
Spell Checking

February 9, 2004

Apple Computer, Inc.
' 1997, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, and
Mac OS are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS

MANUAL IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction to Spell Checking 5

Spell Checker 7

Checking Text Spelling 9

Dictionaries and Word Lists 10
Matching a List of Ignored Words with the Document It Belongs To 10

Creating a Spell Server 11

Service Availability Notice 12
Illustrative Sequence of Messages to an NSSpellServer 12

Document Revision History 15

Index 17

3
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

4
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Spell Checking describes Cocoa’s spell-checking facilities.

Who Should Read This Document

You should read this document if you need to implement spell checking in your application or
if you wish to make your spelling checker available as a service to other applications.

Organization of This Document

This document contains the following articles:

■ “Spell Checker” (page 7) describes the basic features of the spell check facility.

■ “Checking Text Spelling” (page 9) explains how to use the spell check facilities from an
application.

■ “Creating a Spell Server” (page 11) explains how to make your particular spelling checker a
service that’s available to any application

Introduction to Spell Checking

Who Should Read This Document 5
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

6 Organization of This Document
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Introduction to Spell Checking

The NSSpellChecker class gives any application an interface to the Cocoa spell-checking service.
To handle all its spell checking, an application needs only one instance of NSSpellChecker. It
provides a panel in which the user can specify decisions about words that are suspect.

The spell checker facility also provides lists of potential word completions culled from its spelling
dictionary for the text-completion system in Mac OS X version 10.3 and later.

Spell Checker

7
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

8
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Spell Checker

To check the spelling of some text, an application performs the following actions:

■ Includes in its user interface a menu item (or a button or command) by which the user will
request spell checking.

■ Makes the text to be checked available as an NSString object.

■ Creates an instance of the NSSpellChecker class and sends it a
checkSpellingOfString:startingAt: message.

For example, you might use the following statement to create a spell checker:

range = [[NSSpellChecker sharedSpellChecker] checkSpellingOfString:aString
 startingAt:0];

The checkSpellingOfString:startingAt: method checks the spelling of the words in the
specified string beginning at the specified offset (this example uses 0 to start at the beginning of
the string) until it finds a word that is misspelled. Then it returns an NSRange to indicate the
location of the misspelled word.

In a graphical application, whenever a misspelled word is found, you’ll probably want to highlight
the word in the document, using the NSRange that checkSpellingOfString:startingAt:
returns to determine the text to highlight. Then you should show the misspelled word in the
Spelling panel’s misspelled-word field by calling updateSpellingPanelWithMisspelledWord:.
If checkSpellingOfString:startingAt: does not find a misspelled word, you should call
updateSpellingPanelWithMisspelledWord: with the empty string. This causes the system to
beep, letting the user know that the spell check is complete and no misspelled words were found.
None of these steps is required, but if you do one, you should do them all.

The object that provides the string being checked should adopt the following protocols:

DescriptionProtocol

A message in this protocol (changeSpelling:) is sent down the
responder chain when the user presses the Correct button.

NSChangeSpelling

When the object being checked responds to this protocol, the spell
server keeps a list of words that are acceptable in the document and
enables the Ignore button in the Spelling panel.

NSIgnoreMisspelledWords

Checking Text Spelling

9
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

The application may choose to split a document’s text into segments and check them separately.
This is necessary when the text has segments in different languages. Spell checking is invoked
for one language at a time, so a document that contains portions in three languages requires at
least three checks.

Dictionaries and Word Lists

The process of checking spelling makes use of three references:

■ A dictionary registered with the system’s spell-checking service. When the Spelling panel
first appears, by default it shows the dictionary for the user’s preferred language. The user
may select a different dictionary from the list in the Spelling panel.

■ The user’s “learn” list of correctly-spelled words in the current language. The NSSpellChecker
updates the list when the user presses the Learn or Forget buttons in the Spelling panel.

■ The document’s list of words to be ignored while checking it (if the first responder conforms
to the NSIgnoreMisspelledWords protocol). The NSSpellChecker updates its copy of this list
when the user presses the Ignore button in the Spelling panel.

A word is considered to be misspelled if none of these three accepts it.

