System Services

Cocoa > Interapplication Communication

g

2002-11-12



.

[

Apple Inc.

© 2003, 2002 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
Objective-C, and Xcode are trademarks of Apple
Inc,, registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction to System Services 7

Organization of This Document 7

Services Architecture 9

Service Request 9
Sample Services 10

Items in the Services Menu 13

Services Properties 15

Property Definitions 15
Add-On Services 16
Sample Property List 16

Providing a Service 19

Implementing the Service Method 19
Registering the Service Provider 20
Advertising the Service 21

Installing the Service 21

Using Services 23

Registering Objects for Services 24
Validating Services Menu Items 24
Sending Data to the Service 25
Receiving Data from the Service 26
Invoking a Service Programmatically 26

Creating the NSServices Property 27

Document Revision History 29

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Figures and Listings

Services Architecture 9

Figure 1 Data flow in a service request 9

Figure 2 Make Sticky is a processor service 10

Figure 3 Open URL is a processor service 11

Figure 4 Grab is a provider service 11

Figure 5 The Wolf Facts document after a screen shot has been inserted 12

Services Properties 15

Figure 1 The NSServices property for the Grab application 17

Providing a Service 19

Listing 1 Text encryption method 19
Listing 2 Service method 19

Using Services 23

Figure 1 Using services 23

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Introduction to System Services

Services give applications an open-ended way to extend each other’s functionality by allowing applications
to

m provide services to other applications

= access functionality provided by other applications

The shared functionality is accessed through the Services submenu of every application’s application menu.
An application does not need to know in advance what operations are available; it merely needs to indicate

the types of data it uses, and the Services menu makes available the operations that apply to those types of
data.

Organization of This Document

This document describes how Mac OS X services work, shows some typical Services menus, and provides
instructions on how you can use services in your application. You should read this document if you are an
application developer and want to provide your application’s services to other applications or make services
from other applications available to your application.

Before you read this document, you should be familiar with information property lists. You need to know
what they are and how to add properties to a list. See “Information Property Lists” for more information.

For guidelines on naming menu items and designing the interface for a services application, see Apple Human
Interface Guidelines.

Here are the concepts covered:

m  “Services Architecture” (page 9)
m  “ltems in the Services Menu” (page 13)

m “Services Properties” (page 15)

Here are the tasks covered:

= “Providing a Service” (page 19)
m  “Using Services” (page 23)
m  “Creating the NSServices Property” (page 27)

Organization of This Document 7
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Introduction to System Services

Organization of This Document
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Services Architecture

Services allows a user to access the functionality of one application from within another application. An
application that provides a service advertises the operations it can perform on a particular type of data—for
example, encryption of text, optical character recognition of a bitmapped image, or generating text such as
a message of the day. When the user is manipulating that particular type of data in some application, the
user can choose the appropriate item in the Services menu to operate on the current data selection (or merely
insert new data into the document).

This section discusses how services are processed and describes some sample services.

Service Request

Any application that signs up to use services automatically has access to the advertised functionality through
its Services menu. An application does not need to know in advance what operations are available; it merely
needs to indicate the types of data it uses, and the Services menu makes available the operations that apply
to those types of data.

Services are performed by transferring data back and forth between applications through a shared pasteboard.
Note that the two applications—service requestor and service provider—are completely separate; they do
not run in a shared memory space. The pasteboard holding the data is specific to the service request and
does not normally interfere with the standard Copy/Paste pasteboard.

When the user chooses a Services menu item data flows as shown in Figure 1 (page 9). The current selection
is copied to a pasteboard which is then passed to the service provider application. If the service provider is
not currently running, it is automatically launched. The service provider reads the contents of the pasteboard
and operates on it. The service provider writes new data back to the pasteboard and the pasteboard is
returned to the original application. The original application then pastes the pasteboard’s contents into the
document, replacing the current selection, if there is one. The service provider application does not
automatically quit at the end of the service request.

Figure 1 Data flow in a service request

Copy Read

Service
provider

Service

Pasteboard
requester

Paste Write

Not all services both receive and provide data. Some services only receive data and others only provide data.
In these cases only one of the copy and paste steps is performed. Services can thus be divided into two
groups:

Service Request 9
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Services Architecture

m  Processor. This type of service acts on data. A processor service acts on the current selection and then
sends it to the service. For example, if a user selects an email address in a TextEdit document, and then
chooses Mail > Mail To from the Services menu, TextEdit copies the person’s address to the pasteboard,
the Mail application launches, and Mail pastes the address into the Send field of a new email message.

