
Cocoa Application Tutorial
Cocoa > Objective-C Language

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, AppleScript
Studio, Carbon, Cocoa, eMac, iTunes, Mac, Mac
OS, Macintosh, Objective-C, Quartz, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Smalltalk-80 is a trademark of ParcPlace
Systems.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Cocoa Application Tutorial 9

Organization of This Document 9
Goals for Learning 9
Prerequisites 10
See Also 10

Chapter 1 The Essence of Cocoa 11

What Is Cocoa? 11
Classes and Objects 11
The MVC Design Pattern 12

Model Objects 12
View Objects 12
Controller Objects 13
Hybrid Models 13

The Currency Converter Application 13

Chapter 2 Creating a Project in Xcode 15

Open Xcode 15
Make a New Project 15

Choose the New Project Command 15
Choose a Project Type 16
The Xcode Project Interface 18

What’s Next? 19

Chapter 3 Defining the Model 21

Specify the Model Class 21
Declare the Model Interface 21

Declare Member Variables 22
Declared Properties and Accessor Methods 22
Declare the Model Method: convertCurrency 23

Implementing the Model 23
Define the convertCurrency Method 24

What’s Next? 24

Chapter 4 Defining the View: Building the User Interface 25

User Interface Elements and Interface Builder 25
What Is a Nib File? 25

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Windows and Menus in Cocoa 26
Creating the Currency Converter Window 27

Create the Window 27
Resize the Window 27
Change the Title of the Window 28
Add the Text Fields 29
Assign Labels to the Fields 31
Change the Text Field Attributes 33
Configure a Button 33
Add a Separator to Group Controls 34

Refining the Layout and View Functionality 35
Configure the Menu 35
Aligning Objects in a Window 36
Finalize the Window Size 36
Enable Tabbing Between Text Fields 37
Set the First Responder Text Field 38

Test the Interface 39
What’s Next? 40

Chapter 5 Bridging the Model and View: The Controller 41

Paths for Object Communication: Outlets, Targets, and Actions 41
Outlets 41
Target/Action in Interface Builder 42
Which Direction to Connect? 43

Defining the Controller Class 44
Defining the Outlets for the ConverterController Class 44
Implementing the Controller Method: convert: 44
Interconnecting the Controller with the View 45

Add the ConverterController Class to Your Nib File 45
Connect the ConverterController Instance to the Text Fields 47
Connect the Convert Button to the Appropriate Methods 48
Check Your Work 48

Connecting the Controller with the Model 49
Garbage Collection 50
What’s Next? 51

Chapter 6 Building and Running Your Application 53

Build the Application 53
Extra: Check Out the Look Up Documentation 53

Run the Application 54
Correct Build Errors 54
Great Job! 55
What’s Next? 56

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 7 Configuring Your Application 57

The Info.plist File 57
Basic Project Attributes 57
Specify the Identifier, Version, and Copyright Information 60
Create an Icon File 64
What’s Next? 69

Chapter 8 Expanding on the Basics 71

For Free with Cocoa 71
Application and Window Behavior 71
Controls and Text 71
Menu Commands 72
Document Management 72
File Management 72
Communicating with Other Applications 73
Custom Drawing and Animation 73
Internationalization 73
Editing Support 73
Printing 73
Help 74
Plug-in Architecture 74

Turbo Coding with Xcode 74
Project Find 74
Code Sense and Code Completion 74
Integrated Documentation Viewing 74
Indentation 75
Delimiter Checking 75
Emacs Bindings 75

Appendix A Objective-C Quick Reference Guide 77

Messages and Method Implementations 77
Declarations 78

Document Revision History 79

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 The Essence of Cocoa 11

Figure 1-1 An object 12
Figure 1-2 Object relationships in the Model-View-Controller paradigm 12

Chapter 2 Creating a Project in Xcode 15

Figure 2-1 The Xcode application icon 15
Figure 2-2 The New Project Assistant in Xcode 16
Figure 2-3 Entering the project’s name and location 17
Figure 2-4 The new Currency Converter project in Xcode 18

Chapter 3 Defining the Model 21

Listing 3-1 Declaration of the member variables in Converter.h 22
Listing 3-2 Definition of the convertCurrency method in Converter.m 24

Chapter 4 Defining the View: Building the User Interface 25

Figure 4-1 Resizing a window manually 27
Figure 4-2 Resizing a window with the inspector 28
Figure 4-3 Cocoa Views and Cells in the Interface Builder Library window 29
Figure 4-4 Resizing a text field 30
Figure 4-5 Right aligning a text label in Interface Builder 32
Figure 4-6 Text fields and labels in the Currency Converter window 32
Figure 4-7 Measuring distances in Interface Builder 34
Figure 4-8 Adding a horizontal line to the Currency Converter window 34
Figure 4-9 The Currency Converter application menu 35
Figure 4-10 The Currency Converter final user interface in Interface Builder 37
Figure 4-11 Connecting nextKeyView outlets in Interface Builder 38
Figure 4-12 Setting the initialFirstResponder outlet in Interface Builder 39

Chapter 5 Bridging the Model and View: The Controller 41

Figure 5-1 An outlet pointing from one object to another 41
Figure 5-2 Relationships in the target-action paradigm 43
Figure 5-3 A newly instantiated instance of ConverterController 46
Figure 5-4 Outlets and actions in the Converter Controller Identity inspector 47
Figure 5-5 Connecting ConverterController to the rateField outlet 48
Figure 5-6 Checking the outlet connections 49
Listing 5-1 Definition of the convert: method in ConverterController.m 50

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Chapter 6 Building and Running Your Application 53

Figure 6-1 Identifying build errors 55

Chapter 7 Configuring Your Application 57

Figure 7-1 Benefits of using application identifiers 58
Figure 7-2 Build and release version numbers in Finder preview panes and About windows

59
Figure 7-3 Locating the application bundle from the Dock 63
Figure 7-4 Application properties as seen by the user 64
Figure 7-5 Dragging c_conv512.png to the icon file editor 65
Figure 7-6 Icon file editor with icon images and icon masks at several resolutions 66
Figure 7-7 Selecting the icon file to add to the Currency Converter project 67
Figure 7-8 Specifying project file-addition options 67
Figure 7-9 Currency Converter sporting an elegant icon 69
Listing 7-1 Specifying domain, version, and copyright information in the Currency Converter

Info.plist file 62
Listing 7-2 Specifying a custom application icon in the Currency Converter Info.plist file

68

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

This document introduces the Cocoa application environment using the Objective-C language and teaches
you how to use the Xcode Tools development suite to build robust, object-oriented applications. Cocoa
provides the best way to build modern, multimedia-rich, object-oriented applications for consumers and
enterprise customers alike. This document assumes you are familiar with C programming but does not assume
you have previous experience with Cocoa or Xcode Tools.

This document is intended for programmers interested in developing Cocoa applications or for people curious
about Cocoa.

Organization of This Document

This document consists of the following chapters:

 ■ “The Essence of Cocoa” (page 11) introduces basic concepts whose understanding is required when
developing Cocoa applications.

 ■ “Creating a Project in Xcode” (page 15) guides you through creating a project using Xcode.

 ■ “Defining the Model” (page 21) guides you through defining the underlying functionality of an application.

 ■ “Defining the View: Building the User Interface” (page 25) guides you through the development of a
basic user interface using Interface Builder.

 ■ “Bridging the Model and View: The Controller” (page 41) shows how to create a controller object mediate
the communication between the model and view.

 ■ “Building and Running Your Application” (page 53) explains how to build and test the application.

 ■ “Configuring Your Application” (page 57) explains how to configure the basic identifying properties
that application bundles require, including the version information and application icon.

 ■ “Expanding on the Basics” (page 71) explains some of the behavior Cocoa applications get by default.

Goals for Learning

Throughout this tutorial you will learn:

 ■ What Cocoa is

 ■ What the application development process looks like in an object-oriented environment

 ■ How to make a Cocoa application

 ■ Where to go from here by adapting your knowledge

Organization of This Document 9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Cocoa Application Tutorial

Prerequisites

In order to maximize the instructional potential of this document, you should know C but not necessarily
object-oriented programming or application design.

To help you troubleshoot problems as you follow the tutorial, this document includes the finalized Currency
Converter project as a companion archive (ObjCTutorial_companion.zip). The archive also contains files
needed to follow some of the instructions in this document.

The Xcode Tools package is part of the Mac OS X installation media. You must install this package on your
computer before following the instructions in this document. After this package is installed, you can get
further information in About Xcode Tools in /Developer.

See Also

These documents provide detailed information on Cocoa development:

 ■ Getting Started with Cocoa provides a road map for learning Cocoa.

 ■ Cocoa Fundamentals Guide describes the Cocoa application environment.

 ■ TheObjective-C 2.0 Programming Language introduces Objective-C and describes the Objective-C runtime
system, which is the basis of much of Cocoa’s dynamic behavior and extensibility.

 ■ Apple Human Interface Guidelines explains how to lay out user interface elements to provide a pleasant
user experience.

10 Prerequisites
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Cocoa Application Tutorial

This chapter covers the most common object-oriented design pattern used in Cocoa and shows how that
paradigm is applied to application development. A design pattern is a template for a design that solves a
general, recurring problem in a particular context. If you have done object-oriented design before, you may
be wondering how that model fits into the world of Cocoa. This tutorial will help you understand what Cocoa
is as an object-oriented framework. If you’ve done only procedural programming before, don’t worry. This
tutorial also teaches the basics of the object-oriented programming. You will learn the MVC design pattern,
which is a very common practice used by application developers.

What Is Cocoa?

Cocoa is an object-oriented library of tools that contains many of the objects and methods needed to develop
great applications for Mac OS X. By providing these tools to programmers, it takes the tedium out of writing
applications. It also makes user interface development simple. If you’ve ever tried to design a user interface
by writing the actual code for it, you understand how difficult it is. In this tutorial, you’ll learn how easy it is
to create a beautiful user interface by merely dragging objects onto a window.

If you would like more detail on what you can do with Cocoa and how it fits into Mac OS X, see Cocoa
Fundamentals Guide.

Classes and Objects

An object consists of both data and methods for manipulating that data. An object is an instance of a class,
which means that there is memory allocated for that specific instance of the class. An essential characteristic
of objects is that they encapsulate data. Other objects or external code cannot access the object’s data
directly, but they request data from the object by sending messages to it. Read that sentence again, as it
speaks from the very heart of object-oriented development. Other objects or external code cannot access the
object’s data directly, but they request data from the object by sending messages to it. Your job is to make those
objects talk to one another and share information through their methods.

An object invokes methods corresponding to messages that are passed to it and may return data to whoever
sent the message. An object’s methods do the encapsulating, in effect, regulating access to the object’s data.
An object’s methods are also its interface, articulating the ways in which the object communicates with the
outside world.

Because an object encapsulates a defined set of data and logic, you can easily assign it to particular duties
within a program. Conceptually, it is like a functional unit—for instance, “customer Record”—that you can
move around on a design board; you can then plot communication paths to and from other objects based
on their interfaces.

When designing an object-oriented application, it is often helpful to depict the relationships between objects
graphically. This document depicts objects graphically as shown in Figure 1-1.

What Is Cocoa? 11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Essence of Cocoa

Figure 1-1 An object

Object

See The Objective-C 2.0 Programming Language for a fuller description of data encapsulation, messages,
methods, and other things pertaining to object-oriented programming.

