
Stream Programming Guide for Cocoa
Cocoa > Data Management

2009-05-06

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Objective-C, and
Spaces are trademarks of Apple Inc., registered
in the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Stream Programming Guide for Cocoa 7

Organization of This Document 7
See Also 7

Cocoa Streams 9

Reading From Input Streams 11

Preparing the Stream Object 11
Handling Stream Events 12
Disposing of the Stream Object 13

Writing To Output Streams 15

Preparing the Stream Object 15
Handling Stream Events 16
Disposing of the Stream Object 17

Polling Versus Run-Loop Scheduling 19

Handling Stream Errors 21

Setting Up Socket Streams 23

Basic Procedure 23
Securing and Configuring the Connection 24
Initiating an HTTP Request 25

Document Revision History 27

3
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

4
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Figures and Listings

Cocoa Streams 9

Figure 1 Sources and destinations of stream objects 9

Reading From Input Streams 11

Listing 1 Creating and initializing an NSInputStream object 11
Listing 2 Handling a bytes-available event 12
Listing 3 Closing and releasing the NSInputStream object 13

Writing To Output Streams 15

Listing 1 Creating and initializing an NSOutputStream object for memory 15
Listing 2 Handling a space-available event 16
Listing 3 Closing and releasing the NSInputStream object 17

Polling Versus Run-Loop Scheduling 19

Listing 1 Writing to an output stream using polling 19

Handling Stream Errors 21

Listing 1 Handling stream errors 21

Setting Up Socket Streams 23

Listing 1 Setting up a network socket stream 23
Listing 2 Setting a stream to the current SOCKS proxy settings 25
Listing 3 Making an HTTP GET request 25

5
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

6
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

A stream is a fundamental abstraction in programming: a sequence of bits transmitted serially from one point
to another point. Cocoa provides three classes to represent streams and facilitate their use in your programs:
NSStream, NSInputStream, and NSOutputStream. With the instances of these classes you can read data from,
and write data to, files and application memory. You can also use these objects in socket-based connections
to exchange data with remote hosts. You can also subclass the stream classes to obtain specialized stream
behavior.

Organization of This Document

This document includes the following articles:

 ■ “Cocoa Streams” (page 9) gives an overview of the Cocoa stream classes, describing architecture,
capabilities, and general usage.

 ■ “Reading From Input Streams” (page 11) explains how to create and prepare a (non-socket) input-stream
object. It also describes how to handle stream events generated by all types of NSInputStream objects.

 ■ “Writing To Output Streams” (page 15) explains how to create and prepare a (non-socket) output-stream
object. It also describes how to handle stream events generated by all types of NSOutputStream objects.

 ■ “Polling Versus Run-Loop Scheduling” (page 19) discusses the relative merits of the two techniques used
to avoid blocking when reading and writing to streams. It also illustrates how to poll for stream data
using the API of the stream classes.

 ■ “Handling Stream Errors” (page 21) describes how to handle errors that occur in stream processing.

 ■ “Setting Up Socket Streams” (page 23) explains how to set up stream objects used to communicate with
remote hosts via sockets.

See Also

You may find the following external resources helpful if you are implementing socket-based network streams:

 ■ OpenSSL — http://www.openssl.org/

 ■ Apache SSL — http://www.apache-ssl.org/

 ■ SOCKS — http://tools.ietf.org/html/rfc1928

Organization of This Document 7
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Introduction to Stream Programming Guide
for Cocoa

http://www.openssl.org/
http://www.apache-ssl.org/
http://tools.ietf.org/html/rfc1928

8 See Also
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Introduction to Stream Programming Guide for Cocoa

Streams provide an easy way for a program to exchange data with a variety of media in a device-independent
way. A stream is a contiguous sequence of bits transmitted serially over a communications path. It is
unidirectional and hence, from the perspective of a program, a stream can be an input (or read) stream or
an output (or write) stream. Except for ones that are file-based, streams are non-seekable; once stream data
has been provided or consumed, it cannot be retrieved again from the stream.

