (The NSApplication object
automatically suspends delivery when the application is not active.) The suspensionBehavior argument
in the addObserver method identifies how arriving notifications should be handled while delivery is
suspended. There are four different types of suspension behavior, each useful in different circumstances.

DescriptionSuspension Behavior

The server does not queue any notifications with this name and object
until it receives the setSuspended:NO message.

NSNotification-
SuspensionBehaviorDrop

The server queues only the last notification of the specified name and
object; earlier notifications are dropped. In cover methods for which
suspension behavior is not an explicit argument, NSNotification-
SuspensionBehaviorCoalesce is the default.

NSNotification-
SuspensionBehavior-
Coalesce

16 Registering for Distributed Notifications
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Registering for a Notification



DescriptionSuspension Behavior

The server holds all matching notifications until the queue has been filled
(queue size determined by the server) at which point the server may
flush queued notifications.

NSNotification-
SuspensionBehaviorHold

The server delivers notifications matching this registration irrespective
of whether it has received the setSuspended:YES message. When a
notification with this suspension behavior is matched, it has the effect
of first flushing any queued notifications. The effect is as if the server
received setSuspended:NOwhile the application is suspended, followed
by the notification in question being delivered, followed by a transition
back to the previous suspended or unsuspended state.

NSNotification-
SuspensionBehavior-
DeliverImmediately

You suspend notifications by sending setSuspended:YES to the distributed notification center. While
notifications are suspended, the notification server handles notifications destined for the task that suspended
notification delivery according to the suspension behavior specified by the observers when they registered
to receive notifications. When the task unsuspends notification delivery, all queued notifications are delivered
immediately. In applications using Application Kit, the NSApplication object automatically suspends
notification delivery when the application is not active.

Note that a notification destined for an observer that registered with
NSNotificationSuspensionBehaviorDeliverImmediately, automatically flushes the queue as it is
delivered, causing all queued notifications to be delivered at that time as well.

The suspended state can be overridden by the poster of a notification. If the notification is urgent, such as
a warning of a server being shut down, the poster can force the notification to be delivered immediately to
all observers by posting the notification with the NSDistributedNotificationCenter
postNotificationName:object:userInfo:deliverImmediately: method with the
deliverImmediately argument YES.

Unregistering an Observer

If you deallocate an object that is observing notifications, you need to tell the notification center to stop
sending it notifications. Otherwise, the next notification gets sent to a nonexistent object and the program
crashes. You can send the following message to completely remove an object as an observer of local
notifications, regardless of how many objects and notifications for which it registered itself:

[[NSNotificationCenter defaultCenter] removeObserver:self];

For observers of distributed notifications send:

[[NSDistributedNotificationCenter defaultCenter] removeObserver:self];

Use the more specific removeObserver...methods that specify the notification name and observed object
to selectively unregister an object for particular notifications.

Unregistering an Observer 17
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Registering for a Notification



18 Unregistering an Observer
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Registering for a Notification



You can post notifications within your own application or make them available to other applications. See
“Posting Local Notifications” (page 19) for the former and “Posting Distributed Notifications” (page 20) for
the latter.

Posting Local Notifications

You can create a notification object with the NSNotification class Java constructor or the Objective-C
methods notificationWithName:object: or notificationWithName:object:userInfo:. You then
post the notification object to a notification center using the postNotification: instance method.
NSNotification objects are immutable objects, so once created, they cannot be modified.

However, you normally don’t create your own notifications directly. The methods
postNotificationName:object: and postNotificationName:object:userInfo: of the
NSNotificationCenter class allow you to conveniently post a notification without creating it first. In Java,
you use the postNotification method with the notification properties as arguments.

In each case, you usually post the notification to the task’s default notification center. You obtain the default
object using the defaultCenter class method.

As an example of using the notification center to post a notification, consider the example from “Registering
for Local Notifications” (page 15). You have a program that can perform a number of conversions on text
(for instance, RTF to ASCII). The conversions are handled by a class of objects (Converter) that can be added
or removed during program execution. Your program may have other objects that want to be notified when
converters are added or removed, but the Converter objects do not need to know who these objects are
or what they do. You thus declare two notifications, "ConverterAdded" and "ConverterRemoved", which
you post when the given event occurs.

