
Rulers and Paragraph Styles
Cocoa > Text & Fonts

2007-09-04

Apple Inc.
© 1997, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Rulers and Paragraph Styles 7

Who Should Read This Document 7
Organization of This Document 7
See Also 7

About Paragraph Styles 9

Breaking Lines by Truncation 11

About Ruler Views 13

About Ruler Markers 15

Setting Up a Ruler View 17

Changing a Ruler’s Measurement Units 19

Using a Ruler View’s Client 21

Adjusting the Layout 21
Setting Ruler Markers 21

Letting Users Manipulate Markers 23

Moving Markers 23
Removing Markers 23
Adding Markers 24
Handling Mouse Events in the Ruler Area 24

Updating the Ruler View 25

Document Revision History 27

Index 29

3
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

4
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

About Paragraph Styles 9

Figure 1 Paragraph style attributes 9

Breaking Lines by Truncation 11

Figure 1 Truncated strings displayed in table cells 11
Listing 1 Controller implementation defining a table view using string truncation 11

About Ruler Views 13

Table 1 Coordinate systems used with ruler views 13

5
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

6
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Rulers and Paragraph Styles describes paragraph styles and the ruler views and markers that enable users to
view and change the paragraph style attributes used in text.

Who Should Read This Document

You should read this document if you need to work directly with paragraph style objects and their associated
ruler views.

Organization of This Document

This document contains the following articles:

 ■ “About Paragraph Styles” (page 9) describes paragraph styles and the attributes in them you can
change.

 ■ “Breaking Lines by Truncation” (page 11) describes the line break mode attribute of paragraph styles
and illustrates how the truncation settings work in the context of table cells.

 ■ “About Ruler Views” (page 13) describes what’s in a ruler view and how it works.

 ■ “About Ruler Markers” (page 15) describes what a ruler marker is and how it works.

 ■ “Setting Up a Ruler View” (page 17) describes how to add and set up a ruler view for a particular view.

 ■ “Changing a Ruler’s Measurement Units” (page 19) describes how to set a ruler’s measurement units
and how to define your own measurement units.

 ■ “Using a Ruler View’s Client” (page 21) describes how to set a ruler view’s client and adjust the ruler
view’s markers and layout to match the client.

 ■ “Letting Users Manipulate Markers” (page 23) describes how to react when the user adds, removes, and
moves markers, or when the user clicks in the ruler view.

 ■ “Updating the Ruler View” (page 25) describes how to change the ruler view to reflect the current
selection or changes the user makes in the view.

See Also

For more information, refer to the following documents:

Who Should Read This Document 7
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Introduction to Rulers and Paragraph Styles

 ■ Text Attributes describes the text-related attributes maintained by the Cocoa text system, including
paragraph style attributes.

 ■ Attributed Strings Programming Guide provides more details about how the text system stores attributes
with strings.

8 See Also
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Introduction to Rulers and Paragraph Styles

NSParagraphStyle and its subclass NSMutableParagraphStyle encapsulate the paragraph or ruler attributes
used by the NSAttributedString classes. Instances of these classes are often referred to as paragraph style
objects, or when no confusion will result, as paragraph styles.

A paragraph style object represents a complex attribute value in an attributed string, storing a number of
subattributes that affect paragraph layout for the characters of the string. Among these subattributes are
alignment, tab stops, and indents. Figure 1 illustrates these and other paragraph style attributes.

Figure 1 Paragraph style attributes

Alignment

Indentation

Paragraph
spacing

We the People of the United States, in Order to form
a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common defence, promote
the general Welfare, and secure the Blessings of Liberty
to ourselves and our Posterity, do ordain and establish
this Constitution for the United States of America.

Section 1.	 All legislative Powers herein granted
shall be vested in a Congress of the United States, which
shall consist of a Senate and House of Representatives.

Line spacing

Tab stops

Line height

Line break mode

These are the paragraph style attributes the text system uses:

 ■ alignment is the text alignment. It is NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, or NSNaturalTextAlignment.

 ■ firstLineHeadIndent is the distance in points from the leading margin of a text container to the
beginning of the paragraph’s first line.

 ■ headIndent is the distance in points from the leading margin of a text container to the beginning of
lines other than the first.

