
Sheet Programming Topics for Cocoa
Cocoa > User Experience

2006-09-05

Apple Inc.
© 2002, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Sheets 7

Organization of This Document 7

About Sheets 9

When to Use Sheets 9
Sheets and Delegation 10
Working With Sheets 10

Types of Alerts 11

Using Alert Sheets 13

Using the NSAlert Class 13
Using the Functional API 14

Displaying Alert Help 17

Using Custom Sheets 19

Presenting a Series of Sheets 21

Using Alert Sheets in Java 23

Sheet Notifications 25

Positioning Sheets 27

Using Application-Modal Dialogs 29

Document Revision History 31

3
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

4
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Figures and Listings

About Sheets 9

Figure 1 An example of a sheet 9

Types of Alerts 11

Figure 1 A standard alert with an application icon 11
Figure 2 A caution alert with the caution icon 11

Using Alert Sheets 13

Figure 1 Alert to confirm deletes 16
Listing 1 Creating and initializing the NSAlert object 13
Listing 2 Displaying the alert sheet 13
Listing 3 Interpreting the result in the modal delegate method 14
Listing 4 The deleteSelectedRows: method implemented to present a sheet with two buttons

15

Displaying Alert Help 17

Listing 1 Setting the help button and delegate for an alert dialog 17
Listing 2 Implementing the delegate method for displaying alert help 17

Using Custom Sheets 19

Listing 1 Displaying a custom sheet 19
Listing 2 Closing a custom sheet 19
Listing 3 Did-end selector 20

Presenting a Series of Sheets 21

Figure 1 Alert sheet with three buttons 21
Listing 1 The deleteSelectedRows: method implemented to present a sheet with three

buttons 21
Listing 2 Displaying the custom sheet 22

Using Alert Sheets in Java 23

Listing 1 The deleteSelectedRows method implemented to present a sheet with two buttons
23

5
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Positioning Sheets 27

Listing 1 Positioning a sheet right under a text field 27

Using Application-Modal Dialogs 29

Listing 1 Displaying an application-modal dialog 29
Listing 2 Closing an application-modal dialog 29

6
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

A sheet is simply a dialog attached to a specific window, ensuring that a user never loses track of which
window the dialog belongs to. Sheets can be dialogs that require information from the user (such as a Save
dialog) or they can be alerts that provide messages about error conditions or warn users of potentially
hazardous actions (such as a Save Before Quitting alert).

Alert sheets are document-modal whereas standard alert dialogs are application-modal. A standard alert
dialog appears in its own window (technically, an NSPanel object) and allows no user action in the application
until the user dismisses the alert. See Dialogs and Special Panels for a discussion of standard alert dialogs.

The “Dialogs” chapter in Apple Human Interface Guidelines discusses sheets from the point of view of how
they relate to other Mac OS X user interface objects.

Cocoa developers interested in using sheets in their application should read this document.

Organization of This Document

This programming describes sheets and how they work, and provides examples on how you can use sheets
in your applications. It contains the following articles:

 ■ “About Sheets” (page 9) provides basic information about sheets.

 ■ “Types of Alerts” (page 11) describes the types of alerts and how they are used.

 ■ “Using Alert Sheets” (page 13) describes how to present an alert sheet.

 ■ “Displaying Alert Help” (page 17) describes how to display help information associated with an alert
sheet.

 ■ “Using Custom Sheets” (page 19) describes how to create and present a custom sheet.

 ■ “Presenting a Series of Sheets” (page 21) describes how to present a series of sheets.

 ■ “Using Alert Sheets in Java” (page 23) describes how to present an alert sheet if you’re developing in
Java.

 ■ “Sheet Notifications” (page 25) describes the notifications sent, along with their related delegate methods,
while working with a sheet.

 ■ “Positioning Sheets” (page 27) describes how to position a sheet within its window.

 ■ “Using Application-Modal Dialogs” (page 29) describes how to create and present an application-modal
dialog.