When a user installs or removes a converter, it sends one of the following messages to the notification center:

[[NSNotificationCenter defaultCenter]
    postNotificationName:@"ConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]
    postNotificationName:@"ConverterRemoved" object:self];

The notification center then identifies which objects (if any) are interested in these notifications and notifies
them.

If there are other objects of interest to the observer (besides the notification name and observed object),
place them in the notification’s optional dictionary or use postNotificationName:object:userInfo:.

Posting Local Notifications 19
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Posting a Notification



Posting Distributed Notifications

Posting distributed notifications is much the same as for posting local notifications. You can create an
NSNotification object manually and post with postNotification: or use one of the
NSDistributedNotificationCenter convenience methods. The only differences are that the notification
object must be a string object and the optional user-info dictionary can contain only property list objects,
such as NSString and NSNumber (see “Property Lists” for details on property lists).

An observer of a given notification may be in a suspended state and not processing notifications immediately.
If an object posting a notification wants to ensure that all observers receive the notification immediately (for
example, if the notification is a warning that a server is about to shut down), it can invoke
postNotificationName:object:userInfo:deliverImmediately:withdeliverImmediately:YES.
The notification center delivers the notification as if the observers had registered with
NSNotificationSuspensionBehaviorDeliverImmediately (further described in “Registering for
Distributed Notifications” (page 16)). Delivery is not guaranteed, however. For example, the task receiving
the notifications may be too busy to process and accept queued notifications. In this case, the notification
is dropped.

20 Posting Distributed Notifications
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Posting a Notification



Regular notification centers deliver notifications on the thread in which the notification was posted. Distributed
notification centers deliver notifications are delivered on the main thread (prior to Mac OS X v10.3, they were
delivered on an undefined thread). At times, you may require notifications to be delivered on a particular
thread that is determined by you instead of the notification center. For example, if an object running in a
background thread is listening for notifications from the user interface, such as a window closing, you would
like to receive the notifications in the background thread instead of the main thread. In these cases, you must
capture the notifications as they are delivered on the default thread and redirect them to the appropriate
thread.

One way to redirect notifications is to use a custom notification queue (not an NSNotificationQueue
object) to hold any notifications that are received on incorrect threads and then process them on the correct
thread. This technique works as follows. You register for a notification normally. When a notification arrives,
you test whether the current thread is the thread that should handle the notification. If it is the wrong thread,
you store the notification in a queue and then send a signal to the correct thread, indicating that a notification
needs processing. The other thread receives the signal, removes the notification from the queue, and processes
the notification.

To implement this technique, your observer object needs to have instance variables for the following values:
a mutable array to hold the notifications, a communication port for signaling the correct thread (a Mach
port), a lock to prevent multithreading conflicts with the notification array, and a value that identifies the
correct thread (an NSThread object). You also need methods to setup the variables, to process the notifications,
and to receive the Mach messages. Here are the necessary definitions to add to the class of your observer
object.

@interface MyThreadedClass: NSObject
{
    /* Threaded notification support */
    NSMutableArray *notifications;
    NSThread *notificationThread;
    NSLock *notificationLock;
    NSMachPort *notificationPort;
}

- (void) setUpThreadingSupport;
- (void) handleMachMessage:(void *) msg;
- (void) processNotification:(NSNotification *) notification;
@end

Before registering for any notifications, you need to initialize the instance variables. The following method
initializes the queue and lock objects, retains a reference to the current thread object, and creates a Mach
communication port, which it adds to the current thread’s run loop.

- (void) setUpThreadingSupport {
    if ( notifications ) return;

    notifications      = [[NSMutableArray alloc] init];
    notificationLock   = [[NSLock alloc] init];
    notificationThread = [[NSThread currentThread] retain];

21
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Delivering Notifications To Particular Threads



    notificationPort = [[NSMachPort alloc] init];
    [notificationPort setDelegate:self];
    [[NSRunLoop currentRunLoop] addPort:notificationPort
            forMode:(NSString *) kCFRunLoopCommonModes];
}

After this method runs, any messages sent to notificationPort are received in the run loop of the thread
that first ran this method. If the receiving thread’s run loop is not running when the Mach message arrives,
the kernel holds on to the message until the next time the run loop is entered. The receiving thread’s run
loop sends the incoming messages to the handleMachMessage: method of the port’s delegate.