= Provider. This type of service gives data to the calling application. For example, if a user chooses Grab
> Screen from the Services menu, the Grab application opens, takes a screen shot, then returns the
screen shot (TIFF data in this case) to the calling application. The calling application (such as TextEdit)
is responsible for pasting the data into the active document.

A service falls into both categories if it processes the current selection and then provides a replacement value.
For example, a text encryption service takes the current text selection, encrypts it, and then returns the
encrypted text to the service requester to replace the current selection.

Sample Services

10

The following few figures show Services in action. Figure 2 (page 10) shows the Services menu from the
TextEdit application. Make Sticky is an example of a processor service. The Make Sticky command takes the
current selection in the TextEdit document, opens a new Stickies document, and then pastes the selection
into the Stickies document. For more convenient use, a keyboard shortcut (Command-Shift-Y) is defined for
this service.

Figure 2 Make Sticky is a processor service

AEAL (I8 File Edit Format Window Help

About TextEdit © O O . Rabbit Facts.rtf
Preferences... Ralbbits like to eat:

1. Lettuce
Services Disk Copy > |
= = Grab >
Hide TextEdit 38H Mail >

FHRERREE Make Sticky
Show All Summarize
Quit TextEdit s8qQ  TextEdit >

View In JavaBrowser <»3)
Web Browser

Figure 3 (page 11) shows another example of a processor service. In this case, the Open URL command
copies the selected text, launches a Web browser, pastes the selected text into the browser’s location field,
and then tries to connect to that location.

Sample Services
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Services Architecture

Figure 3 Open URL is a processor service

r

8’ A48 File Edit Format Window Help

Services Disk Copy
= 2 Crab
H!de TextEdit 38H Mail
Hide Others Make Sticky
Show All Summarize

Quit Textedit 3Q  TextEdit

About TextEdit ® O O . Rabbit Facts.rtf
Preferences... For more information, see: =
www.rabbits.com

View In JavaBrowser >3]
Web Browser > Open UR [

yrYwyYy

O BY

>

Grab is a provider service. Figure 4 (page 11) shows the Wolf Facts document before Grab > Screen is invoked.

Figure 5 (page 12) shows the Wolf Facts document after Grab has taken a shot of the current screen and

returned the data to the TextEdit application. Recall that it is TextEdit's responsibility to do something with
the returned data. In this example, TextEdit simply pastes the TIFF into the current document at the insertion

point.

Figure 4 Grab is a provider service

-

8’ R3CI8 File Edit Format Window Help

About TextEdit

0 0 0 i Wolf Facts.rifd

Preferences...

Services Disk Copy

- - >

H!de TextEdit #H - Mail >

Hide Others Make Sticky O RY

Show All | Summarize

Quit TextEdit $Q  TextEdit =
s View In JavaBrowser O %)

Web Browser

Sample Services
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.

Screen
Selection
Timed Screen

n



Services Architecture

Figure 5 The Wolf Facts document after a screen shot has been inserted

eQceoe . Wolf Facts.rtfd

You can find wolves in Alaska
File Edit Format Window Help

© O © i wolf Facts.rtfd

You can find wolves in Alaska

12 Sample Services
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Iltems in the Services Menu

Applications that provide services are installed in the Applications and Library/Services folders in
any of the four file-system domains—System, Network, Local, and User. (See “File-System Domains” in System
Overview for details on file-system domains.) The applications’ information property lists declare the services
the applications provide (see “Services Properties” (page 15)). Mac OS X collects the property list information
and uses it to populate the items in the Services menu based on the particular data types supported by each
application.

The Services menu is included in the default nib file created by Xcode and Interface Builder for Cocoa
applications. If the application’s menu is instead created programmatically, you need to designate a Services
menu using the NSApplication method setServicesMenu:. If an application registers for services (see
“Using Services” (page 23)), the appropriate items are automatically available in the Services menu.

The items in the Services menu can be commands or submenus that contain commands. If an application
offers only one service, just the service (stated as a command) is listed in the Services menu. For example,
the Stickies application offers only one service—making a new Sticky note—so only the command Make
Sticky is listed in the Services menu.