 ■ tailIndent is the distance in points from the margin of a text container to the end of lines.

 ■ tabStops is an array of NSTextTab objects, sorted by location, that define the tab stops for the paragraph
style.

 ■ lineBreakMode is the mode that should be used to break lines when laying out the paragraph's text.
It can be one of the following:

 ❏ NSLineBreakByWordWrapping wraps at word boundaries.

 ❏ NSLineBreakByCharWrapping wraps at character boundaries.

 ❏ NSLineBreakByClipping clips lines past the edge of the text container.

9
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

About Paragraph Styles

 ❏ NSLineBreakByTruncatingHead displays each line so that the end fits in the container and the
missing text at the beginning is indicated by an ellipsis glyph.

 ❏ NSLineBreakByTruncatingTail displays each line so that the beginning fits in the container
and the missing text at the end is indicated by an ellipsis glyph.

 ❏ NSLineBreakByTruncatingMiddle displays each line so that the beginning and end both fit in
the container and the missing text in the middle is indicated by an ellipsis glyph.

 ■ maximumLineHeight is the maximum height that any line in the receiver can occupy, regardless of the
font size or size of any attached graphic.

 ■ minimumLineHeight is the minimum height that any line in the receiver can occupy, regardless of the
font size or size of any attached graphic.

 ■ lineHeightMultiple is a factor by which the default line height (a metric of the font) is multiplied
before being constrained by minimum and maximum line height.

 ■ lineSpacing is extra space in points added between lines within the paragraph.

 ■ paragraphSpacing is space in points added at the end of the paragraph to separate it from the following
paragraph.

 ■ paragraphSpacingBefore is space in points added between the top of the paragraph and the beginning
of its text content.

10
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

About Paragraph Styles

In Mac OS X version 10.3 and later, paragraph style objects (NSParagraphStyle and NSMutableParagraphStyle)
have support for line breaking by truncation. In addition to the previously available line-breaking modes of
word wrapping, character wrapping, and clipping, paragraph styles can fit the line into the layout container
by truncating the line at its head, tail, or middle. The missing text is indicated by an ellipsis glyph (…). This
capability is very useful inside table cells, where space is likely to be limited and users can easily resize column
widths.

The technique you use to configure a table view to break lines by truncation is simple but not entirely obvious.
First, you configure the table column cells with the message [cell setWraps:YES]. Then, for the object
value returned by the data source, use an attributed string configured with the desired paragraph style.

Figure 1 shows a table view displaying two columns of strings configured with a paragraph style line-breaking
mode of NSLineBreakByTruncatingMiddle as shown in Listing 1.

Figure 1 Truncated strings displayed in table cells

The following example has a controller object with an outlet named _tableView representing the table
view. The controller object is the table’s data source. Listing 1 shows the entire controller implementation.

Listing 1 Controller implementation defining a table view using string truncation

@implementation Controller
- (void)awakeFromNib {
 NSArray *columns = [_tableView tableColumns];
 int index, count = [columns count];
 for (index = 0; index < count; index++) {
 NSTableColumn *column = [columns objectAtIndex:index];
 [[column dataCell] setWraps:YES];
 }
}

- (int)numberOfRowsInTableView:(NSTableView *)tableView {
 return 20;

11
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Breaking Lines by Truncation

}

- (id)tableView:(NSTableView *)tableView objectValueForTableColumn:(NSTableColumn
 *)tableColumn row:(int)row {
 static NSDictionary *info = nil;

 if (nil == info) {
 NSMutableParagraphStyle *style = [[NSParagraphStyle defaultParagraphStyle]
 mutableCopy];
 [style setLineBreakMode:NSLineBreakByTruncatingMiddle];
 info = [[NSDictionary alloc] initWithObjectsAndKeys:style,
NSParagraphStyleAttributeName, nil];
 [style release];
 }

 return [[[NSAttributedString alloc] initWithString:[NSString
stringWithFormat:@"Row #%d with really, really, really, really long string",
row + 1] attributes:info] autorelease];
}

@end

The awakeFromNib implementation configures the data cell for each column in the table view (the number
of columns in the table is set up in Interface Builder). The key message is [[column dataCell]
setWraps:YES]. This message tells the table to use the line-breaking mode of the attributed string that is
the cell’s object value. If the value passed with this call were NO, the cells’ contents would merely be clipped.