Organization of This Document 7
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Sheets

8 Organization of This Document
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Sheets

A sheet is simply a dialog attached to a specific window, ensuring that a user never loses track of which
window the dialog belongs to. The ability to keep a dialog attached to its pertinent window enables users
to take full advantage of the Mac OS X window layering model and also encourages modelessness; users can
work on other documents or in other applications while a sheet is open.

Figure 1 An example of a sheet

A sheet is document modal—that is while it is open the user is prevented from doing anything else in the
window, or document, until the dialog is dismissed. In contrast, a dialog that is application modal prevents
the user from doing anything else within the application.

Managing the animation of sheets, and making sure the sheet appears properly if the parent window is
narrower than the sheet or near the edge of the screen, is provided “for free” by Cocoa.

Cocoa provides an API for presenting sheets. Because sheets are document modal, these calls return
immediately after presenting a sheet. Callback methods are used to let your application know when the user
dismisses a sheet.

When to Use Sheets

Use sheets for dialogs specific to a document when the user interacts with the dialog and dismisses it before
proceeding with work. Some examples of when to use sheets:

 ■ A modal dialog that is specific to a particular document, such as saving or printing. The Cocoa classes
NSSavePanel and NSPrintPanel present their views as sheets.

 ■ A modal dialog that is specific to a single-window application that does not create documents. A
single-window utility program might use a sheet to request acceptance of a licensing agreement from
the user, for example.

When to Use Sheets 9
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

About Sheets

 ■ Other window-specific dialogs typically dismissed by the user before proceeding. Use a sheet when a
dialog benefits from being attached to the window as a modal dialog, even if you might otherwise design
the dialog as a modeless dialog.

Sheets and Delegation

Because sheets in Cocoa are document modal, when you display a sheet, normal program execution continues,
allowing the user to do other things in other windows. This means your application must be prepared to
handle user interaction when it occurs.

When you display a sheet, you specify selectors for the callback methods sent when the user dismisses the
sheet, as well as the receiver of these messages, known as the modal delegate. The modal delegate is
informed of the button the user clicked as a parameter in the method it receives.

Unlike other delegates in Cocoa, modal delegates in sheets are temporary and the relationship lasts only
until the sheet is dismissed. The sheet’s modal delegate is not retained by any document-modal method or
function.

Working With Sheets

Sheets are laid out like any other dialog in Mac OS X. You are responsible for loading, showing, and closing
sheets. While a sheet it displayed, events are handled by the Application Kit just as for any other window.
Other sheet behavior, such as the animation when it appears and is dismissed, is handled automatically by
the Application Kit.

Each sheet function takes as an argument a modal delegate and one or more callback methods. All calls
specify a callback method that is sent before dismissing the sheet, sometimes referred to as the did-end
selector. Some sheet functions also allow for a second callback method that is sent after dismissing the sheet,
known as the did-dismiss selector. When you display a sheet you can optionally include a context-info
argument. When the sheet ends, the modal delegate is sent the did-end selector, receiving as parameters
the sheet window object, the result of running the sheet (either a Boolean value or a return code), and the
context-info argument. context-info is a way for you to pass information from the start of the modal session
to the end, and this information can be whatever you wish: a simple value, a structure, or an object.

The did-end selector is sent before dismissing the sheet, providing you the opportunity to dismiss the sheet
and the parent document window at the same time. For example, you might want to do this when dismissing
a “do you want to save” alert before closing a window. If the user clicks Don't Save, you want to close both
the document window and the sheet without the sheet effect. This can be accomplished by calling
[documentWindow close] from the did-end selector. You can also dismiss just the sheet in this method
by calling [sheet orderOut: self]. If you do not dismiss the sheet, it will be done for you on return
from the did-end selector. You may be in a situation, however, where you want to immediately present
another sheet, and this is best done from the did-end selector after dismissing the first sheet.

You may find it convenient to implement both the did-end selector and the did-dismiss selector, but it is not
required.

10 Sheets and Delegation
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

About Sheets

There are two types of alerts, standard and caution. Most alerts should be standard alerts, which display the
application icon of the current application, as shown in Figure 1.