If an application offers more than one service, the application’s name usually appears in the Services menu,
and the services offered by the application appear in a submenu. For example, the Grab application offers
three services: taking a screen shot of the entire screen, taking a screen shot of a selected part of the screen,
and taking a screen shot of the entire screen after a set amount of time. As you can see in Figure 4 (page
11), Grab is an item in the Services menu that has its own submenu listing the commands that invoke Grab’s
three services: Screen, Selection, and Timed Screen.

The Services menu is populated when the application launches, but its items are not enabled until the user
chooses Services from the application menu. Choosing Services causes the current responder chain to be
searched for objects that can provide or receive data of the types used by each service listed in the Services
menu. If an object is found that can use a given service, the service’s menu item is enabled. Menu items for
which no suitable object is found are dimmed, unavailable for the user.

13
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



14

Items in the Services Menu

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Services Properties

Any application that has one or more services to provide must advertise the type of data its services can
handle. Services are advertised through the NSServices property of the application’s information property
list(Info.plist file).

Note: The information property list (Info.p11ist) contains key-value pairs that specify the application’s
properties that are of interest to the Finder and other applications. Although the Info.plist is a text file
that uses XML (Extensible Markup Language) format, you should not modify the XML directly unless you are
very familiar with XML syntax. Instead, use Xcode or the Property List Editor application provided with Mac
OS X to modify the Info.p11ist file. You can find more information on property lists in System Overview.

Property Definitions

NSServices is a property whose value is an array of dictionaries that specifies the services provided by the
application. Keys for each dictionary entry, are as follows:

NSMessage indicates the instance method to invoke. Its value is used to construct an Objective-C method
of the form messageName:userData:error: oraJava method of the form
messageName(NSPasteBoard, String). This message is sent to the application’s service provider
object.

NSPortName is the name of the port to which the application should listen for service requests. Its value
depends on how the service provider application is registered. In most cases, this is the application name.

NSMenultemis a dictionary that specifies the text of the Services menu item. The solitary entry has the
key default. Its string value is the menu item text. You can use a slash to specify a submenu. For
example,Mail/Send Selection appearsinthe Services menu as a submenu named Mail with an item
named Send Selection. NSMenuItem must be unique, as only one is used in the Services menu if there
are duplicates.

To localize the string, create a ServicesMenu. strings file for each localization in your bundle with
the above default menu item string as the lookup key. For example, create a . strings file that has
Mail/Send Selection asthe key and the localized text as its value. (See System Overview for details
on localized strings files.) If a localized string is not found, the default text is used.

NSKeyEquivalent is an optional dictionary that specifies the keyboard equivalent that invokes the
menu command. Like NSMenuItem, the only entry in the dictionary should have the key default with
a string value that can be localized in the ServicesMenu. strings file. The string value must be a single
character. The keyboard shortcut is this one character with the Command and Shift key modifiers.

Use key equivalents sparingly. Remember that your shortcuts are being added to the collection of
shortcuts defined by each application as well as defined by the other services. When an application
already has a shortcut with that key equivalent, the application’s shortcut wins. If multiple services define
the same shortcut, which one gets invoked is undefined.

Property Definitions 15
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Services Properties

= NSSendTypes is an array that contains data type names. Send types are the types sent from the
application requesting a service. The NSPasteboard class description lists several common data types.
An application that provides a service must specify NSSendTypes, NSReturnTypes, or both.

m  NSReturnTypes is an array that contains data type names. Return types are the data types returned to
the application requesting a service. The NSPasteboard class description lists several common data types.
An application that provides a service must specify NSSendTypes, NSReturnTypes, or both.

= NSUserData isan optional string that contains a value of your choice. You can use this string to customize
the behavior of your service. For example, if your application provides several similar services, you can
have the same NSMes sage value for all of them (each service invokes the same method) and use different
NSUserData values to distinguish between them. This entry is also useful for applications that provide
open-ended, or add-on, services.

= NSTimeout is an optional numerical string that indicates the number of milliseconds Services should
wait for a response from the application providing a service when a response is required. If the wait time
exceeds the timeout value, the application aborts the service request and continues without interruption.
If you don't specify this entry, the timeout value is 30000 milliseconds (30 seconds).