The MVC Design Pattern

Model-View-Controller (MVC) is a design pattern that was derived from Smalltalk-80. It proposes three types
of objects in an application, separated by abstract boundaries and communicating with each other across
those boundaries, as illustrated in Figure 1-2. This is the design pattern behind many designs for
object-oriented programs. This design pattern aids in the development of maintainable, extensible, and
understandable systems.

Figure 1-2 Object relationships in the Model-View-Controller paradigm

User action

Update

Update

Notify

Controller

ModelView

Model Objects

This type of object represents special knowledge and expertise. Model objects hold data and define the logic
that manipulates that data. For example, suppose you have a customer object, a common object in business
applications, that holds all of the salient facts about a customer, including the customer’s name, date of birth,
and phone number. That object would be a model object because it represents the data your applications
manipulates, and has access to methods that can access and distribute that information. A more specialized
model might be one in a meteorological system called Front; objects of this type would contain the data
and intelligence to represent weather fronts. Model objects are not directly accessed by the user of the
application. They are often reusable, distributed, persistent, and portable to a variety of platforms.

View Objects

A view object represents something visible on the user interface (a window or a button, for example). A view
object is “ignorant” of the source of the data it displays. The Application Kit, one of the frameworks that
Cocoa is composed of, usually provides all the basic view objects you need: windows, text fields, scroll views,
buttons, browsers, and so on. But you might want to create your own view objects to show or represent your

12 The MVC Design Pattern
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Essence of Cocoa

data in a novel way (for example, a graph view). You can also group view objects within a window in novel
ways specific to an application. View objects tend to be very reusable and so provide consistency between
applications.

Controller Objects

Acting as mediators between model objects and view objects in an application are controller objects. Controller
objects communicate data back and forth between the model and view objects. A controller object, for
example, could mediate the transfer of a street address (from the customer model object) to a visible text
field on a window (the view object). It also performs all the chores specific to the application it is part of.
Since what a controller does is very specific to an application, it is generally not reusable even though it often
comprises much of an application’s code. (This last statement does not mean, however, that controller objects
cannot be reused; with a good design, they can.) Because of the controller’s central, mediating role, model
objects need not know about the state and events of the user interface, and view objects need not know
about the programmatic interfaces of the model objects. You can even make your view and model objects
available to other developers from a palette in Interface Builder.

Hybrid Models

MVC, strictly observed, is not always the best solution. Sometimes it’s best to combine roles. For instance, in
a graphics-intensive application, such as an arcade game, you might have several view objects that merge
the roles of view and model. In some applications, especially simple ones, you can combine the roles of
controller and model; these objects join the special data structures and logic of model objects with the
controller’s hooks to the interface.

The Currency Converter Application

The MVC design pattern, albeit a very simplified one, can be applied directly to the Currency Converter
application. Currency Converter is a simple application that converts US dollars to another currency based
on an exchange rate entered by the user. Though it’s a very simple application, it can still be used to convey
the fundamental elements of Cocoa application development using the MVC design pattern.

The underlying functionality, which is the model, converts US dollars to another currency based on an
exchange rate. For this, there is a single function, convertCurrency, which multiplies the amount in US
dollars by the exchange rate to get the amount in the other currency.

All graphical applications have a user interface that the user interacts with. This is the view. Here, the user
inputs the exchange rate in one text field, the amount of dollars to convert in the next text field, and clicks
the convert button, or presses Return, to perform the calculation. The final result appears in the last text box,
which is the amount of the other currency.

The view needs to send the data the user entered to the model somehow. This is done by creating a controller,
which gathers the exchange rate and amount in US dollars from the view, sends the values to the model,
and writes the result into the view.

The Currency Converter Application 13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Essence of Cocoa

14 The Currency Converter Application
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

The Essence of Cocoa

Every Cocoa application starts life as a project. A project is a repository for all the elements that go into the
application, such as source code files, frameworks, libraries, the application’s user interface, sounds, and
images. You use the Xcode application to create and manage your project. In this chapter, you will learn to
create a project, and see what all the various parts of a project are for. In the process, you will learn how to
navigate the Xcode user interface, and you will learn about all the different folders available for you.

Open Xcode

To open Xcode:

1. In the Finder, go to /Developer/Applications.

2. Double-click the icon, shown in Figure 2-1.

Figure 2-1 The Xcode application icon

The first time you start Xcode, it takes you through a quick setup process. The default settings should work
for the majority of users.

Make a New Project

This section will guide you through the process of creating a project. Though it is focused on creating a
project suitable for Currency Converter, you will learn about other options available to you when creating a
new project.

Choose the New Project Command

To create a project, choose File > New Project. The New Project Assistant appears.

Open Xcode 15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Project in Xcode

Choose a Project Type

Xcode can build many different types of applications, including everything from Carbon and Cocoa applications
to Mac OS X kernel extensions and Mac OS X frameworks. For this tutorial, select Cocoa Application and click
Next, as shown in Figure 2-2.

Figure 2-2 The New Project Assistant in Xcode

16 Make a New Project
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Project in Xcode

1. Type the project’s name, Currency Converter, in the Project Name field, as shown in Figure 2-3.

Figure 2-3 Entering the project’s name and location

2. Click Choose to navigate to the directory where you want your project to be stored. The pop-up menu
Project Directory eventually fills up with your frequently used directories. Use this to save time in the
future.

3. Click Finish.

4. When you click Finish, Xcode creates the project’s files and displays the project window, shown in Figure
2-4.

Make a New Project 17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Project in Xcode

Figure 2-4 The new Currency Converter project in Xcode

The Xcode Project Interface

The Groups & Files list is provided for you to easily navigate through your project’s files and traits. All the
source files, images, and other resources that make up a project are grouped in the project group, the first
item in the Groups & Files list; this group is named after the project (here, Currency Converter). The project’s
files are grouped into subgroups, such as Classes, Other Sources, Resources, and so on, as shown in Figure
2-4. These groups are very flexible in that they do not necessarily reflect either the on-disk layout of the
project or the way the build system handles it. They are purely for organizing your project. The groups created
by Xcode should be suitable for most developers, but you can rearrange them however you like.

These are the groups Xcode sets up for Cocoa applications:

 ■ Classes. This group is empty at first. You will be placing here all the classes required by your application.

 ■ Other Sources. This group contains the main.m file, which defines the main function that runs the
application. (You shouldn’t have to modify this file.) It also contains Currency Converter_Prefix.pch.
This “prefix header” helps Xcode to reduce compilation time. This file is not important for this tutorial.

 ■ Resources. This group contains the nib files and other resources that specify the application’s user
interface. “What Is a Nib File?” (page 25) describes nib files.

 ■ Frameworks. This group contains the frameworks (which are similar to libraries) that the application
uses.

 ■ Products. This group contains the results of project builds and is automatically populated with references
to the products created by each target in the project.

18 Make a New Project
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Project in Xcode

Below the project group are other groups, including smart groups. Smart groups—identified by the purple
folders on the left side of the list—allow you to sort the project’s files using custom rules in a way similar to
using smart playlists in iTunes.

These are some of the other groups in the Groups & Files list:

 ■ Targets. This group lists the end results of your builds. This group usually contains one target, such as
an application or a framework, but it can consist of multiple items.

 ■ Executables. This group contains the executable products your project creates.

 ■ Errors and Warnings. This group displays the errors and warnings encountered in your project when
you perform a build.

Curious folks might want to look in the project directory in Finder to see the files it contains. Among the
project files are:

Currency Converter.xcodeproj
This package contains information that defines the project. You should not modify it directly. You
can open your project by double-clicking this package.

main.m
An Objective-C file, generated for each project, that contains the main function of the application.

English.lproj
A directory containing resources localized to the English language. In this directory are nib files
automatically created for the project. You may find other localized resource directories, such as
Dutch.lproj.

What’s Next?

In this chapter, you made a project in Xcode, which will contain all the resource files you will be creating in
the course of designing and implementing a Cocoa application. In the next chapter, you will learn how to
create the model, or the basic functionality behind an application.

What’s Next? 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Project in Xcode

20 What’s Next?
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating a Project in Xcode

Model objects contain special knowledge and expertise. They hold data and define the logic that manipulates
that data. For example, a customer object, common in business applications, is a model object. In Currency
Converter, the model class you’re going to create is the converter class. In the MVC design pattern, instances
of a model class do not communicate directly with the user interface.

In this chapter, you will create the model for your application. First, you will learn how to create a new class
in Xcode. Then, you will define the interface for your model before implementing it. Finally, you will implement
the entire functionality of the class. In the process, you will learn some of the syntax of Objective-C, including
how to declare variables and methods. You will also be introduced to the concept of declared properties—a
feature in Objective-C 2.0 that makes writing accessor methods incredibly quick and simple.

Specify the Model Class

1. Select the Classes group in the Groups & Files list.

2. Choose File > New File.

3. Choose to create a new Objective-C Class and name it Converter.

4. In Xcode, select both Converter.h and Converter.m by holding down command and clicking on
each.

5. Click-and-drag both files into the Classes group in the Groups & Files list.

Note: Organizing your project files in the various groups in the Groups & Files list is simply good practice.
The default location for all .h and .m files is the Other Sources group in the Groups & Files list. It is a good
idea to separate classes from non-classes (like main.m), especially in larger projects. However, the
organization of your project makes no difference to the compiler.

Declare the Model Interface

The model for the Currency Converter is a simple class that encapsulates two variables: the amount in US
dollars and the exchange rate. The model’s job is to multiply these two numbers and return the result. This
means the model needs:

 ■ One class: Converter

 ■ Two variables of type float: sourceCurrencyAmount and rate

 ■ One method: (float)convertCurrency

Specify the Model Class 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Defining the Model

Declare Member Variables

The two variables are defined between the braces of the converter class. Define the variables:

1. If Converter.h is not already open for editing, double-click Converter.h in the Classes group of the
Groups & Files menu. This opens the file in an editor window.

2. Insert the highlighted line in Listing 3-1 into Converter.h

Listing 3-1 Declaration of the member variables in Converter.h

#import <Cocoa/Cocoa.h>
@interface Converter : NSObject {
 float sourceCurrencyAmount, rate;
}

Declared Properties and Accessor Methods

Objects encapsulate data, as explained in “Classes and Objects” (page 11). The scope of variables in an object
is limited to that particular object—that is, the instance of that class. One instance of a customer class, for
example, can only see its own data, not the data of any customer object. But say a specific customer needs
to compare itself with another customer. In order for this to be possible, classes supply accessor methods
to read and write to the data an object encapsulates. This gives the classes the discretion of what data they
wish to share. For example, if a specific class does not want to share certain variables it encapsulates with
another class, and only wants to use them for internal use, it can simply not have accessor methods for that
variable. This is also true if a class wants external entities to have read-only access to its variables. In that
case, a class will have methods that get values, but no methods that set values.

Objective-C 2.0 provides a feature called declared properties. A property declaration is, effectively, a shorthand
for declaring the setter and getter for an attribute of an instance of a class. In addition to the declaration
itself, there are directives to instruct the compiler to synthesize the accessors and to inform the compiler
that you will provide the methods yourself at runtime. There are two parts to a property, its declaration and
its implementation.