The tableView:objectValueForTableColumn:row: method sets up a paragraph style object with a
line-break mode of NSLineBreakByTruncatingMiddle. The method then places the paragraph style in
an attributes dictionary. The last line returns an attributed string, with this dictionary, as the object value for
each cell in the table.

12
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Breaking Lines by Truncation

An NSRulerView resides in an NSScrollView, displaying a labeled ruler and markers for its client, the document
view of the NSScrollView or a subview of the document view. The client view can add and remove markers
representing its contents, such as graphic elements, margins, and text tabs. The NSRulerView tracks user
manipulation of the markers and informs the client view of those actions. NSRulerView handles both horizontal
and vertical rulers, which are tiled in the scroll view above and to the side of the content view, respectively.
NSRulerViews are sometimes called simply ruler views or even rulers.

A ruler view comprises three regions. First is the ruler area, where the ruler’s baseline, hash marks, and labels
are drawn. The ruler area is largely static, but it scales its hash marks to the document view’s coordinate
system and can display the hash marks in arbitrary units. The second region is the marker area, where ruler
markers (NSRulerMarker objects) representing elements of the client view are displayed. The marker area is
more dynamic, changing with the selection and state of the client view. The final region is the accessory view
area, which is by default not present but appears when you add an accessory view to the ruler view. An
accessory view can contain additional controls for manipulating the ruler’s client view, such as alignment
buttons or a set of markers that can be dragged onto the ruler.

A ruler view interacts with its client view in several ways. On appropriating the ruler view, the client view
usually sets it up according to its needs. The client view can also dynamically update the ruler view’s markers
as its layout changes. In its turn, the ruler view informs the client view of actions the user takes on the ruler
markers, allowing the client view to approve or limit the actions and to update its state based on the results
of the actions.

The appearance of a ruler is based on both the document view and the client view. The document view, as
the backdrop within the scroll view, serves as the canvas on which any client views are laid. Because of the
document view’s anchoring role, a ruler always draws its hash marks and labels relative to the document
view’s coordinate system. A vertical ruler also checks whether the document view is flipped and acts
accordingly. However, the ruler view treats subviews of the document view as items laid out within the
coordinate system defined by the document view, and so doesn’t change its hash marks when a client view
other than the document view is moved or scaled. For the client view’s convenience it does, however, express
marker locations in the client view’s coordinate system. A few other operations that ruler views perform are
defined in terms of the ruler’s own coordinate system. The discussion of a feature or method makes clear
which coordinate system applies. Table 1 summarizes the coordinate systems involved in using ruler views.

Table 1 Coordinate systems used with ruler views

Used forCoordinate system

Marker locationsClient view

Calculating hash marks based on measurement units and scaling; origin offset for
zero marks

Document view

Temporary ruler lines; component layoutRuler view

Image origin (which locates the image relative to the marker location)Marker image

13
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

About Ruler Views

14
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

About Ruler Views

An NSRulerMarker object displays a symbol on an NSRulerView object, indicating a location for whatever
graphic element it represents in the client of the ruler view (for example, a margin or tab setting, or the edges
of a graphic on the page). A ruler marker comprises three primary attributes: the image it displays on the
ruler view, the location of that image, and the object it represents. The setImage:, setMarkerLocation:
and setRepresentedObject:methods set each of these attributes, respectively. In addition, a ruler marker
records an offset for the image, allowing it to be placed relative to the marker location much in the way a
cursor’s hot spot relates a cursor image to the mouse location; the setImageOrigin: method establishes
this offset.

Most of these attributes are set upon initialization by the
initWithRulerView:markerLocation:image:imageOrigin: method. New ruler markers don’t have
represented objects; the client typically establishes the represented object in its rulerView:didAddMarker:
method. A new ruler marker can be moved around in its ruler view, but not removed from it. The setMovable:
and setRemovable: methods alter these default settings.