Add-On Services

You typically define services when you create your application and advertise them in the Info.plist file
of the application’s bundle. The services facility also allows you to advertise services outside of the application
bundle, enabling you to create “add-on” services after the fact. This is where the NSUserData entry becomes
truly useful: You can define a single message in your application that performs actions based on the user
data provided, such as running the user data string as a UNIX command or treating it as a special argument
in addition to the selected data that gets sent through the pasteboard. To define an add-on service, you
create a bundle with a . service extension that contains an Info.p11ist file, which in turn contains the
add-on service specification. The service specification uses the application’s NSMessage and NSPortName
values.

Sample Property List

16

The NSServices property for the Grab application is shown in Figure 1 (page 17) as it appears in the Property
List Editor application.

The NSServices property has three entries, one for each service offered by Grab. The first entry is for the
menu item Grab > Selection. The slash notation—Grab/Selection—specifies that Selection should be an
item in the Grab submenu. (See Figure 4 (page 11).)

Note that for each of the three entries, the port name is Grab. As mentioned, the port name is usually the
application name.

Each entry has one return type, NSTIFFPboardType. An application could have more than one return type
per entry, and the return types don't necessarily need to be the same for each entry.

The entry for Grab/Timed Screen is the only entry that has a specified timeout value. This optional entry
is needed in this case so that the Grab application can wait for the user to set up the screen before taking a
screen shot.

Add-On Services
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Services Properties

Figure 1 The NSServices property for the Grab application
8eo0e | Info.plist
{ NewcChild O Delete
Property List 'Class Value
v MNSServices Array % 3 ordered objects i~
Yo Dictionary 4 4 keyivalue pairs
wNSMenultemn Dictionary + 1 keyivalue pair
default String 4 Grab/Selection
NSMessage String 4 variableSelection
NSPortName String 4 Grab
v NSReturnTypes Array + 1 ordered object
0 String 4 NSTIFFPboardType
wi Dictionary 4 4 keyivalue pairs
¥ NSMenultem Dictionary 4 1 keyivalue pair
default String 4 Grab/Screen
NSMessage String 4 screenSelection
NSPortName String 4 Grah
¥ MNSReturnTypes Array 4 1 ordered ohject
0 String 4 NSTIFFPboardType
L F Dictionary H yivalue pairs
v NSMenultem Dictionary 4 1 keyialue pair
detault String 4 Grab/Timed Screen
NSMessage String 4 timedSelection
NSPortName String 4 Grab
¥ MSReturnTypes Array 4 1 ordered object
o String % MNSTIFFPboardType e
NSTimeaout String 4+ 0000 [
— 3

Sample Property List

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.

17



Services Properties

18 Sample Property List
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Providing a Service

Suppose you are working on a program to read USENET news, and have an object with a method to encrypt
and decrypt articles, such as the one in Listing 1 (page 19). News articles containing offensive material are
often encrypted with this algorithm, called “rot13,” in which letters are shifted halfway through the alphabet.

Listing 1 Text encryption method

- (NSString *)rotatelettersIinString: (NSString *)aString
{

NSString *newString;

unsigned length;

unichar *buf;

unsigned 1i;

length = [aString length];
buf = malloc( (length + 1) * sizeof(unichar) );
[aString getCharacters:bufl;
bufllength] = (unichar)0; // not really needed....
for (i = 0; i < length; i++) {
if (buf[i] >= (unichar)'a' && buf[i] <= (unichar) 'z') {
buf(i] += 13;
if (buflil > 'z') bufl[i] -= 26;
b else if (buf[i] >= (unichar)'A' && buf[i] <= (unichar) 'Z2') {
buflil += 13;
if (bufli] > 'Z") bufli] -= 26;
}
}
newString = [NSString stringWithCharacters:buf length:length];
free(buf);
return newString;

Implementing the Service Method

Since this feature is generally useful as a simple encryption scheme, it can be exported to other applications.
To offer this functionality as a service, write a method such as the one in Listing 2 (page 19).