Cocoa includes three stream-related classes: NSStream, NSInputStream, and NSOutputStream. NSStream is
an abstract class that defines the fundamental interface and properties for all stream objects. NSInputStream
and NSOutputStream are subclasses of NSStream and implement default input-stream and output-stream
behavior. You can create NSOutputStream instances for stream data located in memory or written to a file
or C buffer; you can create NSInputStream instances for stream data read from an NSData object or a file.
You can also have NSInputStream and NSOutputStream objects at the end points of a socket-based network
connection and you can use stream objects without loading all of the stream data into memory at once.
Figure 1 illustrates the types of input-stream and output-stream objects in terms of their sources or
destinations.

Figure 1 Sources and destinations of stream objects

NSOutputStream

Buffer

Memory
(NSData)

Network
socket

Data
(NSData)

Network
socket

Client program

NSInputStream

File File

Because they deal with such a basic computing abstraction (streams), NSStream and its subclasses are intended
for lower-level programming tasks. If there is a higher-level Cocoa API that is more suited for a particular task
(for example, NSURL or NSFileHandle) use it instead.

Stream objects have properties associated with them. Most properties have to do with network security and
configuration, namely secure-socket (SSL) levels and SOCKS proxy information. Two important additional
properties are NSStreamDataWrittenToMemoryStreamKey, which permits retrieval of data written to
memory for an output stream, and NSStreamFileCurrentOffsetKey, which allows you to manipulate
the current read or write position in file-based streams.

A stream object also has a delegate associated with it. If a delegate is not explicitly set, the stream object
itself becomes the delegate (a useful convention for custom subclasses). A stream object invokes the sole
delegation method stream:handleEvent: for each stream-related event it handles. Of particular importance

9
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Cocoa Streams

are the events that indicate when bytes are available to read from an input stream and when an output
stream signals that it’s ready to accept bytes. For these two events, the delegate sends the stream the
appropriate message—read:maxLength: or write:maxlength:, depending on type of stream—to get
the bytes from the stream or to put bytes on the stream.

NSStream is built on the CFStream layer of Core Foundation. This close relationship means that the concrete
subclasses of NSStream, NSOutputStream and NSInputStream, are toll-free bridged with their Core Foundation
counterparts CFWriteStream and CFReadStream. Although there are strong similarities between the Cocoa
and Core Foundation stream APIs, their implementations are not exactly coincident. The Cocoa stream classes
use the delegation model for asynchronous behavior (assuming run-loop scheduling) while Core Foundation
uses client callbacks. The Core Foundation stream types sets the client (termed a context in Core Foundation)
differently than the NSStream sets the delegate; calls to set the delegate should not be mixed with calls to
set the context. Otherwise you can freely intermix calls from the two APIs in your code.

Despite their strong similarities, NSStream does give you a major advantage over CFStream. Because of its
Objective-C underpinnings, it is extensible. You can subclass NSStream, NSInputStream, or NSOutputStream
to customize stream attributes and behavior. For example, you could create an input stream that maintains
statistics on the bytes it reads; or you could make a NSStream subclass whose instances can seek through
their stream, putting back bytes that have been read. NSStream has its own set of required overrides, as do
NSInputStream and NSOutputStream. See the reference documentation for NSStream, NSInputStream, and
NSOutputStream for details on subclassing these classes.

10
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Cocoa Streams

In Cocoa, reading from an NSInputStream instance consists of several steps:

1. Create and initialize an instance of NSInputStream from a source of data.

2. Schedule the stream object on a run loop and open the stream.

3. Handle the events that the stream object reports to its delegate.

4. When there is no more data to read, dispose of the stream object.

The following discussion goes into each of these steps in more detail.

Note: The examples in this document show the strategy of scheduling stream objects on run loops and
setting a delegate to handle stream events. You may use polling instead of run-loop scheduling if you prefer
that approach. However, run-loop scheduling with delegation is the preferred approach for various reasons
(described in “Polling Versus Run-Loop Scheduling” (page 19)), and that is why it is highlighted in this
document.

Preparing the Stream Object

To begin using an NSInputStream object you must have (after first locating, if necessary) a source of data for
the stream. The source of data can be a file, an NSData object, or a network socket.

Note: The procedure for initializing input-stream objects from network sockets is different from the procedure
for the other two data sources, and is not covered in this article. To learn about initializing an NSInputStream
instance for a network connection, see “Setting Up Socket Streams” (page 23).

