
Number and Value Programming Topics for
Cocoa
Cocoa > Data Management

2008-02-08

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Numbers and Other Values 5

Organization of This Document 5

Using Values 7

Using Numbers 9

Using Decimal Numbers 11

C Interface to Decimal Numbers 11

Using NSNull 13

Document Revision History 15

3
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

4
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

This topic describes object wrappers for primitive C data types, which are implemented by NSValue and its
subclasses NSNumber and NSDecimalNumber, and the NSNull instance used to represent a null value.

Organization of This Document

This document contains the following articles:

 ■ “Using Values” (page 7) describes the generic value type.

 ■ “Using Numbers” (page 9) describes scalars.

 ■ “Using Decimal Numbers” (page 11) describes the objects used for base-10 arithmetic.

 ■ “Using NSNull” (page 13) describes using the NSNull instance.

Organization of This Document 5
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Numbers and Other Values

6 Organization of This Document
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Introduction to Numbers and Other Values

An NSValue object is a simple container for a single C or Objective-C data item. It can hold any of the scalar
types such as int, float, and char, as well as pointers, structures, and object ids. The purpose of this class
is to allow items of such data types to be added to collection objects such as instances of NSArray or NSSet,
which require their elements to be objects. NSValue objects are always immutable.

To create an NSValue object with a particular data item, you provide a pointer to the item along with a C
string describing the item’s type in Objective-C type encoding. You get this string using the @encode()
compiler directive, which returns the platform-specific encoding for the given type (See the section “Type
Encodings” in The Runtime System in The Objective-C 2.0 Programming Language for more information about
@encode() and a list of type codes). For example, this code excerpt creates theValue containing an NSRange:

NSRange myRange = {4, 10};
NSValue *theValue = [NSValue valueWithBytes:&myRange objCType:@encode(NSRange)];

The following example illustrates encoding a custom C structure.

// assume ImaginaryNumber defined:
typedef struct {
 float real;
 float imaginary;
} ImaginaryNumber;

ImaginaryNumber miNumber;
miNumber.real = 1.1;
miNumber.imaginary = 1.41;

NSValue *miValue = [NSValue value: &miNumber
 withObjCType:@encode(ImaginaryNumber)];

ImaginaryNumber miNumber2;
[miValue getValue:&miNumber2];

Note that the type you specify must be of constant length. You cannot store C strings, variable-length arrays
and structures, and other data types of indeterminate length in an NSValue—you should use NSString or
NSData objects for these types. You can store a pointer to variable-length item in an NSValue object. The
following code excerpt incorrectly attempts to place a C string directly into an NSValue object:

/* INCORRECT! */
char *myCString = "This is a string.";
NSValue *theValue = [NSValue value:myCString withObjCType:@encode(char *)];

In this code excerpt the contents of myCString are interpreted as a pointer to a char, so the first four bytes
contained in the string are treated as a pointer (the actual number of bytes used may vary with the hardware
architecture). That is, the sequence “This” is interpreted as a pointer value, which is unlikely to be a legal
address. The correct way to store such a data item is to use an NSString object (if you need to contain the
characters in an object), or to pass the address of its pointer, not the pointer itself:

/* Correct. */

7
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Values

char *myCString = "This is a string.";
NSValue *theValue = [NSValue value:&myCString withObjCType:@encode(char **)];

Here the address of myCString is passed (&myCString), so the address of the first character of the string is
stored in theValue. Note that the NSValue object doesn’t copy the contents of the string, but the pointer
itself. If you create an NSValue object with an allocated data item, don’t deallocate its memory while the
NSValue object exists.

8
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Values

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set of
methods specifically for setting and accessing the value as a signed or unsigned char, short int, int,
NSInteger, long int, long long int, float, or double, or as a BOOL. It also defines a compare:method
to determine the ordering of two NSNumber objects.

NSInteger nine = 9;
float ten = 10.0;

NSNumber *nineFromInteger = [NSNumber numberWithInteger:nine];
NSNumber *tenFromFloat = [NSNumber numberWithFloat:ten];

NSComparisonResult comparison = [nineFromInteger compare:tenFromFloat];
// comparison = NSOrderedAscending

float aFloat = [nineFromInteger floatValue];
// aFloat = 9.0
BOOL ok = [tenFromFloat boolValue];
// ok = YES

An NSNumber object records the numeric type with which it is created, and uses the C rules for numeric
conversion when comparing NSNumber objects of different numeric types and when returning values as C
numeric types. See any standard C reference for information on type conversion. (Note, though, that if you
ask a number for its objCType, the returned type does not necessarily match the method the receiver was
created with.)