Listing 2 Service method

- (void)simpleEncrypt: (NSPasteboard *)pboard
userData: (NSString *)userData
error: (NSString **)error

NSString *pboardString;
NSString *newString;
NSArray *types;

Implementing the Service Method 19
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Providing a Service

types = [pboard types];
if (![types containsObject:NSStringPboardTypel) f{
*error = NSLocalizedString(@"Error: couldn't encrypt text.",
@"pboard couldn't give string.");
return;
}
pboardString = [pboard stringForType:NSStringPboardType];
if (!pboardString) {
*error = NSLocalizedString(@"Error: couldn't encrypt text.",
@"pboard couldn't give string.");
return;
}
newString = [self rotatelettersInString:pboardString];
if (InewString) {
*error = NSLocalizedString(@"Error: couldn't encrypt text.",
@"self couldn't rotate letters.");
return;
}
types = [NSArray arrayWithObject:NSStringPboardTypel;
[pboard declareTypes:types owner:nill;
[pboard setString:newString forType:NSStringPboardTypel;
return;
}

The method providing the service is of the form messageName:userData:error: and takes arguments
as shown in Listing 2 (page 19). The method itself takes data from the pasteboard as needed, operates on
it, and writes any results back to the pasteboard. In case of an error, the method simply sets the pointer given
by the error argument to a non-nil NSString and returns. The error message is logged to the console. The
userData argument is not used here.

If implementing the service in Java, the invoked method has the form
String messageName(NSPasteboard pboard, String userData)

This method returns nu11 if successful; otherwise, it returns the error message string.

Registering the Service Provider

20

Now you have an object with methods that allow it to perform a service for another application. Next, you
need to register the object at run time so the services facility knows which object to have perform the service.
You create and register your object in the applicationDidFinishLaunching: application delegate
method (or equivalent) with NSApplication’s setServicesProvider: method. If your object is called
encryptor you create and register it with this code fragment:

EncryptoClass *encryptor;
encryptor = [[EncryptoClass alloc] init];

[NSApp setServicesProvider:encryptor];

If you are writing a plain Foundation tool, which lacks an NSApplication object, register the service object
with the NSRegisterServicesProvider function. Its declaration is:

void NSRegisterServicesProvider(id provider, NSString *portName)

Registering the Service Provider
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Providing a Service

provider is the object that provides the services, and portName is the same value you specify for the
NSPortName entry in the services specification. After making this function call, you must enter the run loop
to respond to service requests.

You can register only one service provider per application. If you have more than one service to provide, a
single object must provide the interface to all of the services.

Service requests can arrive immediately after registering the object, in some circumstances even before
exiting applicationDidFinishLaunching:. Therefore, register your service provider only when you are
completely ready to process requests.

Advertising the Service

For the system to know that your application provides a service, you must advertise that fact. You do this by
adding an entry to your application project’s Info.p1ist file. The entry you add is called the service
specification. In our example, the service specification looks like this:

NSServices = (
{
NSPortName = NewsReader;
NSMessage = simpleEncrypt;
NSSendTypes = (NSStringPboardType);
NSReturnTypes = (NSStringPboardType);
NSMenultem = {
default = "Encrypt Text";
b
NSKeyEquivalent = {
default = E;
b

Installing the Service

A service can be offered as part of an application, such as Mail, or as a standalone service—one without a
user interface that is intended for use only in the Services menu. Applications that offer services should be
built with the . app extension and installed in the Applications folder (or a subfolder) in one of the four
file-system domains—System, Network, Local, and User. (See “File-System Domains” in System Overview for
details.) A standalone service should be built with the . service extension and stored in the
Library/Services folder in one of these domains.

The list of available services on the computer is built each time a user logs in. After installing your service in
eitheran Applicationsor Library/Services directory, you need to log out and back in again before
the service becomes available. You can force an update of the list of services without logging out by calling
the following function:

void NSUpdateDynamicServices(void)

Running applications are not affected, but applications launched afterwards get the new list of services.

Advertising the Service 21
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Providing a Service

22 Installing the Service
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Using Services

The default nib file created for new Cocoa applications contains a Services menu in the application menu,
so there is nothing else you need to do for your application to work with the services facility; your application
automatically has access to all appropriate services provided by other applications. If you need to construct
menus programmatically, you simply designate the NSMenu that you want as your Services menu with
NSApplication’s setServicesMenu: method.

If you subclass NSView or NSWindow (or any other subclass of NSResponder), you need to implement it such
that it interacts properly with the services facility. Tying custom NSViews or NSWindows into the services
facility falls into the following steps:

1. Registering your user-interface objects for services

2. Validating the Services menu items for the current selection

3. Sending the current selection to the service

4. Receiving data from the service to replace the current selection

These steps are illustrated in Figure 1 (page 23).