In this implementation, no information is contained in the messages sent to notificationPort. Instead,
the information passed between threads is contained in the notification array. When a Mach message arrives,
the handleMachMessage:method ignores the contents of the message and just checks the notifications
array for any notifications that need processing. The notifications are removed from the array and forwarded
to the real notification processing method. Because port messages may get dropped if too many are sent
simultaneously, the handleMachMessage: method iterates over the array until it is empty. The method
must acquire a lock when accessing the notification array to prevent conflicts between one thread adding
notifications and another removing notifications from the array.

- (void) handleMachMessage:(void *) msg {
    [notificationLock lock];
    while ( [notifications count] ) {
        NSNotification *notification = [[notifications objectAtIndex:0] retain];
        [notifications removeObjectAtIndex:0];
        [notificationLock unlock];
        [self processNotification:notification];
        [notification release];
        [notificationLock lock];
    };
    [notificationLock unlock];
}

When a notification is delivered to your object, the method that receives the notification must identify
whether it is running in the correct thread or not. If it is the correct thread, the notification is processed
normally. If it is the wrong thread, the notification is added to the queue and the notification port signaled.

- (void) processNotification:(NSNotification *) notification {
    if( [NSThread currentThread] != notificationThread ) {
        // Forward the notification to the correct thread
        [notificationLock lock];
        [notifications addObject:notification];
        [notificationLock unlock];
        [notificationPort sendBeforeDate:[NSDate date]
                components:nil
                from:nil
                reserved:0];
    }
    else {
        // Process the notification here;
    }
}

22
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Delivering Notifications To Particular Threads



Finally, to register for a notification that you want delivered on the current thread, regardless of the thread
in which it may be posted, you must initialize your object’s notification instance variables by invoking
setUpThreadingSupport and then register for the notification normally, specifying the special notification
processing method as the selector.

[self setupThreadingSupport];
[[NSNotificationCenter defaultCenter]
        addObserver:self
        selector:@selector(processNotification:)
        name:@"NotificationName"
        object:nil];

This implementation is limited in several aspects. First, all threaded notifications processed by this object
must pass through the same method (processNotification:). Second, each object must provide its own
implementation and communication port. A better, but more complex, implementation would generalize
the behavior into either a subclass of NSNotificationCenter or a separate class that would have one
notification queue for each thread and be able to deliver notifications to multiple observer objects and
methods.

23
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Delivering Notifications To Particular Threads



24
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Delivering Notifications To Particular Threads



This table describes the changes to Notification Programming Topics for Cocoa.

NotesDate

Noted that distributed notification centers deliver notifications on the main
thread.

2007-05-03

Corrected minor typographical errors.2007-01-08

Enhanced description of coalescing notifications.2006-11-07

Clarified on which thread an enqueued notification is posted. Changed title
from "Notifications."

2006-04-04

Specified that notifications are posted on the same thread where they are
enqueued in “Posting Notifications Asynchronously” (page 11).

Indicated that notifications are used throughout the Cocoa frameworks and
pointed out where such notifications are described in “Notifications” (page 7).

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

25
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Document Revision History



26
2007-05-03   |   © 2007 Apple Inc. All Rights Reserved.

Document Revision History


	Notification Programming Topics for Cocoa
	Contents
	Introduction
	Notifications
	Notifications and Their Rationale
	Notification and Delegation

	Notification Centers
	NSNotificationCenter
	NSDistributedNotificationCenter

	Notification Queues
	Notification Queue Basics
	Posting Notifications Asynchronously
	Posting As Soon As Possible
	Posting When Idle
	Posting Immediately

	Coalescing Notifications

	Registering for a Notification
	Registering for Local Notifications
	Registering for Distributed Notifications
	Unregistering an Observer

	Posting a Notification
	Posting Local Notifications
	Posting Distributed Notifications

	Delivering Notifications To Particular Threads
	Revision History