Represented objects allow the ruler view's client to distinguish among different attributes of the selection.
In the ruler view client methods, the client can retrieve the marker’s represented object to determine what
attribute to alter. Generic attributes can be represented by string or other value objects, such as the edge
names “Left”, “Right”, “Top”, and “Bottom”. Attributes already implemented as objects can be represented
by those objects. For example, the text system records tab stops as NSTextTab objects, which include the
tab location and its alignment. When an NSTextView object is the client view of a ruler, it simply makes the
NSTextTab objects the represented objects of the ruler markers.

15
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

About Ruler Markers

16
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

About Ruler Markers

Adding a ruler view to a scroll view can be as simple as invoking the NSScrollView method
setHasHorizontalRuler: and setHasVerticalRuler: methods. These create instances of the default
ruler view class, which you can change using the NSScrollView class method setRulerViewClass:. You
can also set ruler views directly on a per-instance basis using setHorizontalRulerView: and
setVerticalRulerView:. Once you’ve added rulers to a scroll view, you can hide and reveal them using
setRulersVisible:.

Beyond creating the rulers, you need take only two steps to set them up properly for use by the views
contained within the scroll view: locate the zero marks of the rulers and reserve room for accessory views.
You normally perform these steps only once, when setting up the NSScrollView object with rulers. However,
if you allow the user to reset document attributes such as margins, you should change the zero mark locations
as well. Also, if you reuse the scroll view by swapping in a new document view you may need to set up the
rulers again with different settings.

The first step is to determine where you want the zero marks of the rulers to be located relative to the bounds
origin of the document view. The zero marks are coincident with the bounds origin by default, but you can
change this with the method setOriginOffset:. This method takes an offset specified in the document
view’s coordinate system. If you need to set the origin offset based on a point in a subview of the document
view, such as a text view that’s inset on a page, use convertPoint:fromView: to realize it in the document
view’s coordinate system. This Objective-C code fragment places the zero marks at the bounds origin of a
client view, which lies somewhere inside the document view:

zero = [docView convertPoint:[clientView bounds].origin fromView:clientView];
[horizRuler setOriginOffset:zero.x - [docView bounds].origin.x];

After placing the zero marks, you should set up your rulers so that they don’t change in size as the user works
within the document view. For example, if two different subviews of the document view use different accessory
views, the ruler view enlarges itself as necessary each time you change the accessory view. Such changes
are at best unsightly and at worst confusing to the user. To avoid this problem, calculate ahead of time the
sizes of the largest accessory view and the largest markers, and set the ruler view’s required thickness for
these elements using setReservedThicknessForAccessoryView: and
setReservedThicknessForMarkers:. For example, if you have two accessory views for the horizontal
ruler, one 16.0 PostScript units high and the other 24.0, invoke
setReservedThicknessForAccessoryView: with an argument of 24.0.

17
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Setting Up a Ruler View

18
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Setting Up a Ruler View

A new ruler view automatically uses the user’s preferred measurement units for drawing hash marks and
labels, as stored in the user defaults system under the key NSMeasurementUnit. If your application allows
the user to change his preferred measurement units, you can change them at runtime using
setMeasurementUnits:, which takes the name of the units to use, such as Inches or Centimeters, and
causes the ruler view to use that unit definition in spacing its hash marks and labels.

NSRulerView supports the units Inches, Centimeters, Points, and Picas by default. If your application
uses other measurement units, your application should define and register them before creating any ruler
views. To register a unit, use the class method
registerUnitWithName:abbreviation:unitToPointsConversionsFactor:stepUpCycle:stepDownCycle:.
Your application can register these wherever it’s most convenient, such as in the NSApplication delegate
method applicationDidFinishLaunching:.