Figure 1 A standard alert with an application icon

Use a caution alert only to warn the user when a possible side effect of the current task is the inadvertent
destruction of data. A caution alert displays a caution icon badged with application icon, as shown in Figure
2.

Figure 2 A caution alert with the caution icon

How you specify the alert type varies according to programmatic interface:

 ■ NSAlert. Send setAlertStyle: to an NSAlert object with an argument of NSWarningAlertStyle or
NSInformationalAlertStyle to specify a standard alert. Send the same message with an argument
of NSCriticalAlertStyle to specify a caution alert.

 ■ Functional API. Use the NSBeginAlertSheet function to display a standard alert and
NSBeginCriticalAlertSheet to display a caution alert.

Caution alerts should be used only as specified in the “Alerts” section of Apple Human Interface Guidelines.

11
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Types of Alerts

12
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Types of Alerts

Alert sheets are used by almost every application. Cocoa makes it easy to create them. This task demonstrates
how to quickly add an alert sheet to your application. See the “Dialogs” chapter of Apple Human Interface
Guidelines for details on when a sheet should be used.

Cocoa gives you two ways to create and display alert sheets. You can use the Application Kit’s functional API
for alert sheets, or you can use the methods of the NSAlert class. The latter approach is recommended for
applications built for Mac OS X v10.3 and later; NSAlert not only brings the advantages of the object-oriented
model, it introduces new features, such as the ability to display help related to the alert. This document
explains both approaches.

Important: The NSAlert class is available in Mac OS X version 10.3 and later.

Using the NSAlert Class

Using the NSAlert API to display an alert sheet involves three simple steps: creating and initializing an NSAlert
instance, displaying the sheet, and interpreting and acting on the user’s choice.

1. Create the NSAlert object though the standard Objective-C alloc-and-init procedure. Then send the
required NSAlert “setter” messages to initialize the alert. Listing 1 (page 13) gives an example of this.

Listing 1 Creating and initializing the NSAlert object

NSAlert *alert = [[[NSAlert alloc] init] autorelease];
[alert addButtonWithTitle:@"OK"];
[alert addButtonWithTitle:@"Cancel"];
[alert setMessageText:@"Delete the record?"];
[alert setInformativeText:@"Deleted records cannot be restored."];
[alert setAlertStyle:NSWarningAlertStyle];

2. Invoke thebeginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo:method
on the NSAlert object (Listing 2). This displays the sheet attached to the specified window.

Listing 2 Displaying the alert sheet

[alert beginSheetModalForWindow:[searchField window] modalDelegate:self
didEndSelector:@selector(alertDidEnd:returnCode:contextInfo:) contextInfo:nil];

The modal-delegate parameter must be an object that implements a method with the following signature:

- (void)alertDidEnd:(NSAlert *)alert returnCode:(int)returnCode
 contextInfo:(void *)contextInfo;

Using the NSAlert Class 13
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Alert Sheets

The NSAlert object invokes this method when the user clicks a button on the alert sheet to indicate his
or her choice (which consequently dismisses the sheet). The modal delegate is not the recipient of any
other delegation messages; it is the delegate only for the current modal session. The context-info
parameter is for any data you wish to pass to the modal delegate. Instead of autoreleasing the NSAlert
object when you create it, you may release the object in this method, if you wish.

3. Implement the modal-delegate method to identify the user’s choice and proceed accordingly (Listing
3).

Listing 3 Interpreting the result in the modal delegate method

- (void)alertDidEnd:(NSAlert *)alert returnCode:(int)returnCode contextInfo:(void
 *)contextInfo {
 if (returnCode == NSAlertFirstButtonReturn) {
 [self deleteRecord:currentRec];
 }
}

The return code is an enum constant identifying the button on the dialog that the user clicked. The first
button added to the dialog (which, in left-to-right scripts, is the one closest to the right edge) is identified
by NSAlertFirstButtonReturn. The second button that is added appears just to the left of the first
and is identified by NSAlertSecondButtonReturn —and so forth for the third button.

