
String Programming Guide for Cocoa
Cocoa > Data Management

2008-10-15

Apple Inc.
© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Macintosh, Objective-C, and Safari are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Strings Programming Guide for Cocoa 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Strings 9

Creating and Converting String Objects 11

Creating Strings 11
NSString from C Strings and Data 11
Variable Strings 12
Strings to Present to the User 12

Combining and Extracting Strings 13
Getting C Strings 13
Conversion Summary 14

Formatting String Objects 15

Formatting Basics 15
Strings and Non-ASCII Characters 16
NSLog and NSLogv 16

String Format Specifiers 17

Format Specifiers 17
Platform Dependencies 19

Reading Strings From and Writing Strings To Files and URLs 21

Reading From Files and URLs 21
Reading data with a known encoding 21
Reading data with an unknown encoding 22

Writing to Files and URLs 22
Summary 23

Searching, Comparing, and Sorting Strings 25

Search and Comparison Methods 25
Searching strings 25
Comparing and sorting strings 26

3
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Search and Comparison Options 26
Examples 27

Case-Insensitive Search for Prefix and Suffix 27
Comparing Strings 27
Sorting strings like Finder 28

Paragraphs and Line Breaks 31

Line and Paragraph Separator Characters 31
Separating a String “by Paragraph” 31

Characters and Grapheme Clusters 33

Character Sets 35

Character Set Basics 35
Creating Character Sets 35
Performance considerations 36
Creating a character set file 36
Standard Character Sets and Unicode Definitions 37

Scanners 39

Creating a Scanner 39
Using a Scanner 39
Example 40
Localization 41

String Representations of File Paths 43

Representing a Path 43
User Directories 44
Path Components 44
File Name Completion 45

Drawing Strings 47

Document Revision History 49

Index 51

4
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tables

String Format Specifiers 17

Table 1 Format specifiers supported by the NSString formatting methods and CFString
formatting functions 17

Table 2 Format specifiers for data types 19

5
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Strings Programming Guide for Cocoa describes how to create, search, concatenate, and draw strings. It also
describes character sets, which let you search a string for characters in a group, and scanners, which convert
numbers to strings and vice versa.

Who Should Read This Document

You should read this document if you need to work directly with strings or character sets.

Organization of This Document

This document contains the following articles:

 ■ “Strings” (page 9) describes the characteristics of string objects in Cocoa.

 ■ “Creating and Converting String Objects” (page 11) explains the ways in which NSString and its subclass
NSMutableString create string objects and convert their contents to and from the various character
encodings they support.

 ■ “Formatting String Objects” (page 15) describes how to format NSString objects.

 ■ “String Format Specifiers” (page 17) describes printf-style format specifiers supported by NSString.

 ■ “Reading Strings From and Writing Strings To Files and URLs” (page 21) describes how to read strings
from and write strings to files and URLs.

 ■ “Searching, Comparing, and Sorting Strings” (page 25) describes methods for finding characters and
substrings within strings and for comparing one string to another.

 ■ “Paragraphs and Line Breaks” (page 31) describes how paragraphs and line breaks are represented.

 ■ “Characters and Clusters” (page 33) describes how you can break strings down into user-perceived
characters.

 ■ “Character Sets” (page 35) explains how to use character set objects, and how to use NSCharacterSet
methods to create standard and custom character sets.

 ■ “Scanners” (page 39) describes NSScanner objects, which interpret and convert the characters of an
NSString object into number and string values.

 ■ “String Representations of File Paths” (page 43) describes the NSString methods that manipulate
strings as file-system paths.

 ■ “Drawing Strings” (page 47) discusses the methods of the NSString class that support drawing directly
in an NSView object.

Who Should Read This Document 7
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Introduction to Strings Programming Guide
for Cocoa

See Also

For more information, refer to the following documents:

 ■ Attributed Strings ProgrammingGuide is closely related to Strings ProgrammingGuide for Cocoa. It provides
information about NSAttributedString objects, which manage sets of attributes, such as font and
kerning, that are associated with character strings or individual characters.

 ■ Data Formatting Programming Guide for Cocoa describes how to format data using objects that create,
interpret, and validate text.

 ■ Internationalization Programming Topics provides information about localizing strings in your project,
including information on how string formatting arguments can be ordered.

 ■ Strings ProgrammingGuide for Core Foundation in Core Foundation, discusses the Core Foundation opaque
type CFString, which is toll-free bridged with the NSString class.

8 See Also
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Introduction to Strings Programming Guide for Cocoa

String objects represent character strings in Cocoa frameworks. Representing strings as objects allows you
to use strings wherever you use other objects. It also provides the benefits of encapsulation, so that string
objects can use whatever encoding and storage is needed for efficiency while simply appearing as arrays of
characters.

A string object is implemented as an array of Unicode characters (in other words, a text string). An immutable
string is a text string that is defined when it is created and subsequently cannot be changed. To create and
manage an immutable string, use the NSString class. To construct and manage a string that can be changed
after it has been created, use NSMutableString.

The objects you create using NSString and NSMutableString are referred to as string objects (or, when
no confusion will result, merely as strings). The term C string refers to the standard C char * type.

A string object presents itself as an array of Unicode characters. You can determine how many characters it
contains with the length method and can retrieve a specific character with the characterAtIndex:
method. These two “primitive” methods provide basic access to a string object. Most use of strings, however,
is at a higher level, with the strings being treated as single entities: You compare strings against one another,
search them for substrings, combine them into new strings, and so on. If you need to access string objects
character-by-character, you must understand the Unicode character encoding—specifically, issues related
to composed character sequences. For details see:

 ■ The Unicode Standard, Version 4.0. The Unicode Consortium. Boston: Addison-Wesley, 2003. ISBN
0-321-18578-1.

 ■ The Unicode Consortium web site: http://www.unicode.org/.

9
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Strings

http://www.unicode.org/

10
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Strings

NSString and its subclass NSMutableString provide several ways to create string objects, most based
around the various character encodings it supports. Although string objects always present their own contents
as Unicode characters, they can convert their contents to and from many other encodings, such as 7-bit ASCII,
ISO Latin 1, EUC, and Shift-JIS. The availableStringEncodings class method returns the encodings
supported. You can specify an encoding explicitly when converting a C string to or from a string object, or
use the default C string encoding, which varies from platform to platform and is returned by the
defaultCStringEncoding class method.

Creating Strings

The simplest way to create a string object in source code is to use the Objective-C @"..." construct:

NSString *temp = @"/tmp/scratch";

Note that, when creating a string constant in this fashion, you should avoid using anything but 7-bit ASCII
characters. Such an object is created at compile time and exists throughout your program’s execution. The
compiler makes such object constants unique on a per-module basis, and they’re never deallocated, though
you can retain and release them as you do any other object. You can also send messages directly to a string
constant as you do any other string:

BOOL same = [@"comparison" isEqualToString:myString];

NSString from C Strings and Data

To create an NSString object from a C string, you use methods such as initWithCString:encoding:.
It is important to correctly specify the character encoding of the C string. Similar methods allow you to create
string objects from characters in a variety of encodings. The method initWithData:encoding: allows
you to convert string data stored in an NSData object into an NSString object.

char *utf8String = /* assume this exists */ ;
NSString *stringFromUTFString = [[NSString alloc] initWithUTF8String:utf8String];

char *macOSRomanEncodedString = /* assume this exists */ ;
NSString *stringFromMORString =
 [[NSString alloc] initWithCString:macOSRomanEncodedString
 encoding:NSMacOSRomanStringEncoding];

NSData *shiftJISData = /* assume this exists */ ;
NSString *stringFromShiftJISData =
 [[NSString alloc] initWithData:shiftJISData
 encoding:NSShiftJISStringEncoding];

Creating Strings 11
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating and Converting String Objects

The following example converts an NSString object containing a UTF-8 character to ASCII data then back
to an NSString object.

unichar ellipsis = 0x2026;
NSString *theString = [NSString stringWithFormat:@"To be continued%C", ellipsis];

NSData *asciiData = [theString dataUsingEncoding:NSASCIIStringEncoding
allowLossyConversion:YES];

NSString *asciiString = [[NSString alloc] initWithData:asciiData
encoding:NSASCIIStringEncoding];

NSLog(@"Original: %@ (length %d)", theString, [theString length]);
NSLog(@"Converted: %@ (length %d)", asciiString, [asciiString length]);

// output:
// Original: To be continued… (length 16)
// Converted: To be continued... (length 18)

Important: NSString provides a number of methods to use C strings directly (such as
stringWithCString:,initWithCString:, initWithCString:length:, and
initWithCStringNoCopy:length:freeWhenDone:). These methods use the default C string encoding
and may lose information in the conversion from that encoding. You are strongly discouraged from using
these methods as are deprecated in Mac OS X v10.4.