This Objective-C code fragment registers a new unit called Grummets, with the abbreviation gt:

NSArray *upArray;
NSArray *downArray;

upArray = [NSArray arrayWithObjects:[NSNumber numberWithFloat:2.0], nil];
downArray = [NSArray arrayWithObjects:[NSNumber numberWithFloat:0.5],
 [NSNumber numberWithFloat:0.2], nil];
[NSRulerView registerUnitWithName:@"Grummets"
 abbreviation:NSLocalizedString(@"gt", @"Grummets abbreviation string")
 unitToPointsConversionFactor:100.0
 stepUpCycle:upArray stepDownCycle:downArray];

This Java code fragment does the same thing:

NSArray upArray;
NSArray downArray;

upArray = new NSArray (2.0, nil);
downArray = new NSArray (0.5, 0.2, nil);
[NSRulerView.registerUnit ("Grummets", "gt", 100.0, upArray, downArray]);

A Grummet is 100.0 PostScript units (points) in length, so a ruler view using it draws a major hash mark every
100.0 points when its document view is unscaled. If the document view is scaled, the ruler view spaces its
hash marks accordingly.

The arguments stepUpCycle and stepDownCycle control how hash marks are drawn for fractions and
multiples of units. NSRulerView attempts to place hash marks so that they’re neither too crowded nor too
sparse based on the current scale of the document view. It does so by drawing smaller hash marks for fractions
of units where possible and by removing hash marks for whole units where necessary.

19
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Changing a Ruler’s Measurement Units

The value of stepDownCycle determines the fractional units checked by the ruler view. For example, with
the unit Grummets defined above, the step down cycle is 0.5, then 0.2. With this cycle, the ruler view first
checks to see if there’s room for marks every half Grummet, placing them if there is. Then, it checks every
fifth of the remaining space, or a tenth of a full Grummet, placing further hash marks if there’s room. Then it
returns to the first step in the cycle to further subdivide the ruler, and so on.

The value of stepUpCycle determines how many full unit marks get dropped when there isn’t room for
each one. The example uses a single-step cycle of 2.0, which means that each second Grummet hash mark
is displayed if there isn’t room for every one, then every fourth if there still isn’t room, and so on.

20
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Changing a Ruler’s Measurement Units

Once you’ve set up a ruler view, as described in “Setting Up a Ruler View” (page 17), the scroll view’s document
view, or any subview of the document view, can become its client by sending it a setClientView:message.
This method notifies the prior client that it’s losing the ruler view using the rulerView:willSetClientView:
method, removes all of the ruler view’s markers, and sets the new client view. A client view normally
appropriates the ruler when it becomes first responder and keeps it until some other view appropriates it.
After appropriating the ruler view, the client needs to set up its layout and markers.

Adjusting the Layout

If the client has a custom accessory view, it sets that using setAccessoryView:. Clients without accessory
views should avoid removing the ruler view’s accessory view when appropriating the ruler, as this can cause
unsightly screen flicker as the ruler is redrawn. It’s better in this case for a client view that has an accessory
view to implement rulerView:willSetClientView:, disabling the controls in the accessory view so that
they’re not active when other clients are using the ruler. Then, when the client view with the accessory view
appropriates the ruler, it should set its accessory view again in case another client swapped the accessory
view out, and reenable the controls.

Setting Ruler Markers

Aside from the layout of the ruler view itself, the client can also add markers to indicate the positions of its
graphic elements, such as tabs and margins in text or the bounding boxes of drawn shapes or images. Each
marker is an NSRulerMarker object, which displays a graphic image on the ruler at its given location and can
be associated with an object that identifies the attribute indicated by the marker. You initialize an
NSRulerMarker using its initWithRulerView:markerLocation:image:imageOrigin: method, which
takes as arguments the NSRulerView where the marker is displayed, its location on the ruler in the client
view’s coordinate system, the image to display, and the point within the image that lies on the ruler’s baseline.
Once you’ve created the markers, you can use the NSRulerView methods addMarker: or setMarkers: to
put them on the ruler. This Objective-C code fragment, for example, sets up markers denoting the left and
right edges of the selected object’s frame rectangle:

NSRulerMarker *leftMarker;
NSRulerMarker *rightMarker;

leftMarker = [[NSRulerMarker alloc] initWithRulerView:horizRuler
 markerLocation:NSMinX([selectedItem frame]) image:leftImage
 imageOrigin:NSMakePoint(0.0, 0.0)];

rightMarker = [[NSRulerMarker alloc] initWithRulerView:horizRuler
 markerLocation:NSMaxX([selectedItem frame]) image:rightImage
 imageOrigin:NSMakePoint(8.0, 0.0)];

Adjusting the Layout 21
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Using a Ruler View’s Client