As a convenience for compatibility with the older functional API (see “Using the Functional API” (page 14)),
you can create NSAlert objects with the class factory method
alertWithMessageText:defaultButton:alternateButton:otherButton:informativeTextWithFormat:.
This method allows you to retain the earlier constants used to identify the button clicked. Here is an example
of how you might invoke this method (with the previous example in mind):

NSAlert *alert = [NSAlert alertWithMessageText:@"Delete the record?"
 defaultButton:@"OK" alternateButton:@"Cancel" otherButton:nil
 informativeTextWithFormat:@"Deleted records cannot be restored."];

Using the Functional API

The application assumed for this example is a table of expense report entries similar to a spreadsheet. The
deleteSelectedRows: method is sent when the user tries to delete selected rows in the expense report.
deleteSelectedRows: asks the user’s permission to delete the rows by displaying an alert sheet using the
NSBeginAlertSheet function.

NSBeginAlertSheet has a fairly long list of parameters, but the function is not difficult to use. Here is a
summary of the parameters:

title
The main text of the alert, which appears in the emphasized system font.

defaultButton
The label for the sheet’s default button; the button label should correspond to the action that will
result from pressing the button–for example, “Save,” “Erase,” or “Delete”.

alternateButton
The label for the sheet’s alternate button. If you pass nil, only the defaultButton is displayed.

14 Using the Functional API
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Alert Sheets

otherButton
The label for the sheet’s other button. If you pass nil, only the defaultButton and
alternateButton are displayed.

documentWindow
A reference to the NSWindow the sheet is attached to.

modalDelegate
A reference to the object acting as the sheet’s delegate.

didEndSelector
A selector for a method implemented by modalDelegate. This method is sent when the modal
session is ended, but before the sheet is dismissed. If you don’t need this capability, pass NULL.

didDismissSelector
A selector for a method implemented by modalDelegate. This method is sent after the sheet is
dismissed in the event your application might need to perform additional processing. If you don’t
need this capability, pass NULL.

contextInfo
Additional information you can define to pass to modalDelegate as a parameter of didEndSelector
and didDismissSelector.

message
Optional additional text that appears in the sheet. The text appears in the small system font. This
string can contain printf-style escape sequences.

optionalParameters
The printf-style parameters used to format message.

So, the implementation of deleteSelectedRows: would simply look as shown in Listing 4.

Listing 4 The deleteSelectedRows: method implemented to present a sheet with two buttons

- (BOOL)deleteSelectedRows: (NSWindow *)sender
{
 NSBeginAlertSheet(
 @"Do you really want to delete the selected rows?",
 // sheet message
 @"Delete", // default button label
 nil, // no third button
 @"Cancel", // other button label
 sender, // window sheet is attached to
 self, // we’ll be our own delegate
 @selector(sheetDidEndShouldDelete:returnCode:contextInfo:),
 // did-end selector
 NULL, // no need for did-dismiss selector
 sender, // context info
 @"There is no undo for this operation.");
 // additional text

// We don’t know if the rows should be deleted until the user responds,
// so don’t.

 return NO;
}

When the user attempts to delete the selected expenses, the sheet shown in Figure 1 drops down from the
window title bar.

Using the Functional API 15
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Alert Sheets

Figure 1 Alert to confirm deletes

The implementation of the did-end selector sheetDidEndShouldDelete:returnCode:contextInfo:,
sent when the user clicks a button is as follows:

- (void)sheetDidEndShouldDelete: (NSWindow *)sheet
 returnCode: (int)returnCode
 contextInfo: (void *)contextInfo
{
 if (returnCode == NSAlertDefaultReturn)
 // delete selected rows here
}

If the user clicks the Cancel button, the value of returnCode is NSAlertOtherReturn. If a third button
were provided, its return value would be NSAlertAlternateReturn.

16 Using the Functional API
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Alert Sheets

The NSAlert class includes several methods that enable you to display help information related to an alert
dialog or sheet. You can either use the application’s NSHelpManager object to find and display information
using the Help Viewer application, or you can provide your own means for displaying help information.