Variable Strings

To create a variable string, you typically use stringWithFormat:: or initWithFormat: (or for localized
strings, localizedStringWithFormat:). These methods and their siblings use a format string as a template
into which the values you provide (string and other objects, numerics values, and so on) are inserted. They
and the supported format specifiers are described in “Formatting String Objects” (page 15).

You can build a string from existing string objects using the methods stringByAppendingString: and
stringByAppendingFormat: to create a new string by adding one string after another, in the second case
using a format string.

NSString *hString = @"Hello";
NSString *hwString = [hString stringByAppendingString:@", world!"];

Strings to Present to the User

When creating strings to present to the user, you should consider the importance of localizing your application.
In general, you should avoid creating user-visible strings directly in code. Instead you should use strings in
your code as a key to a localization dictionary that will supply the user-visible string in the user's preferred
language. Typically this involves using NSLocalizedString and similar macros, as illustrated in the following
example.

NSString *greeting = NSLocalizedStringFromTable
 (@"Hello", @"greeting to present in first launch panel", @"greetings");

12 Creating Strings
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating and Converting String Objects

For more about internationalizing your application, see Internationalization Programming Topics. Strings Files
describes how to work with and reorder variable arguments in localized strings.

Combining and Extracting Strings

You can combine and extract strings in various ways. The simplest way to combine two strings is to append
one to the other. The stringByAppendingString:method returns a string object formed from the receiver
and the given argument.

NSString *beginning = @"beginning";
NSString *alphaAndOmega = [beginning stringByAppendingString:@" and end"];
// alphaAndOmega is @"beginning and end"

You can also combine several strings according to a template with the initWithFormat:,
stringWithFormat:, and stringByAppendingFormat: methods; these are described in more detail in
“Formatting String Objects” (page 15).

You can extract substrings from the beginning or end of a string to a particular index, or from a specific
range, with the substringToIndex:, substringFromIndex:, and substringWithRange: methods.
You can also split a string into substrings (based on a separator string) with the
componentsSeparatedByString:method. These methods are illustrated in the following examples—notice
that the index of the index-based methods starts at 0:

NSString *source = @"0123456789";
NSString *firstFour = [source substringToIndex:4];
// firstFour is @"0123"

NSString *allButFirstThree = [source substringFromIndex:3];
// allButFirstThree is @"3456789"

NSRange twoToSixRange = NSMakeRange(2, 4);
NSString *twoToSix = [source substringWithRange:twoToSixRange];
// twoToSix is @"2345"

NSArray *split = [source componentsSeparatedByString:@"45"];
// split contains { @"0123", @"6789" }

If you need to extract strings using pattern-matching rather than an index, you should use a scanner—see
“Scanners” (page 39).

Getting C Strings

To get a C string from a string object, you are recommended to use UTF8String. This returns a const char
* using UTF8 string encoding.

const char *cString = [@"Hello, world" UTF8String];

The C string you receive is owned by a temporary object, and will become invalid when automatic deallocation
takes place. If you want to get a permanent C string, you must create a buffer and copy the contents of the
const char * returned by the method.

Combining and Extracting Strings 13
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating and Converting String Objects

Similar methods allow you to create string objects from characters in the Unicode encoding or an arbitrary
encoding, and to extract data in these encodings. initWithData:encoding: and dataUsingEncoding:
perform these conversions from and to NSData objects.

Important: NSString provides a number of methods to use C strings directly (such as cString,
cStringLength, lossyCString, getCString:, getCString:maxLength:,
getCString:maxLength:range:remainingRange:). These methods use the default C string encoding
and may lose information in the conversion to or from that encoding. You are strongly discouraged from
using these methods as they are deprecated in Mac OS X v10.4.

Conversion Summary

This table summarizes the most common means of creating and converting string objects:

Extraction methodCreation methodSource

N/A@"..." compiler constructIn code

UTF8StringstringWithUTF8String:UTF8 encoding

getCharacters:

getCharacters:range:

stringWithCharacters: length:Unicode encoding

dataUsingEncoding:initWithData: encoding:Arbitrary encoding

N/AstringByAppendingString:

stringByAppendingFormat:

Existing strings

Use NSScannerlocalizedStringWithFormat:

initWithFormat: locale:

Format string

N/ANSLocalizedString and similarLocalized strings

Strongly discouragedstringWithCString: deprecated—not
recommended

Default C string encoding

14 Conversion Summary
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Creating and Converting String Objects

This article describes how to create a string using a format string, how to use non-ASCII characters in a format
string, and a common error that developers make when using NSLog or NSLogv.

Formatting Basics

NSString uses a format string whose syntax is similar to that used by other formatter objects. It supports
the format characters defined for the ANSI C function printf(), plus %@ for any object (see “String Format
Specifiers” (page 17) and the IEEE printf specification). If the object responds to descriptionWithLocale:
messages, NSString sends such a message to retrieve the text representation. Otherwise, it sends a
descriptionmessage. Strings Files describes how to work with and reorder variable arguments in localized
strings.

In format strings, a ‘%’ character announces a placeholder for a value, with the characters that follow
determining the kind of value expected and how to format it. For example, a format string of "%d houses"
expects an integer value to be substituted for the format expression '%d'. NSString supports the format
characters defined for the ANSI C functionprintf(), plus ‘@’ for any object. If the object responds to the
descriptionWithLocale: message, NSString sends that message to retrieve the text representation,
otherwise, it sends a description message.

Value formatting is affected by the user’s current locale, which is an NSDictionary object that specifies
number, date, and other kinds of formats. NSString uses only the locale’s definition for the decimal separator
(given by the key named NSDecimalSeparator). If you use a method that doesn’t specify a locale, the string
assumes the default locale.

You can use NSString’s stringWithFormat: method and other related methods to create strings with
printf-style format specifiers and argument lists, as described in Creating and Converting String Objects (page
11). The examples below illustrate how you can create a string using a variety of format specifiers and
arguments.

NSString *string1 = [NSString stringWithFormat:@"A string: %@, a float: %1.2f",
 @"string", 31415.9265];
// string1 is "A string: string, a float: 31415.93"

NSNumber *number = [NSNumber numberWithInt:1234];
NSDictionary *dictionary = [NSDictionary dictionaryWithObject:[NSDate date]
 forKey:@"date"];
NSString *baseString = @"Base string.";
NSString *string2 = [baseString stringByAppendingFormat:
 @" A number: %@, a dictionary: %@", number, dictionary];
// string2 is "Base string. A number: 1234, a dictionary: {date = 2005-10-17
09:02:01 -0700; }"

Formatting Basics 15
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Formatting String Objects

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Strings and Non-ASCII Characters

You can include non-ASCII characters (including Unicode) in strings using methods such as
stringWithFormat: and stringWithUTF8String:.

NSString *s = [NSString stringWithFormat:@"Long %C dash", 0x2014];

Since \xe2\x80\x94 is the 3-byte UTF-8 string for 0x2014, you could also write:

NSString *s = [NSString stringWithUTF8String:"Long \xe2\x80\x94 dash"];

It is not safe is to include high-bit characters in your source code:

NSString *s = [NSString stringWithUTF8String:"Long — dash"];
NSString *s = @"Long — dash"; // Not allowed

NSLog and NSLogv

The utility functions NSLog() and NSLogv() use the NSString string formatting services to log error
messages. Note that as a consequence of this, you should take care when specifying the argument for these
functions. A common mistake is to specify a string that includes formatting characters, as shown in the
following example.

NSString *string = @"A contrived string %@";
NSLog(string);
// The application will probably crash here due to signal 10 (SIGBUS)

It is better (safer) to use a format string to output another string, as shown in the following example.