[horizRuler setMarkers:[NSArray arrayWithObjects:leftMarker, rightMarker, nil]];

This Java code fragment does the same thing:

NSRulerMarker leftMarker;
NSRulerMarker rightMarker;

NSRect frame = selectedItem.frame();

leftMarker = new NSRulerMarker (horizRuler, frame.origin(), leftImage, new
Point(0.0, 0.0));

rightMarker = new NSRulerMarker (horizRuler, frame.maxX(), rightImage, new
Point(8.0, 0.0));

[horizRuler.setMarkers (new NSArray (leftMarker, rightMarker, nil));

The images used for this example are 8 pixels square and lie just inside of their relevant positions. The figure
below shows the left and right marker images, enlarged and with gray bounding boxes. Thus, the left marker’s
image must be placed with its lower left corner, or (0.0,0.0), at the marker location, while the lower right
corner of the right marker, at (8.0,0.0), is used. The image origin is always expressed in the coordinate system
of the image itself, just as an NSCursor’s hot spot is.

0.0, 0.0 8.0, 0.0

A new NSRulerMarker allows the user to drag it around on its ruler but not to remove it. You can change
these defaults by sending it setMovable: and setRemovable: messages. For example, you might make
markers representing tabs in text removable to allow the user to edit the paragraph settings.

Markers bear one additional attribute, which allows you to distinguish among multiple markers, specifically
markers that share the same image. This is the represented object, set with the NSRulerMarker method
setRepresentedObject:. A represented object can simply be a string identifying a generic attribute, such
as “Left Margin” or “Right Margin”. It can also be an object stored in the client view or in the selection; for
example, the text system records tab stops as NSTextTab objects, which include the tab location and its
alignment. When the user manipulates a tab marker, the client can simply retrieve its represented object to
get the tab being affected.

22 Setting Ruler Markers
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Using a Ruler View’s Client

While a ruler’s client view must perform the work of determining marker locations and placing them on the
ruler, the ruler itself handles all the work of tracking user manipulations of the markers, sending messages
to the client view that inform it of the changes before they begin, as they occur, and after they finish. The
client view can use these messages to update its own state. The following sections describe the individual
processes of moving, removing, and adding markers, along with a special method for handling mouse events
in the ruler area.

Moving Markers

When the user presses the mouse button over a ruler marker, NSRulerView sends the marker a
trackMouse:adding: message. If the marker isn’t movable this method does nothing and immediately
returns NO. If it is movable, then it sends the client a series of messages allowing it to determine how the
user can move the marker around on the ruler.

The first of these messages is rulerView:shouldMoveMarker, which allows the client view to prevent an
otherwise movable marker from being moved. Normally, whether a marker can be moved should be set on
the marker itself, but there are situations, such as where items can be locked in place, where this is more
properly tracked by the client view instead. If the client view returns YES, allowing the movement, then it
receives a series of rulerView:willMoveMarker:toLocation: messages as the user drags the marker
around. Each message identifies the marker being moved and its proposed new location in the client view’s
coordinate system. The client view can return an altered location to restrict the marker’s movement, or update
its display to reflect the new location. Finally, when the user releases the mouse button, the client receives
rulerView:didMoveMarker:, on which it can update its state and clean up any information it may have
used while tracking the marker’s movements.

Removing Markers

Removal of markers is handled by a similar set of messages. However, these are always sent during a movement
operation, as the user must first be dragging a marker within the ruler to be able to drag it off the ruler. If a
marker isn’t set to be removable, the user simply can’t drag it off. If the marker is removable, then when the
user drags the mouse far enough away from the ruler’s baseline, it sends the client view a
rulerView:shouldRemoveMarker: message, allowing the client to approve or veto the removal. No
messages are necessary for new locations, of course, but if the user returns the marker to the ruler then it
resumes sending rulerView:willMoveMarker:toLocation:messages as before. If the user releases the
mouse with the marker dragged away from the ruler, the marker sends the client view a
rulerView:didRemoveMarker: message, so the user can delete the item or attribute represented by the
marker.