The initializers and factory methods for NSInputStream allow you to create and initialize the instance from
an NSData or file. Listing 1 shows an NSInputStream instance created from a file.

Listing 1 Creating and initializing an NSInputStream object

- (void)setUpStreamForFile:(NSString *)path {
 // iStream is NSInputStream instance variable
 iStream = [[NSInputStream alloc] initWithFileAtPath:path];
 [iStream setDelegate:self];
 [iStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [iStream open];
}

Preparing the Stream Object 11
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Reading From Input Streams

As this example shows, after you create the object you should set the delegate (more often than not to self).
The delegate receives stream:handleEvent: messages from the NSInputStream object when that object
is scheduled on the run loop and has stream-related events to report, such as when there are bytes on the
stream to be read.

Before you open the stream to begin the streaming of data, send a scheduleInRunLoop:forMode:message
to the stream object to schedule it to receive stream events on a run loop. By doing this, you are helping the
delegate to avoid blocking when there is no data on the stream to read. If streaming is taking place on
another thread, be sure to schedule the stream object on that thread’s run loop. You should never attempt
to access a scheduled stream from a thread different than the one owning the stream’s run loop. Finally,
send the NSInputStream instance an open message to start the streaming of data from the input source.

Handling Stream Events

After a stream object is sent open, you can find out about its status, whether it has bytes available to read,
and the nature of any error with the following messages:

streamStatus

hasBytesAvailable

streamError

The returned status is an NSStreamStatus constant indicating that the stream is opening, reading, at the
end of the stream, and so on. The returned error is an NSError object encapsulating information about any
error that took place. (See the reference documentation for NSStream for descriptions of NSStreamStatus
and other stream types.)

More importantly, once the stream object has been opened, it keeps sending stream:handleEvent:
messages to its delegate until it encounters the end of the stream. These messages include a parameter with
an NSStreamEvent constant that indicates the type of event. For NSInputStream objects, the most common
types of events are NSStreamEventOpenCompleted, NSStreamEventHasBytesAvailable, and
NSStreamEventEndEncountered. The delegate is typically most interested in
NSStreamEventHasBytesAvailable events. Listing 2 illustrates a good approach for handling this type
of event.

Listing 2 Handling a bytes-available event

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {

 switch(eventCode) {
 case NSStreamEventHasBytesAvailable:
 {
 if(!_data) {
 _data = [[NSMutableData data] retain];
 }
 uint8_t buf[1024];
 unsigned int len = 0;
 len = [(NSInputStream *)stream read:buf maxLength:1024];
 if(len) {
 [_data appendBytes:(const void *)buf length:len];
 // bytesRead is an instance variable of type NSNumber.
 [bytesRead setIntValue:[bytesRead intValue]+len];
 } else {

12 Handling Stream Events
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Reading From Input Streams

 NSLog(@"no buffer!");
 }
 break;
 }
 // continued

In this implementation of stream:handleEvent: the delegate uses a switch statement to identify the
passed-in NSStreamEvent constant. If the constant is NSStreamEventHasBytesAvailable, the delegate
first lazily creates (if necessary) an NSMutableData object (_data) to hold the retrieved bytes. Then it declares
a buffer of a certain size (1024 bytes, in this case) and invokes the stream object’s read:maxLength:method,
which fills up the buffer with the specified number of bytes. If the read operation successfully fetched bytes
from the stream, the delegate appends these bytes to the NSMutableData object.

There is no firm guideline on how many bytes to read at one time. Although it may be possible to read all
the data in the stream in one event, this depends on the length of the stream (that is, the number of bytes
in it) as well as the behavior of the kernel, including device and socket characteristics. The best approach is
to use some reasonable buffer size, such as 512 bytes, one kilobyte (as in the example above), or a page size
(four kilobytes).

When the NSInputStream object experiences errors processing the stream, it stops streaming and notifies
its delegate with a NSStreamEventErrorOccurred. The delegate should handle the error in its
stream:handleEvent: method as described in “Handling Stream Errors” (page 21).