Important: The NSAlert class is available in Mac OS X version 10.3 and later.

An alert dialog or sheet advertises that help is available with a round question-mark button. You request the
display of this button by sending setShowsHelp: to the NSAlert object with an argument of YES. To actually
display the help, you have two options:

 ■ Specify a help anchor, which the NSHelpManager object can use to find the help text to display in Help
Viewer.

Specify the help anchor by invoking NSAlert’s setHelpAnchor: method.

 ■ Set a delegate for the NSAlert object and implement the delegate method alertShowHelp:. The
delegate is responsible for displaying help information related to the alert.

Listing 1 shows how you might initialize an NSAlert object for the second help option.

Listing 1 Setting the help button and delegate for an alert dialog

NSAlert *alert = [[NSAlert alloc] init];
// other initializations here ...
[alert setShowsHelp:YES];
[alert setDelegate:self];

Listing 2 illustrates an implementation of the NSAlert alertShowHelp: delegate method.

Listing 2 Implementing the delegate method for displaying alert help

- (BOOL)alertShowHelp:(NSAlert *)alert {
 NSString *path = [[NSBundle mainBundle] pathForResource:@"Help"
ofType:@"html"];
 BOOL flag = [[NSWorkspace sharedWorkspace] openFile:path];
 return flag;
}

If your application has more than one alert dialog or sheet for which it displays help, it should test the NSAlert
object passed into this method to determine the help text to display. Always return YES unless the display
of help did not succeed.

17
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Displaying Alert Help

18
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Displaying Alert Help

One type of sheet is an alert sheet, which was discussed in “Using Alert Sheets” (page 13). If the type of
information presented in alert sheets is not suitable for your application, you can create and present a custom
sheet.

When working with custom sheets, you are responsible for displaying as well as dismissing the sheet. You
display a sheet with the beginSheet:... method, and you end a sheet with the endSheet: method.
Between these two methods, your sheet is operating modally.

You create your custom sheet using Interface Builder. It is important to remember to include a button to
allow the user to dismiss the sheet when they are finished with it.

This discussion assumes that the sheet is in a separate nib file called MyCustomSheet. A Close button is
defined on the sheet. The Close button is set to perform the closeCustomSheet: method when clicked.

The showCustomSheet: method displays the custom sheet modal to the window passed as a parameter.
The arguments to beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:
are similar to those for the NSBeginAlertSheet function, but the Close button on the custom sheet controls
dismissing the sheet. A did-end selector is specified to handle any activity necessary before dismissing the
sheet.

Listing 1 Displaying a custom sheet

- (void)showCustomSheet: (NSWindow *)window

// User has asked to see the custom display. Display it.
{
 if (!myCustomSheet)
//Check the myCustomSheet instance variable to make sure the custom sheet does
 not already exist.
 [NSBundle loadNibNamed: @"MyCustomSheet" owner: self];

 [NSApp beginSheet: myCustomSheet
 modalForWindow: window
 modalDelegate: self
 didEndSelector: @selector(didEndSheet:returnCode:contextInfo:)
 contextInfo: nil];

 // Sheet is up here.
 // Return processing to the event loop
}

When the user clicks the Close button, the following method is executed (this was specified in the nib file
when creating the sheet).

Listing 2 Closing a custom sheet

- (IBAction)closeMyCustomSheet: (id)sender
{

19
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Custom Sheets

 [NSApp endSheet:myCustomSheet];
}

Control is sent to the did-end selector, which cleans up by closing the custom sheet. It is important to call
orderOut: when finished with your sheet, or it is not removed from the screen.

Listing 3 Did-end selector

- (void)didEndSheet:(NSWindow *)sheet returnCode:(int)returnCode contextInfo:(void
 *)contextInfo
{
 [sheet orderOut:self];
}

20
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Custom Sheets

Cocoa does not support the notion of cascading, or nested sheets. Per Apple Human Interface Guidelines,
“when the user responds to a sheet, and another sheet for that document opens, the first sheet must close
before the second one opens.”