NSString *string = @"A contrived string %@";
NSLog(@"%@", string);
// Output: A contrived string %@

16 Strings and Non-ASCII Characters
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Formatting String Objects

This article summarizes the format specifiers supported by string formatting methods and functions.

Format Specifiers

The format specifiers supported by the NSString formatting methods and CFString formatting functions
follow the IEEE printf specification; the specifiers are summarized in Table 1 (page 17). Note that you can
also use the “n$” positional specifiers such as %1$@ %2$s. For more details, see the IEEE printf specification.
You can also use these format specifiers with the NSLog function.

Table 1 Format specifiers supported by the NSString formatting methods and CFString formatting
functions

DescriptionSpecifier

Objective-C object, printed as the string returned by descriptionWithLocale: if available,
or description otherwise. Also works with CFTypeRef objects, returning the result of the
CFCopyDescription function.

%@

'%' character%%

Signed 32-bit integer (int)%d, %D, %i

Unsigned 32-bit integer (unsigned int)%u, %U

Signed 16-bit integer (short)%hi

Unsigned 16-bit integer (unsigned short)%hu

Signed 64-bit integer (long long)%qi

Unsigned 64-bit integer (unsigned long long)%qu

Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9 and
lowercase a–f

%x

Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9 and
uppercase A–F

%X

Unsigned 64-bit integer (unsigned long long), printed in hexadecimal using the digits 0–9
and lowercase a–f

%qx

Unsigned 64-bit integer (unsigned long long), printed in hexadecimal using the digits 0–9
and uppercase A–F

%qX

Format Specifiers 17
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

DescriptionSpecifier

Unsigned 32-bit integer (unsigned int), printed in octal%o, %O

64-bit floating-point number (double)%f

64-bit floating-point number (double), printed in scientific notation using a lowercase e to
introduce the exponent

%e

64-bit floating-point number (double), printed in scientific notation using an uppercase E to
introduce the exponent

%E

64-bit floating-point number (double), printed in the style of %e if the exponent is less than
–4 or greater than or equal to the precision, in the style of %f otherwise

%g

64-bit floating-point number (double), printed in the style of %E if the exponent is less than
–4 or greater than or equal to the precision, in the style of %f otherwise

%G

8-bit unsigned character (unsigned char), printed by NSLog() as an ASCII character, or, if
not an ASCII character, in the octal format \\ddd or the Unicode hexadecimal format \\udddd,
where d is a digit

%c

16-bit Unicode character (unichar), printed by NSLog() as an ASCII character, or, if not an
ASCII character, in the octal format \\ddd or the Unicode hexadecimal format \\udddd, where
d is a digit

%C

Null-terminated array of 8-bit unsigned characters. %s interprets its input in the system encoding
rather than, for example, UTF-8.

%s

Null-terminated array of 16-bit Unicode characters%S

Void pointer (void *), printed in hexadecimal with the digits 0–9 and lowercase a–f, with a
leading 0x

%p

Length modifier specifying that a following a, A, e, E, f, F, g, or G conversion specifier applies
to a long double argument

%L

64-bit floating-point number (double), printed in scientific notation with a leading 0x and
one hexadecimal digit before the decimal point using a lowercase p to introduce the exponent

%a

64-bit floating-point number (double), printed in scientific notation with a leading 0X and
one hexadecimal digit before the decimal point using a uppercase P to introduce the exponent

%A

64-bit floating-point number (double), printed in decimal notation%F

Length modifier specifying that a following d, i, o, u, x, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument

%z

Length modifier specifying that a following d, i, o, u, x, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument

%t

Length modifier specifying that a following d, i, o, u, x, or X conversion specifier applies to a
intmax_t or uintmax_t argument

%j

18 Format Specifiers
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

Platform Dependencies

Mac OS X uses several data types—NSInteger,NSUInteger,CGFloat, andCFIndex—to provide a consistent
means of representing values in 32- and 64-bit environments. In a 32-bit environment, NSInteger and
NSUInteger are defined as int and unsigned int, respectively. In 64-bit environments, NSInteger and
NSUInteger are defined as long and unsigned long, respectively. To avoid the need to use different
printf-style type specifiers depending on the platform, you can use the specifiers shown in Table 2. Note that
in some cases you may have to cast the value.

Table 2 Format specifiers for data types

ConsiderationsFormat specifierType

Cast the value to long%ld or %lxNSInteger

Cast the value to unsigned long%lu or %lxNSUInteger

%f works for floats and doubles when formatting; but see
below warning when scanning

%f or %gCGFloat

The same as NSInteger%ld or %lxCFIndex

%p adds 0x to the beginning of the output. If you don't want
that, use %lx and cast to long.

%ppointer

long long is 64-bit on both 32- and 64-bit platforms%lld or %llxlong long

unsigned long long is 64-bit on both 32- and 64-bit
platforms

%llu or %llxunsigned long long

The following example illustrates the use of %ld to format an NSInteger and the use of a cast.

NSInteger i = 42;
printf("%ld\n", (long)i);

In addition to the considerations mentioned in Table 2, there is one extra case with scanning: you must
distinguish the types for float and double. You should use %f for float, %lf for double. If you need to use
scanf (or a variant thereof) with CGFloat, switch to double instead, and copy the double to CGFloat.

CGFloat imageWidth;
double tmp;
sscanf (str, "%lf", &tmp);
imageWidth = tmp;

It is important to remember that %lf does not represent CGFloat correctly on either 32- or 64-bit platforms.
This is unlike %ld, which works for long in all cases.

Platform Dependencies 19
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

20 Platform Dependencies
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Format Specifiers

Reading files or URLs using NSString is straightforward provided that you know what encoding the resource
uses—if you don't know the encoding, reading a resource is more challenging. When you write to a file or
URL, you must specify the encoding to use.

Reading From Files and URLs

NSString provides a variety of methods to read data from files and URLs. In general, it is much easier to
read data if you know its encoding. If you have plain text and no knowledge of the encoding, you are already
in a difficult position. You should avoid placing yourself in this position if at all possible—anything that calls
for the use of plain text files should specify the encoding (preferably UTF-8 or UTF-16+BOM).

Reading data with a known encoding

To read from a file or URL for which you know the encoding, you use
stringWithContentsOfFile:encoding:error: or stringWithContentsOfURL:encoding:error:,
or the corresponding init... method, as illustrated in the following example.

NSString *path = ...;
NSError *error;
NSString *stringFromFileAtPath = [[NSString alloc]
 initWithContentsOfFile:path
 encoding:NSUTF8StringEncoding
 error:&error];
if (stringFromFileAtPath == nil) {
 // an error occurred
 NSLog(@"Error reading file at %@\n%@",
 path, [error localizedFailureReason]);
 // implementation continues ...

You can also initialize a string using a data object, as illustrated in the following examples. Again, you must
specify the correct encoding.

NSString *path = ...;
NSData *data = [NSData dataWithContentsOfFile:path];

// assuming data is in UTF8
NSString *string = [NSString stringWithUTF8String:[data bytes]];

// if data is in another encoding, for example ISO-8859-1
NSString *string = [[NSString alloc]
 initWithData:data encoding: NSISOLatin1StringEncoding];

Reading From Files and URLs 21
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Reading Strings From and Writing Strings To
Files and URLs

Important: NSString provides methods (such as stringWithContentsOfFile: and
initWithContentsOfURL:) to read a file or URL without specifying an encoding . Since these methods do
not specify an encoding, you may lose information or corrupt data using them. You are strongly discouraged
from using these methods as they will be deprecated.

Reading data with an unknown encoding

If you find yourself with text of unknown encoding, it is best to make sure that there is a mechanism for
correcting the inevitable errors. For example, Apple's Mail and Safari applications have encoding menus, and
TextEdit allows the user to reopen the file with an explicitly specified encoding.

If you are forced to guess the encoding (and note that in the absence of explicit information, it is a guess):

1. Try stringWithContentsOfFile:usedEncoding:error: or
initWithContentsOfFile:usedEncoding:error: (or the URL-based equivalents).

These methods try to determine the encoding of the resource, and if successful return by reference the
encoding used.