Moving Markers 23
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Letting Users Manipulate Markers

Adding Markers

When the user wants to add a marker, the addition must be initiated by the application, of course, since
there is no marker yet for the ruler to track. The first step in adding a marker, then, is to create one, using
the NSRulerMarkerinitWithRulerView:markerLocation:image:imageOrigin: method. Once the
new marker is created, you instruct the ruler view to handle dragging it onto itself by sending it a
trackMarker:withMouseEvent: message. One means of doing this is to use the mouse event from the
client view method rulerView:handleMouseDown:, as described in “Handling Mouse Events in the Ruler
Area” (page 24). Another is to create a custom view object—which typically resides in the ruler’s accessory
view—that displays prototype markers, and that handles a mouse-down event by creating a new marker for
the ruler and invoking trackMarker:withMouseEvent:with the new marker and that mouse-down event.

Once you’ve initiated the addition process, things proceed in the same manner as for moving a marker. The
ruler view sends the new marker a trackMouse:adding: message, with YES as the second argument to
indicate that the marker isn’t merely being moved. The marker being added then sends the client view a
rulerView:shouldAddMarker: message, and if the client approves, then it repeatedly sends
rulerView:willAddMarker:atLocation: messages as the user moves the marker around on the ruler.
The user can drag the marker away to avoid adding it, or release the mouse button over the ruler, in which
case the client receives a rulerView:didAddMarker: message.

As with moving a marker, you should consider enabling and disabling in a more immediate fashion than by
the client view method if possible. If the user shouldn’t be able to drag a marker from the accessory view,
for example, the view containing the prototype marker should disable itself and indicate this in its appearance,
rather than allowing the user to drag a marker out only to discover that the ruler won’t accept it.

Handling Mouse Events in the Ruler Area

In addition to handling user manipulation of markers, a ruler informs its client view when the user presses
the mouse button while the mouse is inside the ruler area (where hash marks are drawn) by sending it a
rulerView:handleMouseDown: message. This information allows the client view to take some special
action, such as adding a new marker to the ruler, as described in “Adding Markers” (page 24). This approach
works well when it’s quite clear what kind of marker will be created. The client view can also use this message
as a cue to change its display in some way—for example, to add or remove a guideline that assists the user
in laying out and aligning items in the view.

24 Adding Markers
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Letting Users Manipulate Markers

A single client view may contain many selectable items, such as graphic shapes or paragraphs of text with
different ruler settings. When the selection changes, the client must reset the ruler view’s markers based on
the new selection. This kind of updating is fairly straightforward and can be performed as described in “Using
a Ruler View’s Client” (page 21) for situations where the client view itself changes.

Another kind of updating is needed when you want to support dynamic updating of ruler markers as the
user manipulates the elements of the client view. For example, when the user moves a shape, you want the
ruler markers to relocate when the user finishes moving it. Any method that changes relevant attributes of
the selection should update the ruler markers, whether by replacing them as a set or by checking each one
present and updating its location.

You can even put such updating code within a modal loop that handles dragging items around in the client
view, so that the markers track the position of the selected item. This can be a fairly heavyweight operation
to perform while also handling movement of the selected item, however. In support of a lighter weight
means of showing this information, NSRulerView allows you to draw temporary ruler lines that can be drawn
and erased very quickly. One method, moveRulerlineFromLocation:toLocation:, controls the drawing
of ruler lines. It takes two locations expressed in the NSRulerView’s coordinate system, erasing the ruler line
at the old location and redrawing it at the new. To create a new ruler line, specify –1.0 as the old location;
to erase one completely, specify –1.0 as the new location. Although you’re responsible for keeping track of
the locations to erase and redraw, this isn’t as cumbersome or inefficient as sifting through or replacing the
markers themselves.

25
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Updating the Ruler View

26
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Updating the Ruler View

This table describes the changes to Rulers and Paragraph Styles.

NotesDate

Corrected method names in "Setting Up a Ruler View."2007-09-04

Copyedited all articles. Added an article, “Breaking Lines by Truncation” (page
11), and related information in other articles.