Disposing of the Stream Object

When an NSInputStream object reaches the end of a stream, it sends the delegate a
NSStreamEventEndEncountered event in a stream:handleEvent:message. The delegate should dispose
of the object by doing the mirror-opposite of what it did to prepare the object. In other words, it should first
close the stream object, remove it from the run loop, and finally release it. Listing 3 gives an example of how
you might do this.

Listing 3 Closing and releasing the NSInputStream object

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode
{
 switch(eventCode) {
 case NSStreamEventEndEncountered:
 {
 [stream close];
 [stream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [stream release];
 stream = nil; // stream is ivar, so reinit it
 break;
 }
 // continued ...
 }
}

Disposing of the Stream Object 13
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Reading From Input Streams

14 Disposing of the Stream Object
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Reading From Input Streams

Using an NSOutputStream instance to write to an output stream requires several steps:

1. Create an instance of NSOutputStream and initialize it with a repository for the written data. Also set a
delegate.

2. Schedule the stream object on a run loop and open the stream.

3. Handle the events that the stream object reports to its delegate.

4. If the stream object has written data to memory, obtain the data by requesting the
NSStreamDataWrittenToMemoryStreamKey property.

5. When there is no more data to write, dispose of the stream object.

The following discussion goes into each of these steps in more detail.

Note: The examples in this document show the strategy of scheduling stream objects on run loops and
setting a delegate to handle stream events. You may use polling instead of run-loop scheduling if you prefer
that approach. However, run-loop scheduling with delegation is the preferred approach for various reasons
(described in “Polling Versus Run-Loop Scheduling” (page 19)), and that is why it is highlighted in this
document.

Preparing the Stream Object

To begin using an NSOutputStream object you must specify a destination for the data written to the stream.
The destination for an output-stream object can be a file, a C buffer, application memory, or a network socket.

Note: The procedure for initializing output-stream objects from network sockets is different from the
procedure for the other data destinations, and is not covered in this article. To learn about initializing an
NSOutputStream instance for a network connection, see “Setting Up Socket Streams” (page 23).

The initializers and factory methods for NSOutputStream allow you to create and initialize the instance with
a file, a buffer, or memory. Listing 1 shows the creation of an NSOutputStream instance that will write data
to application memory.

Listing 1 Creating and initializing an NSOutputStream object for memory

- (void)createOutputStream {
 NSLog(@"Creating and opening NSOutputStream...");
 // oStream is an instance variable
 oStream = [[NSOutputStream alloc] initToMemory];
 [oStream setDelegate:self];

Preparing the Stream Object 15
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing To Output Streams

 [oStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [oStream open];
}

As the code in Listing 1 shows, after you create the object you should set the delegate (more often than not
to self). The delegate receives stream:handleEvent: messages from the NSOutputStream object when
that object has stream-related events to report, such as when the stream has space for bytes.

Before you open the stream to begin the streaming of data, send a scheduleInRunLoop:forMode:message
to the stream object to schedule it to receive stream events on a run loop. By doing this, you are helping the
delegate to avoid blocking when the stream is unable to accept more bytes. If streaming is taking place on
another thread, be sure to schedule the stream object on that thread’s run loop. You should never attempt
to access a scheduled stream from a thread different than the one owning the stream’s run loop. Finally,
send the NSOutputStream instance an open message to start the streaming of data to the output container.

Handling Stream Events

After a stream object is sent open, you can find out about its status, whether it has space for writing data,
and the nature of any error with the following messages:

streamStatus

hasSpaceAvailable

streamError

The returned status is an NSStreamStatus constant indicating that the stream is opening, writing, at the
end of the stream, and so on. The returned error is an NSError object encapsulating information about any
error that took place. (See the reference documentation for NSStream for descriptions of NSStreamStatus
and other stream types.)

More importantly, once the stream object has been opened, it keeps sending stream:handleEvent:
messages to its delegate (as long as the delegate continues to put bytes on the stream) until it encounters
the end of the stream. These messages include a parameter with an NSStreamEvent constant that indicates
the type of event. For NSOutputStream objects, the most common types of events are
NSStreamEventOpenCompleted, NSStreamEventHasSpaceAvailable, and
NSStreamEventEndEncountered. The delegate is typically most interested in
NSStreamEventHasSpaceAvailable events. Listing 2 illustrates one approach you could take to handle
this type of event.