2. If (1) fails, try to read the resource by specifying UTF-8 as the encoding.

3. If (2) fails, try an appropriate legacy encoding.

"Appropriate" here depends a bit on circumstances; it might be the default C string encoding, it might
be ISO or Windows Latin 1, or something else, depending on where your data are coming from.

4. Finally, you can try NSAttributedString's loading methods from the Application Kit (such as
initWithURL:options:documentAttributes:error:).

These methods attempt to load plain text files, and return the encoding used. They can be used on
more-or-less arbitrary text documents, and are worth considering if your application has no special
expertise in text. They might not be as appropriate for Foundation-level tools or documents that are not
natural-language text.

Writing to Files and URLs

Compared with reading data from a file or URL, writing is straightforward—NSStringprovides two convenient
methods, writeToFile:atomically:encoding:error: and
writeToURL:atomically:encoding:error:. You must specify the encoding that should be used, and
choose whether to write the resource atomically or not. If you do not choose to write atomically, the string
is written directly to the path you specify, otherwise it is written first to an auxiliary file, and then the auxiliary
file is renamed to the path. option guarantees that the file, if it exists at all, won’t be corrupted even if the
system should crash during writing. If you write to an URL, the atomicity option is ignored if the destination
is not of a type that can be accessed atomically.

NSString *path = ...;
NSString *string = ...;
NSError *error;
BOOL ok = [string writeToFile:path atomically:YES

22 Writing to Files and URLs
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Reading Strings From and Writing Strings To Files and URLs

 encoding:NSUnicodeStringEncoding error:&error];
if (!ok) {
 // an error occurred
 NSLog(@"Error writing file at %@\n%@",
 path, [error localizedFailureReason]);
 // implementation continues ...

Summary

This table summarizes the most common means of reading and writing string objects to and from files and
URLs:

Extraction methodCreation methodSource

writeToFile:
atomically:encoding: error:

stringWithContentsOfFile: encoding:error:

stringWithContentsOfFile:
usedEncoding:error:

File contents

writeToURL:
atomically:encoding: error:

stringWithContentsOfURL: encoding:error:

stringWithContentsOfURL:
usedEncoding:error:

URL contents

Summary 23
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Reading Strings From and Writing Strings To Files and URLs

24 Summary
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Reading Strings From and Writing Strings To Files and URLs

The string classes provide methods for finding characters and substrings within strings and for comparing
one string to another. These methods conform to the Unicode standard for determining whether two character
sequences are equivalent. The string classes provide comparison methods that handle composed character
sequences properly, though you do have the option of specifying a literal search when efficiency is important
and you can guarantee some canonical form for composed character sequences.

Search and Comparison Methods

The search and comparison methods each come in several variants. The simplest version of each searches
or compares entire strings. Other variants allow you to alter the way comparison of composed character
sequences is performed and to specify a specific range of characters within a string to be searched or
compared; you can also search and compare strings in the context of a given locale.

These are the basic search and comparison methods:

Comparison methodsSearch methods

compare:rangeOfString:

compare:options:rangeOfString: options:

compare:options: range:rangeOfString: options:range:

compare:options: range:locale:rangeOfString: options:range: locale:

rangeOfCharacterFromSet:

rangeOfCharacterFromSet: options:

rangeOfCharacterFromSet: options:range:

Searching strings

You use the rangeOfString:... methods to search for a substring within the receiver. The
rangeOfCharacterFromSet:...methods search for individual characters from a supplied set of characters.

Substrings are found only if completely contained within the specified range. If you specify a range for a
search or comparison method and don’t request NSLiteralSearch (see below), the range must not break
composed character sequences on either end; if it does, you could get an incorrect result. (See the method
description for rangeOfComposedCharacterSequenceAtIndex: for a code sample that adjusts a range
to lie on character sequence boundaries.)

Search and Comparison Methods 25
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Searching, Comparing, and Sorting Strings

You can also scan a string object for numeric and string values using an instance of NSScanner. For more
about scanners, see “Scanners” (page 39). Both the NSString and the NSScanner class clusters use the
NSCharacterSet class cluster for search operations. For more about character sets, see “Character Sets” (page
35).

If you simply want to determine whether a string contains a given pattern, you can use a predicate:

BOOL match = [myPredicate evaluateWithObject:myString];

For more about predicates, see Predicate Programming Guide.

Comparing and sorting strings

The compare:... methods return the lexical ordering of the receiver and the supplied string. Several other
methods allow you to determine whether two strings are equal or whether one is the prefix or suffix of
another, but they don’t have variants that allow you to specify search options or ranges.

The simplest method you can use to compare strings is compare:—this is the same as invoking
compare:options:range:with no options and the receiver’s full extent as the range. If you want to specify
comparison options (NSCaseInsensitiveSearch, NSLiteralSearch, or NSNumericSearch) you can
use compare:options:; if you want to specify a locale you can use compare:options:range:locale:.
NSString also provides various convenience methods to allow you to perform common comparisons without
the need to specify ranges and options directly, for example caseInsensitiveCompare: and
localizedCompare:.

Important: For user-visible sorted lists, you should always use localized comparisons. Thus typically instead
of compare: or caseInsensitiveCompare: you should use localizedCompare: or
localizedCaseInsensitiveCompare:.

If you want to compare strings to order them in the same way as they’re presented in Finder, you should use
compare:options:range:locale: with the user’s locale and the following options:
NSCaseInsensitiveSearch, NSNumericSearch, NSWidthInsensitiveSearch, and
NSForcedOrderingSearch. For an example, see “Sorting strings like Finder” (page 28).

Search and Comparison Options

Several of the search and comparison methods take an “options” argument. This is a bit mask that adds
further constraints to the operation. You create the mask by combining the following options (not all options
are available for every method):

EffectSearch option

Ignores case distinctions among characters.NSCaseInsensitive-
Search

26 Search and Comparison Options
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Searching, Comparing, and Sorting Strings

EffectSearch option

Performs a byte-for-byte comparison. Differing literal sequences (such as
composed character sequences) that would otherwise be considered
equivalent are considered not to match. Using this option can speed some
operations dramatically.

NSLiteralSearch

Performs searching from the end of the range toward the beginning.NSBackwardsSearch

Performs searching only on characters at the beginning or end of the range.
No match at the beginning or end means nothing is found, even if a matching
sequence of characters occurs elsewhere in the string.

NSAnchoredSearch

When used with the compare:options: methods, groups of numbers are
treated as a numeric value for the purpose of comparison. For example,
Filename9.txt < Filename20.txt < Filename100.txt.

NSNumericSearch

Search and comparison are currently performed as if the NSLiteralSearch option were specified.

Examples

Case-Insensitive Search for Prefix and Suffix

NSString provides the methods hasPrefix: and hasSuffix: that you can use to find an exact match for
a prefix or suffix. The following example illustrates how you can use rangeOfString:options: with a
combination of options to perform case insensitive searches.

NSString *searchString = @"age";

NSString *beginsTest = @"Agencies";
NSRange prefixRange = [beginsTest rangeOfString:searchString
 options:(NSAnchoredSearch | NSCaseInsensitiveSearch)];

// prefixRange = {0, 3}

NSString *endsTest = @"BRICOLAGE";
NSRange suffixRange = [endsTest rangeOfString:searchString
 options:(NSAnchoredSearch | NSCaseInsensitiveSearch | NSBackwardsSearch)];

// suffixRange = {6, 3}

Comparing Strings

The following examples illustrate the use of various string comparison methods and associated options. The
first shows the simplest comparison method.