You declare a property as follows:

@property(attributes) Type variableNameList;

where attributes is a comma-separated list of keywords such as readwrite and copy, for example:

@property(copy) NSString *name;

For the purposes of Currency Converter, add the following line after the closing brace of the converter class
in Converter.h:

@property(readwrite) float sourceCurrencyAmount, rate;

At compile time, the compiler treats this as if you had declared the following methods:

- (float)sourceCurrencyAmount;
- (void)setSourceCurrencyAmount:(float)newSourceCurrencyAmount;
- (float)rate;
- (void)setRate:(float)newRate;

22 Declare the Model Interface
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Defining the Model

Note: Objective-C 2.0 features are not compatible with a system running any operating system prior to Mac
OS X 10.5. If you are on Mac OS X 10.4 or below, you must declare these methods manually.

There is currently no implementation for these methods. In the next section, you will implement the methods.

Declare the Model Method: convertCurrency

The one method the model requires is a simple function to multiply two the two values encapsulated by the
converter class.

Add the following line as the next line of code in Converter.h:

- (float)convertCurrency;

Although this method takes no arguments, it multiplies two values that are not passed to the method, nor
are they instantiated in the method. This is possible because the method is part of the converter class, and
it has access to the converter class’s member variables. It gets to treat those variables as if they were already
defined as local variables. It is common practice to use accessor methods even when the variable is in scope,
but for this application you will access them using the command self.variableName (where self is a
keyword that is a pointer to the current instance of the object). In the next section, you will define the behavior
of the converter and get to see how this works.

Implementing the Model

Now it’s time to define the behavior of the functions you declared in Converter.h.

1. In the Classes group of the Groups & Files menu, double-click Converter.m to open the file for editing.

2. Create the getters and setters for the two member variables—sourceCurrencyAmount and rate.

Remember you used @property to create the prototypes for the getter and setter methods in
Converter.h. If you provide a getter and setter (or just a getter in the case of a read-only property)
method implementation for a property, you don’t need to do anything more. Commonly, however, you
use the @synthesize directive in @implementation blocks to trigger the compiler to generate accessor
methods for you.

Add the following line into Converter.m after the @implementation Converter line:

@synthesize sourceCurrencyAmount, rate;

This line defines the body of the getter and setter methods for the variables sourceCurrencyAmount
and rate based on the properties you set in the Converter.h file.

Note: For more information on properties and the various options available, read “Properties” in The
Objective-C 2.0 Programming Language.

Implementing the Model 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Defining the Model

Define the convertCurrency Method

Insert the highlighted lines in Listing 3-2 into Converter.m.

Listing 3-2 Definition of the convertCurrency method in Converter.m

#import "Converter.h"

@implementation Converter
@synthesize sourceCurrencyAmount, rate;

- (float)convertCurrency {
 return self.sourceCurrencyAmount * self.rate;
}

@end

The convertCurrency method multiplies the values of the converter class’s two member variables and
returns the result.

What’s Next?

You just defined and implemented the basic functionality of your application by creating the model. In the
next chapter, you will create the view, which is the user interface for the application.

24 What’s Next?
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Defining the Model

Every application has a user interface. It can be a tedious and infuriating task to design user interfaces without
a good program to help you. Interface Builder, an application supplied with Xcode, makes designing user
interfaces simple, and so turns a tedious task into something easy.

This chapter teaches you how Interface Builder integrates with Cocoa. It guides you through building the
user interface for your application. You learn where to locate the tools you need and how to use the features
in Interface Builder to create the perfect user interface for your application.

User Interface Elements and Interface Builder

Interface Builder is an application that helps you design the user interface and connect the different parts of
your application. It contains a drag-and-drop interface for UI design, and an inspector that allows you to view
and change the properties of the various objects in your design, as well as the connections between them.

What Is a Nib File?

Every Cocoa application with a graphical user interface has at least one nib file. The main nib file is loaded
automatically when an application launches. It contains the menu bar and generally at least one window
along with various other objects. An application can have other nib files as well. Each nib file contains:

 ■ Archived objects. Also known in object-oriented terminology as “flattened” or “serialized”
objects—meaning that the object has been encoded in such a way that it can be saved to disk (or
transmitted over a network connection to another computer) and later restored in memory. Archived
objects contain information such as their size, location, and position in the object hierarchy. At the top
of the hierarchy of archived objects is the File’s Owner object, a proxy object that points to the actual
object that owns the nib file (typically the one that loaded the nib file from disk).

 ■ Images. Image files are files that you drag to the nib file window or to an object that can accept them
(such as a button or image view).

 ■ Class references. Interface Builder can store the details of Cocoa objects and objects that you place into
static palettes, but it does not know how to archive instances of your custom classes since it doesn’t
have access to the code. For these classes, Interface Builder stores a proxy object to which it attaches
your custom class information.

 ■ Connection information. Information about how objects within the class hierarchies are interconnected.
Connector objects special to Interface Builder store this information. When you save a document, its
connector objects are archived in the nib file along with the objects they connect.

User Interface Elements and Interface Builder 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

Windows and Menus in Cocoa

Windows have numerous characteristics. They can be onscreen or offscreen. Onscreen windows are “layered”
on the screen in tiers managed by the window server. A typical Cocoa window has a title bar, a content area,
and several control objects.

Key and Main Windows

Onscreen windows can carry a status: key or main. Key windows respond to keypresses for an application
and are the primary recipient of messages from menus and panels. Usually, a window is made key when the
user clicks it. Each application can have only one key window.

An application has one main window, which can often have key status as well. The main window is the
principal focus of user actions for an application. Often user actions in a key window (typically a panel such
as the Font window or an Info window) have a direct effect on the main window.

NSWindow and the Window Server

Many user interface objects other than the standard window are windows. Menus, pop-up lists, and pull-down
lists are primarily windows, as are all varieties of utility windows and dialogs: attention dialogs, Info windows,
drawers, utility windows, and tool palettes, to name a few. In fact, anything drawn on the screen must appear
in a window. Users, however, may not recognize or refer to them as windows.

Two interacting systems create and manage Cocoa windows. A window is created by the window server.
The window server is a process that uses the internal window management portion of Quartz (the low-level
drawing system) to draw, resize, hide, and move windows using Quartz graphics routines. The window server
also detects user events (such as mouse clicks) and forwards them to applications.

The window that the window server creates is paired with an object supplied by the Application Kit framework.
The object supplied is an instance of the NSWindow class. Each physical window in a Cocoa program is
managed by an instance of NSWindow or a subclass of it. For information on the Application Kit, see What Is
Cocoa? in Cocoa Fundamentals Guide.

When you create an NSWindow object, the window server creates the physical window that the NSWindow
object manages. The NSWindow class offers a number of instance methods through which you customize
the operation of its onscreen window.

Application, Window, View

In a running Cocoa application, NSWindow objects occupy a middle position between an instance of
NSApplication and the views of the application. (A view is an object that can draw itself and detect user
events.) The NSApplication object keeps a list of its windows and tracks the current status of each. Each
NSWindow object, on the other hand, manages a hierarchy of views in addition to its window.

At the top of this hierarchy is the content view, which fits just within the window’s content rectangle. The
content view encloses all other views (its subviews), which come below it in the hierarchy. The NSWindow
object distributes events to views in the hierarchy and regulates coordinate transformations among them.

26 User Interface Elements and Interface Builder
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

Another rectangle, the frame rectangle, defines the outer boundary of the window and includes the title bar
and the window’s controls. Cocoa uses the bottom-left corner of the frame rectangle as the origin for the
base coordinate system, unlike Carbon applications, which use the top-left corner. Views draw themselves
in coordinate systems transformed from (and relative to) this base coordinate system.

Creating the Currency Converter Window

Currency Converter has a main window that the user will interact with. This section will guide you through
the process of designing Currency Converter’s main window.

Create the Window

You use Interface Builder to define an application’s user interface. To open the Currency Converter’s main
nib file in Interface Builder:

1. Locate MainMenu.nib in the Resources subgroup of your project.

2. Double-click the nib file. This opens the nib file in Interface Builder.

A default menu bar, the MainMenu.nib window, the Library, and an empty window titled Window appear
when the nib file is opened.

Resize the Window

Make the window smaller by dragging the bottom-right corner of the window inward, as shown in Figure
4-1.

Figure 4-1 Resizing a window manually

You can resize the window more precisely by using the Window Size inspector.

Creating the Currency Converter Window 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

1. Choose Tools > Inspector.

2. Click the Size icon, which looks like a yellow ruler.

3. In the Content Size & Position group, you can set the width, height, and default x and y coordinates of
the window.

4. Type new dimensions into the width and height fields, as shown in Figure 4-2.

Figure 4-2 Resizing a window with the inspector

5. In the Initial Position group, you see a graphical representation of your window and your screen. Drag
the window to the top-left corner of the box for a traditional default position for your application.

Change the Title of the Window

Currently, when your application runs, its title will be Window. To change the title:

28 Creating the Currency Converter Window
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

1. Select the Window object in the MainMenu.nib window.

2. Navigate to the Attributes tab in the Inspector.

3. Change the value of Title from Window to Currency Converter.

Add the Text Fields

The Library window of Interface Builder contains several user interface elements that you can drag into a
window or menu to create an application’s user interface.

1. If the Library is not already open, shown in Figure 4-3—choose Tools > Library.

Figure 4-3 Cocoa Views and Cells in the Interface Builder Library window

2. In the list at the top of the Library, open Library, then Cocoa, and select Views & Cells.

Creating the Currency Converter Window 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

3. Notice how in Figure 4-3 the icons have labels. If you do not see labels, choose View Icons & Labels from
the gear menu at the bottom of the window. This will make it easier to locate the objects you are looking
for.

4. Place a text field in the Currency Converter window.

Find the Text Field item (shown highlighted in Figure 4-3) and drag the Text Field object from the library
to the top-right corner of the window. Notice that Interface Builder helps you place objects according
to the Apple human interface guidelines by displaying layout guides when an object is dragged close
to the proper distance from neighboring objects or the edge of the window.

5. Increase the text field’s size so that it’s about a third wider.

Resize the text field by grabbing a handle and dragging in the direction you want it to grow. In this case,
drag the left handle to the left to enlarge the text field, as shown in Figure 4-4.

Figure 4-4 Resizing a text field

6. Add two more text fields, both the same size as the first.

There are two options: You can drag another text field from the palette to the window and make it the
same size as the first one, or you can duplicate the text field already in the window.

To duplicate the text field in the Currency Converter window:

a. Select the text field, if it is not already selected.

b. Choose Duplicate (Command-D) from the Edit menu. The new text field appears slightly offset from
the original field.

c. Position the new text field under the first text field. Notice that the layout guides appear and Interface
Builder snaps the text field into place.

d. To make the third text field, press Command-D again.

As a shortcut, you can also Option-drag the original text field to duplicate it.

30 Creating the Currency Converter Window
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

Assign Labels to the Fields

Text fields without labels would be confusing, so add labels to them by using the ready-made label object
from the library.

1. Drag a Label element onto the window from the Cocoa library.

2. Make the text label right aligned:

With the Label element selected, click the third button from the left in the Alignment area in the Text
Field Attributes tab in the Inspector, as shown in Figure 4-5.

Creating the Currency Converter Window 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

Note: To open the inspector in Interface Builder, choose Tools > Inspector.

Figure 4-5 Right aligning a text label in Interface Builder

3. Enter Exchange Rate per $1: in the Title text field.

4. Duplicate the text label twice. Set the title of the second text label to “Dollars to Convert:” and the title
for the third text label to “Amount in Other Currency:”.