Expanding on the sample in “Using Alert Sheets” (page 13), Figure 1 shows a third button added to the alert
sheet displayed by deleteSelectedRows:. This button displays additional information to the user in the
form of a custom sheet with additional information.

Figure 1 Alert sheet with three buttons

Listing 1 shows the implementation of the method that creates this alert.

Listing 1 The deleteSelectedRows: method implemented to present a sheet with three buttons

- (BOOL)deleteSelectedRows: (NSWindow *)sender
{
 NSBeginAlertSheet(
 @"Do you really want to delete the selected information?",
 // sheet message
 @"Delete", // default button label
 @"More Info", // allow user to check on the delete
 @"Cancel", // other button label
 sender, // window sheet is attached to
 self, // we’ll be our own delegate
 @selector(sheetDidEndShouldDelete:returnCode:contextInfo:),
 // did-end selector
 NULL, // no need for did-dismiss selector
 sender, // context info
 @"There is no undo for this operation.",
 // additional text in sheet
 nil); // no parameters in message

// We don’t know if the rows should be deleted until the user responds,
// so don’t.

 return NO;
}

21
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Presenting a Series of Sheets

The did-end selector is updated to handle the user requesting the additional information. Should the user
request the information, the alert sheet is closed prior to presenting the custom sheet:

- (void)sheetDidEndShouldClose: (NSWindow *)sheet
 returnCode: (int)returnCode
 contextInfo: (void *)contextInfo
{
 if (returnCode == NSAlertAlternateReturn) {
 [sheet close];
 [self showMoreInfo: (NSWindow *)contextInfo];
 }
 if (returnCode == NSAlertDefaultReturn)
 // delete selected rows here
}

Creation and display of custom sheets is discussed in “Using Custom Sheets” (page 19).

In a separate nib, a window with the explanatory text and a Close button are defined. The Close button is
set to perform the showMoreInfo: method when clicked. Implementation of the showMoreInfo: method
would be the same as the showCustomSheet: method shown in Listing 1 (page 19).

Listing 2 Displaying the custom sheet

- (void)showMoreInfo: (NSWindow *)window
// User has asked for more information about the delete. Display it.
{
 if (!moreInfoSheet)
 [NSBundle loadNibNamed: @"DeleteExpenseInfo" owner: self];

 [NSApp beginSheet: moreInfoSheet
 modalForWindow: window
 modalDelegate: nil
 didEndSelector: nil
 contextInfo: nil];
 [NSApp runModalForWindow: moreInfoSheet];
 // Sheet is up here.
 [NSApp endSheet: moreInfoSheet];
 [moreInfoSheet orderOut: self];
}

When the user clicks the Close button, the showMoreInfo: method is executed (this was specified in the
nib file when creating the sheet), which stops the application’s modal display of the nested sheet.

Another example of a second sheet that appears as the result of the user clicking a button in a sheet is having
a sheet with a progress indicator appear following a Save As dialog.

22
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Presenting a Series of Sheets

This document describes how to display a simple alert sheet when developing in Cocoa for Java.

Important: The Java API for Cocoa is deprecated in Mac OS X version 10.4 and later. You should use the
Objective-C API instead. For a tutorial on using Cocoa with Objective-C, see Cocoa Application Tutorial.

Listing 1 shows code to present an alert sheet (and to process it when dismissed). The new Class[] code
is part of the NSSelector creation. You are creating an array of Classes, and putting one class, the class of the
receiver of the selector, in it. Also note the syntax for the selector itself. contextInfo is the optional user
data; in Objective-C it can be anything; in Java it must be an object (null is OK).

Listing 1 The deleteSelectedRows method implemented to present a sheet with two buttons

public boolean deleteSelectedRows(NSWindow sender) {
 NSAlertPanel.beginAlertSheet (
 "Do you really want to delete the selected rows?",
 // sheet message
 "Delete", // default button
 null, // no third button
 "Cancel", // other button label
 sender, // window attached to
 this, // modal delegate
 new NSSelector("sheetDidEnd::", new Class[] {getClass()}),
 // did-end selector
 null, // no did-dismiss selector
 null, // context info
 "There is no undo for this operation.");
 // additional text
}

// We don’t know if the rows should be deleted until the user responds,
// so don’t.

 return false;

When the user attempts to delete the selected expenses, the sheet shown in Figure 1 (page 16) drops down
from the window title bar.