Listing 2 Handling a space-available event

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode
{
 switch(eventCode) {
 case NSStreamEventHasSpaceAvailable:
 {
 uint8_t *readBytes = (uint8_t *)[_data mutableBytes];
 readBytes += byteIndex; // instance variable to move pointer
 int data_len = [_data length];
 unsigned int len = ((data_len - byteIndex >= 1024) ?
 1024 : (data_len-byteIndex));
 uint8_t buf[len];

16 Handling Stream Events
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing To Output Streams

 (void)memcpy(buf, readBytes, len);
 len = [stream write:(const uint8_t *)buf maxLength:len];
 byteIndex += len;
 break;
 }
 // continued ...
 }
}

In this implementation of stream:handleEvent: the delegate uses a switch statement to identify the
passed-in NSStreamEvent constant. If the constant is NSStreamEventHasSpacesAvailable, the delegate
gets the bytes held by a NSMutableData object (_data) and advances the pointer for the current write
operation. It next determines the byte capacity of the impending write operation (1024 or the remaining
bytes to write), declares a buffer of that size, and copies that amount of data to the buffer. Next the delegate
invokes the output-stream object’s write:maxLength:method to put the buffer’s contents onto the output
stream. Finally it advances the index used to advance the readBytes pointer for the next operation.

If the delegate receives an NSStreamEventHasSpaceAvailable event and does not write anything to the
stream, it does not receive further space-available events from the run loop until the NSOutputStream object
receives more bytes. When this happens, the run loop is restarted for space-available events. If this scenario
is likely in your implementation, you can have the delegate set a flag when it doesn’t write to the stream
upon receiving an NSStreamEventHasSpaceAvailable event. Later, when your program has more bytes
to write, it can check this flag and, if set, write to the output-stream instance directly.

There is no firm guideline on how many bytes to write at one time. Although it may be possible to write all
the data to the stream in one event, this depends on external factors, such as the behavior of the kernel and
device and socket characteristics. The best approach is to use some reasonable buffer size, such as 512 bytes,
one kilobyte (as in the example above), or a page size (four kilobytes).

When the NSOutputStream object experiences errors writing to the stream, it stops streaming and notifies
its delegate with a NSStreamEventErrorOccurred. The delegate should handle the error in its
stream:handleEvent: method as described in “Handling Stream Errors” (page 21).

Disposing of the Stream Object

When an NSOutputStream object concludes writing data to an output stream, it sends the delegate a
NSStreamEventEndEncountered event in a stream:handleEvent: message. At this point the delegate
should dispose of the stream object by doing the mirror-opposite of what it did to prepare the object. In
other words, it should first close the stream object, remove it from the run loop, and finally release it.
Furthermore, if the destination for the NSOutputStream object is application memory (that is, you created
the instance using initToMemory or the factory method outputStreamToMemory), you might now want
to retrieve the data held in memory. Listing 3 illustrates how you might do all of these things.

Listing 3 Closing and releasing the NSInputStream object

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode
{
 switch(eventCode) {
 case NSStreamEventEndEncountered:
 {
 NSData *newData = [oStream propertyForKey:
 NSStreamDataWrittenToMemoryStreamKey];
 if (!newData) {

Disposing of the Stream Object 17
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing To Output Streams

 NSLog(@"No data written to memory!");
 } else {
 [self processData:newData];
 }
 [stream close];
 [stream removeFromRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [stream release];
 oStream = nil; // oStream is instance variable
 break;
 }
 // continued ...
 }
}

You get the stream data written to memory by sending the NSOutputStream object a propertyForKey:
message, specifying a key of NSStreamDataWrittenToMemoryStreamKey The stream object returns the
data in an NSData object.

18 Disposing of the Stream Object
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Writing To Output Streams

A potential problem with stream processing is blocking. A thread that is writing to or reading from a stream
might have to wait indefinitely until there is (respectively) space on the stream to put bytes or bytes on the
stream that can be read. In effect, the thread is at the mercy of the stream, and that can spell trouble for an
application. Blocking can especially be a problem with socket streams because they are dependent on
responses from a remote host.