5. Expand the text fields to the left so that their entire titles are visible, as shown in Figure 4-6.

Figure 4-6 Text fields and labels in the Currency Converter window

32 Creating the Currency Converter Window
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

Change the Text Field Attributes

The bottom text field displays the results of the currency conversion computation and should therefore have
different attributes than the other text fields. It must not be editable by the user.

To make the text field that shows the result cannot be editable by the user:

1. Select the third text field.

2. In the Inspector, navigate to the Text Field Attributes tab.

3. Make sure the Editable option is deselected so that users are not allowed to alter the contents of the
text field. Also make sure the Selectable option is selected so that users can copy the contents of the
text field to other applications.

Configure a Button

The currency conversion should be invoked either by clicking a button or pressing Return. To add a button
to the Currency Converter window:

1. Drag the Push Button object from the library to the bottom-right corner of the window.

2. Double-click the button and change its title to Convert.

3. In the Key Equiv. section of the Button Attributes inspector, click the gray box. Now press Return. A return
symbol should appear in the gray box. This makes the button respond to the Return key as well as to
clicks.

4. Align the button under the text fields.

a. Drag the button downward until the layout guide appears, and then release it.

b. With the button still selected, hold down the Option key. If you move the pointer around, Interface
Builder shows you the distance in pixels from the button to the element over which the pointer is
hovering.

Creating the Currency Converter Window 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

c. With the Option key still down and the pointer over the Amount in Other Currency text field, use
the arrow keys to nudge the button so that its center is aligned with the center of the text field, as
shown in Figure 4-7.

Figure 4-7 Measuring distances in Interface Builder

Add a Separator to Group Controls

The final interface for Currency Converter has a line separating the text fields and the button. To add the line
to the Currency Converter window:

1. Drag a Horizontal Line object from the Library to the Currency Converter window.

2. Drag the endpoints of the line until the line extends across the window, as shown in Figure 4-8.

Figure 4-8 Adding a horizontal line to the Currency Converter window

34 Creating the Currency Converter Window
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

3. Move the Convert button up until the layout guide appears below the horizontal separator, and shorten
the window until the horizontal layout guide appears below the Convert button.

Refining the Layout and View Functionality

The Currency Converter window now contains all the necessary objects for it to function the way it is designed.
This section guides you through formatting the window and menu to make it more user friendly.

Configure the Menu

By default, Interface Builder places the term NewApplication in place of the application name in the menu
bar and throughout an application’s menu hierarchy. You must change this text to the application name in
all menu items that include the application name, such as the application menu and the Help menu.

1. Rename the application menu:

a. In the MainMenu window, double-click NewApplication to highlight the text for editing.

b. Enter Currency Converter in place of the text and press Return.

Important: At runtime, the title of the application menu is determined by the value of the
application-name property (the value of the CFBundleName information property list key), not the
title you specify in the nib file. See “The Info.plist File” (page 57) for details.

2. Modify items in the application menu.

a. In the MainMenu window, which looks like a program’s toolbar, click Currency Converter, double-click
About NewApplication, and replace NewApplication with Currency Converter.

b. Change Currency Converter > Hide NewApplication to Hide Currency Converter.

c. Change Currency Converter > Quit NewApplication to Quit Currency Converter. The Currency
Converter application menu should now look like the one in Figure 4-9.

Figure 4-9 The Currency Converter application menu

Refining the Layout and View Functionality 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

3. In the Help menu, change NewApplication Help to Currency Converter Help.

Aligning Objects in a Window

In order to make an attractive user interface, you must be able to visually align interface objects in rows and
columns. “Eyeballing” the alignments can be very difficult; and typing in x/y coordinates by hand is tedious
and time consuming. Aligning user interface elements is made even more difficult because the elements
have shadows and user interface guideline metrics do not typically take the shadows into account. Interface
Builder uses visual guides and layout rectangles to help you with object alignment.

In Cocoa, all drawing is done within the bounds of an object’s frame. Because interface objects have shadows,
they do not visually align correctly if you align the edges of the frames. For example, Apple Human Interface
Guidelines says that a push button should be 20 pixels tall, but you actually need a frame of 32 pixels for both
the button and its shadow. The layout rectangle is what you must align. You can view the layout rectangles
of objects in Interface Builder using the Show Layout Rectangles command in the Layout menu.

Interface Builder gives you several ways to align objects in a window:

 ■ Dragging objects with the mouse in conjunction with the layout guides

 ■ Pressing the arrow keys (with the grid off, the selected objects move one pixel)

 ■ Using a reference object to put selected objects in rows and columns

 ■ Using the built-in alignment functions

 ■ Specifying origin points in the Size pane in the inspector

The Alignment submenu in the Layout menu provides various alignment commands and tools, including
the Alignment window, which contains controls you can use to perform common alignment operations.

Finalize the Window Size

The Currency Converter interface is almost complete. The finishing touch is to resize the window so that all
the user interface elements are centered and properly aligned to each edge. Currently, the objects are aligned
only to the top and right edges.

To finalize the Currency Converter window:

1. Select the Amount in Other Currency text label and extend the selection (Shift-click) to include the other
two labels.

2. Choose Layout > Size to Fit to resize all the labels to their minimum width.

3. Choose Layout > Alignment > Align Right Edges.

4. Drag the labels towards the left edge of the window, and release them when the layout guide appears.

5. Select the three text fields and drag them to the left, again using the guides to help you find the proper
position.

6. Shorten the horizontal separator and move the button into position again under the text fields.

36 Refining the Layout and View Functionality
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

7. Make the window shorter and narrower until the layout guides appear to the right of the text fields.

8. Select the Window object in MainMenu.nib

9. Since you have made the window the perfect size for its components, you don’t want the user to resize
the window. In the Attributes tab of the Inspector, make sure the Resize checkbox under the Controls
section is deselected.

At this point the application’s window should look like Figure 4-10.

Figure 4-10 The Currency Converter final user interface in Interface Builder

Enable Tabbing Between Text Fields

The final step in composing the Currency Converter user interface has more to do with behavior than with
appearance. You want the user to be able to tab from the first editable field to the second, and back to the
first. Many objects in the Interface Builder Library have an outlet named nextKeyView. This variable identifies
the next object to receive keyboard events when the user presses the Tab key (or the previous object when
Shift-Tab is pressed). A Cocoa application by default makes its “best guess” about how to handle text field
tabbing, but this guess often produces unexpected results. If you want correct interfield tabbing, you must
connect fields through the nextKeyView outlet.

To tab between text fields:

1. Select the Exchange Rate text field.

Refining the Layout and View Functionality 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

2. Control-drag a connection from the Exchange Rate text field to the Dollars to Convert text field, as shown
in Figure 4-11. (To Control-drag, press Control, then drag the connection line.)

Figure 4-11 Connecting nextKeyView outlets in Interface Builder

3. Select nextKeyView under Outlets. This identifies the next object to respond to events after the Tab
key is pressed.

4. Repeat the same procedure, going from the Dollars to Convert text field to the Exchange Rate text field.

Now that you’ve set up tabbing between text fields, you must tell Currency Converter which text field will
be selected first. You do this by setting an initialFirstResponder.

Set the First Responder Text Field

The initialFirstResponder is the default selected object when your application starts. If you do not set
this outlet, the window sets a key loop and picks a default initialFirstResponder for you (not necessarily
the same as the one you would have specified).

To set the initialFirstResponder outlet for the Currency Converter window:

38 Refining the Layout and View Functionality
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

1. Control-drag a connection from the Window instance in the MainMenu.nib window to the Exchange
Rate text field, as shown in Figure 4-12.

Figure 4-12 Setting the initialFirstResponder outlet in Interface Builder

2. Select initialFirstResponder.

The Currency Converter user interface is now complete.

Test the Interface

Interface Builder lets you test an application’s user interface without having to write code. To test the Currency
Converter user interface:

1. Choose File > Save to save your work.

2. Choose File > Simulate Interface.

3. Try various user operations, such as tabbing, and cutting and pasting between text fields.

4. When finished, choose Quit Cocoa Simulator from the application menu to exit test mode.

Test the Interface 39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

What’s Next?

In this chapter, you built the user interface for your application. You placed and organized all the various
objects the user will interact with as they use the application, and you had them interact with each other.
The next chapter will guide you through the creation of a controller that will help the view you just created
interact with the model you implemented in the previous chapter.

40 What’s Next?
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Defining the View: Building the User Interface

Your model needs to be able to communicate with the view so it can understand what data is in the view’s
text fields. Your view needs to connect with the model so it can receive updates when calculations are
performed in which the results must be shown to the user. The controller consists of one or more classes
whose sole purpose is to communicate between the model and the view.

In this chapter, you will learn about the paths used for communication between the objects and learn how
to use Interface Builder to define those paths. You learn how to define what the controller does and how it
can send messages using the paths you created between the model and the view.

Paths for Object Communication: Outlets, Targets, and Actions

In Interface Builder, you specify the paths for messages traveling between the controller and other objects
as outlets and actions. The following sections explain how the objects that implement the Currency Converter
user interface communicate with each other in the running application.

Outlets

An outlet is an instance variable that identifies an object. Figure 5-1 illustrates how an outlet in one object
points to another object.

Figure 5-1 An outlet pointing from one object to another

A B

outlet ModelView

Objects can communicate with other objects in an application by sending messages to outlets. An outlet
can reference any object in an application: user interface objects such as text fields and buttons, windows
and dialogs, instances of custom classes, and even the application object itself. What distinguishes outlets
is their relationship to Interface Builder.

Outlets are declared as:

IBOutlet id variableName;

Paths for Object Communication: Outlets, Targets, and Actions 41
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

Note: IBOutlet is a null-defined macro, which the C preprocessor removes at compile time. Interface Builder
uses it to identify outlet declarations so that it can display them when connecting outlets visually.

Objects with id as their type are dynamically typed, meaning that the class of the object is determined at
runtime. You can use id as the type for any object. The dynamically typed object’s class can be changed as
needed, even during runtime, which should invoke a sense of both excitement and extreme caution in even
the most grizzled OO veteran. This can be a tremendous feature and allows for very efficient use of memory,
but casting a type to an object that cannot respond to the messages for that type can introduce puzzling
and difficult-to-debug problems into your application.

When you don’t need a dynamically typed object, you can—and should, in most cases—statically type it as
a pointer to an object:

IBOutlet NSButton* myButton;

You usually set an outlet’s target in Interface Builder by drawing connection lines between objects. There
are ways other than outlets to reference objects in an application, but outlets and the ability of Interface
Builder to initialize them are a great convenience.

At application load time, the instance variables that represent outlets are initialized to point to the
corresponding target. For example, the parameter of the controller instance that receives the value from the
exchange rate in the view would be initialized with a reference to the Exchange Rate text field object (see
“Connect the ConverterController Instance to the Text Fields” (page 47) for details). When an outlet is not
connected, the value of the corresponding instance variable is null.

It might help to understand connections by imagining an electrical outlet plugged into the destination object.
Also picture an electrical cord extending from the outlet in the source object. Before the connection is made,
the cord is not plugged in, and the value of the outlet is null; after the connection is made (the cord is
plugged in), a reference to the destination object is assigned to the source object’s outlet.