Matching a List of Ignored Words with the Document It
Belongs To

The NSString being checked isn’t the same as the document. In the course of processing a
document, an application might run several checks based on different parts or different versions
of the text, but they all belong to the same document. The NSSpellChecker keeps a separate
“ignored words” list for each document that it checks. To help match “ignored words” lists to
documents, you should call uniqueSpellDocumentTag once for each document. This method
returns a unique arbitrary integer that will serve to distinguish one document from the others
being checked and to match each “ignored words” list to a document. When searching for
misspelled words, pass the tag as the fourth argument of
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:.
(The convenience method checkSpellingOfString:startingAt: takes no tag. This method is
suitable when the first responder does not conform to the NSIgnoreMisspelledWords protocol.)

When the application saves a document, it may choose to retrieve the “ignored words” list and
save it along with the document. To get back the right list, it must send the NSSpellChecker an
ignoredWordsInSpellDocumentWithTag: message. When the application has closed a document,
it should notify the NSSpellChecker that the document’s “ignored words” list can now be
discarded, by sending it a closeSpellDocumentWithTag: message. When the application reopens
the document, it should restore the “ignored words” list with the message
setIgnoredWords:inSpellDocumentWithTag:.

10 Dictionaries and Word Lists
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Checking Text Spelling

The NSSpellServer class gives you a way to make your particular spelling checker a service that’s
available to any application. A service is an application that declares its availability in a standard
way, so that any other applications that wish to use it can do so. If you build a spelling checker
that makes use of the NSSpellServer class and list it as an available service, then users of any
application that makes use of NSSpellChecker or includes a Services menu will see your spelling
checker as one of the available dictionaries.

To make use of NSSpellServer, you write a small program that creates an NSSpellServer instance
and a delegate of the server that responds to messages asking it to find a misspelled word and
to suggest guesses to correct the misspelled word. Send the NSSpellServer
registerLanguage:byVendor: messages to tell it the languages your delegate can handle.

The program that runs your spelling checker should not be built as an Application Kit application,
but as a simple program. Suppose you supply spelling checkers under the vendor name “Acme”
and the file containing the code for your delegate is called AcmeEnglishSpellChecker. Then the
following might be your program's main function:

void main()
{
 NSSpellServer *aServer = [[NSSpellServer alloc] init];
 if ([aServer registerLanguage:"English" byVendor:"Acme"]) {
 [aServer setDelegate:[[AcmeEnglishSpellChecker alloc] init]];
 [aServer run];
 fprintf(stderr, "Unexpected death of Acme SpellChecker!\n");
 else {
 fprintf(stderr, "Unable to check in Acme SpellChecker.\n");
 }
}

Your delegate is an instance of a custom subclass. (It’s simplest to make it a subclass of NSObject,
but that's not a requirement.) Given an NSString, your delegate must be able to find a misspelled
word by implementing the method
spellServer:findMisspelledWordInString:language:wordCount:countOnly:. Usually, this
method also reports the number of words it has scanned, but that isn’t mandatory.

Optionally, the delegate may also suggest corrections for misspelled words. It does so by
implementing the method spellServerS:suggestGuessesForWord:inLanguage:.

Creating a Spell Server

11
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Service Availability Notice

When there’s more than one spelling checker available, the user selects the one desired. The
application that requests a spelling check uses an NSSpellChecker object, and it provides a Spelling
panel; in the panel there’s a pop-up list of available spelling checkers. Your spelling checker
appears in that list if it has a service descriptor.

A service descriptor is an entry in a text file called services. Usually it’s located within the bundle
that also contains your spelling checker’s executable file. The bundle (or directory) that contains
the services file must have a name ending in “.service” or “.app”. The system looks for service
bundles in a standard set of directories.

A spell checker service availability notice has a standard format, illustrated in the following
example for the Acme spelling checker:

Spell Checker: Acme
Language: French
Language: English
Executable: franglais.daemon

The first line identifies the type of service; for a spelling checker, it must say “Spell Checker:”
followed by your vendor name. The next line contains the English name of a language your
spelling checker is prepared to check. (The language must be one your system recognizes.) If
your program can check more than one language, use an additional line for each additional
language. The last line of a descriptor gives the name of the service’s executable file. (It requires
a complete path if it's in a different directory.)