NSString *string1 = @"string1";
NSString *string2 = @"string2";
NSComparisonResult result;

Examples 27
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Searching, Comparing, and Sorting Strings

result = [string1 compare:string2];
// result = -1 (NSOrderedAscending)

You can compare strings numerically using the NSNumericSearch option:

NSString *string10 = @"string10";
NSString *string2 = @"string2";
NSComparisonResult result;

result = [string10 compare:string2];
// result = -1 (NSOrderedAscending)

result = [string10 compare:string2 options:NSNumericSearch];
// result = 1 (NSOrderedDescending)

You can use convenience methods (caseInsensitiveCompare: and
localizedCaseInsensitiveCompare:) to perform case-insensitive comparisons:

NSString *string_a = @"Aardvark";
NSString *string_A = @"AARDVARK";

result = [string_a compare:string_A];
// result = 1 (NSOrderedDescending)

result = [string_a caseInsensitiveCompare:string_A];
// result = 0 (NSOrderedSame)
// equivalent to [string_a compare:string_A options:NSCaseInsensitiveSearch]

Sorting strings like Finder

The following example shows how you can compare strings to order them in the same way as they’re
presented in Finder. First, define a sorting function that includes the relevant comparison options (for
efficiency, pass the user's locale as the context—this way it's only looked up once).

int finderSortWithLocale(id string1, id string2, void *locale)
{
 static NSStringCompareOptions comparisonOptions =
 NSCaseInsensitiveSearch | NSNumericSearch |
 NSWidthInsensitiveSearch | NSForcedOrderingSearch;

 NSRange string1Range = NSMakeRange(0, [string1 length]);

 return [string1 compare:string2
 options:comparisonOptions
 range:string1Range
 locale:(NSLocale *)locale];
}

You pass the function as a parameter to sortedArrayUsingFunction:context: with the user’s current
locale as the context:

NSArray *stringsArray = [NSArray arrayWithObjects:
 @"string 1",
 @"String 21",
 @"string 12",
 @"String 11",

28 Examples
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Searching, Comparing, and Sorting Strings

 @"String 02", nil];

NSArray *sortedArray = [stringsArray sortedArrayUsingFunction:finderSortWithLocale
 context:[NSLocale currentLocale]];

// sortedArray contains { "string 1", "String 02", "String 11", "string 12",
"String 21" }

Examples 29
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Searching, Comparing, and Sorting Strings

30 Examples
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Searching, Comparing, and Sorting Strings

This article describes how line and paragraph separators are defined and how you can separate a string by
paragraph.

Line and Paragraph Separator Characters

There are a number of ways in which a line or paragraph break may be represented. Historically \n, \r, and
\r\n have been used. Unicode defines an unambiguous paragraph separator, U+2029 (for which Cocoa
provides the constant NSParagraphSeparatorCharacter), and an unambiguous line separator, U+2028
(for which Cocoa provides the constant NSLineSeparatorCharacter).

In the Cocoa text system, the NSParagraphSeparatorCharacter is treated consistently as a paragraph
break, and NSLineSeparatorCharacter is treated consistently as a line break that is not a paragraph
break—that is, a line break within a paragraph. However, in other contexts, there are few guarantees as to
how these characters will be treated. POSIX-level software, for example, often recognizes only \n as a break.
Some older Macintosh software recognizes only \r, and some Windows software recognizes only \r\n.
Often there is no distinction between line and paragraph breaks.

Which line or paragraph break character you should use depends on how your data may be used and on
what platforms. The Cocoa text system recognizes \n, \r, or \r\n all as paragraph breaks—equivalent to
NSParagraphSeparatorCharacter. When it inserts paragraph breaks, for example with insertNewline:,
it uses \n. Ordinarily NSLineSeparatorCharacter is used only for breaks that are specifically line breaks
and not paragraph breaks, for example in insertLineBreak:, or for representing HTML
 elements.

If your breaks are specifically intended as line breaks and not paragraph breaks, then you should typically
use NSLineSeparatorCharacter. Otherwise, you may use \n, \r, or \r\n depending on what other
software is likely to process your text. The default choice for Cocoa is usually \n.

Separating a String “by Paragraph”

A common approach to separating a string “by paragraph” is simply to use:

NSArray *arr = [myString componentsSeparatedByString:@"\n"];

This, however, ignores the fact that there are a number of other ways in which a paragraph or line break may
be represented in a string—\r, \r\n, or Unicode separators. Instead you can use methods—such as
lineRangeForRange: or getParagraphStart:end:contentsEnd:forRange:—that take into account
the variety of possible line terminations, as illustrated in the following example.

NSString *string = /* assume this exists */;
unsigned length = [string length];
unsigned paraStart = 0, paraEnd = 0, contentsEnd = 0;

Line and Paragraph Separator Characters 31
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Paragraphs and Line Breaks

NSMutableArray *array = [NSMutableArray array];
NSRange currentRange;
while (paraEnd < length) {
 [string getParagraphStart:¶Start end:¶End
 contentsEnd:&contentsEnd forRange:NSMakeRange(paraEnd, 0)];
 currentRange = NSMakeRange(paraStart, contentsEnd - paraStart);
 [array addObject:[string substringWithRange:currentRange]];
}

32 Separating a String “by Paragraph”
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Paragraphs and Line Breaks

It's common to think of a string as a sequence of characters, but when working with NSString objects, or
with Unicode strings in general, in most cases it is better to deal with substrings rather than with individual
characters. The reason for this is that what the user perceives as a character in text may in many cases be
represented by multiple characters in the string. NSString has a large inventory of methods for properly
handling Unicode strings, which in general make Unicode compliance easy, but there are a few precautions
you should observe.

NSString objects are conceptually UTF-16 with platform endianness. That doesn't necessarily imply anything
about their internal storage mechanism; what it means is that NSString lengths, character indexes, and
ranges are expressed in terms of UTF-16 units, and that the term “character” in NSString method names
refers to 16-bit platform-endian UTF-16 units. This is a common convention for string objects. In most cases,
clients don't need to be overly concerned with this; as long as you are dealing with substrings, the precise
interpretation of the range indexes is not necessarily significant.

The vast majority of Unicode code points used for writing living languages are represented by single UTF-16
units. However, some less common Unicode code points are represented in UTF-16 by surrogate pairs. A
surrogate pair is a sequence of two UTF-16 units, taken from specific reserved ranges, that together represent
a single Unicode code point. CFString has functions for converting between surrogate pairs and the UTF-32
representation of the corresponding Unicode code point. When dealing with NSString objects, one constraint
is that substring boundaries usually should not separate the two halves of a surrogate pair. This is generally
automatic for ranges returned from most Cocoa methods, but if you are constructing substring ranges yourself
you should keep this in mind. However, this is not the only constraint you should consider.

In many writing systems, a single character may be composed of a base letter plus an accent or other
decoration. The number of possible letters and accents precludes Unicode from representing each combination
as a single code point, so in general such combinations are represented by a base character followed by one
or more combining marks. For compatibility reasons, Unicode does have single code points for a number of
the most common combinations; these are referred to as precomposed forms, and Unicode normalization
transformations can be used to convert between precomposed and decomposed representations. However,
even if a string is fully precomposed, there are still many combinations that must be represented using a
base character and combining marks. For most text processing, substring ranges should be arranged so that
their boundaries do not separate a base character from its associated combining marks.

In addition, there are writing systems in which characters represent a combination of parts that are more
complicated than accent marks. In Korean, for example, a single Hangul syllable can be composed of two or
three subparts known as jamo. In the Indic and Indic-influenced writing systems common throughout South
and Southeast Asia, single written characters often represent combinations of consonants, vowels, and marks
such as viramas, and the Unicode representations of these writing systems often use code points for these
individual parts, so that a single character may be composed of multiple code points. For most text processing,
substring ranges should also be arranged so that their boundaries do not separate the jamo in a single Hangul
syllable, or the components of an Indic consonant cluster.

In general, these combinations—surrogate pairs, base characters plus combining marks, Hangul jamo, and
Indic consonant clusters—are referred to as grapheme clusters. In order to take them into account, you can
use NSString’s rangeOfComposedCharacterSequencesForRange: or
rangeOfComposedCharacterSequenceAtIndex: methods, or

33
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Characters and Grapheme Clusters

CFStringGetRangeOfComposedCharactersAtIndex. These can be used to adjust string indexes or
substring ranges so that they fall on grapheme cluster boundaries, taking into account all of the constraints
mentioned above. These methods should be the default choice for programmatically determining the
boundaries of user-perceived characters.:

In some cases, Unicode algorithms deal with multiple characters in ways that go beyond even grapheme
cluster boundaries. Unicode casing algorithms may convert a single character into multiple characters when
going from lowercase to uppercase; for example, the standard uppercase equivalent of the German character
“ß” is the two-letter sequence “SS”. Localized collation algorithms in many languages consider
multiple-character sequences as single units; for example, the sequence “ch” is treated as a single letter for
sorting purposes in some European languages. In order to deal properly with cases like these, it is important
to use standard NSString methods for such operations as casing, sorting, and searching, and to use them
on the entire string to which they are to apply. Use NSString methods such as lowercaseString,
uppercaseString, capitalizedString, compare: and its variants, rangeOfString: and its variants,
and rangeOfCharacterFromSet: and its variants, or their CFString equivalents. These all take into account
the complexities of Unicode string processing, and the searching and sorting methods in particular have
many options to control the types of equivalences they are to recognize.