Target/Action in Interface Builder

You can view (and complete) target/action connections in the Connections pane in the Interface Builder
inspector. This pane is easy to use, but the relation of target and action in it might not be apparent. First, a
target is an outlet of a cell object that identifies the recipient of an action message. Well, you may say, what’s
a cell object and what does it have to do with a button?

One or more cell objects are always associated with a control object (that is, an object inheriting from
NSControl, such as a button). Control objects “drive” the invocation of action methods, but they get the
target and action from a cell. NSActionCell defines the target and action outlets, and most kinds of cells
in the Application Kit inherit these outlets.

For example, when a user clicks the Convert button in the Currency Converter window, the button gets the
required information from its cell and invokes the convert method on the target outlet object, which is an
instance of the custom class ConverterController. Figure 5-2 shows the interactions between the
ConverterController class, the Convert button, and the Amount in Other Currency: field.

42 Paths for Object Communication: Outlets, Targets, and Actions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

Figure 5-2 Relationships in the target-action paradigm

myController

myController
outlet

action

In the Actions column (in the Connections pane of the inspector), all action methods are defined by the class
of the target object and known by Interface Builder. Interface Builder identifies action methods because their
names follow this syntax:

- (IBAction)myAction:(id)sender;

Note: IBAction, like IBOutlet, is a null defined macro, which the C preprocessor removes at compile time.
Interface Builder uses it to identify action declarations so that it can display them when connecting actions
visually.

Here, it looks for the argument sender.

Which Direction to Connect?

Usually the outlets and actions that you connect belong to a custom subclass of NSObject. For these
occasions, you need only to follow a simple rule to know in which way to specify a connection in Interface
Builder. Create the connection from the object that sends the message to the object that receives the message:

 ■ To make an action connection, create the connection from an element in the user interface, such as a
button or a text field, to the custom instance you want to send the message to.

 ■ To make an outlet connection, create the connection from the custom instance to another object (another
instance or user interface element) in the application.

These are only rules of thumb for common cases and do not apply in all circumstances. For instance, many
Cocoa objects have a delegate outlet. To connect these, you draw a connection line from the Cocoa object
to your custom object.

Another way to clarify connections is to consider who needs to find whom. With outlets, the custom object
needs to find some other object, so the connection is from the custom object to the other object. With
actions, the control object needs to find the custom object, so the connection is from the control object to
the custom object.

Paths for Object Communication: Outlets, Targets, and Actions 43
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

Defining the Controller Class

Interface Builder is a versatile tool for application developers. It enables you to not only compose the
application’s graphical user interface, it gives you a way to define much of the programmatic interface of the
application’s classes and to connect the objects eventually created from those classes.

The rest of the chapter shows how to define the ConverterController class and connect it to Currency
Converter’s user interface.

In Xcode, choose File > New File.

1. Select the Classes group in the Groups and Files list.

2. Choose Objective-C Class and click Next.

3. Name the file ConverterController.m.

4. Make sure “Also create ‘ConverterController.h’” is selected and click Finish.

Defining the Outlets for the ConverterController Class

The ConverterController object needs to communicate with the user interface elements in the Currency
Converter window. It must also communicate with an instance of the Converter class, defined in “Defining
the Model” (page 21). The Converter class implements the conversion computation.

The file ConverterController.h should be open for editing. If it is not, open it in Xcode. Now, you are
going to add the outlets required by the ConverterController class. Currently, the ConverterController
class is defined as an empty class inheriting from the NSObject class. You will need to add three outlets:
one for each of the three text fields in the view. Add the following lines in between the brackets of the
ConverterController class:

IBOutlet NSTextField *amountField;
IBOutlet NSTextField *dollarField;
IBOutlet NSTextField *rateField;

Notice that the three text field outlets are of type NSTextField. Because Objective-C is a dynamically typed
language, it’s fine to define all the outlets as type id. However, it’s a good idea to get into the habit of setting
the types for outlets since statically typed instance variables receive much better compile-time error checking.

Implementing the Controller Method: convert:

The ConverterController class needs one action method, convert:. When the user clicks the Convert
button, the convert:message is sent to the target object, an instance of the ConverterController class.

To add the convert: method to the ConverterController class, add the line in bold to the
ConverterController class:

44 Defining the Controller Class
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

#import <Cocoa/Cocoa.h>

@interface ConverterController : NSObject {
 IBOutlet NSTextField *amountField;
 IBOutlet NSTextField *dollarField;
 IBOutlet NSTextField *rateField;
}
- (IBAction)convert:(id)sender;
@end

Save the file. You’ll see how this method works in a later section.

Note: You might be asking yourself why the calculations aren’t done here in the controller. It would obviously
be faster without the extra layer of communication. It is entirely possible to design an application this way,
but the MVC design pattern was created for portability. In more complex applications, the underlying
functionality may be operating system-dependent. If you make the controller have a method convert:, all
the view needs to know is to call this method. From there, the various controllers written for the different
operating systems can take care of calling the correct model functions. In this way, it’s similar to writing an
API for this particular application.

Interconnecting the Controller with the View

You’re now ready to connect the Currency Converter user interface and the ConverterController class
to each other.

Add the ConverterController Class to Your Nib File

As the final step of defining a class in Interface Builder, you create an instance of the ConverterController
class and connect its outlets and actions. Add this class to your nib file. To do this:

1. Choose File > Read Class Files.

2. Select the ConverterController.h file and click Open.

3. In the library, drag an object item into the MainMenu.nib window.

4. Select the new object and navigate to the Identity tab in the Inspector.

Interconnecting the Controller with the View 45
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

5. In the Class drop-down box, type ConverterController and press Return. The class actions and class
outlets are filled in to match the outlets and actions you defined in the ConverterController.h file.

Figure 5-3 A newly instantiated instance of ConverterController

The result of these operations when the class is viewed in the object inspector in Interface Builder is shown
in Figure 5-4.

46 Interconnecting the Controller with the View
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

Figure 5-4 Outlets and actions in the Converter Controller Identity inspector

Connect the ConverterController Instance to the Text Fields

By connecting the ConverterController instance to specific objects in the interface, you initialize its
outlets. The ConverterController class uses these outlets to get and set values in the user interface. To
connect the instance to the user interface:

1. In the MainMenu.nib window, Control-drag a connection from the ConverterController instance to
the Exchange Rate text field.

Interface Builder displays the possible connections in a black box.

Interconnecting the Controller with the View 47
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

2. Select the outlet that corresponds to the first field, rateField as shown in Figure 5-5.

Figure 5-5 Connecting ConverterController to the rateField outlet

3. Following the same steps, connect the ConverterController class’s dollarField and amountField
outlets to the appropriate text fields.

Connect the Convert Button to the Appropriate Methods

To connect the user interface elements in the Currency Converter window to the methods of the
ConverterController class:

1. Control-drag a connection from the Convert button to the ConverterController instance in the nib
file window.

2. A black box will pop up similar to the one we used to connect outlets. Choose convert:.

3. Save the nib file.

Check Your Work

To make sure everything is done correctly:

1. Select the Converter Controller instance in the MainMenu.nib window.

48 Interconnecting the Controller with the View
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

2. Navigate to the Connections tab in the Inspector.

3. Make sure each outlet is connected to the correct text field by hovering the mouse over the connections
as shown in Figure 5-6.

Figure 5-6 Checking the outlet connections

Connecting the Controller with the Model

Create an instance of the converter class inside the ConverterController class in Xcode.

1. In the Classes folder in the Groups and Files sidebar, double-click ConverterController.h to open
it in an editor window.

2. Declare a pointer to a converter object by adding the following line to your code right after the outlets
are declared, before the ending bracket:

Converter *converter;

When clicked, the Convert button sends the convert: message to the ConverterController object.
Complete the definition of the convert: method in the ConverterController so that it sends the
convertCurrency message to the Converter instance to execute the conversion:

Connecting the Controller with the Model 49
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

3. Import Converter.h so ConverterController can instantiate a Converter object. Add the following
line under the first import statement in ConverterController.h.

#import "Converter.h"

4. In the Classes group, double-click ConverterController.m to open this file in an editor window.

5. Insert the highlighted lines in Listing 5-1 into ConverterController.m.

Listing 5-1 Definition of the convert: method in ConverterController.m

#import "ConverterController.h"
@implementation ConverterController
- (IBAction)convert:(id)sender {
 float amount;

// 1 converter = [[Converter alloc]init];
// 2 [converter setSourceCurrencyAmount:[dollarField floatValue]];
// 2 [converter setRate:[rateField floatValue]];
// 3 amount = [converter convertCurrency];

// 4 [amountField setFloatValue:amount];
// 5 [rateField selectText:self];

}
@end

The convert: method does the following:

1. Initializes a Converter object.

2. Sets the member variables of the Converter class to the values in the rateField and dollarField
text fields.

3. Sends the convertCurrency message to the object pointed to by the converter pointer and gets
the returned value.

4. Uses setFloatValue: to write the returned value to the Amount in Other Currency text field
(amountField).

5. Sends the selectText: message to the rate field. As a result, any text in the field is selected; if there
is no text, the insertion point is placed in the text field so the user can begin another calculation.

Each code line in the convert: method, excluding the declaration of floating-point variables, is a message.
The “word” on the left side of a message expression identifies the object receiving the message (called the
receiver). These objects are identified by the outlets you defined and connected. After the receiver comes
the name of the method that the sending object (called the sender) wants the receiver to execute. Messages
often result in values being returned; in the above example, the local variable amount holds a returned value.

Garbage Collection

You may be feeling a little uneasy about the following line being called every time the convert: method
is called:

50 Garbage Collection
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

 converter = [[Converter alloc]init];

This line allocates space in memory for a Converter instance and should be deallocated after you use it.
You may notice that you didn’t deallocate this instance.

The reason you can do this is because Objective-C 2.0 utilizes garbage collection. To enable garbage collection:

1. Choose Project > Edit Project Settings

2. Navigate to the Build tab

3. Set the value for Objective-C Garbage Collection to Supported under GCC 4.0 - Code Generation.

By supporting garbage collection, you don’t have to worry about deallocating objects you instantiate. You
can leave your code just the way it is and not have to worry about memory leaks.

More information about garbage collection can be found in GNUC/C++/Objective-C 4.0.1 Compiler User Guide.

What’s Next?

You’ve now completed the implementation of Currency Converter. Notice how little code you had to write,
given that your application now has a fully functional currency-converting system and a beautiful user
interface. In the next chapter, you will learn how to build and run the application.

What’s Next? 51
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

52 What’s Next?
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Bridging the Model and View: The Controller

Now that you have written all the code necessary for your application to run and have built the user interface
and connected the classes together, it’s time to see whether your application compiles. In this chapter, you
will learn how to run the process that builds your project into an application. You will also learn how to
review errors that occurred while compiling.

Build the Application

To build the Currency Converter application:

1. In Xcode, choose File > Save All to save the changes made to the project’s source files.

2. Click the Build toolbar item in the project window.

The status bar at the bottom of the project window indicates the status of the build. When Xcode finishes—and
encounters no errors along the way—it displays “Build succeeded” in the status bar. If there are errors,
however, you need to correct them and start the build process again. See “Correct Build Errors” (page 54)
for details.