If there’s a service descriptor for your Acme spelling checker and also a service descriptor for
the English checker provided by a vendor named Consolidated, a user looking at the Spelling
panel’s pop-up list would see:

English (Acme)
English (Consolidated)
French (Acme)

Illustrative Sequence of Messages to an NSSpellServer

The act of checking spelling usually involves the interplay of objects in two classes: the user
application’s NSSpellChecker (which responds to interactions with the user) and your spelling
checker’s NSSpellServer (which provides the application interface for your spelling checker).
You can see the interaction between the two in the following list of steps involved in finding a
misspelled word.

■ The user of an application selects a menu item to request a spelling check. The application
sends a message to its NSSpellChecker object. The NSSpellChecker in turn sends a
corresponding message to the appropriate NSSpellServer.

■ The NSSpellServer receives the message asking it to check the spelling of an NSString. It
forwards the message to its delegate.

12 Service Availability Notice
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Creating a Spell Server

■ The delegate searches for a misspelled word. If it finds one, it returns an NSRange identifying
the word’s location in the string.

■ The NSSpellServer receives a message asking it to suggest guesses for the correct spelling of
a misspelled word, and forwards the message to its delegate.

■ The delegate returns a list of possible corrections, which the NSSpellServer in turn returns
to the NSSpellChecker that initiated the request.

■ The NSSpellServer doesn’t know what the user does with the errors its delegate has found
or with the guesses its delegate has proposed. (Perhaps the user corrects the document,
perhaps by selecting a correction from the NSSpellChecker’s display of guesses; but that’s
not the NSSpellServer’s responsibility.) However, if the user presses the Learn or Forget
buttons (thereby causing the NSSpellChecker to revise the user’s word list), the NSSpellServer
receives a notification of the word thus learned or forgotten. It’s up to you whether your spell
checker acts on this information. If the user presses the Ignore button, the delegate is not
notified (but the next time that word occurs in the text, the method
isWordInUserDictionaries:caseSensitive: will report YES rather than NO).

■ Once the NSSpellServer delegate has reported a misspelled word, it has completed its search.
Of course, it’s likely that the user’s application will then send a new message, this time asking
the NSSpellServer to check a string containing the part of the text it didn’t get to previously.

Creating a Spell Server

Illustrative Sequence of Messages to an NSSpellServer 13
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

14 Illustrative Sequence of Messages to an NSSpellServer
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

Creating a Spell Server

The table below describes the revisions to Spell Checking.

NotesDate

Rewrote introduction, lightly edited all articles, and added an
index.

February 9, 2004

Revision history was added to existing topic. It will be used to
record changes to the content of the topic.

November 12, 2002

R E V I S I O N H I S T O R Y

Document Revision History

15
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

16
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

C

changeSpelling: method 9
checkSpellingOfString:startingAt: method

9, 10
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:

method 10
closeSpellDocumentWithTag: method 10

D

delegates
of spell servers 11

dictionaries
for spell checking 10

F

first responder
in spell checking 10

I

ignored words
in spell checking 10

ignoredWordsInSpellDocumentWithTag: method
10

isWordInUserDictionaries:caseSensitive:
method 13

N

NSChangeSpelling protocol 9
NSIgnoreMisspelledWords protocol 9
NSSpellChecker class 7

NSSpellServer class 11
NSString class 9

P

protocols
for spell checking 9

R

registerLanguage:byVendor: method 11

S

services in Cocoa
availability notices for 12
bundles 12
defined 11
descriptors 12

setIgnoredWords:inSpellDocumentWithTag:
method 10

spell server 11
spelling checker

creating 9
message sequence of 12
multiple instances of 12

Spelling panel 9
spellServer:findMisspelledWordInString:language:wordCount:countOnly:

method 11
spellServerS:suggestGuessesForWord:inLanguage:

method 11

T

text completion 7

Index

17
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

U

uniqueSpellDocumentTag method 10
updateSpellingPanelWithMisspelledWord:

method 9

18
© 1997, 2004 Apple Computer, Inc. All Rights Reserved.

I N D E X

	Contents
	Introduction to Spell Checking
	Spell Checker
	Checking Text Spelling
	Dictionaries and Word Lists
	Matching a List of Ignored Words with the Document It Belongs To

	Creating a Spell Server
	Service Availability Notice
	Illustrative Sequence of Messages to an NSSpellServer

	Document Revision History
	Index