The implementation of the did-end selector sheetDidEnd, sent when the user clicks a button is as follows:

public void sheetDidEnd(NSWindow sheet, int returnCode, Object contextInfo) {
 NSSystem.log("Called did-end selector");
 if (returnCode == NSAlertPanel.DefaultReturn) {
 NSSystem.log("Rows are to be deleted");
 }
}

23
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Alert Sheets in Java

If the user clicks the Cancel button, the value of returnCode is NSAlertPanel.OtherReturn. If a third
button were provided, its return value would be NSAlertPanel.AlternateReturn.

24
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Alert Sheets in Java

NSWindow offers a set of notifications related to sheets, which it broadcasts on occurrences of a sheet opening
or closing. Each notification is matched to a delegate method, so an NSWindow’s delegate is automatically
registered for all notifications that it implements methods for.

NSWindowWillBeginSheetNotification is sent before a sheet is presented on a window and
NSWindowDidEndSheetNotification after it is dismissed.

A window delegate should implement the following methods to receive the appropriate sheet notification:

- (void)windowWillBeginSheet:(NSNotification *)notification;

- (void)windowDidEndSheet:(NSNotification *)notification;

It is important to note that a window’s delegate is not the same as the modal delegate specified as a parameter
in the NSBegin...Alert calls. The modal delegate passed into the NSBegin...Alert calls is a delegate
relationship that exists only until the sheet is dismissed.

25
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Sheet Notifications

26
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Sheet Notifications

A sheet does not have to be welded to its default location just below the title bar. You can position where
a sheet appears attached to a window by implementing the delegate method
window:willPositionSheet:usingRect:, which an NSWindow object invokes just before it animates
the sheet.

Important: The window:willPositionSheet:usingRect: method is available in Mac OS X version 10.3
and later.

The method does more than position the sheet on its window. It can also determine whether the sheet
animation originates from a particular object or area of the window. With
window:willPositionSheet:usingRect: you can, for example, have an alert sheet appear to emerge
from the text field associated with the condition described in the alert; you could also position the sheet so
that it is centered just under the text field. You might also implement this method to have the sheet placed
just below a window’s tool bar rather than its title bar.

Even though the method uses NSRect structures to specify the location of the sheet—one passed in as the
default location and another the new (returned) location—the NSRect does not define the rectangle occupied
by the sheet. (All sheets are of a standard size in relation to their window.) Instead the NSRect structure,
particularly the structure’s origin member (an NSPoint structure), specify where the top-left corner of the
sheet is attached to the window (in window coordinates). The size.width member of the NSRect specifies
the width of the initial animation (size.height is currently undefined).

The basic implementation of window:willPositionSheet:usingRect: is straightforward. It passes in
an NSRect structure specifying the default location of the sheet. You return an NSRect structure specifying
the new sheet location and the width of initial animation.

Listing 1 shows how a window delegate might implement window:willPositionSheet:usingRect: to
have the sheet animate from a text field (fooField) and then become attached to the window right below
the text field.

Listing 1 Positioning a sheet right under a text field

- (NSRect)window:(NSWindow *)window willPositionSheet:(NSWindow *)sheet
 usingRect:(NSRect)rect {
 NSRect fieldRect = [fooField frame];
 fieldRect.size.height = 0;
 return fieldRect;
}

Note that, as in the example, it is recommended that you set the size.height member of the returned
NSRect to zero.

If the window delegate is managing multiple windows and multiple sheets, it should test the first and second
arguments of the method to determine which window and sheet is involved and thus which sheet location
is appropriate.

27
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Positioning Sheets

28
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Positioning Sheets

You may occasionally find it necessary to use an application-modal dialog rather than a document-modal
sheet. Recall that an application-modal dialog prevents the user from doing anything else within the owning
application, although the user can switch to another application.