Extra: Check Out the Look Up Documentation

Xcode gives you access to ADC Reference Library content. You can jump directly to documentation and
header files while you work on a project. Try it out:

1. Open the ConverterController.m file in an editor window.

2. Option–double-click the word setFloatValue in the code. (Hold down the Option key and double-click
the word.) The Developer Documentation window appears with a list of relevant method names in its
detail view. This Reference Library access system provides a fast way to get to reference material. Read
more in “Expanding on the Basics” (page 71).

3. Close the Developer Documentation window.

4. Command–double-click the same word. A pop-up menu with a list of method names appears.

5. Choose [NSCell setFloatValue]. This time, Xcode displays the NSCell.h header file in an editor
window and highlights the declaration of the setFloatValue method.

6. Close the header file.

Build the Application 53
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Building and Running Your Application

Run the Application

Your hard work is about to pay off. Because you haven’t edited any code since the last time you built the
project, the application is ready to run.

1. Choose Build > Build and Go.

2. After the Currency Converter application launches, enter a rate and a dollar amount.

3. Click Convert.

4. Select the text in a text field and choose the Currency Converter > Services submenu.

The Services menu lists other applications that can operate on the selected text.

5. Choose Currency Converter > Quit Currency Converter from the application menu to quit Currency
Converter.

Correct Build Errors

Of course, rare is the project that is flawless from the start. For most applications you write, Xcode is likely
to catch some errors when you first build them. Thankfully, Xcode offers tools to help you catch those bugs
and move on.

1. To get an idea of the error-checking features of Xcode, introduce a mistake into the code and click Build
again.

You can now see that the left column of your code contains one or more error indicators.

While the error indicator helps you understand the location of the error, you may want to examine the
nature of the problem.

2. In the Groups & Files list, disclose the Errors and Warnings group if it’s not already disclosed. Xcode lists
the files that contain build errors.

54 Run the Application
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Building and Running Your Application

3. Select the file in the Errors and Warnings group or open it in an editor window to display the error. Xcode
displays information about the error in the detail view, as shown in Figure 6-1.

Figure 6-1 Identifying build errors

4. Fix the error in the code and build the application again. The Errors and Warnings group clears, and the
status bar indicates that the build is successful.

Great Job!

Although Currency Converter is a simple application, creating it illustrates many of the concepts and techniques
of Cocoa programming. Now you have a much better grasp of the skills you need to develop Cocoa
applications. You learned:

 ■ To compose a graphical user interface (GUI) in Interface Builder

 ■ To test a user interface in Interface Builder

 ■ To specify a class’ outlets and actions in Interface Builder

 ■ To connect controller-instances to the user interface by using outlets and actions in Interface Builder

 ■ To implement a model, a view and a controller in Xcode

 ■ To build applications and correct build errors in Xcode

Great Job! 55
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Building and Running Your Application

What’s Next?

In this chapter, you learned how to build and run your application. You also learned how to identify and
resolve build errors. In the next chapter, you learn how to set properties such as your application’s name and
copyright information. You also learn how to give your application a custom icon.

56 What’s Next?
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Building and Running Your Application

Now that you have your very own functional application, it’s time to give it individual properties instead of
the default properties. In this chapter, you learn about the Info.plist file, which is where you can change
properties that govern your application’s attributes. This chapter also describes the essential identification
properties required of Mac OS X applications. It walks you through the process of configuring these properties
in Currency Converter. You learn what changing these various properties does when viewing information
about the application. Finally, you learn how to give an application its own icon to set it apart from other
applications.

The Info.plist File

Mac OS X applications contain information to help distinguish them from one another. This information
includes the application’s primary and secondary version numbers, and the icon that the Finder and the Dock
use to represent it. The file that stores these details is known as the information property list file (named
Info.plist). This property list file is stored with the executable files and resources that make up an
application, known as an application bundle.

Note: A bundle is a directory that groups files in a structured hierarchy. To make it easy for users to manipulate
bundles, bundles can be represented as files instead of folders in the Finder; these bundles are known as
packages. An application bundle stores the executable files and resources that make up an application.
Although it’s more correct to refer to application bundles as application packages because they’re always
shown to users as single files in the Finder, this chapter adopts the term application bundle instead of
application package. For more information on bundles and packages, see Bundle Programming Guide.

Basic Project Attributes

There are several essential properties that identify applications to users and to Mac OS X: application identifier,
build version number, release version number, copyright notice, application name, and application-icon
filename.

 ■ Without application identifiers, administrators would have to navigate to the location of each managed
application, a relatively tedious task. The application-identifier property specifies a string Mac OS X
uses to identify an application. This property does not identify a specific application bundle in the
filesystem or a particular version of the application. In normal conditions, users don’t see application
identifiers.

The application-identifier property is specified with the CFBundleIdentifier key in the Info.plist
file.

The Info.plist File 57
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

Application identifiers are uniform type identifiers (UTIs) or reverse Domain Name System (DNS) names;
that is, the top-level domain comes first, then the subdomains, separated by periods (.). There are two
parts to an application identifier: the prefix and the base. The application-identifier prefix identifies the
company or organization responsible for the application and is made up of two or more domains. The
first prefix domain, or top-level domain, is normally com or org. The second domain is the name of the
company or organization. Subsequent domains can be used as necessary to provide a narrower scope.
Prefix domains use lowercase letters by convention. For example, Apple applications use application
identifiers that start with com.apple.

The application-identifier base comprises a single domain, which refers to the application proper. This
domain should use word capitalization, for example, AddressBook. See UniformType IdentifiersOverview
for more information about uniform type identifiers.

Mac OS X uses application identifiers to precisely refer to application bundles irrespective of their location
on the filesystem. For example, some Mac OS X features, such as parental controls, use only application
identifiers to refer to applications on a user’s computer. The Parental Controls preferences pane contains
a list of application filenames, in which administrators select the applications for which a user is to have
managed access, as shown in Figure 7-1.

Figure 7-1 Benefits of using application identifiers

58 Basic Project Attributes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

 ■ The build-version-number property identifies an iteration of the application.

The build-version-number property is specified with the CFBundleVersion key in the Info.plist
file.

The build version number is made up of a string of period-separated integers. Each integer must be
equal to or greater than zero. For example, 55, 1.2, and 1.2.0.55, are all valid build version numbers.

Mac OS X uses the build version number to, for example, decide which version of an application to launch
to open a file when there are multiple versions in the filesystem (as determined by their application
identifiers). In such cases, Mac OS X launches the application bundle with the highest build version
number. To ensure the accurate operation of this mechanism, you must adhere to one version-numbering
style as you release new versions of your application. That is, if you publish your application for the first
time using a multi-integer build version number, subsequent publicly available versions must use the
same number of integers in their build version numbers.

Note: The application’s build version number does not appear in Finder windows.

 ■ The release-version-number property specifies the version information the Finder displays for the
application. When you specify both a build version number and a release version number, the About
window displays the release version number, followed by the build version number in parenthesis, as
shown in Figure 7-2.

Figure 7-2 Build and release version numbers in Finder preview panes and About windows

CFBundleVersion
CFBundleName

NSHumanReadableCopyright

CFBundleShortVersionString

Basic Project Attributes 59
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

The release-version-number property is specified with the CFBundleShortVersionString key in the
Info.plist file.

The release version number identifies a released iteration of the application. Similar to the build version
number, the release version number is made up of a string of period-separated integers. However, you
should specify no more than three integers for the release version number. By convention, the first
integer represents major revisions to the application, such as revisions that implement new features or
major changes. The second integer denotes revisions that implement less prominent features. The third
integer represents maintenance releases.

 ■ The copyright-text property specifies the copyright notice for the application, for example, © 2007,
My Company. This notice is shown to users in the About window of the application.

The copyright-notice property is specified with theNSHumanReadableCopyright key in theInfo.plist
file.

 ■ The application-name property specifies the title of the application menu in the menu bar when the
application opens and the name of the application in its About window.

The application-name property is specified with the CFBundleName key in the Info.plist file.

Note: When you create an application project in Xcode, the name you enter as the project name is used
as the application name.

 ■ The application-icon-filename property specifies the icon the Finder, the Dock, and the application’s
About window display for the application.

The application-icon-filename property is specified with the CFBundleIconFile key in the Info.plist
file.

An icon file contains one or more images that depict an application’s icon at various resolutions. These
separate versions of an icon allow the Finder and the Dock to render icons as sharp as possible at different
sizes. You create icon files using the Icon Composer application.

For further details on these and other application properties, see Runtime Configuration Guidelines.

Specify the Identifier, Version, and Copyright Information

This section shows how to specify Currency Converter’s identifier, release version number, and copyright
text.

Important: To complete this task, you need to open this document’s companion archive,
ObjCTutorial_companion.zip.

Currency Converter’s name property is set to the project name you entered in “Creating a Project in
Xcode” (page 15), Currency Converter. Therefore, you don’t need to change the value of this property.

To set the the application-identifier, build-version-number, release-version-number, and copyright-text
properties, follow these steps:

1. In the Currency Converter project window, select the Resources group in the Groups & Files list.

60 Specify the Identifier, Version, and Copyright Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

2. Remove the InfoPlist.strings file from the project (this file is used for internationalization, a subject
outside the scope of this document):

a. In the detail view, select the InfoPlist.strings file.

b. Choose Edit > Delete.

c. In the dialog that appears, click Delete References.

3. In the detail view, double-click the Info.plist file. The file opens in an editor window.

4. Set the application identifier to com.mycompany.CurrencyConverter:

a. Locate the CFBundleIdentifier key in the file.

b. Set the string element under the CFBundleIdentifier key to
com.mycompany.CurrencyConverter.

5. Set the build version number to 100

a. Locate the CFBundleVersion key in the file.

b. Set the corresponding string element to 100.

6. Set the release version number 1.0.0

When the CFBundleShortVersionString key is not defined in the Info.plist file, you must add
it:

a. Place the cursor after the last key/value pair in the Info.plist file, just before the </dict> tag.

b. Press Return.

c. Enter the following lines:

<key>CFBundleShortVersionString</key>
<string>1.0.0</string>

7. Set the copyright text to © 2007, My Company:

Add the following key/value pair to the Info.plist file (press Option-G to produce the © character):

<key>NSHumanReadableCopyright</key>
<string>© 2007, My Company</string>

8. Save the Info.plist file.

Listing 7-1 shows how Currency Converter’s property list file might look after the changes. The highlighted
lines have been either modified or added.

Specify the Identifier, Version, and Copyright Information 61
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

Listing 7-1 Specifying domain, version, and copyright information in the Currency Converter Info.plist
file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>${EXECUTABLE_NAME}</string>
 <key>CFBundleIconFile</key>
 <string></string>
 <key>CFBundleIdentifier</key>
 <string>com.mycompany.CurrencyConverter</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>${PRODUCT_NAME}</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>100</string>
 <key>NSMainNibFile</key>
 <string>MainMenu</string>
 <key>NSPrincipalClass</key>
 <string>NSApplication</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0.0</string>
 <key>NSHumanReadableCopyright</key>
 <string>© 2007, My Company</string>
</dict>
</plist>

To see how this affects your application:

1. Clean the project, and build and run the application.

2. Choose Currency Converter > About Currency Converter.

Notice how the name, version number, and copyright information you entered in the info.plist file
are displayed correctly here.

Note: If the information, such as the copyright information, is not the same, your
NSHumanReadableCopyright value may be different from the one you entered in the Info.plist
file. This will occur if there is an extra file called InfoPlist.strings (English). This file is used for
localization, that is, having different properties for an application based on the location it’s designed for.
In this case, any key values set in the English localization file will override the values set in the Info.plist
file when compiling the English version of the project. To fix this issue, you can either delete the
InfoPlist.strings (English) file, or open the file and change the value just as in the Info.plist
file.

