
Interacting with the Operating System
Cocoa > Process Management

2006-04-04

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Interacting with the Operating System 5

Organization of This Document 5
Limitations 5

Host Information 7

Process Information 9

Task Management 11

Signals 13

Creating and Launching an NSTask 15

Ending an NSTask 17

Piping Data Between Tasks 19

Document Revision History 21

3
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

This topic describes a variety of classes that give you access to some of the functionality of the operating
system. With them, you can launch subprocesses, obtain your process’s environment variables, perform
domain name lookups, locate the user’s home directory, and more.

Organization of This Document

This document contains the following articles:

 ■ "Host Information" (page 7) discusses how to perform domain name lookups.

 ■ "Process Information" (page 9) discusses the types of information you can obtain about the current
process.

 ■ "Task Management" (page 11) discusses how to launch subprocesses and communicate with them.

 ■ “Signals” (page 13) discusses operating-system signals and their behavior in processes.

 ■ "Creating and Launching an NSTask" (page 15) shows an example of using an NSTask object.

 ■ "Ending an NSTask" (page 17) discusses ways to detect when a task exits and how to terminate tasks
before they are done.

 ■ "Piping Data Between Tasks" (page 19) shows an example of how to move data from one task to another
using pipes.

Limitations

Some classes are available for either Objective-C or Java, but not both. The functionality of those classes,
though, are provided elsewhere in the other language.

Organization of This Document 5
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Interacting with the Operating
System

6 Limitations
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Interacting with the Operating System

An NSHost object holds network name and address information for a host. You use this class to get the
current host’s name and address and to look up other hosts by name or by address. The class uses available
network administration services (such as NetInfo or the Domain Name Service) to discover all requested
names and addresses for the host. It does not attempt to contact the host itself, however. This avoids untimely
delays due to a host being unavailable, but it may result in incomplete information about the host.

An NSHost object contains all of the network addresses and names discovered for a given host by the network
administration services. Each NSHost object typically contains one unique address, but it may have more
than one name. If the host has more than one name, the additional names are usually variations on the same
name—typically the basic host name plus the fully qualified domain name. For example, with a host name
“sales” in the domain “anycorp.com”, an NSHost object can hold both the names “sales” and
“sales.anycorp.com”.

The NSHost class maintains a cache of previously created instances so that requests for an existing NSHost
object return that object instead of creating a new one. Use the setHostCacheEnabled: method to turn
the cache off, forcing lookup of hosts as they’re requested. You can also use the flushHostCache method
to clear the cache of its entries so that subsequent requests look up the host information and create new
instances.

THe NSHost class is available in Objective-C only. Java developers can use the java.net.InetAddress
class instead.

7
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Host Information

8
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Host Information

The NSProcessInfo class provides methods to access process-wide information. An NSProcessInfo object
can return such information as the current process’s arguments, environment variables, host name, and
process name.

The NSProcessInfo class is available in Objective-C only. In Java, the NSSystem class provides the same
information as NSProcessInfo as well as information obtained from function calls in Objective-C. The
NSSystem class object can return such additional information as the user’s name, full name, and home
directory. The class also provides a method, log, to send strings to stderr.

9
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Process Information

10
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Process Information

Using the NSTask class, your program can run another program as a subprocess and can monitor that
program’s execution. An NSTask object creates a separate executable entity; it differs from NSThread in
that it does not share memory space with the process that creates it.

A task operates within an environment defined by the current values for several items: the current directory,
standard input, standard output, standard error, and the values of any environment variables. By default, an
NSTask object inherits its environment from the process that launches it. If there are any values that should
be different for the task, for example, if the current directory should change, you must change the value
before you launch the task. A task’s environment cannot be changed while it is running.

Arguments can be specified for the task you want to launch. These arguments do not undergo shell expansion,
so you do not need to do special quoting, and shell variables, such as $PWD, are not resolved.

Your program can communicate with the task by attaching one or more NSPipe objects to the task’s standard
input, output, or error devices before launching the task. A pipe is a one-way communications channel
between related processes; one process writes data while the other process reads that data. The data that
passes through the pipe is buffered; the size of the buffer is determined by the underlying operating system.
An NSPipe object represents both ends of a pipe.

The end points of the NSPipe object are instances of NSFileHandle. You read or write data from the
appropriate NSFileHandle object to get the output from or send input to the task. Multiple tasks can be
connected together by attaching an NSPipe object between one task’s standard output and another task’s
standard input. The output from the first task is then automatically sent as input to the second task.

The task’s standard input, output, and error devices can instead be attached to NSFileHandle objects
directly to either provide the input data from a file or capture the output to a file.

If the task is an Objective-C Cocoa application, you can also communicate with it using the distributed objects
system. For information on distributed objects, see Distributed Objects.

An NSTask object can be used to run its task only once. Subsequent attempts to run the task using the same
object raise an error. While the task is running, you can send it terminate or interrupt signals (both cause
termination by default). You can also suspend the task temporarily. When the task terminates, its exit status
is recorded and NSTaskDidTerminateNotification is sent.

The NSTask class is available in Objective-C only. Java developers can use the java.lang.Runtime class
to launch processes.

11
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Task Management

12
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Task Management

Signals are software interrupts that can be invoked on a specified process. The default signal handling behavior
(provided by the system) usually terminates the process immediately on receipt of a signal. A process can
override this behavior by installing a signal handler routine.