Figure 1 Using services

1. Register types
NSApplication <" User-interface

(NSApp) - object

2. Validate menu

NN

3. Copy selection

4

4. Paste new selection

4

When a pure Service provider is invoked (in other words, no send types), step 3 is skipped. When a pure
Service processor is invoked (in other words, no return types), step 4 is skipped.

The following sections cover each of these steps. A final section, “Invoking a Service Programmatically” (page
26), shows how to invoke a service in your code.

23
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Using Services

Registering Objects for Services

The Services menu does not contain every service offered by other applications. For example, in a text editor
a service to invert a bitmapped image is of no use and should not be offered. Which services appear in the
Services menu is determined by the data types that the objects in the application—specifically the
NSResponder objects—can send and receive through the pasteboard.

An NSResponder registers these data types using the NSApplication Objective-C method
registerServicesMenuSendTypes:returnTypes: or Java method registerServicesMenuTypes.
Application Kit objects already do this for the basic text services, but your custom NSResponder subclass
must do this to expand the list. A convenient location is in your subclass’s initialize class method, which
is guaranteed to be invoked by the runtime before any other method of the class. All types used by instances
of the class must be registered, even if they are not always available; Services menu items are enabled and
disabled dynamically based on what is available at the moment, as described in “Validating Services Menu
Items” (page 24).

An object does not have to register the same types for both sending and receiving. Suppose you are writing
a rich text editor that can send unformatted and rich text, but can only receive unformatted text. Here is a
portion of the initialization method for a text-editor’s NSView subclass:

+ (void)initialize
{
static BOOL initialized = NO;
/* Make sure code only gets executed once. */
if (initialized == YES) return;
initialized = YES;

sendTypes = [NSArray arrayWithObjects:NSStringPboardType,
NSRTFPboardType, nill;

returnTypes = [NSArray arrayWithObjects:NSStringPboardType,
nill;

[NSApp registerServicesMenuSendTypes:sendTypes
returnTypes:returnTypes];

return;

}

Your NSResponder object can register any pasteboard data type, public or proprietary, common or rare. If it
handles the public and common types, of course, it has access to more services. See the NSPasteboard class
specification for a list of standard pasteboard data types.

Validating Services Menu Items

24

While your application is running, various types of data can be selected and available for transfer on the
pasteboard. If a service does not apply to the type of the selected data, its menu item needs to be disabled.
To check whether a service applies, the application object sends
validRequestorForSendType:returnType: messages to Objective-C objects, and
validRequestorForTypes to Java objects, in the responder chain to see whether they have data of the
type used by that service. While the Services menu is visible, this method is invoked frequently—typically
many times per event—to ensure that the menu items for all service providers are properly enabled: It is

Registering Objects for Services
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Using Services

sent for each combination of send and return types supported by each service and possibly for many objects
in the responder chain. Because this method is invoked so frequently, it must be fast so that event handling
does not fall behind the user’s actions.

The following example shows how this method can be implemented for an object that handles unformatted
text:

- (id)validRequestorForSendType: (NSString *)sendType
returnType: (NSString *)returnType
{
if ( (!sendType || [sendType iskEqual:NSStringPboardTypel) &&
(!returnType || [returnType isEqual:NSStringPboardTypel) ) {
if ( (lsendType || [self selection]) &&
(!returnType || [self isEditablel) ) {
return self;
}
}
return [super validRequestorForSendType:sendType
returnType:returnTypel;
}

This implementation checks both the types indicated and the state of the object. The object is a valid requestor
if the send and return types are unformatted text or simply are not specified, and if the object has a selection
and is editable (when send and return types are given). If this object cannot handle the service request in its
current state, it invokes its superclass’ implementation.

validRequestorForSendType:returnType: issentalong an abridged responder chain, comprising only
the responder chain for the key window and the application object. The main window is excluded.

Sending Data to the Service

When the user chooses a Services menu command, the responder chain is checked with
validRequestorForSendType:returnType: and the first object that returns a value other than ni1 is
called upon to handle the service request by providing data (if any is required) with a
writeSelectionToPasteboard:types: message. Java objects are sent a
writeSelectionToPasteboard0fTypes message. You can implement this method to provide the data
immediately or to provide the data only when it is actually requested. Here is an implementation for an object
that writes unformatted text immediately:

- (BOOL)writeSelectionToPasteboard: (NSPasteboard *)pboard
types: (NSArray *)types
{

NSArray *typesDeclared;

if ([types containsObject:NSStringPboardType] == NO) f{
return NO;
}
typesDeclared = [NSArray arrayWithObject:NSStringPboardTypel;
[pboard declareTypes:typesDeclared owner:nill;
return [pboard setString:[self selection]
forType:NSStringPboardTypel;

Sending Data to the Service 25
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Using Services

This method returns YES if it successfully writes or declares any data and NO if it fails. If you have large amounts
of data or you can provide the data in many formats, you should provide the data only on demand. You
declare the available types as above, but with an owner object that responds to
pasteboard:provideDataForType:. See the NSPasteboard class specification for more details.