With Cocoa streams you have two ways to handle stream events:

 ■ Run-loop scheduling. You schedule a stream object on a run loop so that the delegate receives messages
reporting stream-related events only when blocking is unlikely to take place. For read and write operations,
the pertinent NSStreamEvent constants are NSStreamHasBytesAvailable and
NSStreamHasSpaceAvailable.

 ■ Polling. In a closed loop broken only at the end of the stream or upon error, you keep asking the stream
object if it has (for read streams) bytes available to read or (for write streams) space available for writing.
The pertinent methods are hasBytesAvailable (NSInputStream) and hasSpaceAvailable
(NSOutputStream.

Run-loop scheduling is almost always preferable over polling, and that is why the code examples in “Reading
From Input Streams” (page 11) and “Writing To Output Streams” (page 15) exclusively show the use of run
loops. With polling, your program is locked in a tight loop, waiting for stream events that might or might
not be imminent. With run-loop scheduling, your program can go off and do other things, knowing that it
will be notified when there is a stream event to handle. Moreover, run loops save you from having to manage
state and are more efficient than polling. Polling is also CPU-intensive; there are other things you can be
doing with your processing time.

That said, there can be situations where polling is a viable option. For example, if you are porting legacy
code, you might choose to use polling because it is better suited the threading model in the legacy code.
Listing 1 illustrates a method that writes data to an output stream using polling.

Listing 1 Writing to an output stream using polling

- (void)createNewFile {
 oStream = [[NSOutputStream alloc] initToMemory];
 [oStream open];
 uint8_t *readBytes = (uint8_t *)[data mutableBytes];
 uint8_t buf[1024];
 int len = 1024;

 while (1) {
 if (len == 0) break;
 if ([oStream hasSpaceAvailable]) {
 (void)strncpy(buf, readBytes, len);
 readBytes += len;
 if ([oStream write:(const uint8_t *)buf maxLength:len] == -1) {
 [self handleError:[oStream streamError]];
 break;
 }

19
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Polling Versus Run-Loop Scheduling

 [bytesWritten setIntValue:[bytesWritten intValue]+len];
 len = (([data length] - [bytesWritten intValue] >= 1024) ? 1024 :
 [data length] - [bytesWritten intValue]);
 }
 }
 NSData *newData = [oStream propertyForKey:
 NSStreamDataWrittenToMemoryStreamKey];
 if (!newData) {
 NSLog(@"No data written to memory!");
 } else {
 [self processData:newData];
 }
 [oStream close];
 [oStream release];
 oStream = nil;
}

It should be pointed out that neither the polling nor run-loop scheduling approaches are airtight defenses
against blocking. If the NSInputStream hasBytesAvailable method or the NSOutputStream
hasSpaceAvailable method returns NO, it means in both cases that the stream definitely has no available
bytes or space. However, if either of these methods returns YES, it can mean that there is available bytes or
space or that the only way to find out is to attempt a read or a write operation (which could lead to a
momentary block). The NSStreamEventHasBytesAvailable and NSStreamEventHasSpaceAvailable
stream events have identical semantics.

20
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Polling Versus Run-Loop Scheduling

Occasionally, and especially with sockets, streams can experience errors that prevent further processing of
stream data. Generally, errors indicate the absence of something at one end of a stream, such as the crash
of a remote host or the deletion of a file being streamed. There is a little that a client of a stream can do when
most errors occur except report the error to the user. Although a stream object that has reported an error
can be queried for state before it is closed, it cannot be reused for read or write operations.

The NSStream and NSOutputStream classes inform you if an error occurred in several ways:

 ■ If the stream object is scheduled on a run loop, the object reports a NSStreamEventErrorOccurred
event to its delegate in a stream:handleEvent: message.

 ■ At any time, the client can send streamStatus to a stream object and see if it returns
NSStreamStatusError.

 ■ If you attempt to write to an NSOutputStream object by sending it write:maxLength: and it returns
-1, a write error has occurred.

Once you have determined that a stream object experienced an error, you can query the object with a
streamError message to get more information about the error (in the form of an NSError object). Next,
inform the user about the error. Listing 1 shows how the delegate of a run loop-scheduled stream object
might handle an error.