3. Quit Currency Converter.

62 Specify the Identifier, Version, and Copyright Information
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

4. To see how application identifiers can be beneficial, execute the following command in a Terminal
window:

> open -b com.mycompany.CurrencyConverter

The open command locates and launches Currency Converter based on its application identifier. This
command can also use the filenames of application bundles to locate and launch applications (the .app
suffix is optional).

5. In the Dock, Control-click or click-and-hold the Currency Converter icon and choose Show In Finder from
the shortcut menu, as shown in Figure 7-3.

Figure 7-3 Locating the application bundle from the Dock

Specify the Identifier, Version, and Copyright Information 63
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

The Finder opens a window shown in Figure 7-4, displaying the Currency Converter application bundle.
Notice that the release version number (CFBundleShortVersionString) appears in the preview
column (in column view) and in the Info window for the application bundle. The About Currency Converter
window shows the application name (CFBundleName), build version number (CFBundleVersion) in
parentheses, release version number, and copyright text (NSHumanReadableCopyright).

Figure 7-4 Application properties as seen by the user

CFBundleVersion
CFBundleName

NSHumanReadableCopyright

CFBundleShortVersionString

6. Quit Currency Converter.

Now the only essential application identification information left unspecified for Currency Converter is its
icon.

Create an Icon File

When you create a Cocoa application without specifying an icon for it, the Finder and the Dock assign it the
generic application icon, as shown in Figure 7-4 (page 64). To make your applications more appealing to
their users and to differentiate them from other applications, you should give your applications distinctive
icons. As a result, your applications stand out from other applications in Finder windows and in the Dock.
This section describes the process of creating an icon file using Icon Composer and configuring Currency
Converter to use the icon file. To do this, you must have downloaded the companion file provided with this
document.

64 Create an Icon File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

Note: Before doing this, make sure you have downloaded the companion archive
(ObjCTutorial_companion.zip). The archive contains the icon image you will be using for this section.

To create the icon file for Currency Converter:

1. Launch Icon Composer, located in /Developer/Applications/Utilities. Icon Composer displays
an empty icon file editor window.

2. In the Finder, navigate to the ObjCTutorial_companion/application_icon_images directory.
This directory contains the image file that depicts the Currency Converter application icon.

3. Add the image file to the icon file.

a. Drag c_conv512.png from the Finder window to the Large Image image well in the icon file editor,
as shown in Figure 7-5.

Figure 7-5 Dragging c_conv512.png to the icon file editor

b. A dialog asks if you would like to copy the image to other sizes. Choose “Copy to all smaller sizes”
and press Import. This automatically scales the 512 x 512 image to the smaller sizes.

c. The hit masks for all sizes are automatically extracted. Hit masks are a bitmapping of the locations
in which the image will respond when it is clicked.

Create an Icon File 65
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

d. The icon file editor should look like Figure 7-6.

Figure 7-6 Icon file editor with icon images and icon masks at several resolutions

4. Save the icon file.

a. Choose File > Save As.

b. In the Save dialog, navigate to the Currency Converter project directory.

c. In the Save As text field, enter APPL.icns.

d. Click Save.

5. Quit Icon Composer.

Although the Currency Converter project directory contains the APPL.icns file, you still need to add it to
the project.

To add the icon to the project:

1. In the Currency Converter project window, select the Resources group in the Groups & Files list.

2. Choose Project > Add to Project.

66 Create an Icon File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

3. In the dialog that appears, select the APPL.icns file in the Currency Converter project directory, and
click Add, as shown in Figure 7-7.

Figure 7-7 Selecting the icon file to add to the Currency Converter project

4. In the dialog that appears next, shown in Figure 7-8, click Add.

Figure 7-8 Specifying project file-addition options

Create an Icon File 67
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

5. Finally, set the application-icon-filename property in the Currency Converter Info.plist file.

a. In the Currency Converter project, locate the CFBundleIconFile key in the Info.plist file.

b. Set the corresponding string element to APPL.

c. Save the Info.plist file.

The Info.plist file should look like Listing 7-2. The highlighted line points out the last modification.

Listing 7-2 Specifying a custom application icon in the Currency Converter Info.plist file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>${EXECUTABLE_NAME}</string>
 <key>CFBundleIconFile</key>
 <string>APPL</string>
 <key>CFBundleIdentifier</key>
 <string>com.mycompany.CurrencyConverter</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>${PRODUCT_NAME}</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>100</string>
 <key>NSMainNibFile</key>
 <string>MainMenu</string>
 <key>NSPrincipalClass</key>
 <string>NSApplication</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0.0</string>
 <key>NSHumanReadableCopyright</key>
 <string>© My Company, 2007</string>
</dict>
</plist>

To see the icon in your project:

1. Quit Currency Converter if you have not done so already.

2. Choose Build > Clean.

3. Click “Build and Go” to build and run the application.

68 Create an Icon File
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

4. Currency Converter now has a distinguishing icon, shown in Figure 7-9.

Figure 7-9 Currency Converter sporting an elegant icon

Configuring your applications appropriately is essential for providing a good experience to your customers.
This practice also lets you to take advantage of Mac OS X services, such as managed installations. Managed
installations rely on application identifiers and version numbers to determine, for example, whether a user
is trying to install an earlier version of an application over a newer one. As a result, the user is protected from
unknowingly performing a potentially disruptive operation.

You benefit from managed installations because, when you create a delivery solution for your product, you
don’t have to worry about the details of installing the product for the first time, upgrading to a newer version,
or downgrading to an earlier version. Mac OS X handles the details for you.

What’s Next?

Now that your project is complete, you may want to learn about what separates Cocoa from other frameworks.
You probably noticed how much you can do with the application you built without programming any of
those features. In the next chapter, you learn about many of the features Cocoa supplies and how to take
advantage of them.

What’s Next? 69
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

70 What’s Next?
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Configuring Your Application

Cocoa was designed to make application development simple and to take a lot of the hard, repetitive work
out of application development. Many common features of applications that users may take for granted are
quite difficult to program. This chapter describes those integrated components of Cocoa. You may be surprised
how many classes and features come packaged with Cocoa to minimize the time you spend coding.

For Free with Cocoa

The simplest Cocoa application, even one without a line of code added to it, includes a wealth of features
you get “for free.” You do not have to program these features yourself. You can see this when you test an
interface in Interface Builder.

Application and Window Behavior

In the Interface Builder test mode, Currency Converter behaves almost like any other application on the
screen. Click elsewhere on the screen, and Currency Converter is deactivated, becoming totally or partially
obscured by the windows of other applications.

If you closed your application, run it again. Once the Currency Converter window is open, move it around
by its title bar. Here are some other tests you can do:

1. Open the Edit menu. Its items appear and then disappear when you release the mouse button, as with
any application menu.

2. Click the miniaturize button. Click the window’s icon in the Dock to get the application back.

3. Click the close button; the Currency Converter window disappears.

If you hadn’t configured the Currency Converter window in Interface Builder to remove the resize box, you
could resize it now. You could also have set the autoresizing attributes of the window and its views so that
the window’s elements would resize proportionally to the resized window or would retain their initial size
(see Interface Builder Help for details on autoresizing).

Controls and Text

The buttons and text fields of Currency Converter come with many built-in behaviors. Notice that the Convert
button pulsates (as is the default for buttons associated with the Return key). Click the Convert button. Notice
how the button is highlighted for a moment.

If you had buttons of a different style, they would also respond in characteristic ways to mouse clicks.

For Free with Cocoa 71
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Expanding on the Basics

Now click in one of the text fields. See how the insertion point blinks in place. Type some text and select it.
Use the commands in the Edit menu to copy it and paste it in the other text field.

Do you recall the nextKeyView connections you made between the Currency Converter text fields? Insert
the cursor in a text field, press the Tab key and watch the cursor jump from field to field.

Menu Commands

Interface Builder gives every new application a default menu that includes the application, File, Edit, Window,
and Help menus. Some of these menus, such as Edit, contain ready-made sets of commands. For example,
with the Services submenu (whose items are added by other applications at runtime) you can communicate
with other Mac OS X applications. You can manage your application’s windows with the Window menu.

Currency Converter needs only a few commands: the Quit and Hide commands and the Edit menu’s Copy,
Cut, and Paste commands. You can delete the unwanted commands if you wish. However, you could also
add new ones and get “free” behavior. An application designed in Interface Builder can acquire extra
functionality with the simple addition of a menu or menu command, without the need for compilation. For
example:

 ■ The Font submenu adds behavior for applying fonts to text in text view objects, like the one in the text
view object in the Text palette. Your application gets the Font window and a font manager “for free.”
Text elements in your application can use this functionality right out of the box. See Font Panel for more
information.

 ■ The Text submenu allows you to align text anywhere text is editable and to display a ruler in the NSText
object for tabbing, indentation, and alignment.

 ■ Thanks to the PDF graphics core of Mac OS X, many objects that display text or images can print their
contents as PDF documents.

Document Management

Many applications create and manage repeatable, semi-autonomous objects called documents. Documents
contain discrete sets of information and support the entry and maintenance of that information. A
word-processing document is a typical example. The application coordinates with the user and communicates
with its documents to create, open, save, close, and otherwise manage them. You could also save your
Currency Converters as documents, with a little extra code.

SeeDocument-BasedApplicationsOverview in Cocoa Design Guidelines Documentation for more information.

File Management

An application can use the Open dialog, which is created and managed by the Application Kit framework,
to help the user locate files in the file system and open them. It can also use the Save dialog to save information
in files. Cocoa also provides classes for managing files in the file system (creating, comparing, copying, moving,
and so forth) and for managing user defaults.

72 For Free with Cocoa
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Expanding on the Basics

Communicating with Other Applications

Cocoa gives an application several ways to exchange information with other applications:

 ■ Pasteboards. Pasteboards are a global facility for sharing information among applications. Applications
can use the pasteboards to hold data that the user has cut or copied and may paste into another
application. Each application can have multiple pasteboards accepting multiple data types.

 ■ Services. Any application can access the services provided by another application, based on the type of
selected data (such as text). An application can also provide services to other applications such as
encryption, language translation, or record fetching.

 ■ Drag and drop. If your application implements the proper protocol, users can drag objects to and from
the interfaces of other applications.

Custom Drawing and Animation

Cocoa lets you create your own custom views that draw their own content and respond to user actions. To
assist you in this, Cocoa provides objects and functions for drawing, such as the NSBezierPath class.

Internationalization

Cocoa provides API and tool support for internationalizing the strings, images, sounds, and nib files that are
part of an application. Internationalization allows you to easily localize your application to multiple languages
and locales without significant overhead.

Editing Support

You can get several panels (and associated functionality) when you add certain menus to your application’s
menu bar in Interface Builder. These “add-ons” include the Font window (and font management), the color
picker (and color management), the text ruler, and the tabbing and indentation capabilities the Text menu
brings with it.

Formatter classes enable your application to format numbers, dates, and other types of field values. Support
for validating the contents of fields is also available.

Printing

With just a simple Interface Builder procedure, Cocoa automates simple printing of views that contain text
or graphics. When a user executes the Print command, an appropriate dialog helps to configure the print
process. The output is WYSIWYG (what you see is what you get).