2004-04-16

Rewrote introduction and added an index.2004-02-13

Revision history added to existing topic.2002-11-12

27
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Document Revision History

28
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Document Revision History

A

accessory views of ruler views 21
addMarker: method 21
alignment of text 9
alignment paragraph style attribute 9
applicationDidFinishLaunching: method 19
attributes of text. See text attributes

C

client views of ruler views 21, 23
convertPoint:fromView: method 17
coordinate systems

of ruler and document views 13

D

document views 13

F

firstLineHeadIndent paragraph style attribute 9

H

hash marks of ruler views 19
headIndent paragraph style attribute 9

I

initWithRulerView:markerLocation:image:
imageOrigin: method 15, 21, 24

L

line height 10
line spacing 10
lineBreakMode paragraph style attribute 9
lineHeightMultiple paragraph style attribute 10
lines of text

breaking 9, 11
lineSpacing paragraph style attribute 10

M

margins of text pages 9, 17
markers in ruler views

adding 24
described 15
images displayed 15, 22
manipulating 23–24
moving 23
removing 23
represented objects of 22
setting up 21
updating 25

maximumLineHeight paragraph style attribute 10
measurement units

of ruler views 19–20
minimumLineHeight paragraph style attribute 10
mouse events

in ruler views 24
moveRulerlineFromLocation:toLocation:method

25

N

NSApplication class 19
NSAttributedString class 9
NSMutableParagraphStyle class 9
NSParagraphStyle class 9
NSRulerMarker class 13, 15, 21, 24

29
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

Index

NSRulerView class 13, 23
NSScrollView class 13, 17
NSTextTab class 15

P

paragraph spacing 10
paragraph style attributes 9
paragraph style objects

defined 9
setting up line-break mode 12

paragraphSpacing paragraph style attribute 10
paragraphSpacingBefore paragraph style attribute

10

R

registerUnitWithName:abbreviation:
unitToPointsConversionsFactor:stepUpCycle:
stepDownCycle: method 19

ruler views
markers in. See markers in ruler views
accessory views 21
clients 21
described 13
hash marks 19
layout of 21
setting up 17
updating 25
zero marks 17

rulerView:didAddMarker: method 24
rulerView:didMoveMarker: method 23
rulerView:didRemoveMarker: method 23
rulerView:handleMouseDown: method 24
rulerView:shouldAddMarker: method 24
rulerView:shouldMoveMarker method 23
rulerView:shouldRemoveMarker: method 23
rulerView:willAddMarker:atLocation: method

24
rulerView:willMoveMarker:toLocation: method

23
rulerView:willSetClientView: method 21
rulerViewDidAddMarkerrulerView:didAddMarker:

method 15

S

setAccessoryView: method 21
setClientView: method 21

setHasHorizontalRuler: method 17
setHasVerticalRuler: method 17
setImage: method 15
setImageOrigin: method 15
setLineBreakMode method 12
setMarkerLocation: method 15
setMarkers: method 21
setMeasurementUnits: method 19
setMovable: method 15, 22
setOriginOffset: method 17
setRemovable: method 15, 22
setRepresentedObject: method 15, 22
setReservedThicknessForAccessoryView:method

17
setReservedThicknessForMarkers: method 17
setRulersVisible: method 17
setRulerViewClass: method 17

T

tab stops 9, 15
table views 11
tabStops paragraph style attribute 9
tailIndent paragraph style attribute 9
text attributes

paragraph styles 9
tick marks. See hash marks of ruler views
trackMarker:withMouseEvent: method 24
trackMouse:adding: method 23, 24
truncation of text lines 11

U

units of measure
of ruler views 19–20

user defaults
measurement units 19

30
2007-09-04 | © 1997, 2007 Apple Inc. All Rights Reserved.

	Rulers and Paragraph Styles
	Contents
	Figures, Tables, and Listings
	Introduction
	About Paragraph Styles
	Breaking Lines by Truncation
	About Ruler Views
	About Ruler Markers
	Setting Up a Ruler View
	Changing a Ruler’s Measurement Units
	Using a Ruler View’s Client
	Adjusting the Layout
	Setting Ruler Markers

	Letting Users Manipulate Markers
	Moving Markers
	Removing Markers
	Adding Markers
	Handling Mouse Events in the Ruler Area

	Updating the Ruler View
	Revision History
	Index
	A
	C
	D
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U