Listing 1 Handling stream errors

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {
 NSLog(@"stream:handleEvent: is invoked...");

 switch(eventCode) {
 case NSStreamEventErrorOccurred:
 {
 NSError *theError = [stream streamError];
 NSAlert *theAlert = [[NSAlert alloc] init]; // modal delegate releases
 [theAlert setMessageText:@"Error reading stream!"];
 [theAlert setInformativeText:[NSString stringWithFormat:@"Error %i: %@",
 [theError code], [theError localizedDescription]]];
 [theAlert addButtonWithTitle:@"OK"];
 [theAlert beginSheetModalForWindow:[NSApp mainWindow]
 modalDelegate:self
 didEndSelector:@selector(alertDidEnd:returnCode:contextInfo:)
 contextInfo:nil];
 [stream close];
 [stream release];
 break;
 }
 // continued
 }
}

21
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Handling Stream Errors

For some errors, you can attempt to do more than inform the user. For example, if you try to set an SSL
security level on a socket connection but the remote host is not secure, the stream object will report an error.
You can then release the old stream object and create a new one for a non-secure socket connection.

22
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Handling Stream Errors

You can use the NSStream class to establish a socket connection and, with the stream object (or objects)
created as a result, send data to and receive data from a remote host. You can also configure the connection
for security.

Basic Procedure

Setting up a socket connection is easy. Just send the NSStream class a
getStreamsToHost:port:inputStream:outputStream: message and you will receive back an object
representing an input stream from the remote host or an output stream to the remote host—or both input-
and output-stream objects. The getStreamsToHost:port:inputStream:outputStream: class method
merely requires you to provide an NSHost object (identifying the remote host) and a port number.

Listing 1 illustrates the use of getStreamsToHost:port:inputStream:outputStream:. This example
shows the creation of both an NSInputStream object and an NSOutputStream object. If you want to receive
only one of these objects, just specify nil as the parameter value for the unwanted object.

Listing 1 Setting up a network socket stream

- (IBAction)searchForSite:(id)sender
{
 NSString *urlStr = [sender stringValue];
 if (![urlStr isEqualToString:@""]) {
 [searchField setEnabled:NO];
 NSURL *website = [NSURL URLWithString:urlStr];
 if (!website) {
 NSLog(@"%@ is not a valid URL");
 return;
 }
 NSHost *host = [NSHost hostWithName:[website host]];
 // iStream and oStream are instance variables
 [NSStream getStreamsToHost:host port:80 inputStream:&iStream
 outputStream:&oStream];
 [iStream retain];
 [oStream retain];
 [iStream setDelegate:self];
 [oStream setDelegate:self];
 [iStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [oStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
 [iStream open];
 [oStream open];
 }
}

Basic Procedure 23
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Setting Up Socket Streams

Because the stream objects you receive back fromgetStreamsToHost:port:inputStream:outputStream:
are autoreleased, be sure to retain them right away. If the socket connection fails, then one or both of the
requested NSInputStream and NSOutputStream objects are nil. Then, as usual, set the delegate, schedule
the stream on a run loop, and open the stream. The delegate should begin to receive stream-event messages
(stream:handleEvent:). See “Reading From Input Streams” (page 11) and “Writing To Output
Streams” (page 15) for more information.

Securing and Configuring the Connection

Before you open a stream object, you might want to set security and other features for the connection to
the remote host (which might be, for example, an HTTPS server). NSStream defines properties that affect the
security of TCP/IP socket connections in two ways:

 ■ Secure Socket Layer (SSL).

A security protocol using digital certificates to provide data encryption, server authentication, message
integrity, and (optionally) client authentication for TCP/IP connections.

 ■ SOCKS proxy server.

A server that sits between a client application and a real server over a TCP/IP connection. It intercepts
requests to the real server and, if it cannot fulfill them from a cache of recently requested files, forwards
them to the real server. SOCKS proxy servers help improve performance over a network and can also be
used to filter requests.