Several Application Kit classes give you greater control over the printing of documents and forms, including
features such as pagination and page orientation.

For Free with Cocoa 73
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Expanding on the Basics

Help

You can very easily create context-sensitive help—known as “help tags”—for your application using the
Interface Builder inspector. After you’ve entered the help tag text for the user interface elements in your
application, a small window containing concise information on the element appears when the user places
the pointer over these elements.

Plug-in Architecture

You can design your application so that users can incorporate new modules later on. For example, a drawing
program could have a tools palette: pencil, brush, eraser, and so on. You could create a new tool and have
users install it. When the application is next started, this tool appears in the palette.

Turbo Coding with Xcode

When you write code with Xcode you have a set of “workbench” tools at your disposal. A few of these tools
are described next.

Project Find

Project Find (available from the Find window in Xcode) allows you to search both your project’s code and
the system headers for identifiers. Project Find uses a project index that stores all of a project’s identifiers
(classes, methods, globals, and so forth) on disk.

For C-based languages, Xcode automatically gathers indexing information while the source files are being
compiled; therefore, it is not necessary to build the project to create the index before you can use Project
Find.

Code Sense and Code Completion

Code Sense indexes your project files to provide quick access to the symbols in your code and the frameworks
linked by your project. Code Completion uses this indexing to automatically suggest matching symbols as
you type. These features can be turned on in the Code Sense preferences pane in the Xcode Preferences
window.

Since Code Sense and Code Completion use Xcode’s speedy indexing system, the suggestions they provide
appear instantaneously as you type. If you see an ellipsis (...) following your cursor, Xcode could not find an
exact match.

Integrated Documentation Viewing

Xcode supports viewing HTML-based ADC Reference Library content directly in the application. You can
access reference material about the Xcode application, other developer tools, Carbon, Cocoa, AppleScript
Studio, and even access UNIX man pages.

74 Turbo Coding with Xcode
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Expanding on the Basics

Additionally, you can jump directly from fully or partially completed identifiers in your code to reference
information and header files. To retrieve the reference information for an identifier, Option–double-click it;
to retrieve its declaration in a header file, Command–double-click it.

The search bar in the Developer Documentation window also offers you a quick and easy way to find an
identifier in any of Cocoa’s programming interfaces.

Indentation

In the Indentation preferences pane in the Xcode Preferences window you can set the characters at which
indentation automatically occurs, the number of spaces per indentation, and other global indentation
characteristics. The Format menu also offers commands to indent code blocks individually.

Delimiter Checking

Double-click a brace (left or right, it doesn’t matter) to locate the matching brace; the code between the
braces is highlighted. In a similar fashion, double-click a square bracket in a message expression to locate
the matching bracket, and double-click a parenthesis character to highlight the code enclosed by the
parentheses. If there is no matching delimiter, Xcode emits a beep.

Emacs Bindings

You can use the most common Emacs commands in the Xcode code editor. (Emacs is a popular editor for
writing code.) For example, there are the commands page-forward (Control-v), word-forward (Meta-f),
delete-word (Meta-d), kill-forward (Control-k), and yank from kill ring (Control-y).

Some Emacs commands may conflict with some of the standard Macintosh key bindings. You can modify
the key bindings the code editor uses in the Key Bindings preferences pane in Xcode Preferences to substitute
other “command” keys—such as the Option key or Shift-Control—for Emacs Control or Meta keys. For
information on key bindings, see About Key Bindings in Text Input Management.

Turbo Coding with Xcode 75
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Expanding on the Basics

76 Turbo Coding with Xcode
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Expanding on the Basics

The Objective-C language is a superset of ANSI C with special syntax and run-time extensions that make
object-oriented programming possible. Objective-C syntax is uncomplicated but powerful in its simplicity.
You can mix standard C with Objective-C code.

The following sections summarize some of the basic aspects of the language. See The Objective-C 2.0
Programming Language for details.

Messages and Method Implementations

Methods are procedures implemented by a class for its objects (or, in the case of class methods, to provide
functionality not tied to a particular instance). Methods can be public or private; public methods are declared
in the class header file. Messages are invocations of an object’s method that identify the method by name.

Message expressions consist of a variable identifying the receiving object followed by the name of the method
you want to invoke; enclose the expression in brackets.

[anObject doSomethingWithArg:this];

As in standard C, terminate statements with a semicolon.

Messages often result in values being returned from the invoked method; you must have a variable of the
proper type to receive this value on the left side of an assignment.

int result = [anObj calcTotal];

You can nest message expressions inside other message expressions. This example gets the window of a
form object and makes the returned NSWindow object the receiver of another message.

[[form window] makeKeyAndOrderFront:self];

A method is structured like a function. After the full declaration of the method comes the body of the
implementing code enclosed by braces.

Use nil to specify a null object; nil is analogous to a null pointer. Note that some Cocoa methods do not
accept nil as an argument.

A method can usefully refer to two implicit identifiers: self and super. Both identify the object receiving a
message, but they differ in how the method implementation is located: self starts the search in the receiver’s
class whereas super starts the search in the receiver’s superclass. Thus,

[super init];

causes the init method of the superclass to be invoked.

Messages and Method Implementations 77
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Objective-C Quick Reference Guide

In methods you can directly access the instance variables of your class’s instances. However, accessor methods
are recommended instead of direct access, except in cases where performance is paramount.

Declarations

Dynamically type objects by declaring them as id.

id myObject;

Since the class of dynamically typed objects is resolved at runtime, you can refer to them in your code without
knowing beforehand what class they belong to. Type outlets and objects in this way if they are likely to be
involved in polymorphism and dynamic binding.

Statically type objects as a pointer to a class.

NSString* mystring;

You statically type objects to obtain better compile-time type checking and to make code easier to understand.

Declarations of instance methods begin with a minus sign (-); a space after the minus sign is optional.

- (NSString*)countryName;

Put the type of value returned by a method in parentheses between the minus sign (or plus sign for class
methods) and the beginning of the method name. Methods that return nothing must have a return type of
void.

Method argument types are in parentheses and go between the argument’s keyword and the argument
itself.

- (id)initWithName:(NSString*)name andType:(int)type;

Be sure to terminate all declarations with a semicolon.

By default, the scope of an instance variable is protected, making that variable directly accessible only to
objects of the class that declares it or of a subclass of that class. To make an instance variable private (accessible
only within the declaring class), insert the @private compiler directive before the declaration.

78 Declarations
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Objective-C Quick Reference Guide

This table describes the changes to Cocoa Application Tutorial.

NotesDate

Updated for Mac OSX v10.5. Added Objective-C 2.0 content such as garbage
collection and declared properties.

2007-10-31

Changed title from "Cocoa Application Tutorial Using Objective-C."2006-11-07

Added chapter on setting essential application properties, including the
application identifier, the application icon filename, and version information.

2006-05-23

Added “Configuring Currency Converter” to explain how to configure application
properties.

Improved instructions to customize the Currency Converter default menu
hierarchy in “Set the Application Name in the Menu”.

Made minor editorial changes.

Added the finalized Currency Converter project. Specified Xcode Tools version
requirements. Made other small changes.

2006-01-10

Added finalized Currency Converter project as this document’s companion
archive.

Added “Finalize ConverterController.h” to instruct that the #import
"Converter.h" code line has to be added to ConverterController.h.

Updated the introduction and “Creating the Currency Converter User Interface”
to specify the development environment required to successfully complete the
tasks described in this document.

Updated “Paths for Object Communication: Outlets, Targets, and Actions” to
indicate how Interface Builder (in Xcode Tools 2.2 and later) defines outlets in
the header files it generates.

Updated “Define the User Interface and Model Outlets of the ConverterController
Class” to explain why the converter outlet cannot be typed.

Corrected “Declaration of the convertCurrency:atRate: method in Converter.h”
by moving the method declaration after the right curly brace.

Corrected “Definition of the convertCurrency:atRate: method in Converter.m”
by including a tag number in the code line with the right brace.

79
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Corrected “Definition of the convert: method in ConverterController.m” by
removing the #import "Converter.h" code line.

Updated for Mac OS X v10.4 and Xcode Tools 2.2. Changed title from "Developing
Cocoa Objective-C Applications: A Tutorial."

2005-10-04

Updated for new Developer Tools and Mac OS X version 10.3.2003-08-07

Screenshots updated for Xcode.

Chapter reorganization to flatten the document structure.

Revision history was added to existing document. It will be used to record
changes to the content of the document.

2003-05-03

80
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Cocoa Application Tutorial
	Contents
	Figures and Listings
	Introduction
	The Essence of Cocoa
	What Is Cocoa?
	Classes and Objects
	The MVC Design Pattern
	Model Objects
	View Objects
	Controller Objects
	Hybrid Models

	The Currency Converter Application

	Creating a Project in Xcode
	Open Xcode
	Make a New Project
	Choose the New Project Command
	Choose a Project Type
	The Xcode Project Interface

	What’s Next?

	Defining the Model
	Specify the Model Class
	Declare the Model Interface
	Declare Member Variables
	Declared Properties and Accessor Methods
	Declare the Model Method: convertCurrency

	Implementing the Model
	Define the convertCurrency Method

	What’s Next?

	Defining the View: Building the User Interface
	User Interface Elements and Interface Builder
	What Is a Nib File?
	Windows and Menus in Cocoa
	Key and Main Windows
	NSWindow and the Window Server
	Application, Window, View

	Creating the Currency Converter Window
	Create the Window
	Resize the Window
	Change the Title of the Window
	Add the Text Fields
	Assign Labels to the Fields
	Change the Text Field Attributes
	Configure a Button
	Add a Separator to Group Controls

	Refining the Layout and View Functionality
	Configure the Menu
	Aligning Objects in a Window
	Finalize the Window Size
	Enable Tabbing Between Text Fields
	Set the First Responder Text Field

	Test the Interface
	What’s Next?

	Bridging the Model and View: The Controller
	Paths for Object Communication: Outlets, Targets, and Actions
	Outlets
	Target/Action in Interface Builder
	Which Direction to Connect?

	Defining the Controller Class
	Defining the Outlets for the ConverterController Class
	Implementing the Controller Method: convert:
	Interconnecting the Controller with the View
	Add the ConverterController Class to Your Nib File
	Connect the ConverterController Instance to the Text Fields
	Connect the Convert Button to the Appropriate Methods
	Check Your Work

	Connecting the Controller with the Model
	Garbage Collection
	What’s Next?

	Building and Running Your Application
	Build the Application
	Extra: Check Out the Look Up Documentation

	Run the Application
	Correct Build Errors
	Great Job!
	What’s Next?

	Configuring Your Application
	The Info.plist File
	Basic Project Attributes
	Specify the Identifier, Version, and Copyright Information
	Create an Icon File
	What’s Next?

	Expanding on the Basics
	For Free with Cocoa
	Application and Window Behavior
	Controls and Text
	Menu Commands
	Document Management
	File Management
	Communicating with Other Applications
	Custom Drawing and Animation
	Internationalization
	Editing Support
	Printing
	Help
	Plug-in Architecture

	Turbo Coding with Xcode
	Project Find
	Code Sense and Code Completion
	Integrated Documentation Viewing
	Indentation
	Delimiter Checking
	Emacs Bindings

	Appendix A: Objective-C Quick Reference Guide
	Messages and Method Implementations
	Declarations

	Revision History