In some less common cases, it may be necessary to tailor the definition of grapheme clusters to a particular
need. The issues involved in determining and tailoring grapheme cluster boundaries are covered in detail in
Unicode Standard Annex #29, which gives a number of examples and some algorithms. The Unicode standard
in general is the best source for information about Unicode algorithms and the considerations involved in
processing Unicode strings.

If you are interested in grapheme cluster boundaries from the point of view of cursor movement and insertion
point positioning, and you are using the Cocoa text system, you should know that on Mac OS X v10.5 and
later, NSLayoutManager has API support for determining insertion point positions within a line of text as it
is laid out. Note that insertion point boundaries are not identical to glyph boundaries; a ligature glyph in
some cases, such as an “fi” ligature in Latin script, may require an internal insertion point on a user-perceived
character boundary. See the Cocoa text system documentation (such as Mac OS X Text Overview Guide and
Text Editing Programming Guide for Cocoa) for more information.

34
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Characters and Grapheme Clusters

http://unicode.org/reports/tr29/

An NSCharacterSet object represents a set of Unicode characters. NSString and NSScanner objects use
NSCharacterSet objects to group characters together for searching operations, so that they can find any
of a particular set of characters during a search.

Character Set Basics

A character set object represents a set of Unicode characters. Character sets are represented by instances of
a class cluster. The cluster’s two public classes, NSCharacterSet and NSMutableCharacterSet, declare
the programmatic interface for immutable and mutable character sets, respectively. An immutable character
set is defined when it is created and subsequently cannot be changed. A mutable character set can be
changed after it’s created.

A character set object doesn’t perform any tasks; it simply holds a set of character values to limit operations
on strings. The NSString and NSScanner classes define methods that take NSCharacterSet objects as
arguments to find any of several characters. For example, this code excerpt finds the range of the first
uppercase letter in myString:.

NSString *myString = @"some text in an NSString...";
NSCharacterSet *characterSet = [NSCharacterSet uppercaseLetterCharacterSet];
NSRange letterRange;

letterRange = [myString rangeOfCharacterFromSet:characterSet];

After this fragment executes, letterRange.location is equal to the index of the first “N” in “NSString”
after rangeOfCharacterFromSet: is invoked. If the first letter of the string were “S”, then
letterRange.location would be 0.

Creating Character Sets

NSCharacterSet defines class methods that return commonly used character sets, such as letters (uppercase
or lowercase), decimal digits, whitespace, and so on. These “standard” character sets are always immutable,
even if created by sending a message to NSMutableCharacterSet. See “Standard Character Sets and
Unicode Definitions” (page 37) for more information on standard character sets.

You can use a standard character set as a starting point for building a custom set by making a mutable copy
of it and changing that. (You can also start from scratch by creating a mutable character set with alloc and
init and adding characters to it.) For example, this fragment creates a character set containing letters, digits,
and basic punctuation:

NSMutableCharacterSet *workingSet;
NSCharacterSet *finalCharSet;

Character Set Basics 35
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Character Sets

workingSet = [[NSCharacterSet alphanumericCharacterSet] mutableCopy];
[workingSet addCharactersInString:@";:,."];
finalCharSet = [workingSet copy];
[workingSet release];

To define a custom character set using Unicode code points, use code similar to the following fragment
(which creates a character set including the form feed and line separator characters):

UniChar chars[] = {0x000C, 0x2028};
NSString *string = [[NSString alloc] initWithCharacters:chars
 length:sizeof(chars) / sizeof(UniChar)];
NSCharacterSet *chset = [NSCharacterSet
 characterSetWithCharactersInString:string];
[string release];

Performance considerations

Because character sets often participate in performance-critical code, you should be aware of the aspects of
their use that can affect the performance of your application. Mutable character sets are generally much
more expensive than immutable character sets. They consume more memory and are costly to invert (an
operation often performed in scanning a string). Because of this, you should follow these guidelines:

 ■ Create as few mutable character sets as possible.

 ■ Cache character sets (in a global dictionary, perhaps) instead of continually recreating them.

 ■ When creating a custom set that doesn’t need to change after creation, make an immutable copy of the
final character set for actual use, and dispose of the working mutable character set. Alternatively, create
a character set file as described in “Creating a character set file” (page 36) and store it in your application’s
main bundle.

 ■ Similarly, avoid archiving character set objects; store them in character set files instead. Archiving can
result in a character set being duplicated in different archive files, resulting in wasted disk space and
duplicates in memory for each separate archive read.

Creating a character set file

If your application frequently uses a custom character set, you should save its definition in a resource file
and load that instead of explicitly adding individual characters each time you need to create the set. You can
save a character set by getting its bitmap representation (an NSData object) and saving that object to a file:

NSString *filename; /* Assume this exists. */
NSString *absolutePath;
NSData *charSetRep;
BOOL result;

absolutePath = [filename stringByStandardizingPath];
charSetRep = [finalCharSet bitmapRepresentation];
result = [charSetRep writeToFile:absolutePath atomically:YES];

36 Performance considerations
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Character Sets

By convention, character set filenames use the extension .bitmap. If you intend for others to use your
character set files, you should follow this convention. To read a character set file with a .bitmap extension,
simply use the characterSetWithContentsOfFile: method.

Standard Character Sets and Unicode Definitions

The standard character sets, such as that returned by letterCharacterSet, are formally defined in terms
of the normative and informative categories established by the Unicode standard, such as Uppercase Letter,
Combining Mark, and so on. The formal definition of a standard character set is in most cases given as one
or more of the categories defined in the standard. For example, the set returned by
lowercaseLetterCharacterSet include all characters in normative category Lowercase Letters, while
the set returned by letterCharacterSet includes the characters in all of the Letter categories.

Note that the definitions of the categories themselves may change with new versions of the Unicode standard.
You can download the files that define category membership from http://www.unicode.org/.

Standard Character Sets and Unicode Definitions 37
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Character Sets

http://www.unicode.org/

38 Standard Character Sets and Unicode Definitions
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Character Sets

An NSScanner object scans the characters of an NSString object, typically interpreting the characters and
converting them into number and string values. You assign the scanner’s string on creation, and the scanner
progresses through the characters of that string from beginning to end as you request items.

Creating a Scanner

NSScanner is a class cluster with a single public class, NSScanner. Generally, you instantiate a scanner object
by invoking the class method scannerWithString: or localizedScannerWithString:. Either method
returns a scanner object initialized with the string you pass to it. The newly created scanner starts at the
beginning of its string. You scan components using the scan...methods such as scanInt:, scanDouble:,
and scanString:intoString:. If you are scanning multiple lines, you typically create a while loop that
continues until the scanner is at the end of the string, as illustrated in the following code fragment:

float aFloat;
NSScanner *theScanner = [NSScanner scannerWithString:aString];
while ([theScanner isAtEnd] == NO) {

 [theScanner scanFloat:&aFloat];
 // implementation continues...
}

You can configure a scanner to consider or ignore case using the setCaseSensitive: method. By default
a scanner ignores case.

Using a Scanner

Scan operations start at the scan location and advance the scanner to just past the last character in the
scanned value representation (if any). For example, after scanning an integer from the string “137 small
cases of bananas”, a scanner’s location will be 3, indicating the space immediately after the number.
Often you need to advance the scan location to skip characters in which you are not interested. You can
change the implicit scan location with the setScanLocation: method to skip ahead a certain number of
characters (you can also use the method to rescan a portion of the string after an error). Typically, however,
you either want to skip characters from a particular character set, scan past a specific string, or scan up to a
specific string.