For SSL security, NSStream defines various security-level properties (for example,
NSStreamSocketSecurityLevelSSLv2). You set these properties by sending setProperty:forKey: to
the stream object using the key NSStreamSocketSecurityLevelKey, as in this sample message:

[iStream setProperty:NSStreamSocketSecurityLevelTLSv1
forKey:NSStreamSocketSecurityLevelKey];

You must set the property before you open the stream. Once it opens, it goes through a handshake protocol
to find out what level of SSL security the other side of the connection is using. If the security level is not
compatible with the specified property, the stream object generates an error event. However, if you request
a negotiated security level (NSStreamSocketSecurityLevelNegotiatedSSL), the security level becomes
the highest that both sides of the connection can implement. Still, if you try to set an SSL security level when
the remote host is not secure, an error is generated.

To configure a SOCKS proxy server for a connection, you need to construct a dictionary with keys of the form
NSStreamSOCKSProxyNameKey (for example, NSStreamSOCKSProxyHostKey). The value of each key is
the SOCKS proxy setting that Name refers to. Then using setProperty:forKey:, set the dictionary as the
value of the NSStreamSOCKSProxyConfigurationKey.

If you know the proxy-server settings, you can construct the dictionary yourself. But an easier way to get a
dictionary of current proxy settings is to use the System Configuration framework. To use this API in your
program, add SystemConfiguration.framework to your project and import the
<SystemConfiguration/SystemConfiguration.h> header file. Next, as shown in Listing 2, call the
function SCDynamicStoreCopyProxies and be sure to cast the returned CFDictionary value to an
NSDictionary object. Then use this dictionary to set the NSStreamSOCKSProxyConfigurationKey property.

24 Securing and Configuring the Connection
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Setting Up Socket Streams

Listing 2 Setting a stream to the current SOCKS proxy settings

// ...
NSDictionary *proxyDict = (NSDictionary *)SCDynamicStoreCopyProxies(NULL);
[oStream setProperty:proxyDict forKey:NSStreamSOCKSProxyConfigurationKey];
// ...

For a detailed example of using the System Configuration API to get SOCKS proxy settings, see Technical
Q&A QA1234, “Accessing HTTPS Proxy Settings.”

Initiating an HTTP Request

If you are opening a connection to an HTTP server (that is, a website), then you may have to initiate a
transaction with that server by sending it an HTTP request. A good time to make this request is when the
delegate of the NSOutputStream object receives a NSStreamEventHasSpaceAvailable event via a
stream:handleEvent: message. Listing 3 shows the delegate creating an HTTP GET request and writing
it to the output stream, after which it immediately closes the stream object.

Listing 3 Making an HTTP GET request

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {
 NSLog(@"stream:handleEvent: is invoked...");

 switch(eventCode) {
 case NSStreamEventHasSpaceAvailable:
 {
 if (stream == oStream) {
 NSString * str = [NSString stringWithFormat:
 @"GET / HTTP/1.0\r\n\r\n"];
 const uint8_t * rawstring =
 (const uint8_t *)[str UTF8String];
 [oStream write:rawstring maxLength:strlen(rawstring)];
 [oStream close];
 }
 break;
 }
 // continued ...
 }
}

Initiating an HTTP Request 25
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Setting Up Socket Streams

http://developer.apple.com/qa/qa2001/qa1234.html

26 Initiating an HTTP Request
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Setting Up Socket Streams

This table describes the changes to Stream Programming Guide for Cocoa.

NotesDate

Added a missing comment to a code sample.2009-05-06

Fixed broken links.2008-10-15

Fixed a broken link.2006-10-03

Changed event in code listing on writing to a network stream to
NSStreamEventHasSpaceAvailable.

2006-04-04

Fixed bugs and changed title from "Streams."2005-07-07

Fixed bug in code example (Radar 3597799).2004-07-21

First version of Streams.2004-02-20

27
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History

28
2009-05-06 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Stream Programming Guide for Cocoa
	Contents
	Figures and Listings
	Introduction
	Cocoa Streams
	Reading From Input Streams
	Preparing the Stream Object
	Handling Stream Events
	Disposing of the Stream Object

	Writing To Output Streams
	Preparing the Stream Object
	Handling Stream Events
	Disposing of the Stream Object

	Polling Versus Run-Loop Scheduling
	Handling Stream Errors
	Setting Up Socket Streams
	Basic Procedure
	Securing and Configuring the Connection
	Initiating an HTTP Request

	Revision History