Working with application-modal dialogs is very similar to working with custom sheets. When working with
application-modal dialogs, you are responsible for displaying as well as dismissing the dialog. You display a
dialog with the beginSheet:... method, and you end an application-modal dialog with the endSheet:
method. Between these two methods, your dialog is operating application modally.

You create your dialog using Interface Builder. It is important to remember to include a button to allow the
user to dismiss the dialog when they are finished with it.

This discussion assumes that the dialog is in a separate nib file called MyCustomDialog. A Close button is
defined on the dialog. The Close button is set to perform the closeMyCustomDialog:method when clicked.

The showCustomDialog: method displays the dialog modal to the window passed as a parameter. The
arguments to beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: are
similar to those for the NSBeginAlertSheet function, but the Close button on the dialog controls dismissing
the dialog. After calling beginSheet..., the application continues to execute until it encounters
runModalForWindow:. The user is still allowed to interact with the application-modal dialog (it wouldn’t
make sense not to allow this), but activity in the rest of the application is suspended while this dialog is
presented.

Listing 1 Displaying an application-modal dialog

- (void)showCustomDialog: (NSWindow *)window
// User has asked to see the dialog. Display it.
{
 if (!myCustomDialog)
 [NSBundle loadNibNamed: @"MyCustomDialog" owner: self];

 [NSApp beginSheet: myCustomDialog
 modalForWindow: window
 modalDelegate: nil
 didEndSelector: nil
 contextInfo: nil];
 [NSApp runModalForWindow: myCustomDialog];
 // Dialog is up here.
 [NSApp endSheet: myCustomDialog];
 [myCustomDialog orderOut: self];
}

When the user clicks the Close button, the following method is executed (this was specified in the nib file
when creating the dialog), which stops the application’s modal display of the application-modal dialog.

Listing 2 Closing an application-modal dialog

- (IBAction)closeMyCustomDialog: (id)sender

29
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Application-Modal Dialogs

{
 [NSApp stopModal];
}

Control is returned to showCustomDialog:, which cleans up by closing the dialog. It is important to call
orderOut: when finished with your dialog, or it is not removed from the screen.

30
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Using Application-Modal Dialogs

This table describes the changes to Sheet Programming Topics for Cocoa.

NotesDate

Corrected typos; changed title from "Sheets."2006-09-05

Updated “Using Custom Sheets” (page 19) to use a document-modal sheet
rather than an application-modal dialog. Added “Using Application-Modal
Dialogs” (page 29).

2004-05-27

Updated to cover the NSAlert class and the NSWindow method
window:willPositionSheet:usingRect:, both introduced in Mac OS X
version 10.3. Specifically, this includes:

2003-07-31

Addition of “Positioning Sheets” (page 27).

Modification of “Using Alert Sheets” (page 13), “Introduction to Sheets” (page
7), and “Types of Alerts” (page 11) (renamed from “Types of Alert Sheets”).

Addition of link to “Displaying Alert Help” (page 17) in the Dialogs and Special
Panels programming topic.

“Using Custom Sheets and Cascading Sheets” split into “Using Custom
Sheets” (page 19) and “Presenting a Series of Sheets” (page 21). Sample code
in “Using Alert Sheets” (page 13) rewritten to better handle two versus three
button sheet. Added “Using Alert Sheets in Java” (page 23). Cleaned up
numerous typos.

2003-04-01

Revision history was added to existing topic.2002-11-12

31
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

32
2006-09-05 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Sheet Programming Topics for Cocoa
	Contents
	Figures and Listings
	Introduction
	About Sheets
	When to Use Sheets
	Sheets and Delegation
	Working With Sheets

	Types of Alerts
	Using Alert Sheets
	Using the NSAlert Class
	Using the Functional API

	Displaying Alert Help
	Using Custom Sheets
	Presenting a Series of Sheets
	Using Alert Sheets in Java
	Sheet Notifications
	Positioning Sheets
	Using Application-Modal Dialogs
	Revision History