You can configure a scanner to skip a set of characters with the setCharactersToBeSkipped: method. A
scanner ignores characters to be skipped at the beginning of any scan operation. Once it finds a scannable
character, however, it includes all characters matching the request. Scanners skip whitespace and newline
characters by default. Note that case is always considered with regard to characters to be skipped. To skip
all English vowels, for example, you must set the characters to be skipped to those in the string “AEIOUaeiou”.

Creating a Scanner 39
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Scanners

If you want to read content from the current location up to a particular string, you can use
scanUpToString:intoString: (you can pass NULL as the second argument if you simply want to skip
the intervening characters). For example, given the following string:

137 small cases of bananas

you can find the type of container and number of containers using scanUpToString:intoString: as
shown in the following example.

NSString *bananas = @"137 small cases of bananas";
NSString *separatorString = @" of";

NSScanner *aScanner = [NSScanner scannerWithString:bananas];

NSInteger anInteger;
[aScanner scanInteger:&anInteger];
NSString *container;
[aScanner scanUpToString:separatorString intoString:&container];

It is important to note that the search string (separatorString) is " of". By default a scanner ignores
whitespace, so the space character after the integer is ignored. Once the scanner begins to accumulate
characters, however, all characters are added to the output string until the search string is reached. Thus if
the search string is "of" (no space before), the first value of container is “small cases ” (includes the space
following); if the search string is " of" (with a space before), the first value of container is “small cases”
(no space following).

After scanning up to a given string, the scan location is the beginning of that string. If you want to scan past
that string, you must therefore first scan in the string you scanned up to. The following code fragment
illustrates how to skip past the search string in the previous example and determine the type of product in
the container. Note the use of substringFromIndex: to in effect scan up to the end of a string.

[aScanner scanString:separatorString intoString:NULL];
NSString *product;
product = [[aScanner string] substringFromIndex:[aScanner scanLocation]];
// could also use:
// product = [bananas substringFromIndex:[aScanner scanLocation]];

Example

Suppose you have a string containing lines such as:

Product: Acme Potato Peeler; Cost: 0.98 73
Product: Chef Pierre Pasta Fork; Cost: 0.75 19
Product: Chef Pierre Colander; Cost: 1.27 2

The following example uses alternating scan operations to extract the product names and costs (costs are
read as a float for simplicity’s sake), skipping the expected substrings “Product:” and “Cost:”, as well as the
semicolon. Note that because a scanner skips whitespace and newlines by default, the loop does no special
processing for them (in particular there is no need to do additional whitespace processing to retrieve the
final integer).

NSString *string = @"Product: Acme Potato Peeler; Cost: 0.98 73\n\
Product: Chef Pierre Pasta Fork; Cost: 0.75 19\n\

40 Example
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Scanners

Product: Chef Pierre Colander; Cost: 1.27 2\n";

NSCharacterSet *semicolonSet;
NSScanner *theScanner;

NSString *PRODUCT = @"Product:";
NSString *COST = @"Cost:";

NSString *productName;
float productCost;
NSInteger productSold;

semicolonSet = [NSCharacterSet characterSetWithCharactersInString:@";"];
theScanner = [NSScanner scannerWithString:string];

while ([theScanner isAtEnd] == NO)
{
 if ([theScanner scanString:PRODUCT intoString:NULL] &&
 [theScanner scanUpToCharactersFromSet:semicolonSet
 intoString:&productName] &&
 [theScanner scanString:@";" intoString:NULL] &&
 [theScanner scanString:COST intoString:NULL] &&
 [theScanner scanFloat:&productCost] &&
 [theScanner scanInteger:&productSold])
 {
 NSLog(@"Sales of %@: $%1.2f", productName, productCost * productSold);
 }
}

Localization

A scanner bases some of its scanning behavior on a locale, which specifies a language and conventions for
value representations. NSScanner uses only the locale’s definition for the decimal separator (given by the
key named NSDecimalSeparator). You can create a scanner with the user’s locale by using
localizedScannerWithString:, or set the locale explicitly using setLocale:. If you use a method that
doesn’t specify a locale, the scanner assumes the default locale values.

Localization 41
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Scanners

42 Localization
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Scanners

NSString provides a rich set of methods for manipulating strings as file-system paths. You can extract a
path’s directory, filename, and extension, expand a tilde expression (such as “~me”) or create one for the
user’s home directory, and clean up paths containing symbolic links, redundant slashes, and references to
“.” (current directory) and “..” (parent directory).

Representing a Path

NSString represents paths generically with ‘/’ as the path separator and ‘.’ as the extension separator.
Methods that accept strings as path arguments convert these generic representations to the proper
system-specific form as needed. On systems with an implicit root directory, absolute paths begin with a path
separator or with a tilde expression (“~/...” or “~user/...”). Where a device must be specified, you can
do that yourself—introducing a system dependency—or allow the string object to add a default device.

You can create a standardized representation of a path using stringByStandardizingPath. This performs
a number of tasks including:

 ■ Expansion of an initial tilde expression;

 ■ Reduction of empty components and references to the current directory (“//” and “/./”) to single path
separators;

 ■ In absolute paths, resolution of references to the parent directory (“..”) to the real parent directory;

for example:

NSString *path;
NSString *standardizedPath;

path = @"/usr/bin/./grep";
standardizedPath = [path stringByStandardizingPath];
// standardizedPath: /usr/bin/grep

path = @"~me";
standardizedPath = [path stringByStandardizingPath];
// standardizedPath (assuming conventional naming scheme): /Users/Me

path = @"/usr/include/objc/..";
standardizedPath = [path stringByStandardizingPath];
// standardizedPath: /usr/include

path = @"/private/usr/include";
standardizedPath = [path stringByStandardizingPath];
// standardizedPath: /usr/include

Representing a Path 43
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Representations of File Paths

User Directories

The following examples illustrate how you can use NSString’s path utilities and other Cocoa functions to
get the user directories.

// assuming that users’ home directories are stored in /Users

NSString *meHome = [@"~me" stringByExpandingTildeInPath];
// meHome = @"/Users/me"

NSString *mePublic = [@"~me/Public" stringByExpandingTildeInPath];
// mePublic = @"/Users/me/Public"

You can find the home directory for the current user and for a given user with NSHomeDirectory and
NSHomeDirectoryForUser respectively:

NSString *currentUserHomeDirectory = NSHomeDirectory();
NSString *meHomeDirectory = NSHomeDirectoryForUser(@"me");

Note that you should typically use the function NSSearchPathForDirectoriesInDomains to locate
standard directories for the current user. For example, instead of:

NSString *documentsDirectory =
 [NSHomeDirectory() stringByAppendingPathComponent:@"Documents"];

you should use:

NSString *documentsDirectory;
NSArray *paths = NSSearchPathForDirectoriesInDomains
 (NSDocumentDirectory, NSUserDomainMask, YES);
if ([paths count] > 0) {
 documentsDirectory = [paths objectAtIndex:0];
}

Path Components

NSString provides a rich set of methods for manipulating strings as file-system paths, for example:

Interprets the receiver as a path and returns the receiver’s
extension, if any.

pathExtension

Returns a new string made by deleting the extension (if any,
and only the last) from the receiver.

stringByDeletingPathExtension

Returns a new string made by deleting the last path
component from the receiver, along with any final path
separator.

stringByDeletingLastPathComponent

Using these and related methods described in NSString Class Reference, you can extract a path’s directory,
filename, and extension, as illustrated by the following examples.