The most typical use of signals is by the kernel, which uses signals to notify a process of exceptional conditions
such as invalid address errors and divide-by-zero errors. Another typical use is the command-line kill tool,
which is capable of sending any user-specified signal to a process, though the most common use is to
terminate a process with a hang-up signal (SIGHUP).

Because signals are complex to use effectively and they tend to behave differently (sometimes unreliably)
on different operating systems, you should generally avoid installing signal handlers for your own applications.
The default system handler usually provides the most appropriate response for a given signal. If you do want
to handle signals in your application, see the signal man page for basic information about the signals that
may be sent.

13
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Signals

14
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Signals

There are two ways to create an NSTask object. If it is sufficient for the task to run in the environment that
it inherits from the process that creates it, use the class method
launchedTaskWithLaunchPath:arguments:. This method both creates and executes (launches) the task.
If you need to change the task’s environment, create the task using alloc and init, use set... methods
to change parts of the environment, then use the launch method to launch the task. For example, the
following method runs tasks that take an input file and an output file as arguments. It reads these arguments,
the task’s executable, and the current directory from text fields before it launches the task:

- (void)runTask:(id)sender
{
 NSTask *aTask = [[NSTask alloc] init];
 NSMutableArray *args = [NSMutableArray array];

 /* set arguments */
 [args addObject:[[inputFile stringValue] lastPathComponent]];
 [args addObject:[outputFile stringValue]];
 [aTask setCurrentDirectoryPath:[[inputFile stringValue]
 stringByDeletingLastPathComponent]];
 [aTask setLaunchPath:[taskField stringValue]];
 [aTask setArguments:args];
 [aTask launch];
}

If you create an NSTask object in this manner, you must be sure to set the executable name using
setLaunchPath:. If you don’t, an NSInvalidArgumentException is raised.

15
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Creating and Launching an NSTask

16
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Creating and Launching an NSTask

Normally, you want the task that you’ve launched to run to completion. When the task exits, the corresponding
NSTask object posts an NSTaskDidTerminateNotification to the default notification center. You can
add one of the custom objects in your program as an observer of the notification and check the task’s exit
status (using terminationStatus) in the observer method. For example:

-(id)init {
 self = [super init];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(checkATaskStatus:)
 name:NSTaskDidTerminateNotification
 object:nil];
 return self;
}

- (void)checkATaskStatus:(NSNotification *)aNotification {
 int status = [[aNotification object] terminationStatus];
 if (status == ATASK_SUCCESS_VALUE)
 NSLog(@"Task succeeded.");
 else
 NSLog(@"Task failed.");
}

If you need to force a task to end execution, send a terminatemessage to the NSTask object. If the NSTask
object gets released, however, NSTaskDidTerminateNotification does not get sent, as the port the
message would have been sent on was released as part of the task release.

17
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Ending an NSTask

18
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Ending an NSTask

Each end point of the pipe is a file descriptor, represented by an NSFileHandle object. You thus use
NSFileHandle messages to read and write pipe data. A “parent” process creates the NSPipe object and
holds one end of it. It creates an NSTask object for the other process and, before launching it, passes the
other end of the pipe to that process; it does this by setting the standard input, standard output, or standard
error device of the NSTask object to be the other NSFileHandle or the NSPipe itself (in the latter case, the
type of NSFileHandle—reading or writing—is determined by the “set” method of NSTask).

Note: The file descriptors used by a pipe count against the maximum number of open file descriptors
allowable in a task. In Mac OS X v10.4, the maximum number of open file descriptors is approximately 10240
but in older versions of Mac OS X, this number is much smaller (256 in Mac OS X v10.2).

The following example illustrates the above procedure:

- (void)readTaskData:(id)sender
{
 NSTask *pipeTask = [[NSTask alloc] init];
 NSPipe *newPipe = [NSPipe pipe];
 NSFileHandle *readHandle = [newPipe fileHandleForReading];
 NSData *inData = nil;

 // write handle is closed to this process
 [pipeTask setStandardOutput:newPipe];
 [pipeTask setLaunchPath:[NSHomeDirectory()
 stringByAppendingPathComponent:
 @"PipeTask.app/Contents/MacOS/PipeTask"]];
 [pipeTask launch];

 while ((inData = [readHandle availableData]) && [inData length]) {
 [self processData:inData];
 }
 [pipeTask release];
}

The launched process in this example must get data and write that data (using the writeData: method of
NSFileHandle), to its standard output device, which is obtained using the
fileHandleWithStandardOutput method of NSFileHandle.

When the processes have no more data to communicate across the pipe, the writing process should simply
send closeFile to its NSFileHandle end point. This causes the process with the “read” NSFileHandle
to receive an empty NSData object, signalling the end of data. If the “parent” process created the NSPipe
object with the init method, it should then release it.

19
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Piping Data Between Tasks

20
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Piping Data Between Tasks

This table describes the changes to Interacting with the Operating System.

NotesDate

Updated the task management guidelines and added some high-level
information about signals.

2006-04-04

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2002-11-12

21
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

22
2006-04-04 | © 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Interacting with the Operating System
	Contents
	Introduction
	Host Information
	Process Information
	Task Management
	Signals
	Creating and Launching an NSTask
	Ending an NSTask
	Piping Data Between Tasks
	Revision History