Receiving Data from the Service

Once the service requestor writes data to the pasteboard, it waits for a response as the service provider is
invoked to perform the operation; if the service does not return data, of course, the requesting application
simply continues running and none of the following applies. The service provider reads the data from the
pasteboard, works on it, and then returns the result. At this point the service requestor is sent a
readSelectionFromPasteboard: message telling it to replace the selection with whatever data came
back. (The Java method has the same name.) The simple text object can implement this method as follows:

- (BOOL)readSelectionFromPasteboard: (NSPasteboard *)pboard
{

NSArray *types;

NSString *theText;

types = [pboard types];
if ( [types containsObject:NSStringPboardType] == NO ) {
return NO;
}
theText = [pboard stringForType:NSStringPboardTypel;
[self replaceSelectionWithString:theText];
return YES;
}

This method returns YES if it successfully reads the data from the pasteboard, NO otherwise.

Invoking a Service Programmatically

26

Though the user typically invokes a standard service by choosing an item in the Services menu, you can
invoke it in code using this function:

BOOL NSPerformService( NSString *serviceltem, NSPasteboard *pboard )

This function returns YES if the service is successfully performed, NO otherwise. serviceltemis the name
of a Services menu item (in any language). It must be the full name of the service, including the submenu
and slash; for example, “Mai1/Selection” pboard contains the data to be used for the service, and when
the function returns contains the data resulting from the service. You can then do with the data what you
wish.

Receiving Data from the Service
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Creating the NSServices Property

Applications must use their information property list to advertise the services they provide. You need to add
the NSServices property, and it must have one dictionary entry for each service you provide. Each dictionary
entry must have these keys: NSMessage, NSPortName, and NSMenu I tem. Each entry must have one or both
of NSSendTypes and NSReturnTypes. Each entry can optionally have these keys: NSKeyEquivalent,
NSUserData,and NSTimeout. See “Services Properties” (page 15) for a description of each key and examples
of the NSServices property in an information property list.

To add services properties to the information property list for a service application or a standalone service
do the following:

1. Open your services application or standalone services project in Xcode.

2. C(lick the Targets tab, then click the appropriate target in the Targets list.

3. Click the Application Settings tab, then click Expert.

4, C(lick the New Sibling button.

5. Type NSServices in the Property List column.

6. Choose Array from the Class pop-up menu.

7. Click the disclosure triangle next to NSServices, then click the New Child button.
When you click the disclosure triangle, the New Sibling button changes to New Child.

8. Set the array element’s class to Dictionary.

9. Click the disclosure triangle next to the array element, then click the New Child button.

10. Type an NSServices keyword in the Property List column, make sure its class is set appropriately, then
type or choose a value.

Click New Sibling to add the other required keywords to this array element.
See “Services Properties” (page 15) for a discussion of keywords and their classes.
You need to add an array element to the NSServices property for each service your application provides.

To add another array element, click NSServices, click the New Child button, then follow steps 8 through
10.

27
2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



28

Creating the NSServices Property

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



Document Revision History

This table describes the changes to System Services.

Date

Notes

2002-11-12

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

29

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



30

Document Revision History

2002-11-12 | © 2003, 2002 Apple Computer, Inc. All Rights Reserved.



	System Services
	Contents
	Figures and Listings
	Introduction
	Services Architecture
	Service Request
	Sample Services

	Items in the Services Menu
	Services Properties
	Property Definitions
	Add-On Services
	Sample Property List

	Providing a Service
	Implementing the Service Method
	Registering the Service Provider
	Advertising the Service
	Installing the Service

	Using Services
	Registering Objects for Services
	Validating Services Menu Items
	Sending Data to the Service
	Receiving Data from the Service
	Invoking a Service Programmatically

	Creating the NSServices Property
	Revision History