If you ask an NSNumber object for its value using a type that cannot hold the value, you get back an erroneous
result—for example, if you ask for the float value of a number created with a double that is greater than
FLT_MAX, or the integer value of a number created with a float that is greater than the maximum value
of NSInteger.

NSNumber *bigNumber = [NSNumber numberWithFloat:(FLT_MAX)];
NSInteger badInteger = [bigNumber integerValue];
NSLog(@"bigNumber: %@; badInteger: %d", bigNumber, badInteger);
// output: "bigNumber: 3.402823e+38; badInteger: 0"

9
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Numbers

10
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Numbers

NSDecimalNumber is an immutable subclass of NSNumber that provides an object-oriented wrapper for
doing base-10 arithmetic. An instance can represent any number that can be expressed as mantissa x 10
exponent where mantissa is a decimal integer up to 38 digits long, and exponent is an integer between -128
and 127.

In the course of doing arithmetic, a method may produce calculation errors, such as division by zero. It may
also meet circumstances where it has a choice of ways to round a number off. The way the method acts on
such occasions is called its “behavior.”

Behavior is set by methods in theNSDecimalNumberBehaviorsprotocol. EveryNSDecimalNumber argument
called behavior requires an object that conforms to this protocol. For more on behaviors, see the
specifications for the NSDecimalNumberBehaviors protocol and the NSDecimalNumberHandler class. Also
see the defaultBehavior method description.

C Interface to Decimal Numbers

You can access the arithmetic and rounding methods of NSDecimalNumber through group of C functions,
defined in NSDecimal.h (and documented in Functions):

Adds two decimal values.NSDecimalAdd

Compacts the decimal structure for efficiency.NSDecimalCompact

Compares two decimal values.NSDecimalCompare

Divides one decimal value by another.NSDecimalDivide

Returns a Boolean that indicates whether a given decimal
contains a valid number.

NSDecimalIsNotANumber

Multiplies two decimal numbers together.NSDecimalMultiply

Multiplies a decimal by the specified power of 10.NSDecimalMultiplyByPowerOf10

Normalizes the internal format of two decimal numbers to
simplify later operations.

NSDecimalNormalize

Raises the decimal value to the specified power.NSDecimalPower

Rounds off the decimal value.NSDecimalRound

Returns a string representation of the decimal value.NSDecimalString

Subtracts one decimal value from another.NSDecimalSubtract

C Interface to Decimal Numbers 11
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Decimal Numbers

You might consider the C interface if you don’t need to treat decimal numbers as objects—that is, if you
don’t need to store them in an object-oriented collection like an instance of NSArray or NSDictionary.
You might also consider the C interface if you need maximum efficiency. The C interface is faster and uses
less memory than the NSDecimalNumber class.

If you need mutability, you can combine the two interfaces. Use functions from the C interface and convert
their results to instances of NSDecimalNumber.

12 C Interface to Decimal Numbers
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using Decimal Numbers

The NSNull class defines a singleton object you use to represent null values in situations where nil is
prohibited as a value (typically in a collection object such as an array or a dictionary).

NSNull *nullValue = [NSNull null];
NSArray *arrayWithNull = [NSArray arrayWithObject:nullValue];
NSLog(@"arrayWithNull: %@", arrayWithNull);
// output: "arrayWithNull: (<null>)"

It is important to appreciate that the NSNull instance is semantically different from NO or false—these
both represent a logical value; the NSNull instance represents the absence of a value. The NSNull instance
is semantically equivalent to nil, however it is also important to appreciate that it is not equal to nil. To
test for a null object value, you must therefore make a direct object comparison.

id aValue = [arrayWithNull objectAtIndex:0];
if (aValue == nil) {
 NSLog(@"equals nil");
 }
 else if (aValue == [NSNull null]) {

 NSLog(@"equals NSNull instance");
 if ([aValue isEqual:nil]) {
 NSLog(@"isEqual:nil");
 }
 }
}
// output: "equals NSNull instance"

13
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using NSNull

14
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Using NSNull

This table describes the changes to Number and Value Programming Topics for Cocoa.

NotesDate

Updated for Mac OS X v10.5.2008-02-08

Corrected a typographical error.2007-10-31

Added discussion of NSNumber's out-of-range behaviors; added article describing
use of NSNull.

2007-01-08

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

15
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

16
2008-02-08 | © 2008 Apple Inc. All Rights Reserved.

Document Revision History

	Number and Value Programming Topics for Cocoa
	Contents
	Introduction
	Using Values
	Using Numbers
	Using Decimal Numbers
	C Interface to Decimal Numbers

	Using NSNull
	Revision History