NSString *documentPath = @"~me/Public/Demo/readme.txt";

44 User Directories
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Representations of File Paths

NSString *documentDirectory = [documentPath stringByDeletingLastPathComponent];
// documentDirectory = @"~me/Public/Demo"

NSString *documentFilename = [documentPath lastPathComponent];
// documentFilename = @"readme.txt"

NSString *documentExtension = [documentPath pathExtension];
// documentExtension = @"txt"

File Name Completion

You can find possible expansions of file names using
completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:. For example, given
a directory ~/Demo that contains the following files:

ReadMe.txt readme.html readme.rtf recondite.txt test.txt

you can find all possible completions for the path ~/Demo/r as follows:

NSString *partialPath = @"~/Demo/r";
NSString *longestCompletion;
NSArray *outputArray;

unsigned allMatches = [partialPath completePathIntoString:&longestCompletion
 caseSensitive:NO
 matchesIntoArray:&outputArray
 filterTypes:NULL];

// allMatches = 3
// longestCompletion = @"~/Demo/re"
// outputArray = (@"~/Demo/readme.html", "~/Demo/readme.rtf",
"~/Demo/recondite.txt")

You can find possible completions for the path ~/Demo/r that have an extension “.txt” or “.rtf” as follows:

NSArray *filterTypes = [NSArray arrayWithObjects:@"txt", @"rtf", nil];

unsigned textMatches = [partialPath completePathIntoString:&outputName
 caseSensitive:NO
 matchesIntoArray:&outputArray
 filterTypes:filterTypes];
// allMatches = 2
// longestCompletion = @"~/Demo/re"
// outputArray = (@"~/Demo/readme.rtf", @"~/Demo/recondite.txt")

File Name Completion 45
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Representations of File Paths

46 File Name Completion
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

String Representations of File Paths

You can draw string objects directly in a focused NSView using methods such as
drawAtPoint:withAttributes: (to draw a string with multiple attributes, such as multiple text fonts,
you must use an NSAttributedString object). These methods are described briefly in Text in CocoaDrawing
Guide.

The simple methods, however, are designed for drawing small amounts of text or text that is only drawn
rarely—they create and dispose of various supporting objects every time you call them. To draw strings
repeatedly, it is more efficient to use NSLayoutManager, as described in Drawing Strings. For an overview
of the Cocoa text system, of which NSLayoutManager is a part, see Text System Overview.

47
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Drawing Strings

48
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Drawing Strings

This table describes the changes to String Programming Guide for Cocoa.

NotesDate

Added new aricle on character clusters; updated list of string format specifiers.2008-10-15

Corrected minor typographical errors.2007-10-18

Added notes regarding NSInteger and NSUInteger to "String Format Specifiers".2007-07-10

Corrected minor typographical errors.2007-03-06

Corrected sentence fragments and improved the example in "Scanners."2007-02-08

Added code samples to illustrate searching and path manipulation.2006-12-05

Made minor revisions to "Scanners" article.2006-11-07

Added links to path manipulation methods.2006-10-03

Corrected typographical errors.2006-06-28

Added a new article, "Reading Strings From and Writing Strings To Files and
URLs"; significantly updated "Creating and Converting Strings."

2006-05-23

Included “Creating a Character Set” into “Character Sets” (page 35).

Changed title from "Strings" to conform to reference consistency guidelines.2006-01-10

Added Formatting String Objects (page 15) article. Added Data Formatting and
the Core Foundation Strings programming topics to the introduction.

2004-06-28

Added information about custom Unicode character sets and retrieved missing
code fragments in “Creating a Character Set”. Added information and
cross-reference to “Drawing Strings” (page 47). Rewrote introduction and added
an index.

2004-02-06

Added NSNumericSearch description to “Searching, Comparing, and Sorting
Strings” (page 25).

2003-09-09

Reinstated the sample code that was missing from “Scanners” (page 39).2003-03-17

Updated “Creating and Converting String Objects” (page 11) to recommend
the use of UTF8 encoding, and noted the pending deprecation of the
cString... methods.

2003-01-17

Revision history was added to existing topic.2002-11-12

49
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Document Revision History

50
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Document Revision History

A

alloc method 35
archiving

character set objects 36
ASCII character encoding

converting string object contents 11
availableStringEncodings method 11

C

C strings
Cocoa string objects and 9
creating and converting 13

character encodings
string manipulation and 11

character sets
custom 35, 36
example code 35
guidelines for use 36
mutable and immutable 35
saving to a file 36
standard 35, 37

characterAtIndex: method 9
characterSetWithContentsOfFile: method 37
compare: method 25
compare:options: method 25, 27
compare:options:range: method 25
comparing strings 25–26
comparison methods for strings 25
componentsSeparatedByString: method 13
cString method 14
cStringLength method 14
current directories

resolving references to 43

D

dataUsingEncoding: method 14
defaultCStringEncoding method 11
description method 15
descriptionWithLocale: method 15
directories

manipulating strings as paths 43, 44

E

encodings, character
string manipulation and 11

EUC character encoding 11

F

file-system paths and strings 44
format strings 15

G

getCharacters:length: method 14
getCString: method 14
getCString:maxLength: method 14
getCString:maxLength:range:remainingRange:

method 14

I

init method
for mutable character sets 35

initWithData:encoding: method 11, 14
initWithFormat: method 13
initWithFormat:locale: method 14
ISO Latin 1 character encoding 11

51
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

Index

L

length method
for string objects 9

letterCharacterSet method 37
localization

scanning strings and 41
value formatting and 15

localizedScannerWithString: method 39, 41
localizedStringWithFormat: method 12, 14
lossyCString method 14
lowercaseLetterCharacterSet method 37

M

myString: method 35

N

NSCharacterSet class 35
NSLayoutManager class 47
NSMutableCharacterSet class 35
NSMutableString class 9, 11
NSScanner class 26, 39–40
NSString class

creating string objects from 11
described 9
methods for representing file-system paths 43
scanners and 39

NSView class 47

P

parent directories
resolving references to 43

paths and strings 44
primitive methods

of NSString 9
printf function

NSString and 15

R

rangeOfCharacterFromSet: method 25, 35
rangeOfCharacterFromSet:options: method 25
rangeOfCharacterFromSet:options:range:method

25

rangeOfComposedCharacterSequenceAtIndex:
method 25

rangeOfString: method 25
rangeOfString:options: method 25
rangeOfString:options:range: method 25

S

scan... methods 39
scanners 39, 40

instantiating 39
operation of 39
sample code 40

scannerWithString: method 39
scanUpToString:intoString: method 40
search methods

for strings 25
setCaseSensitive: method 39
setCharactersToBeSkipped: method 39
setLocale: method 41
setScanLocation: method 39
Shift-JIS character encoding 11
standard character sets 35, 37
string objects

combining and extracting 13
comparison methods 25
creating and converting 11–14
described 9
drawing 47
searching and comparing 25–26

stringByAppendingFormat: method 12, 13, 14
stringByAppendingString: method 12, 13, 14
stringWithCharacters:length: method 14
stringWithContentsOfFile: method 23
stringWithCString: method 14
stringWithFormat: method 13
stringWithUTF8String: method 14
substringFromIndex: method 13
substringToIndex: method 13
substringWithRange: method 13

U

Unicode
characters in string objects 11
code points used to define character sets 36
in string objects 9
NSCharacterSet and 35
standard character sets 37
string comparison standard 25

52
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

UTF8 character encoding 13
UTF8String method 13, 14

V

value formatting
string conversion and 15

W

writeToFile:atomically: method 23

53
2008-10-15 | © 1997, 2008 Apple Inc. All Rights Reserved.

	String Programming Guide for Cocoa
	Contents
	Tables
	Introduction
	Strings
	Creating and Converting String Objects
	Creating Strings
	NSString from C Strings and Data
	Variable Strings
	Strings to Present to the User

	Combining and Extracting Strings
	Getting C Strings
	Conversion Summary

	Formatting String Objects
	Formatting Basics
	Strings and Non-ASCII Characters
	NSLog and NSLogv

	String Format Specifiers
	Format Specifiers
	Platform Dependencies

	Reading Strings From and Writing Strings To Files and URLs
	Reading From Files and URLs
	Reading data with a known encoding
	Reading data with an unknown encoding

	Writing to Files and URLs
	Summary

	Searching, Comparing, and Sorting Strings
	Search and Comparison Methods
	Searching strings
	Comparing and sorting strings

	Search and Comparison Options
	Examples
	Case-Insensitive Search for Prefix and Suffix
	Comparing Strings
	Sorting strings like Finder

	Paragraphs and Line Breaks
	Line and Paragraph Separator Characters
	Separating a String “by Paragraph”

	Characters and Grapheme Clusters
	Character Sets
	Character Set Basics
	Creating Character Sets
	Performance considerations
	Creating a character set file
	Standard Character Sets and Unicode Definitions

	Scanners
	Creating a Scanner
	Using a Scanner
	Example
	Localization

	String Representations of File Paths
	Representing a Path
	User Directories
	Path Components
	File Name Completion

	Drawing Strings
	Revision History
	Index
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	P
	R
	S
	U
	V
	W

